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Abstract

We lower bound the complexity of finding ε-stationary points (with gradient norm at most ε)
using stochastic first-order methods. In a well-studied model where algorithms access smooth,
potentially non-convex functions through queries to an unbiased stochastic gradient oracle with
bounded variance, we prove that (in the worst case) any algorithm requires at least ε−4 queries
to find an ε-stationary point. The lower bound is tight, and establishes that stochastic gradient
descent is minimax optimal in this model. In a more restrictive model where the noisy gradient
estimates satisfy a mean-squared smoothness property, we prove a lower bound of ε−3 queries,
establishing the optimality of recently proposed variance reduction techniques.

1 Introduction

Stochastic gradient methods—especially variants of stochastic gradient descent (SGD)—are the
workhorse of modern machine learning and data-driven optimization [9, 10] more broadly. Much of the
success of these methods stems from their broad applicability: any problem that admits an unbiased
gradient estimator is fair game. Consequently, there is considerable interest in understanding the
fundamental performance limits of methods using stochastic gradients across broad problem classes.
For convex problems, a long line of work [33, 34, 1, 47] sheds lights on these limits, and they are
by now well-understood. However, many problems of interest (e.g., neural network training) are
not convex. This has led to intense development of improved methods for non-convex stochastic
optimization, but little is known about the optimality of these methods. In this paper, we establish
new fundamental limits for stochastic first-order methods in the non-convex setting.

In general non-convex optimization, it is intractable to find approximate global minima [33] or
even to test if a point is a local minimum or a high-order saddle point [31]. As an alternative measure
of optimization convergence, we consider ε-approximate stationarity. That is, given differentiable
F : Rd → R, our goal is to find a point x ∈ Rd with

‖∇F (x)‖ ≤ ε. (1)

The use of stationarity as a convergence criterion dates back to the early days of nonlinear
optimization [cf. 45, 37]. Recent years have seen rapid development of a body of work that studies
non-convex optimization through the lens of non-asymptotic convergence rates to ε-stationary points
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[35, 27, 12, 29, 22, 53, 23]. Another growing body of work motivates this study by identifying
sub-classes of non-convex problems for which all stationary (or second-order stationary) points are
globally optimal [25, 26, 42, 30].

We prove our lower bounds in an oracle model [33, 43], where algorithms access the function
F through a stochastic first-order oracle consisting of a gradient estimator g : Rd × Z → Rd and
distribution Pz on Z satisfying

Ez[g(x, z)] = ∇F (x), and Ez‖g(x, z)−∇F (x)‖2 ≤ σ2. (2)

At the tth optimization step, the algorithm queries at a point x(t), the oracle draws z(t) ∼ Pz, and
the algorithm observes the noisy gradient estimate g(x(t), z(t)). We make the standard assumption
that the objective F has bounded initial subobtimality and Lipschitz gradient:

F (x(0))− inf
x
F (x) ≤ ∆ and ‖∇F (x)−∇F (y)‖ ≤ L · ‖x− y‖ ∀x, y ∈ Rd. (3)

Following common practice, we refer to functions F with L-Lipschitz gradients as “L-smooth.”
For problem instances (F, g) satisfying (2) and (3), given a tolerance ε, SGD finds a point x such

that E‖∇F (x)‖ ≤ ε using O(∆Lε−2(1 + σ2ε−2)) oracle queries [27]. In the typical regime, and the
one we focus on here, ε ≤ σ so the complexity reduces to O(∆Lσ2ε−4). The literature on variance
reduction for finding stationary points [29, 22, 53] considers the following additional assumptions:

1. The stochastic gradient g satisfies a mean-squared smoothness property

Ez‖g(x, z)− g(y, z)‖2 ≤ L̄2 · ‖x− y‖2 ∀x, y ∈ Rd. (4)

2. The algorithm is allowed K simultaneous queries : at step t, the algorithm queries x(t,1), . . . , x(t,K)

and observes g(x(t,1), z(t)), . . . , g(x(t,K), z(t)), where the random seed z(t) ∼ Pz is shared.

Under the mean-squared smoothness assumption and using K = 2 simultaneous queries the
SPIDER [22] and SNVRG [53] algorithms find a point x such that E‖∇F (x)‖ ≤ ε using O(∆L̄σε−3 +
σ2ε−2) oracle queries. This improvement over the ε−4 rate of SGD raises natural questions. Can we
improve this rate further? Alternatively, can we improve the rate of SGD without the additional
assumption (4)? We settle both questions in the negative.

1.1 Contributions

We prove lower bounds for finding stationary points in the stochastic first-order oracle model. Our
main result is Theorem 3, which states:

1. There exists a distribution over instances (F, g) satisfying assumptions (2) and (3) under which
every randomized algorithm requires at least c · ∆Lσ2ε−4 oracle queries to find x satisfying
E‖∇F (x)‖ ≤ ε, where c > 0 is a universal constant and where the expectation is taken over the
randomness in both the oracle and the algorithm.

2. When g also satisfies the mean-squared smoothness property (4), every randomized algorithm
requires c ·

(
∆L̄σε−3 + σ2ε−2

)
oracle queries.

Both lower bounds hold for any number K of simultaneous queries, with the dimension d of the
hard instance depending polynomially on K and ε−1 (see expressions for d in Section 1.2 below).

Our lower bounds continue to hold when the oracle is subject to more stringent assumptions. In
particular, we show that gradient estimators of the form g(x, z) = ∇xf(x, z) give rise to the same

2



lower bounds; these gradient estimators arise in statistical learning problems such as empirical risk
minimization. Furthermore, our results extend to active oracles where the algorithm may choose the
seed z. This setting includes the special case of finite sum minimization, where F (x) = 1

n

∑n
i=1 fi(x),

each oracle query consists of point x and index i, and the oracle response is ∇fi(x).
The main implications of our results are as follows.

• Optimality of SGD and recent variance-reduction schemes. Our ε−4 lower bound
matches (up to a numerical constant) the rate of convergence of SGD [27] under assumptions (2)
and (3), thereby characterizing the optimal complexity and proving that SGD attains it. Similarly,
under the additional assumption (4) our ε−3 lower bound matches the rates of Fang et al. [22]
and Zhou et al. [53], thereby proving their optimality.

• Separation between smoothness assumptions. Our results highlight that the mean-squared
smoothness assumption (4) is critical for variance reduction: we prove that in its absence, any
scheme will require a number of queries that scales as ε−4 at least. These results are salient, as
this assumption appears in numerous recent works on non-convex optimization [22, 53, 52, 23].

• Separation between convex and non-convex stochastic optimization. Foster et al. [24]
show that for convex functions satisfying assumptions (2) and (3), the optimal rate for finding
ε-stationary points is Θ̃(

√
∆Lε−2 + σ2ε−2). Our Ω(∆Lσ2ε−4) lower bound thus implies a gap

between the convex and non-convex setting that scales as ε−2. Conceptually, both rates admit a
simple interpretation. The convex complexity is the sum of the noiseless convex optimization
complexity

√
∆Lε−2 [14] and the estimation complexity σ2ε−2. In contrast, in the non-convex

case the noiseless complexity ∆Lε−2 [13] and the estimation complexity σ2ε−2 multiply rather
than add. This observation underpins our proofs.

1.2 Our approach

We build on the noiseless lower bound construction of Carmon et al. [13], itself inspired by Nesterov’s
notion of a chain-like function [34]. The key technique is to construct a function such that any
noiseless oracle query reveals the index of at most a single “relevant” coordinate; the lower bound
follows from the fact that any ε-stationary point is non-zero in Ω(L∆ε−2) relevant coordinates. We
amplify this lower bound by designing a noisy oracle that reveals a relevant coordinate only with low
probability p = Θ(ε2/σ2). This increases the number of required queries by a factor proportional to
1/p = Θ(σ2ε−2), giving our ε−4 lower bound. The main challenge lies in making sure that the oracle
is not too noisy, in the sense that the variance requirement (2) is met. To do so, we focus all of the
noise on the single new coordinate ix that the query x would discover next via the noiseless gradient.
More specifically, we let z ∼ Bernoulli(p), and set gix(x, 0) = 0 and gix(x, 1) to be such that g is
unbiased. By careful analysis of the noiseless construction of [13] we show that the variance bound
holds and we obtain our lower bound.

Proving the ε−3 lower bound requires additional nuance, as the “incoming coordinate” index
ix is not continuous in x, and so the gradient estimator above does not satisfy the mean-square
smoothness requirement (4). Leveraging the special structure of the noiseless construction once
more, we design a continuous surrogate for ix, and arrive at a mean-square smooth construction
for which gix(x, z) is again non-zero only with probability p. Scaling this construction such that
L = Θ(L̄ε/σ) yields the ε−3 lower bound.

For ease of exposition, we first carry out our proof strategy for the sub-class of “zero-respecting”
algorithms, whose queries are non-zero only in coordinates where previous oracle responses were not
zero. We then lift our results to the class of all randomized algorithms using the method of random
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rotations [48, 13]. On a high level, we argue that in a random coordinate system, any algorithm
operating on our constructions is essentially zero-respecting.

Our lower bound constructions are high-dimensional. For zero-respecting algorithms, the
dimension we require is exactly the number of relevant coordinates: dzr = Θ(∆Lε−2) for the
bounded variance case and dzr = Θ(∆L̄σ−1ε−1) for the mean-square smooth case. To handle
general, potentially randomized algorithms that allow K simultaneous oracle queries for every
random realization z ∼ Pz, we add many irrelevant coordinates, and our proof requires dimension
Õ(Kd2

zr/p), where p = Θ(ε2/σ2) is the progress probability. Lower bound constructions with
dimension that scales polynomially in ε−1 are common [33, 34, 47, 24], and natural for algorithms
that (nominally) work in arbitrary Hilbert spaces. In the noiseless setting, obtaining tight and
algorithm-independent lower bounds on dimension-independent convergence rates necessitates high-
dimensional constructions; see Carmon et al. [13, Section 1.2] for additional discussion. Since the
noiseless setting is a special case of our noisy setting, it seems likely that here too high-dimensional
constructions are to some extent unavoidable.

1.3 Related work

Lower bounds for first-order convex optimization in the noiseless setting are well-studied [33, 34].
For L-smooth functions in the high-dimensional regime, it is well-known that Θ

(√
D2Lε−1

)
gradient

evaluations are necessary and sufficient to find an ε-suboptimal point given x(0) with
∥∥x(0) − x?

∥∥ ≤ D;
Nesterov’s accelerated gradient method [36] achieves this rate.

For smooth high-dimensional non-convex optimization in the noiseless setting, Carmon et al. [13]
establish that Θ(∆Lε−2) gradient evaluations are necessary and sufficient for finding ε-stationary
points; this rate is achieved by gradient descent. An earlier line of work develops lower bounds for
finding stationary points of non-convex functions in the low-dimensional regime where d is constant,
but they obtain either weaker lower bounds [45] or tight bounds that hold only for specific algorithm
classes [15, 16, 17, 18].

A long line of work on lower bounds for stochastic convex optimization traces back to Nemirovski
and Yudin’s seminal information-based complexity [33]. Extensions since then have allowed sharp
dimension-dependent bounds via reductions to statistical estimation problems [38, 1], as well as
extension to structured problems common in machine learning, such as finite sums, by restrictions
on the form of the update rules [7] and high-dimensional constructions [47, 24]. Our technique for
proving stochastic lower bounds differs qualitatively from these methods in that we preserve the
sequential hardness of the noiseless non-convex lower bound construction of [13], and use the noise
in the stochastic setting to amplify the hardness of this construction.

For non-convex stochastic optimization, few lower bounds are known. Drori and Shamir [21]
recently showed that SGD itself cannot obtain a rate better than ε−4 for finding ε-stationary points,
even for convex functions. This is an algorithm-specific result, whereas we show that no algorithm
can improve over this rate. For finite sum problems where F (x) = 1

n

∑n
i=1 fi(x), Fang et al. [22] show

that Ω
(
∆L̄ε−2√n

)
stochastic gradient queries are required to find a ε-stationary point; SPIDER

and SNVRG [22, 53] have matching upper bounds. This lower bound is incomparable to ours:
the stochastic gradient construction in the paper [22] has unbounded variance, so it cannot imply
results along the lines of Theorem 3. Indeed, Fang et al. [22] leave obtaining the ε−3 lower bound
we provide in Theorem 3 as an open problem.

We now turn to upper bounds for finding stationary points in the stochastic setting. In the
convex setting (where achieving approximate global optimality is possible and hence usually the
goal) Allen-Zhu [2] proposes algorithms with rates for finding stationary points improving over SGD,
and Foster et al. [24] give improvements on these bounds and establish their optimality. For the
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non-convex setting, Ghadimi and Lan [27] establish an O(∆Lσ2ε−4) upper bound for SGD, and a
large body of recent work attempts to improve this rate. These attempts roughly divide into two
categories: variance reduction and high-order information.

Works in the variance reduction category make either the mean-squared smoothness assump-
tion (4) or a stronger variant wherein every g(·, z) is L̄-Lipschitz. The earliest results consider only
the finite sum setting, and establish improved dependence on the number of summands [4, 39].
Under the bounded variance assumption (2), Lei et al. [29] obtain a rate of ε−10/3, demonstrating
that in the non-convex setting variance reduction provides benefits beyond finite sum optimization.
Subsequent algorithms by Fang et al. [22] and Zhou et al. [53] obtain an improved rate of ε−3, which
we prove is optimal. Recent work [46, 19] offers further refinements of these algorithms that also
obtain the ε−3 rate.

Smoothness in higher derivatives, such as Lipschitz continuity of the Hessian, allows additional
possibilities [49, 3, 5, 22]. Tripuraneni et al. [44] provide a sub-sampled cubic regularization method
that uses stochastic Hessian-vector products and attains a rate of ε−3.5 without relying on mean-
squared smoothness (4) or simultaneous gradient queries. Fang et al. [23] show that it is possible
to obtain the rate ε−3.5 using SGD with perturbed gradients and restarts without the need for
Hessian-vector products. Most works that assume Lipschitz Hessian also provide guarantees for
finding second-order stationary points.

1.4 Organization

Section 2 introduces the formal oracle model in which we prove our lower bounds. In Section 3,
we prove our results for the subclass of zero-respecting algorithms. In Section 4 we apply random
rotations to prove lower bounds for all randomized algorithms, leading to our main result. Section 5
describes the extensions of our results to statistical learning and active oracles, and Section 6
concludes with discussion of some remaining open problems.

Notation For a vector x ∈ Rd, we let support(x) := {i | xi 6= 0} and x≥i := (xi, . . . , xd) ∈ Rd−i+1.
For α ∈ [0, 1) we define the “progress” of x as progα(x) := max{i ≥ 0 | |xi| > α}, where we assume
x0 ≡ 1. For a differentiable function f , we adopt the convention [∇f(x)]i = ∇if(x) = ∂

∂xi
f(x).

When f is twice-differentiable, we likewise define [∇2f(x)]ij = ∇2
ijf(x) = ∂2

∂xi∂xj
f(x). Throughout,

‖x‖ denotes the Euclidean norm of x and ‖x‖∞ denotes its `∞ norm. For a matrix A ∈ Rd1×d2 ,
‖A‖op denotes the operator norm. Given functions f, g : X → [0,∞) where X is any set, we
use non-asymptotic big-O notation: f = O(g) if there exists a numerical constant c < ∞ such
that f(x) ≤ c · g(x) for all x ∈ X and f = Ω(g) if there is a numerical constant c > 0 such that
f(x) ≥ c · g(x). We write f = Õ(g) as shorthand for f = O(gmax{1, log g}).

2 Setup

We study the stochastic optimization problem of finding an ε-stationary point through the well-known
framework of oracle complexity [33], which we set up formally in this section.

Function class We develop lower bounds for algorithms that find stationary points of functions
in the set

F(∆, L) :=
{
F : Rd → R s.t. F (0)− inf

x
F (x) ≤ ∆, ‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖ for all x, y

}
.
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We state explicitly the value of the dimension d required for each lower bound construction; the
reader may otherwise regard d as a free parameter.

Optimization protocol We consider algorithms that access an unknown function F ∈ F(∆, L)
through a stochastic first-order oracle O. Each oracle O consists of a distribution Pz on a measurable
space Z and an unbiased mapping OF (x, z) = (F (x), g(x, z)), meaning for each F ∈ F(∆, L) and x,
if z ∼ Pz then E[g(x, z)] = ∇F (x). We consider a protocol in which algorithms interact with the
oracle through multiple rounds of batch queries. At each round i, the algorithm queries a batch

x(i) :=
(
x(i,1), . . . , x(i,K)

)
, where x(i,k) ∈ Rd and k ∈ [K] (5)

of size K, and for each batch query x(i), the oracle O performs an independent draw z(i) ∼ Pz and
responds with

OF (x(i), z(i)) :=
(
OF (x(i,1), z(i)), . . . ,OF (x(i,K), z(i))

)
.

When K = 1 this is the classical first-order stochastic optimization framework. By considering
larger batches we can subsume variance-reduction methods such as SPIDER and SNVRG [22, 53],
both of which query each stochastic gradient at K = 2 points.1 Note that we allow the algorithm to
observe the function value F (x) exactly for each query, which is a weaker assumption than typical
in lower and upper bounds for stochastic optimization.

Optimization algorithms An algorithm A consists of a distribution Pr over a measurable set
R and a sequence of measurable mappings {A(i)}i∈N such that A(i) takes in the first i− 1 oracle

responses and the random seed r ∈ R to produce the ith query. We let {x(i)
A[OF ]}i∈N denote the

(random) sequence of queries resulting from applying algorithm A with O, defined recursively as

x
(i)
A[OF ] = A(i)

(
r,OF

(
x

(1)
A[OF ], z

(1)
)
, . . . ,OF

(
x

(i−1)
A[OF ], z

(i−1)
))
, (6)

where r ∼ Pr is drawn a single time at the beginning of the protocol (this is no loss of generality [33]).
We define Arand(K) to be the class of all algorithms that follow the protocol (6) with K batch
queries per round.

Oracle classes We consider two natural classes of oracles. For the bounded variance class,
denoted O(K,σ2), we require that the stochastic gradient be unbiased and have the bounded
variance property (2), but otherwise allow arbitrary g(x, z). This well-studied setting subsumes the
standard analysis of stochastic gradient descent for finding approximate stationary points [27].

The bounded variance setting places few restrictions on the stochastic gradient function g(x, z),
but there are many applications in which the stochastic gradients may have additional structure. In
the mean-squared smooth setting, we require that in addition to the bounded-variance property (2),
the stochastic gradient satisfies the mean-squared smoothness property (4). We use O(K,σ2, L̄)
to denote the class of all such oracles. By Jensen’s inequality, any function that admits an
L̄-mean-squared smooth oracle must itself be L̄-smooth.

Our results also extend to more structured oracles appearing in the statistical learning and/or
finite-sum settings. We defer the details to Section 5.

1See also the K-parallel model of Nemirovski [32].
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Complexity measures Our main results are tight lower bounds on the distributional complex-
ity [50, 33, 11] of finding ε-stationary points. Let P [F(∆, L)] be set of all distributions over F(∆, L);
the distributional complexity in the bounded variance setting is

mrand
ε (K,∆, L, σ2) := sup

O∈O(K,σ2)

sup
PF∈P[F(∆,L)]

inf
A∈Arand(K)

inf

{
T ∈ N

∣∣∣∣ E∥∥∇F (x(T,1)
A[OF ]

)∥∥ ≤ ε}, (7)

where the expectation is over the sampling of F from PF , the randomness in the oracle O, and
the randomness in the algorithm A, though randomization in A does not affect distributional
complexity [50, 33]. The distributional complexity for the mean-squared smooth setting is

m̄rand
ε (K,∆, L̄, σ2) := sup

O∈O(K,σ2,L̄)

sup
PF∈P[F(∆,L̄)]

inf
A∈Arand(K)

inf

{
T ∈ N

∣∣∣∣ E∥∥∇F (x(T,1)
A[OF ]

)∥∥ ≤ ε}. (8)

Lower bounds on distributional complexity imply lower bounds on minimax complexity [cf. 33, 11].
That is, mrand

ε (K,∆, L, σ2) > T implies that there exists O ∈ O(K,σ2) such that for every A ∈
Arand(K) there exists a function F ∈ F(∆, L) for which E

∥∥∇F (x(T,1)
A[OF ]

)∥∥ > ε, where here the
expectation is over randomness in A and O.

3 Lower bounds for zero-respecting algorithms

Before presenting our results in full generality, we first develop the key components of our technique
by proving lower bounds for a restricted class of zero-respecting algorithms [13]. The class of
zero-respecting algorithms generalizes the well-known linear span-assumption [see 34, Section 2.1.2],
and encompasses many standard optimization algorithms. More importantly, the lower bound
instances we introduce in this section form the core of our lower bounds for general algorithms via a
reduction in the next section.

An algorithm A is zero-respecting if its queries at each round have support in the supports of all
previous oracle responses:

Definition 1. A stochastic first-order algorithm A is zero-respecting if for any oracle O and any
realization of z(1), z(2), . . ., for all t ≥ 1 and k ∈ [K],

support
(
x

(t,k)
A[OF ]

)
⊆

⋃
i<t,k′∈[K]

support
(
g(i,k′)

)
, (9)

where
(
f (t,1), g(t,1)

)
, . . . ,

(
f (t,K), g(t,K)

)
= OF

(
x

(t)
A[OF ], z

(t)
)

denote the oracle responses for round t.

We let Azr(K) denote the class of all zero-respecting algorithms. Our main result for this section
is to establish tight lower bounds on the minimax oracle complexity for zero-respecting algorithms,
which we denote by mzr

ε (K,∆, L, σ2) for the bounded variance setting and m̄zr
ε (K,∆, L̄, σ2) for the

mean-squared smooth setting; these complexities are as in (7) and (8), with Azr(K) replacing
Arand(K). The zero-respecting structure allows us to attain tight lower bounds using PF supported
on a single hard function.

3.1 Probabilistic zero-chains

At the core of our development is an embedding of the task of finding a stationary point into that
of finding a point x with high coordinate progress, which we define as

progα(x) := max{i ≥ 0 | |xi| > α} (where x0 ≡ 1), (10)
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i.e., progα(x) is the highest index whose entry is α-far from zero, for some threshold α ∈ [0, 1).
The starting point for our lower bounds is the notion of a first-order zero-chain [13], which is a
function F that satisfies prog0(∇F (x)) ≤ prog0(x) + 1 for all x, generalizing Nesterov’s concept of
a “chain-like” function [34]. In the noiseless case (g(i) = ∇F (x(i))), zero-chains control the rate of
progress of zero-respecting algorithms: every query can “discover” at most one coordinate, and
therefore prog0(x(i)) < T for all i ≤ T .

Our key insight is that in the stochastic setting, noise can amplify progress control: we construct
stochastic gradient functions for which any zero-respecting algorithm requires many queries in order
to activate one coordinate. We call such functions probabilistic zero-chains.

Definition 2. A stochastic gradient function g(x, z) is a probability-p zero-chain if

P
(
∃x : prog0(g(x, z)) = prog 1

4
(x) + 1

)
≤ p, (11)

and

P
(
∃x : prog0(g(x, z)) > prog 1

4
(x) + 1

)
= 0. (12)

The constant 1/4 in (11) is only used in our lower bound for general algorithms, and any
non-zero constant would suffice in its place. Even prog0(x) is sufficient for the constructions in this
section; we keep prog 1

4
(x) in the definition only for notational consistency. We also note that the

requirement (12) implies that any F for which g is an unbiased gradient estimator must itself be a
zero-chain.

The next lemma formalizes the idea that any zero-respecting algorithm interacting with a
probabilistic zero-chain requires many rounds to discover all coordinates.

Lemma 1. Let g(x, z) be a probability-p zero-chain gradient estimator for F : RT → R, and let

O be any oracle with OF (x, z) = (F (x), g(x, z)). Let
{
x

(t,k)
A[OF ]

}
be the queries of any A ∈ Azr(K)

interacting with OF . Then, with probability at least 1− δ,

max
k∈[K]

prog0

(
x

(t,k)
A[OF ]

)
< T, for all t ≤ T − log(1/δ)

2p
.

The intuition behind Lemma 1 is that any zero-respecting algorithm must activate coordinates
in sequence, and must wait at least Ω(1/p) rounds between activations on average, leading to a total
waiting time of Ω(T/p) rounds. The proof below makes this intuition formal; note that throughout
the proof we use that progα is non-increasing in α.

Proof. For brevity, we omit the subscript A[OF ] from
{
x

(t,k)
A[OF ]

}
. Recall that r is the algorithm’s

random seed (Eq. (6)). Let
(
f (i,1), g(i,1)

)
, . . . ,

(
f (i,K), g(i,K)

)
denote the oracle responses for the ith

batch query x(i) = (x(i,1), . . . , x(i,K)), and let g(i) = (g(i,1), . . . , g(i,K)). Define a filtration

G(i) := σ(r, x(1), . . . , x(i), g(1), . . . , g(i)).

We define two measures of the algorithm’s progress:

π(t) = max
i≤t

max
k∈[K]

prog0(x(i,k)) = max
{
j ≤ T | x(i,k)

j 6= 0 for some i ≤ t, k ∈ [K]
}
,

and similarly,

γ(t) = max
i≤t

max
k∈[K]

prog0(g(i,k)) = max
{
j ≤ T | g(i,k)

j 6= 0 for some i ≤ t, k ∈ [K]
}
,
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so π(t) ∈ G(t−1) and γ(t) ∈ G(t). Note that prog0(x) is the largest index in support(x), so the
zero-respecting property implies that

π(t) ≤ γ(t−1)

for all t, with probability 1, where we let γ(0) ≡ 0. Therefore, it suffices to show that

P(γ(t) ≥ T ) ≤ δ for all t ≤ T − log 1
δ

2p
. (13)

To show this, first observe that with probability 1,

max
k∈[K]

prog0(g(t,k))
(?)

≤ 1 + max
k∈[K]

prog 1
4
(x(t,k)) ≤ 1 + max

k∈[K]
prog0(x(t,k)) ≤ 1 + π(t) ≤ 1 + γ(t−1),

where inequality (?) holds by the zero chain property (12), and the other inequalities hold by
definition. Since x(t) ∈ G(t−1), we have that g(t,k) = g(x(t,k), z(t)) is independent of x(t) given G(t−1).
Consequently, the zero-chain property (11) implies that

P
(

max
k∈[K]

prog0(g(t,k)) ≤ max
k∈[K]

prog 1
4
(x(t,k)) ≤ γ(t−1)

∣∣∣G(t−1)

)
≥ 1− p.

Since γ(t) = max{γ(t−1),maxk∈[K] prog0(g(t,k))}, we conclude that

P(γ(t) − γ(t−1) /∈ {0, 1} | G(t−1)) = 0 and P(γ(t) − γ(t−1) = 1 | G(t−1)) ≤ p. (14)

Therefore, denoting the increment ι(t) := γ(t) − γ(t−1), we have via the Chernoff method,

P(γ(t) ≥ T ) = P(e
∑t
i=1 ι

(i) ≥ eT ) ≤ e−T · Ee
∑t
i=1 ι

(i)
.

Using ι(t) ∈ G(t) and P(ι(t) = 1 | G(t−1)) = 1− P(ι(t) = 0 | G(t−1)) ≤ p, we obtain

Ee
∑t
i=1 ι

(i)
= E

[
t∏
i=1

E
[
eι

(i)
∣∣∣ G(i−1)

]]
≤ (1− p+ p · e)t ≤ ept·(e−1) ≤ e2pt.

It follows that P(γ(t) ≥ T ) ≤ e2pt−T ≤ δ for every t ≤ 1
2p(T + log δ), giving (13).

3.2 Lower bound for the bounded variance setting

Lemma 1 suggests a natural lower bound strategy:

i. Construct a function F ∈ F(∆, L) whose gradients are large for all x ∈ RT with prog0

(
x(i)
)
< T .

ii. Construct g, a probability-p zero chain gradient estimator for F .

Together with Lemma 1, these steps guarantee that any zero-respecting algorithm interacting with
g will take at least Ω(T/p) rounds to make the gradient of F small. We first execute our strategy
for the bounded variance setting (2).

We choose the underlying function F to be the construction of Carmon et al. [13]. For each
T ∈ N, we define

FT (x) := −Ψ(1)Φ(x1) +

T∑
i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)], (15)
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where the component functions Ψ and Φ are

Ψ(t) =

{
0, t ≤ 1/2,

exp
(

1− 1
(2t−1)2

)
, t > 1/2.

and Φ(t) =
√
e

∫ t

−∞
e−

1
2
τ2dτ. (16)

The function FT is a (deterministic) zero-chain, and has large gradient unless all coordinates are
large (prog1(x) ≥ T ). We enumerate all the relevant properties of FT in the following.

Lemma 2 ([13]). The function FT satisfies:

1. FT (0)− infx FT (x) ≤ ∆0 · T , where ∆0 = 12.

2. The gradient of FT is `1-Lipschitz continuous, where `1 = 152.

3. For all x ∈ RT , ‖∇FT (x)‖∞ ≤ γ∞, where γ∞ = 23.

4. For all x ∈ RT , prog0(∇FT (x)) ≤ prog 1
2
(x) + 1.

5. For all x ∈ RT , if prog1(x) < T then ‖∇FT (x)‖ ≥ |∇prog1(x)+1FT (x)| > 1.

Parts 1–3 of the lemma follow from [13, Lemma 3] and its proof; we derive the precise value `1 = 152
in Appendix A.1. Part 4 follows from [13, Observation 3] and part 5 is [13, Lemma 2].

We now turn to the construction of a probabilistic zero-chain for FT . The main technical
difficulty in the construction lies in keeping the variance of the stochastic gradient function bounded
and, in particular, independent of the dimension T . Indeed, consider a naive construction that when
queried at point x, returns 0 with probability 1−p and returns 1

p ·∇FT (x) with probability p. While

this is clearly a probability-p zero-chain, the variance at point x is Ω
(
‖∇FT (x)‖22/p

)
, which can be

as large as T/p. As we let the dimension T depend polynomially on 1/ε, removing this dimension
dependence from the variance is critical for making the oracle belong to O(K,σ2) after rescaling.

Our key observation is that, since ‖∇FT (x)‖∞ ≤ 23 by Lemma 2.3, we can keep the variance
bounded if, instead of deleting all coordinates uniformly, we delete only a single important coordinate.
Since our goal is to construct a probabilistic zero-chain, and since FT is itself a deterministic zero-
chain, a natural choice of coordinate is prog 1

4
(x) + 1. This leads to the following stochastic gradient

function:

[gT (x, z)]i := ∇iFT (x) ·
(

1 + 1{i > prog 1
4
(x)}

(
z

p
− 1

))
, (17)

where z ∼ Bernoulli(p). Note that for all i > prog 1
4
(x) + 1, ∇iFT (x) = 0, so only the specific

coordinate prog 1
4
(x) + 1 is noisy.

Lemma 3. The stochastic gradient estimator gT is a probability-p zero-chain, is unbiased for ∇FT ,
and has variance

E‖gT (x, z)−∇FT (x)‖2 ≤ ς2 · 1− p
p

for all x ∈ RT , where ς = 23.

Proof. First, we observe that E[gT (x, z)] = ∇FT (x) for all x ∈ RT by the definition (17) and the
fact E[ zp ] = 1, so any O with OFT (x, z) = (FT (x), gT (x, z)) is indeed a stochastic first-order oracle.

Second, we argue that the probability-p zero-chain property holds. Recall that progα(x) is
non-increasing in α, so prog 1

4
(x) ≥ prog 1

2
(x). Therefore, by Lemma 2.4, [gT (x, z)]i = ∇iFT (x) = 0

10



for all i > prog 1
4
(x) + 1, all x ∈ RT and all z ∈ {0, 1}. Moreover, since P(z 6= 0) = p, we have

P([gT (x, z)]prog 1
4

(x)+1 6= 0) ≤ p, establishing that the construction (17) satisfies Definition 2.

Finally, we bound the variance. Note that the error term gT (x, z)−∇FT (x) is non-zero only in
the coordinate ix := prog 1

4
(x) + 1. Therefore,

E‖gT (x, z)−∇FT (x)‖2 = |∇ixFT (x)|2 E
(
z

p
− 1

)2

≤ ‖∇FT (x)‖2∞(1− p)
p

≤ 232(1− p)
p

,

where the last inequality follows from Lemma 2.3.

With the construction in hand, we prove our first lower bound.

Theorem 1. There exist numerical constants c, c′ > 0 such that for all L,∆, σ2 > 0 and ε ≤ c′
√
L∆,

mzr
ε (K,∆, L, σ2) ≥ c · ∆Lσ2

ε4
.

Constructions of dimension d = O
(

∆L
ε2

)
realize the lower bound.

Before giving the proof, let us make a few remarks.

• The bound is tight, in that it matches (up to a numerical constant) the convergence rate for SGD
(which is zero-respecting) [27, Eq. (2.13)]. Note that the restriction that ε ≤ c′

√
L∆ is without

loss of generality, since for ε > c′
√
L∆ we have ‖∇F (0)‖ = O(ε) for all functions F ∈ F(∆, L),

so an ε-stationary point is trivial to find.

• The optimal complexity Θ(∆Lσ2

ε4
) is the product of the first-order oracle complexity for the

deterministic setting, which is Θ(∆L
ε2

) [13], and the sample complexity of estimating a single

gradient to precision ε, which is Θ(σ
2

ε2
). This is the first setting we are aware of where the product

of these respective complexities characterizes the stochastic first-order complexity. Contrast to
the convex setting, where the complexity scales with the sum [24].

• The lower bound does not depend on K, meaning that additional batch queries cannot by
themselves improve on the rate obtained by SGD. While at first glance this may seem like a
strange consequence of the zero-respecting assumption, we will show that the same holds true
for arbitrary algorithms, provided the dimension is sufficiently large.

Proof of Theorem 1. Let ∆0, `1 and ς be the numerical constants in Lemma 2.1, Lemma 2.2 and
Lemma 3, respectively. Given accuracy parameter ε, initial suboptimality ∆, smoothness parameter
L and variance parameter σ2, we define

F ?T (x) =
Lλ2

`1
FT

(x
λ

)
, where λ =

`1
L
· 2ε, and T =

⌊
∆

∆0(Lλ2/`1)

⌋
=

⌊
L∆

∆0`1(2ε)2

⌋
,

where we assume T ≥ 3, or equivalently ε ≤
√

L∆
12∆0`1

. Let

g?T (x, z) =
Lλ

`1
· gT (x/λ, z) = 2ε · gT (x/λ, z)

11



denote the corresponding scaled stochastic gradient function. Now, by Lemma 2.1 and Lemma 2.2,
we have that F ?T is L

`1
· `1 = L-smooth and has initial suboptimality bounded by ∆. Likewise, by

Lemma 3,

E‖g?T (x, z)−∇F ?T (x)‖2 =

(
Lλ

`1

)2

E
∥∥∥g?T (xλ, z)−∇F ?T (xλ)∥∥∥2

≤ (2ςε)2(1− p)
p

.

Therefore, setting p = min
{

(2ςε)2/σ2, 1
}

guarantees a variance bound of σ2.
Next, Let O be any oracle in O(K,σ2) for which OF ?T (x, z) = (F ?T (x), g?T (x, z)). Instantiating

Lemma 1 for δ = 1/2, we have that with probability at least 1/2, maxk∈[K] prog0

(
x

(t,k)
A[OF ]

)
< T for

all t ≤ (T − 1)/2p and k ∈ [K]. Now, by Lemma 2.5, for every x ∈ RT such that prog0(x) < T , it
holds that

‖∇F ?T (x)‖ =
Lλ

`1

∥∥∥∇FT (x
λ

)∥∥∥ > Lλ

`1
= 2ε,

So with probability at least 1/2, we have for all t ≤ (T − 1)/2p and k ∈ [K] that
∥∥∇F ?T (x

(t,k)
A[OF ])

∥∥ > 2ε.
Therefore,

E
∥∥∇F ?T (x(t,k)

A[OF ]

)∥∥ > ε, (18)

by which it follows that

mzr
ε (K,∆, L, σ2) >

T − 1

2p
≥
(⌊

L∆

4∆0`1ε2

⌋
− 1

)
σ2

2(2ςε)2
≥ 1

26`1∆0ς2
· L∆σ2

ε4
,

where the last inequality uses that bxc − 1 ≥ x/2 whenever x ≥ 3.

3.3 Lower bound for the mean-squared smooth setting

We now turn to lower bounds for the mean-squared smooth setting. Here, we must ensure that
in addition to the variance constraint, our stochastic gradient function satisfies the mean-squared
smoothness constraint (4). This requires a more sophisticated construction than before, as the use of
the indicator function 1{i > prog 1

4
(x)} makes the stochastic gradient gT discontinuous. Indeed, let

x = (1, 1/4− δ, 0) and y = (1, 1/4, 0). Then prog 1
4
(x) = 1 < 2 = prog 1

4
(y), and for any δ ∈ (0, 1/2)

we have

Ez‖gT (x, z)− gT (y, z)‖2 ≥ Ez|[gT (x, z)]2 − [gT (y, z)]2|2

= (1− p)|Ψ(1)Φ′(1/4− δ)|2 + p
∣∣∣1pΨ(1)Φ′(1/4− δ)−Ψ(1)Φ′(1/4)

∣∣∣2,
which does not approach zero as δ → 0.

To overcome this issue, we replace the indicator 1{i > prog 1
4
(x)} with a smooth surrogate. Let

Γ : R → R be any smooth non-decreasing Lipschitz function with Γ(t) = 0 for all t ≤ 1/4 and
Γ(t) = 1 for all t ≥ 1/2. For each i, we define the following smoothed version of 1{i > prog 1

4
(x)}:

Θi(x) := Γ

1−
(

T∑
k=i

Γ2(|xk|)
)1/2

 = Γ(1− ‖Γ(|x≥i|)‖), (19)

where Γ(|x≥i|) is a shorthand for a vector with entries Γ(|xi|),Γ(|xi+1|), . . . ,Γ(|xT |). Observe that
Θi indeed acts as a smoothed indicator: We have Θi(x) = 1 for all i > prog 1

4
(x) and Θi(x) = 0 for

all i ≤ prog 1
2
(x), and therefore

1{i > prog 1
4
(x)} ≤ Θi(x) ≤ 1{i > prog 1

2
(x)}.

12
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Figure 1: The construction Γ in Eq. (21) and its derivatives; Observation 1 is evident.

We define a new stochastic gradient function ḡT by replacing the indicator function in gT with
the smoothed indicator Θi:

[ḡT (x, z)]i := ∇iFT (x) · νi(x, z), where νi(x, z) := 1 + Θi(x)

(
z

p
− 1

)
, (20)

and z ∼ Bernoulli(p). To fully specify the construction, we take

Γ(t) =

∫ t
1/4 Λ(τ)dτ∫ 1/2

1/4 Λ(τ ′)dτ ′
, where Λ(t) =


0, t ≤ 1

4 or t ≥ 1
2 ,

exp

(
− 1

100
(
t−1

4

)(
1
2−t

)
)
, 1

4 < t < 1
2 .

(21)

This is simply an integrated bump function construction; see Figure 1.

Observation 1. The function Γ satisfies

1. Γ(t) = 0 for all t ∈ (−∞, 1/4].

2. Γ(t) = 1 for all t ∈ [1/2,∞).

3. Γ ∈ C∞, with 0 ≤ Γ′(t) ≤ 6 and |Γ′′(t)| ≤ 128 for all t ∈ R.

With these properties established, we prove the following mean-squared smooth analogue of
Lemma 3.

Lemma 4. The stochastic gradient estimator ḡT is a probability-p zero-chain, is unbiased for ∇FT ,
and satisfies

E ‖ḡT (x, z)−∇FT (x)‖2 ≤ ς2(1− p)
p

and E ‖ḡT (x, z)− ḡT (y, z)‖2 ≤
¯̀2
1

p
‖x− y‖2, (22)

for all x, y ∈ RT , where ς = 23 and ¯̀
1 = 328.

We defer the proof of Lemma 4 to Appendix A.2. The proofs for the probability-p zero-chain
property and variance bound are similar to Lemma 3. For the mean-squared smooth property, we
show that for any x, the vector δ(x, z) = ḡT (x, z)−∇FT (x) has at most one non-zero coordinate,
given by prog 1

2
(x) + 1. If we denote ix = prog 1

2
(x) + 1 and iy = prog 1

2
(y) + 1, then we can bound

E‖ḡT (x, z)− ḡT (y, z)‖2 by first appealing to smoothness of FT , and then using the Lipschitz property

of Θi to bound E|δix(x, z)− δix(y, z)|2 and E
∣∣δiy(x, z)− δiy(y, z)∣∣2.

Our lower bound for the mean-squared smooth setting now follows from another simple scaling
argument.
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Theorem 2. There exist numerical constants c, c′ > 0 such that for all L̄,∆, σ2 > 0 and ε ≤ c′
√
L̄∆,

m̄zr
ε (K,∆, L̄, σ2) ≥ c ·

(
∆L̄σ

ε3
+
σ2

ε2

)
.

Constructions of dimension d = O(1 + ∆L̄
σε ) realize the lower bound.

Theorem 2 is tight, since the upper bounds for SPIDER [22] and SNVRG [53] match it up to

constants. As with Theorem 1, the restriction ε ≤ O(
√
L̄∆) is essentially without loss of generality.

Theorem 2 leaves open the possibility that there exists an algorithm that achieves O(ε−3) in the
mean-squared smooth setting using K = 1; see Section 6 for further discussion.

We defer the proof of Theorem 2 to Appendix A.3, as it is very similar to that of Theorem 1.
In particular, it uses the same scaling argument and replaces L with roughly L̄ε/σ. This results

in the final instance scaled as F ?T (x) ∝ εσL̄−1FT ( L̄xσ ). The new scaling introduces an additional

restriction that ε ≤ O(∆L̄
σ ). When this does not hold, one has ∆L̄σ

ε3
≥ c · σ2

ε2
, and the claimed lower

bound follows from a standard estimation lower bound (see Lemma 10 in Appendix A.1).

4 Lower bounds for randomized algorithms

We now extend our lower bound construction for zero-respecting algorithms into a lower bound for
arbitrary, potentially randomized algorithms. Our main theorem provides optimal lower bounds on
the minimax complexities (7) and (8) for the bounded variance and mean-squared smooth settings.

Theorem 3. There exist numerical constants c, c′ > 0 such that for all L,∆, σ2 > 0 and ε ≤ c′
√
L∆,

mrand
ε (K,∆, L, σ2) ≥ c · ∆Lσ2

ε4
, (23)

and for all L̄ > 0 and ε ≤ c′
√
L̄∆, we have

m̄rand
ε (K,∆, L̄, σ2) ≥ c ·

(
∆L̄σ

ε3
+
σ2

ε2

)
. (24)

Constructions of dimension Õ
(
K∆2L2σ2ε−6

)
realize the lower bound (23) and constructions of

dimension d = Õ
(
K∆2L̄2ε−4

)
realize the lower bound (24).

In the remainder of the section we outline the proof of Theorem 3; we defer all formal proofs
to Appendix B. Our approach is to lift the instance developed in the previous section to a hard
distribution over functions such that for any randomized algorithm a a function drawn from this
distribution is hard high probability. This approach closely follows [13, 48], though the analysis
differs in a few technical points.

Given a function F (x) and a gradient estimator g(x, z), we define the rotated instance

F̃U (x) := F (U>x), and g̃U (x, z) := Ug(U>x, z),

where U ∈ Ortho(d, T ) :=
{
U ∈ Rd×T | U>U = IT

}
is a matrix with orthogonal unit norm columns.

For any such U we define an oracle for the rotated function according to

OF̃U (x, z) = (F̃U (x), g̃U (x, z)). (25)
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When U is drawn uniformly from Ortho(d, T ), any algorithm interacting with OF̃U produces

queries {x(t,k)} such that the sequence {U>x(t,k)} behaves essentially like the queries of a zero-
respecting algorithm interacting with of OF . More precisely, for sufficiently large d we can guarantee
that every entry of U>x(t,k) that is significantly far from zero (say, with absolute value > 1/4) is in
the support of a previous oracle response g(U>x(t′,k′), z(t′)) for some t′ < t and k′ ∈ [K]. This follows
because oracle responses provide essentially no information on coordinates outside that support, and
therefore, these coordinates of U>x(t,k) behave roughly as coordinates of a spherically uniform vector
in dimension d− tK, and we can obtain a high probability bound on their magnitude that scales as
‖x(t,k)‖

√
tK/
√
d− tK; the precise argument requires careful handling of the information leaked at

each step. By assuming that the queries are bounded and choosing sufficiently large d, we guarantee
that coordinates outside the support are smaller than 1/4 and therefore that the zero-respecting
structure obtains. Combining this structure with Definition 2 of probabilistic zero-chains implies
control over prog 1

4
(U>x(t,k)), as we state formally in the following generalization of Lemma 1, whose

proof we provide in Appendix B.1.

Lemma 5. Let F : RT → R and let g : Rd × Z → Rd be probability-p zero chain. Let R > 0,
δ ∈ (0, 1), and A ∈ Arand(K) be any algorithm that produces queries with norm bounded by R.

Additionally let d ≥ d18R
2KT
p log 2KT 2

pδ e, U be uniform on Ortho(d, T ), and OF̃U be as in (25). Then

with probability at least 1− δ,2

max
k∈[K]

prog 1
4
(U>x

(t,k)
A[OF̃U

]) < T for all t ≤ T − log 2
δ

2p
. (26)

Applying Lemma 5 to the hard instance (FT , ḡT ) defined in Eq. (17) and (20) provides the lower
bound we want, but restricted to algorithms with bounded iterates. To handle unbounded iterates,
we follow Carmon et al. [13] and compose the construction with a soft projection to a ball centered
at the origin. Our final (unscaled) construction is

F̂T,U (x) = FT (U>ρ(x)) +
η

2
‖x‖2, where ρ(x) =

x√
1 + ‖x‖2/R2

, R = 230
√
T , and η = 1/5. (27)

The corresponding stochastic gradient estimator is

ĝT,U (x, z) = J(x)>U ḡT (U>ρ(x), z) + η · x, (28)

where J(x) =
[∂ρi(x)
∂xj

]
i,j

is the Jacobian of ρ. The next lemma shows that this new construction is

difficult for any algorithm in Arand. The lemma has two components: First, since the iterates always
satisfy

∥∥ρ(x(t,k))
∥∥ ≤ R, we can apply Lemma 5 to this sequence to control progress. Second, the

additional regularization term in (27) ensures that we cannot make the gradient small by increasing
the norm, so low progress indeed implies large gradient.

Lemma 6. Let O be any oracle with O
F̂T,U

(x, z) = (F̂T,U (x), ĝT,U (x, z)), where F̂T,U is the com-

pressed and rotated hard instance (27) and ĝT,U is the corresponding probability-p zero chain (28).

Let δ ∈ (0, 1), d ≥ d18 · 2302KT 2

p log 2KT 2

pδ e, and U be uniformly distributed on Ortho(d, T ). Then
for any A ∈ Arand(K), with probability at least 1− δ,

min
k∈[K]

∥∥∥∇F̂T,U (x
(t,k)
A[O

F̂T,U
])
∥∥∥ ≥ 1

2
for all t ≤ T − log 2

δ

2p
. (29)

2The event holds with probability at least 1− δ with respect to the random choice of U and the oracle seeds {z(t)},
even when conditioned over any randomness in A.
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(See Appendix B.1 for a proof.)
All that remains is to verify that the final constructions (27) and (28) still satisfy the various

boundedness properties required for the lower bound. The following bounds are a consequence of a
generic result about rotation and soft projection, which we prove in Appendix B.3.

Lemma 7. The function F̂T,U and stochastic gradient function ĝT,U satisfy the following properties
for all U ∈ Ortho(d, T ).

1. F̂T,U (0)− infx F̂T,U (x) ≤ ∆0T , where ∆0 = 12.

2. The first derivative of F̂T,U is `1-Lipschitz continuous, where `1 = 155.

3. E
∥∥∥ĝT,U (x, z)−∇F̂T,U (x)

∥∥∥2
≤ ς2(1−p)

p for all x ∈ Rd, where ς = 23.

4. E‖ĝT,U (x, z)− ĝT,U (y, z)‖2 ≤ ¯̀2
1
p · ‖x− y‖

2 for all x, y ∈ Rd, where ¯̀
1 = 336.

5 Extensions

While Theorem 3 constitutes our main technical result, implying lower bounds for methods using
stochastic first-order information, it is interesting to extend the bounds to allow more sophisticated
querying strategies and more informative oracles.

5.1 Statistical learning oracles

To this point, our assumptions on the stochastic gradient function g(x, z) concern only its first and
second moments (requirements (2) and (4)). Yet the oracles in statistical learning and stochastic
approximation problems often have the common structural property that g(x, z) is the gradient of a
function. Here we show that this property does not improve the worst-case complexity of stochastic
optimization. Specifically, we consider oracles specified by a function f : Rd ×Z → R for which

F (x) = E[f(x, z)] and g(x, z) = ∇xf(x, z). (30)

All of the lower bounds in this paper extend to this setting, at the cost of a slightly more involved
construction. The idea is the same as in the preceding construction, but to construct a valid function
f(x, z) with F (x) = E[f(x, z)] we apply the smoothed progress function to the function value for
FT rather than the gradient. Letting Z = {0, 1} be the oracle seed space, we define

fT (x, z) = −Ψ(1)Φ(x1)ν1(x, z) +
T∑
i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] νi(x, z), (31)

where νi(x, z) the smoothed indicator (20) and the random seed z ∼ Bernoulli(p). It is immediate
that E[fT (x, z)] = FT (x). The stochastic gradient function ∇xfT (x, z) has a similar form to our
previous construction ḡT (x, z), but with nuisance terms arising from the gradient of the soft progress
function itself. The thrust of the analysis for the new construction is to show that these nuisance
terms do not spoil the key properties of ḡT .

Lemma 8. The stochastic gradient function ∇xfT is a probability-p zero-chain, is unbiased for
∇FT , and for numerical constants ς and ¯̀

1 independent of p and T satisfies

E‖∇fT (x, z)−∇FT (x)‖2 ≤ ς2

p
(32)
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and

E‖∇fT (x, z)−∇fT (y, z)‖2 ≤
¯̀2
1

p
‖x− y‖2 (33)

for all x, y ∈ RT .

We prove Lemma 8 in Appendix C. With the lemma in hand, all that is required to prove the
Ω(∆Lσ2

ε4
) lower bound for the bounded variance setting and the Ω(∆Lσ

ε3
+ σ2

ε2
) lower bound for the

mean-squared smooth setting is to compose the instance with a rotation and soft projection as in
(27), then rescale as in Theorem 3. This leads to the following result.

Proposition 1. Theorem 3 holds (with different numerical constants) even when restricting the
oracle class to statistical learning-type stochastic gradient functions of the form (30).

5.2 Active oracles

Our main results consider a model in which the algorithm performs batches of K simultaneous
queries, but the random seed z is drawn i.i.d. once per batch. Another stronger model allows
active oracles, where the queries consist of both a point x and a seed z [40, 41, 20, 47, 29, 22, 53].
Active oracles are essential to finite-sum optimization problems where F (x) =

∑n
i=1 fi(x) and are

more general than our K-query oracles, since a randomized algorithm can simulate a K-query
oracle using an active oracle by drawing z ∼ Pz and querying (x(1), z), . . . , (x(K), z). For convex
finite-sum minimization problems, stochastic oracles are significantly weaker than active oracles
[6]. Nevertheless, in this section we show that our ε−4 lower bound for zero-respecting algorithms
(Theorem 1) extends to active oracles, even with additional finite-sum structure (Z is finite, Pz is
uniform). We believe further extensions for randomized algorithms, mean-squared smooth gradient
estimators and statistical learning oracles are straightforward, but we omit them for brevity.

The precise active oracle model we consider is as follows: at round i, the algorithm proposes
a point x(i) and seed z(i) and receives an oracle response (F (x(i)), g(x(i), z(i))) = OF (x(i), z(i)). As
before, we assume that the stochastic gradients are unbiased and have variance bounded by σ2, and
we allow the algorithm to know the distribution Pz.

The key step in converting our basic probabilistic zero-chain construction (17) to achieve a
lower bound for the active finite-sum setting is to allow for independent randomness in each of the
chain coordinates; this safeguards against algorithms that “abuse” the active oracle by repeatedly
querying the same (informative) value of z. More formally, we take {0, 1}T to be the oracle seed
space and consider the stochastic gradient function gcoord

T : RT × {0, 1}T → RT ,[
gcoord
T (x, z)

]
i

:= ∇iFT (x) ·
(

1 + 1{i > prog 1
4
(x)}

(
zi
p
− 1

))
; (34)

the only difference compared to the passive construction (17) is that the seed z = (z1, . . . , zT ) is now
a vector of T bits, and we use the ith bit only for coordinate i of the stochastic gradient function.
If we draw the bits of z i.i.d. from a Bernoulli(p) distribution, then gcoord

T is unbiased for ∇FT and
satisfies the variance bound in Lemma 3.

The next step is to convert the distribution over z ∈ {0, 1}T into a uniform distribution over
a larger set, so that the instance has finite-sum structure. To do so, we assume without loss of
generality that p = 1/N for N ∈ N (we can always round 1/p = c · σ2/ε2 appropriately). We choose
Z = {1, ..., NT } as the seed space and define ζ : Z → {0, 1}T as

ζj(k) := 1{the jth digit of k in the N -ary basis is 0}.
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To obtain the hard active oracle construction, we take

gπ(x; i) := gcoord
T (x, ζ(π(i))),

where π is any permutation of NT elements. Note that for any choice of the permutation π, the
random function gπ(·; i) with i uniform in Z has the same distribution as gcoord

T (·; z) with the
elements of z i.i.d. Bernoulli(p), and therefore gπ is also unbiased for ∇FT and satisfies the variance
bound in Lemma 3. By choosing π to be a random permutation, the active oracle corresponding to
gπ satisfies a progress bound analogous to Lemma 1.

Lemma 9. Let δ ∈ (0, 1), let N,T > 1 be integers, let π be a random permutation of NT elements
and consider the active oracle OπFT (x, i) = (FT (x), gπ(x; i)). Let {x(i)} be the iterates of any zero-
respecting algorithm interacting with OπFT . Then, for p = 1/N , with probability at least 1− δ over
the random choice of π,

prog0

(
x(t)
)
< T, for all t ≤ T − log(1/δ)

4p
.

We prove Lemma 9 in Appendix C.2 and sketch the intuition behind the result here. Let
(x(1), i(1)), . . . , (x(t), i(t)) be the algorithm’s queries and g(1), . . . , g(t) be the oracle responses up
to some iteration t. Let γ = maxt′<t prog0(g(t′)), so that prog0(x(t)) ≤ γ by the zero-respecting
assumption. For an algorithm to guarantee prog0(g(t)) = 1 + γ (and thereby make progress in x),
the (1+γ)th coordinate of ζ(π(i(t))) must be 1. The key observation is that the algorithm’s previous
queries provide very little information on ζ1+γ(π(·)). In particular, we argue that after t− 1 queries,
the most we can possibly know is a set of t− 1 indices i for which ζ1+γ(π(i)) = 0. Since all other
indices are identically distributed, any query i(t) has probability at most NT−1/(NT − (t− 1)) of
satisfying ζ1+γ(π(i(t))) = 1. Since t ≤ T/p < NT /2, the probability of making a unit of progress
at any iteration is no more that 2/N = 2p, which gives the result via the same arguments that
prove Lemma 3.

Using the same scaling arguments as in the proof of Theorem 1, Lemma 9 implies an analogous
lower bound for the active setting. However, the distributional complexity we now lower bound is
slightly different, because we randomize over the choice of oracles instead of choosing a fixed oracle.
Consequently, we let the supremum in Eq. (7) be over all distributions PO on O(K,σ2), and take
the expectation also with respect to a draw of O ∼ PO. (For zero-respecting lower bounds, we still
replace Arand(K) with Azr(K) and it still suffices to consider point masses for PF ).

Proposition 2. Theorem 1 also holds in the active oracle model, with the above complexity
measure, finite Z, and uniform Pz.

This lower bound has the following implication on minimax complexity: For every zero-respecting
algorithm there exists a “hard” active oracle (corresponding to some permutation of the coordi-
nates) for a scaled version of FT such that finding an ε-stationary point requires at least Ω(ε−4)
iterations. Using the techniques of Section 4 we can lift these results to finite sum active oracle lower
bounds for randomized algorithms. Moreover, the “different bit per coordinate” approach extends
straightforwardly the mean-square smooth construction (20) as well as the “statistical learning”
construction (31).

The set Z in the lower bounds described above is very large—since N scales as σ2/ε2 and T is
polynomial in 1/ε, the cardinality |Z| = NT is super-exponential in 1/ε. Designing lower bound
constructions with smaller cardinality |Z| = n remains an open problem. We note that for the
mean-square smooth setting, the smallest possible value for n is Ω(σ2/ε2), since for n = o(σ2/ε2) the
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upper bound O(
√
nL̄∆ε−2) attained by SPIDER [22] will be smaller than the desired n-independent

lower bound Ω(L̄∆σε−3). We also remark that Fang et al. [22] prove a lower bound of Ω(
√
nL̄∆ε−2)

for active oracles, but their construction does not keep the variance σ2 bounded.

6 Discussion

We have established tight lower bounds on the stochastic first-order complexity of finding stationary
points for non-convex functions, with and without mean-squared smoothness. We hope that the
basic ideas behind our lower bound constructions will find further use in non-convex stochastic
optimization. A few natural open questions and future directions along these lines are as follows.

Lower bounds for mean-squared smooth oracles with a single query In the mean-squared
smooth setting, all known algorithms that achieve the optimal O(ε−3) oracle complexity (SPIDER
[22], SNVRG [53]) require K = 2 simultaneous queries. With K = 1, the best result known for the
mean-squared smooth setting is still the standard O(∆Lσ2ε−4) rate obtained by SGD. However,
under additional higher-order smoothness assumptions, perturbed SGD can achieve convergence
O(ε−3.5) with K = 1 [23]. It remains an open question whether any algorithm can achieve complexity
scaling as ε−3 when K = 1, or whether the ε−4 rate of SGD is optimal.

Lower bounds under additional oracle assumptions Rather than assuming a mean-squared
smooth oracle, one can make the stronger assumption that the stochastic gradient function g(·, z) is
smooth almost surely, or assume that the error ‖g(x, z)−∇F (x)‖ is bounded by σ almost surely.
We are not aware of any algorithms that leverage such stronger assumptions, and yet extending our
lower bounds to handle them seems non-trivial. Resolving the importance of these assumptions
therefore remains an interesting topic for future work.

Lower bounds for higher-order algorithms Our results resolve the complexity of finding first-
order stationary points with stochastic first-order methods, but we have not addressed the oracle
complexity of other basic non-convex stochastic optimization problems, such as finding first-order
stationary points with higher-order smoothness (possibly with stochastic access to Hessian, Hessian
vector-products, or other higher-order derivatives) or finding second-order stationary points. While
our techniques extend to higher order derivatives and smoothness, obtaining tight lower bounds
requires a dedicated treatment and may pose new challenges.
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Appendix

A Proofs from Section 3

A.1 Basic technical results

Before proving the main results from Section 3, we first state two self-contained technical results
that will be used in subsequent proofs. The first result bounds component functions Ψ and Φ and
gives the calculation for the parameter `1 in Lemma 2.2.

Observation 2. The functions Ψ and Φ in (16) and their derivatives satisfy

0 ≤ Ψ ≤ e, 0 ≤ Ψ′ ≤
√

54/e, |Ψ′′| ≤ 32.5, 0 ≤ Φ ≤
√

2πe, 0 ≤ Φ′ ≤ √e and |Φ′′| ≤ 1. (35)

Proof of Lemma 2.2. We note that the Hessian of FT is tridiagonal. Consequently, for any
x ∈ Rd,

‖∇2FT (x)‖op ≤ max
i∈[T ]
|∇2

i,iFT (x)|+ max
i∈[T ]
|∇2

i,i+1FT (x)|+ max
i∈[T ]
|∇2

i+1,iFT (x)|

(i)

≤ sup
z∈R
|Φ′′(z)| sup

z∈R
|Ψ(z)|+ sup

z∈R
|Φ(z)| sup

z∈R
|Ψ′′(z)|+ 2 sup

z∈R
|Φ′(z)| sup

z∈R
|Ψ′(z)|

(ii)

≤ 152,

where (i) is a direct calculation using the definition (15) of FT and (ii) follows from (35).

The second result is an Ω(σ
2

ε2
) lower bound on the sample complexity of finding stationary points

whenever ε ≤ O(
√

∆L). This result handles an edge case in the proof of Theorem 2. A similar lower
bound appeared in Foster et al. [24], but the result we prove here is slightly stronger because it
holds even for dimension d = 1.

Lemma 10. There exists a number c0 > 0 such that for any number of simultaneous queries K,

dimension d and ε ≤
√

L̄∆
8 , we have

m̄zr
ε (K,∆, L̄, σ2) ≥ m̄rand

ε (K,∆, L̄, σ2) ≥ c0 ·
σ2

ε2
. (36)

Our approach for proving Lemma 10 is as follows. Given a dimension d, we construct a
function F : Rd → R, a family of distributions Pz, and a family of functions f(x, z) for which
F (x) = Ez[f(x, z)], and for which the initial suboptimality, variance, and mean-squared smoothness
are bounded by ∆, σ2 and L̄, respectively. We then prove a lower bound in the global stochastic
model in which at round t the oracle returns the full function f(·, z(t)), rather than just its value and
derivatives at the queried point. The global stochastic model is more powerful than the K-query
stochastic first-order model (with g(x, z) = ∇xf(x, z)) for every value of K, so this will imply the
claimed result as a special case.

Lemma 11. Whenever ε ≤
√

L̄∆
8 , the number of samples required to obtain an ε-stationary point

in the global stochastic model defined above is Ω(1) · σ2

ε2
.

Proof of Lemma 11. The proof follows standard arguments used to derive information-theoretic
lower bounds for statistical estimation [28, 51].
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We consider a family of functions f : Rd × R→ R given by

f(x, z) =
L̄

2

(
‖x‖2 − 2zx1 + r2

)
, (37)

where r ∈ (0,
√

2∆/L̄) is a fixed parameter. We take Pz to have the form P sz := N (rs, σ
2

L̄2 ), where

s ∈ {−1, 1}, and let θs := (rs, 0, . . . , 0) ∈ Rd. Then, when Pz = P sz , we have Fs(x) := Ez[f(x, z)] =
L̄
2 ‖x− θs‖2, and furthermore for any x, y ∈ Rd we have

Ez[‖∇xf(x, z)−∇Fs(x)‖2] = L̄ · Ez[(z − rs)2] = σ2,

and

Ez[‖∇xf(x, z)−∇xf(y, z)‖2] = L̄2 · ‖x− y‖2.

Note that Fs is indeed an L̄-smooth, and has initial suboptimality at x(0) = 0 bounded as Fs(0)−
infx∈Rd Fs(x) = L̄r2/2 ≤ ∆.

Now, we provide a distribution over the underlying instance by drawing S uniformly from {±1},
and consider any algorithm that takes as input samples z1, . . . , zT ∼ PSz , and returns iterate x̂. To
bound the expected norm of the gradient at x̂ (over the randomness of the oracle, the randomness of
the algorithm, and the choice of the underlying instance S), we define Ŝ := arg mins′∈{1,−1} ‖∇Fs′(x̂)‖,
with ties broken arbitrarily. Observe that we have

E[‖∇FS(x̂)‖]
(i)

≥ rL̄P
(
‖∇FS(x̂)‖ ≥ rL̄

) (ii)

≥ rL̄P(Ŝ 6= S), (38)

where (i) follows by Markov’s inequality and (ii) follows because when Ŝ 6= S, the definition of Ŝ
implies

2 · ‖∇FS(x̂)‖ ≥ inf
x∈Rd
{‖∇F−1(x)‖+ ‖∇F1(x)‖}

= L̄ · inf
x∈Rd
{‖x− θ1‖+ ‖x− θ−1‖} ≥ L̄‖θ1 − θ−1‖ = 2rL̄.

Next, for s ∈ {±1} let Ps = N⊗T (rs, σ
2

L̄2 ) denote the law of (z1, . . . , zT ) conditioned on S = s. We
have

P(Ŝ 6= S) = 1− P(Ŝ = S) ≥ 1− 1

2
sup

A is measurable
{P1(A) + P−1(Ac)}

=
1

2
− 1

2
sup

A is measurable
{P1(A)− P−1(A)}

=
1

2
{1− ‖P1−P−1 ‖}

≥ 1

2

{
1−

√
1

2
DKL(P1 ||P−1)

}

=
1

2

(
1− rL̄

√
T

σ

)
,

where the penultimate step follows by Pinsker’s inequality and the last step uses that Ps =
N⊗T (rs, σ

2

L̄2 ). Combining this lower bound with (38) yields

E[‖FS(x̂)‖] ≥ rL̄

2

(
1− rL̄

√
T

σ

)
.
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Finally, setting r = min{ σ
2L̄
√
T
,
√

2∆
L̄
}, implies

max {E[‖F1(x̂)‖],E[‖F−1(x̂)‖]} ≥ 1

2
(E[‖F1(x̂)‖] + E[‖F−1(x̂)‖])

= E[‖FS(x̂)‖] ≥ min

{
σ

8
√
T
,

√
L̄∆

8

}
.

Stated equivalently, whenever ε ≤
√
L̄∆/8, there exists s ∈ {−1, 1} such that the number of oracle

calls T required to ensure E[‖∇Fs(x̂)‖] ≤ ε satisfies

T ≥ σ2

64ε2
,

concluding the proof.

A.2 Proof of Lemma 4

First, we note that E[νi(x, z)] = 1 for all x and i, and therefore E[ḡT (x, z)] = ∇FT (x). Moreover, by
the same argument argument used in the proof of Lemma 3, Lemma 2.4 implies that [ḡT (x, z)]i =
∇iFT (x) = 0 for all i > prog 1

4
(x) + 1, all x ∈ RT and all z ∈ {0, 1}. In addition, for i = prog 1

4
(x) + 1

we have Γ(|x≥i|) = 0 and therefore Θi(x) = Γ(1) = 1 and νi(x, z) = z
p . Consequently, we have

P([ḡT (x, z)]prog 1
4

(x)+1 6= 0) ≤ p, establishing that the oracle is a probability-p zero-chain.

To bound the variance of the gradient estimator we observe that for all i ≤ prog 1
2
(x), ‖Γ(|x≥i|)‖ ≥

Γ(1/2) = 1 and therefore Θi(x) = 0 and νi(x, z) = 1, so that

[ḡT (x, z)]i = ∇iFT (x) ∀i ≤ prog 1
2
(x).

On the other hand, Lemma 2.4 gives us that

[ḡT (x, z)]i = ∇iFT (x) = 0 ∀i > 1 + prog 1
2
(x).

We conclude that δ(x, z) = ḡT (x, z) − ∇FT (x) has at most a single nonzero entry in coordinate
ix = prog 1

2
(x) + 1. Moreover, for every i

δi(x, z) = ∇iFT (x)(νi(x, z)− 1) = ∇iFT (x)Θi(x)

(
z

p
− 1

)
.

Therefore,

E‖ḡT (x, z)−∇FT (x)‖2 = Eδ2
i (x, z) = |∇ixFT (x)|2 Θ2

i (x)
1− p
p
≤ (1− p)232

p
,

where the final transition used Lemma 2.3 and Θ2
i (x) ≤ 1 for all x and i, establishing the variance

bound in (22) with ς = 23.
To bound E‖ḡT (x, z) − ḡT (y, z)‖2, we use that E[δ(·, z)] = 0 and that δ(·, z) has at most one

nonzero coordinate to write

E‖ḡT (x, z)− ḡT (y, z)‖2 = E‖δ(x, z)− δ(y, z)‖2 + ‖∇FT (x)−∇FT (y)‖2

=
∑

i∈{ix,iy}

E(δi(x, z)− δi(y, z))2 + ‖∇FT (x)−∇FT (y)‖2, (39)

25



where iy = prog 1
2
(y) + 1 is the nonzero index of δ(y, z). For any i ≤ T , we have

E(δi(x, z)− δi(y, z))2 = (∇iFT (x)Θi(x)−∇iFT (y)Θi(y))2 E
(
z

p
− 1

)2

= (∇iFT (x)(Θi(x)−Θi(y)) + (∇iFT (x)−∇iFT (y))Θi(y))2 1− p
p

≤
(
2(∇iFT (x))2(Θi(x)−Θi(y))2 + 2(∇iFT (x)−∇iFT (y))2Θ2

i (y)
) 1

p
.

By Observation 1.3, Γi is 6-Lipschitz. Since the Euclidean norm ‖·‖ is 1-Lipschitz, we have

|Θi(x)−Θi(y)| ≤ 6
∣∣ ‖Γ(|x≥i|)‖ − ‖Γ(|y≥i|)‖

∣∣ ≤ 6
∥∥Γ(|x≥i|)− Γ(|y≥i|)

∥∥
≤ 62

∥∥ |x≥i| − |y≥i|∥∥ ≤ 62 ‖x− y‖.

That is, Θi is 62-Lipschitz. Since Θ2
i (y) ≤ 1 and (∇iFT (x))2 ≤ 232 by Lemma 2.3, we have

(δi(x, z)− δi(y, z))2 ≤ (23 · 6)2‖x− y‖2 + 2(∇iFT (x)−∇iFT (y))2

p

for all i. Substituting back into (39) we obtain

E‖ḡT (x, z)− ḡT (y, z)‖2 ≤ 2 · (23 · 6)2‖x− y‖2 + 2‖∇FT (x)−∇FT (y)‖2
p

+ ‖∇FT (x)−∇FT (y)‖2.

Recalling that ‖∇FT (x) − ∇FT (y)‖ ≤ `1‖x − y‖ by Lemma 2.2, establishes the mean-square
smoothness bound in (22) with ¯̀

1 =
√

2 · (ς · 6)2 + 3`21.

A.3 Proof of Theorem 2

Let ∆0, `1, ς and ¯̀
1 be the numerical constants in Lemma 2.1, Lemma 2.2 and Lemma 4, respectively.

Let the accuracy parameter ε, initial suboptimality ∆, mean-squared smoothness parameter L̄, and
variance parameter σ2 be fixed, and let L ≤ L̄ be specified later. We rescale FT as in the proof of
Theorem 1,

F ?T (x) =
Lλ2

`1
FT

(x
λ

)
, where λ =

`1
L
· 2ε, and T =

⌊
∆

∆0(Lλ2/`1)

⌋
=

⌊
L∆

∆0`1(2ε)2

⌋
.

This guarantees that F ?T ∈ F(∆, L) and that the corresponding scaled gradient estimator g?T (x, z) =
(Lλ/`1)ḡT (x/λ, z) is such that every zero respecting algorithm A interacting with OF ?T (x, z) =
(F ?T (x), g?T (x, z)) satisfies

E
∥∥∇F ?T (x(t,k)

A[OF ]

)∥∥ > ε,

for all t ≤ (T − 1)/2p and k ∈ [K]. It remains to choose p and L such that OF ?T belongs to

O(K,σ2, L̄). As in the proof of Theorem 1, setting p = min
{

(2ςε)2/σ2, 1
}

and using Lemma 4
guarantees a variance bound of σ2. Moreover, by Lemma 4 we have

E‖g?T (x, z)− g?T (y, z)‖2 =

(
Lλ

`1

)2

E
∥∥∥ḡT (x

λ
, z
)
− ḡT

(y
λ
, z
)∥∥∥2
≤
(
Lλ

`1

)2 ¯̀2
1

p

∥∥∥x
λ
− y

λ

∥∥∥2

=

( ¯̀
1L

`1
√
p

)2

‖x− y‖2.
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Therefore, taking

L =
`1
¯̀
1
L̄
√
p =

`1
¯̀
1

min

{
2ςε

σ
, 1

}
L̄ ≤ L̄

guarantees membership in the oracle class and implies the lower bound

m̄zr
ε (K,∆, L̄, σ2) >

T − 1

2p
=

(⌊
L̄∆
√
p

4¯̀
1∆0ε2

⌋
− 1

)
1

2p
.

We consider the cases
L̄∆
√
p

4¯̀
1∆0ε2

≥ 3 and
L̄∆
√
p

4¯̀
1∆0ε2

< 3 separately. In the former case (which is the more

interesting one), we use bxc − 1 ≥ x/2 for x ≥ 3 and the setting of p to write

m̄zr
ε (K,∆, L̄, σ2) ≥ L̄∆

16¯̀
1∆0ε2

√
p
≥ 1

32¯̀
1∆0ς

· L̄∆σ

ε3
. (40)

Moreover, we choose c′ = 12¯̀
1∆0 so that ε ≤

√
L̄∆

12¯̀
1∆0
≤
√

L̄∆
8 holds. By Lemma 11,

m̄zr
ε (K,∆, L̄, σ2) > c0 ·

σ2

ε2
, (41)

where c0 is a universal constant (this lower bound holds for any value of d). Together, the bounds

(40) and (41) imply the desired result when
L̄∆
√
p

4¯̀
1∆0ε2

≥ 3.

Finally, we consider the edge case
L̄∆
√
p

4¯̀
1∆0ε2

< 3. We note that the assumption ε ≤
√

L̄∆
12¯̀

1∆0

precludes the option that p = 1 in this case. Therefore we must have L̄∆ς
2¯̀

1∆0σε
< 3 or, equivalently,

σ2

ε2
> ς

6¯̀
1∆0
· L̄∆σ

ε3
. Thus, in this case the bound (41) implies (40) up to a constant, concluding the

proof.

B Proofs from Section 4

B.1 Proof of Lemma 5

The proof combines the techniques of the proofs of Lemma 1 and Lemma 4 of [13]. Let us adopt

the shorthand x(i) := x
(i)
A[OF̃U

], which we recall is defined via

x
(i)
A[OF̃U

] = A(i)

(
r,OF̃U

(
x

(1)
A[OF̃U

], z
(1)
)
, . . . ,OF̃U

(
x

(i−1)
A[OF̃U

], z
(i−1)

))
,

where r is the algorithm’s random seed. Further, recall that x(i) is a batch of K queries,

x(i) = (x(i,1), . . . , x(i,K)).

For each i and each k ∈ [K], define

g(i,k) = g̃U (U>x(i,k), z(i)),

and let g(i) = (g(i,1), . . . , g(i,K)). To keep notation compact for the K-query setup, we adopt the
following conventions throughout the proof:

• F (i) :=
[
F̃U (x(i,1)), . . . , F̃U (x(i,K))

]
=
[
F (U>x(i,1)), . . . , F (U>x(i,K))

]
,
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• Ug(i) :=
[
Ug(i,1), . . . , Ug(i,K)

]
,

• U>x(i) :=
[
U>x(i,1), . . . , U>x(i,K)

]
.

Note that with this notation we have (F (i), Ug(i)) = OF̃U (x(i), z(i)).
Following the strategy of Lemma 1, we define

π(t) = max
i≤t

max
k∈[K]

prog 1
4
(U>x(i,k)) = max

{
j ≤ T | |〈u(j), x(i,k)〉| ≥ 1

4
for some i ≤ t, k ∈ [K]

}
and, similarly,

γ(t) = max
i≤t

max
k∈[K]

prog0(g(i,k)) = max
{
j ≤ T | g(i,k)

j 6= 0 for some i ≤ t, k ∈ [K]
}
.

The statement of the lemma is equivalent to

P(π(t) ≥ T ) ≤ δ for all t ≤ T − log 2
δ

2p
.

Define the event

V(t) :=

{
max
k∈[K]

prog 1
4
(U>x(t,k)) ≤ γ(t−1)

}
.

Note that by definition ∩ti=1V
(t) implies that π(t) ≤ γ(t−1) ≤ γ(t), and therefore

P(π(t) ≥ T ) ≤ P
(
γ(t) ≥ T , ∩ti=1V

(i)
)

+ P
([
∩ti=1V

(i)
]c)

. (42)

We bound each of the terms above in turn. With an argument similar to the proof of Lemma 1 we
show that

P
(
γ(t−1) ≥ T , ∩ti=1V

(i)
)
≤ e2pt−T . (43)

With an argument similar to the proof of Lemma 4 of [13], we show that

P
([
∩ti=1V

(i)
]c)
≤ 2tKTe−

d−tK−T
32R2tK . (44)

Taking t ≤ T−log 2
δ

2p and d ≥ 18R
2KT
p log 2KT 2

pδ ≥ tK + T + 32R2tK log 2tKT
δ/2 and substituting (43)

and (44) back into (42) gives P(π(t) ≥ T ) ≤ δ
2 + δ

2 ≤ δ, establishing the result. We now derive the
bounds (43) and (44).

B.1.1 Proof of the bound (43)

Define the filtration
G(i) = σ(r, U>x(1), g(1), . . . , U>x(i), g(i)),

so that π(t), γ(t) ∈ G(t). The definition of the probability-p zero chain property is that

P
(

max
k∈[K]

prog0(g(t,k)) ≤ 1 + max
k∈[K]

prog 1
4
(U>x(t,k)) | G(t−1)

)
= 1,

and

P
(

max
k∈[K]

prog0(g(t,k)) = 1 + max
k∈[K]

prog 1
4
(U>x(t,k)) | G(t−1)

)
≤ p.
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Recalling the definitions V(t) =
{

maxk∈[K] prog 1
4
(U>x(t,k)) ≤ γ(t−1)

}
and

γ(t) = max

{
γ(t−1), max

k∈[K]
prog0(g(t,k))

}
,

we have (by the reasoning of Eq. (14)),

P
(
γ(t) − γ(t−1) /∈ {0, 1} , V(t) | Gt−1

)
= 0 and P

(
γ(t) − γ(t−1) = 1 , V(t) | G(t−1)

)
≤ p.

Therefore, denoting ι(t) := γ(t) − γ(t−1), we have via the Chernoff method

P
(
γ(t) ≥ T , ∩ti=1V

(i)
)

= P
(
e
∑t
i=1 ι

(i)
1{∩ti=1V

(i)} ≥ eT
)
≤ e−TE

[
e
∑t
i=1 ι

(i)
1{∩ti=1V

(i)}
]

Using ι(t),V(t) ∈ G(t) and P(ι(t) = 1 , V(t) | G(t−1)) = 1− P(ι(t) = 0 , V(t) | G(t−1)) ≤ p, we obtain

E
[
e
∑t
i=1 ι

(i)
1{∩ti=1V

(i)}
]

= E
t∏
i=1

eι
(i)
1{V(i)} = E

t∏
i=1

E
[
eι

(i)
1{V(i)}

∣∣∣ G(i−1)
]
≤ (1−p+p ·e)t ≤ e2pt,

establishing the bound (43).

B.1.2 Proof of the bound (44)

Throughout, we fix a time horizon t ∈ N. Let us adopt the convention that span
{
x(i)
}

=

span
{
x(i,1), . . . , x(i,K)

}
. We start by defining, for every j ≤ T and i ≤ t,

P
(i)
j := projection operator to orthogonal complement of span{u(1), . . . , u(j), x(1), . . . , x(i)},

That is, P
(i)
j ∈ Rd×d is symmetric and satisfies (P

(i)
j )2 = P

(i)
j and P

(i)
j w = 0 for every w in

span
{
u(1), . . . , u(j), x(1), . . . , x(i)

}
. We also consider the operator Π

(i)
j := I − P

(i)
j , which is simply

the projection onto span
{
u(1), . . . , u(j), x(1), . . . , x(i)

}
. We define the events

G
(i)
j :=

{∥∥∥Π
(i)
j−1 P

(i−1)
j−1 u(j)

∥∥∥ < 1

4R
√
t

}
.

The following is a linear-algebraic fact.

Lemma 12. For every i ≤ t and j ≤ T , ∩i′≤iG(i′)
j implies that

∣∣∣〈u(j), x(i,k)〉
∣∣∣ < ‖x(i,k)‖

4R

√
i

t
≤ 1

4
for all k.

Proof. Consider the operator Π
(i)
j−1 = I−P

(i)
j−1 and observe that Π

(i)
j−1 Π

(i−1)
j−1 = Π

(i−1)
j−1 Π

(i)
j−1 = Π

(i−1)
j−1

by the nesting of the subspaces. Therefore

Π
(i′−1)
j−1 + P

(i′−1)
j−1 Π

(i′)
j−1 P

(i′−1)
j−1 = Π

(i′−1)
j−1 +(I −Π

(i′−1)
j−1 ) Π

(i′)
j−1(I −Π

(i′−1)
j−1 ) = Π

(i′)
j−1 .

Iterating this equality, we obtain

Π
(i)
j−1 = Π

(0)
j−1 +

i∑
i′=1

P
(i′−1)
j−1 Π

(i′)
j−1 P

(i′−1)
j−1 =

j−1∑
j′=1

[u(j′)][u(j′)]> +

i∑
i′=1

P
(i′−1)
j−1 Π

(i′)
j−1 P

(i′−1)
j−1 , (45)
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where the second equality uses that Π
(0)
j−1 =

∑j−1
j′=1[u(j′)][u(j′)]> since U is orthogonal.

Now, let k ∈ [K] be fixed. Using the facts that Π
(i)
j−1 x

(i,k) = x(i,k) and 〈u(j′), u(j)〉 = 0 for any
j′ < j, we may write

∣∣∣〈u(j), x(i,k)〉
∣∣∣ =

∣∣∣〈u(j),Π
(i)
j−1 x

(i,k)〉
∣∣∣ (i)

=

∣∣∣∣∣
i∑

i′=1

〈
P

(i′−1)
j−1 u(j),Π

(i′)
j−1 P

(i′−1)
j−1 x(i,k)

〉∣∣∣∣∣
(ii)
=

∣∣∣∣∣
i∑

i′=1

〈
Π

(i′)
j−1 P

(i′−1)
j−1 u(j),Π

(i′)
j−1 P

(i′−1)
j−1 x(i,k)

〉∣∣∣∣∣
(iii)

≤

√√√√ i∑
i′=1

∥∥∥Π
(i′)
j−1 P

(i′−1)
j−1 u(j)

∥∥∥2
·

√√√√ i∑
i′=1

∥∥∥Π
(i′)
j−1 P

(i′−1)
j−1 x(i,k)

∥∥∥2
. (46)

where the transitions above follow from (i) Eq. (45), (ii) the fact that
[
Π

(i′)
j−1

]2
= Π

(i′)
j−1 and (iii)

Cauchy-Schwartz. Now, ∩i′≤iG(i′)
j implies that

i∑
i′=1

∥∥∥Π
(i′)
j−1 P

(i′−1)
j−1 u(j)

∥∥∥2
≤

i∑
i′=1

1

16R2t
≤ i

16R2t
. (47)

Moreover, the decomposition (45) implies that
∑i

i′=1 P
(i′−1)
j−1 Π

(i′)
j−1 P

(i′−1)
j−1 � Π

(i)
j−1 � I. Therefore,

i∑
i′=1

∥∥∥Π
(i′)
j−1 P

(i′−1)
j−1 x(i,k)

∥∥∥2
=
[
x(i,k)

]>( i∑
i′=1

P
(i′−1)
j−1 Π

(i′)
j−1 P

(i′−1)
j−1

)[
x(i,k)

]
≤ ‖x(i,k)‖2. (48)

Substituting (47) and (48) into (46) gives the lemma.

Lemma 12 has the following immediate consequence: for all i ≤ t,

∩i′≤i ∩j>γ(i−1) G
(i′)
j implies

{
max
k∈[K]

|〈u(j), x(i,k)〉| < 1

4
for all j > γ(i−1)

}
= V(i).

Furthermore, since γ(1) ≤ γ(2) ≤ · · · γ(t),

∩i≤t ∩j≤T
(
G

(i)
j or {j ≤ γ(i−1)}

)
= ∩i≤t ∩j>γ(i−1) G

(i)
j implies ∩i≤t V(i).

Therefore, we may bound the failure probability of ∩i≤tV(i) as

P
([
∩ti=1V

(i)
]c)
≤

t∑
i=1

T∑
j=1

P
([

G
(i)
j

]c
, j > γ(i−1)

)
. (49)

It remains to argue that P
([

G
(i)
j

]c
, j > γ(i−1)

)
≤ 2Ke−

d−tK−T
32R2tK , which we proceed to do below;

substituting this bound into (49) gives the desired result (44).

Lemma 13. For all i ≤ t and j ≤ T ,

P
([

G
(i)
j

]c
, j > γ(i−1)

)
≤ 2Ke−

d−iK−j
32R2tK ≤ 2Ke−

d−tK−T
32R2tK .
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Proof. For any i, j, define the σ-field

U (i)
j := σ(r, u(1), . . . , u(j), U>x(1), z(1), . . . , U>x(i), z(i)),

where z(i) is the randomness of the oracle at iteration i. Fixing i ≤ t, j ≤ T , we also define

T
(i−1)
j := {j > γ(i−1)} and û(j) :=

P
(i−1)
j−1 u(j)

‖P(i−1)
j−1 u(j)‖

.

With this notation, we have

P
([

G
(i)
j

]c
,T

(i−1)
j | U (i−1)

j−1

)
≤ P

([
G

(i)
j

]c
| U (i−1)

j−1 ,T
(i−1)
j

)
= P

(∥∥∥Π
(i)
j−1 P

(i−1)
j−1 u(j)

∥∥∥ ≥ 1

4R
√
t

∣∣∣ U (i−1)
j−1 ,T

(i−1)
j

)
≤ P

(∥∥∥Π
(i)
j−1 û

(j)
∥∥∥ ≥ 1

4R
√
t

∣∣∣ U (i−1)
j−1 ,T

(i−1)
j

)
,

where we use the convention P(· | U (i−1)
j−1 ,T

(i−1)
j ) = 0 when P(T

(i−1)
j | U (i−1)

j−1 ) = 0.

Observe that to compute the oracle response to query x(i) it suffices to know z(i), U>x(i) and
u(1), ...u(γ(i)). To see this, recall that OF̃U (x(i,k), z(i)) = (F (U>x(i,k)), Ug(U>x(i,k), z(i))); knowing

z(i), U>x(i,k) is sufficient to compute F (U>x(i,k)) and g(i,k) = g(U>x(i,k), z(i)), and hence only the
first maxk∈[K] prog0(g(i)) ≤ γ(i) vectors in U are necessary to compute Ug(i). (This also implies

that T
(i−1)
j ∈ U (i−1)

j−1 ). Therefore, using information in U (i)

γ(i)
we can compute all oracle responses up

to iterate i, and since the algorithm random seed r ∈ U (i)
j for all j, this allows us to also compute

the next query. We thus conclude that

x(i) ∈ U (i−1)

γ(i−1) .

In other words, x(1), x(2), . . . , x(i) are deterministic conditional on U (i−1)
j−1 and T

(i−1)
j .

The above discussion implies also that Π
(i)
j−1 and P

(i−1)
j−1 are deterministic conditional on U (i−1)

j−1

and T
(i−1)
j . In contrast, we have the following characterization of û(j).

Lemma 14. Conditional on U (i−1)
j−1 and T

(i−1)
j , the unit vector û(j) is uniformly distributed on the

unit sphere in the range of P
(i−1)
j−1 , i.e. the linear space S⊥ defined as the orthogonal complement of

S = span{u(1), . . . , u(j−1), x(1), . . . , x(i−1)}.
Before proving Lemma 14, let us quickly show how it implies Lemma 13. Since û(j) is conditionally

uniformly distributed on a sphere in S⊥, and since the image Πi
j−1 S⊥ has dimension at most K,

we have

P
(∥∥∥Π

(i)
j−1 û

(j)
∥∥∥ ≥ 1

4R
√
t

∣∣ U (i−1)
j−1 ,T

(i−1)
j

)
= P

(
K∑
i=1

v2
i ≥

1

16R2t

)
,

for v uniform on the unit sphere in Rd′ , where d′ = dim(S⊥) ≥ d− iK − j. Also, observe that we
have

P

(
K∑
i=1

v2
i ≥

1

16R2t

)
≤ P

(
∃k ∈ [K] : v2

k ≥
1

16R2tK

)
≤ K · P

(
v2

1 ≥
1

16R2tK

)
.

Lemma 13 thus follows from the concentration bound P(v2
1 ≥ α) ≤ 2e−

1
2
αd′ [8, Lecture 8].
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Proof of Lemma 14. Throughout, for any sequence of vectors v(1), . . . , v(N), we adopt the no-
tation v(≥n) (respectively v(<n)) for a matrix with columns v(n), v(n+1), . . . , v(N) (respectively
v(1), . . . , v(n−1)). We define a number of densities as follows:

• p≥j denotes the density of u(≥j) conditional on U (i−1)
j−1 and T

(i−1)
j .

• p̃(<i) denotes the density of U>x(<i) and T
(i−1)
j conditional on U, r, z(<i).

• p̃
(<i)
<j denotes the density of U>x(<i) and T

(i−1)
j conditional on u(<j), r, z(<i).

• protation and protation,<j denote the densities for U and u(<j), respectively.

(Pedantically, densities are with respect to the product of Lebesgue and counting measure.) With
these definitions, we have

p≥j(u
(≥j) | U (i−1)

j−1 ,T
(i−1)
j ) =

p̃(<i)
(
U>x(<i),T

(i−1)
j | U, r, z(<i)

)
protation(U)

p̃
(<i)
<j

(
U>x(<i),T

(i−1)
j | u(<j), r, z(<i)

)
protation,<j

(
u(<j)

) , (50)

where we used the chain rule and that the randomness of the algorithm and the oracle is independent
of U ; the factor pseed(r, z(<i)) consequently cancels in the numerator and denominator. Note that

(U, r, z(<i)) is all the information necessary to compute U>x(<i) and hence also T
(i−1)
j . Therefore,

p̃(<i) is a Dirac delta constraining its argument to be consistent with the conditioning.

Fix r, z(<i) and U such that T
(i−1)
j holds and let W be any orthogonal transformation preserving

S, i.e., a d by d matrix satisfying

W>W = Id and Ws = s = W>s for all s ∈ S = span{u(1), . . . , u(j−1), x(1), . . . , x(i−1)}. (51)

Let x′(1), . . . , x′(i−1) denote the iterates produced by the algorithm when we replace U with U ′ = WU
(with z(<i) and r unchanged). We argue inductively that

x′
(<i)

= x(<i) and therefore, by definition of W , U ′
>
x′

(<i)
= U>W>x(<i) = U>x(<i). (52)

To do so, for any i′ < i write the oracle response to x′(i
′) as OF̃U′

(x′(i
′), z(i′)) = (F ′(i

′), U ′g′(i
′)), where

F ′(i
′) = F (U ′>x′(i

′)) and g′(i
′) = g(U ′>x′(i

′), z(i′)). The basis of the induction is that x′(1) = x(1)

since they depend only on r. Assume that x′(<i
′) = x(<i′) for some i′ < i− 1; this also implies that

(U ′)>x′
(<i′)

= (U ′)>x(<i′) = U>W>x(<i′) = U>x(<i′)

Therefore, F ′(<i
′) = F (<i) and g′(<i

′) = g(<i). This means U ′g′(<i
′) = WUg(<i′) = Ug(<i), where the

final equality is due to the invariance (51) of W and the fact that Ug(i′) ∈ span{u(1), . . . , u(γ(i
′))} ⊆

span{u(1), . . . , u(j−1)} by the assumption that T
(i−1)
j holds. Therefore, all the oracle responses for

the first i′ − 1 iterations are identical, and so we must have x′(i
′) = x(i′), completing the induction.

The equality (52) means that the transformation U 7→ WU leaves U (i−1)
j−1 unchanged and in

particular that T
(i−1)
j still holds. Thus,

p̃(<i)
(
U>x(<i),T

(i−1)
j |WU, r, z(<i)

)
= p̃(<i)

(
U>x(<i),T

(i−1)
j | U, r, z(<i)

)
(53)
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(recall that p̃(<i) just checks consistency). We also have

protation(WU) = protation(U) (54)

by the orthogonal invariance of the distribution of U . Substituting Wu(≥j) into equation (50) for

p≥j(· | U (i−1)
j−1 ,T

(i−1)
j ) gives

p≥j(Wu(≥j) | U (i−1)
j−1 ,T

(i−1)
j ) =

p̃(<i)
(
U>x(<i),T

(i−1)
j |WU, r, z(<i)

)
protation(WU)

p̃
(<i)
<j

(
U>x(<i),T

(i−1)
j | u(<j), r, z(<i)

)
protation,<j

(
u(<j)

) , (55)

where we have used the facts that
[
u(<j),Wu(≥j)] = WU by definition of W , and that the quantity

U>x(<i) appearing in (50) is U (i−1)
j−1 -measurable and therefore independent of the argument to

p≥j(· | U (i−1)
j−1 ,T

(i−1)
j ). Applying the equalities (53) and (54) to the numerator of (55) and comparing

to (50), we find that

p≥j(Wu(≥j) | U (i−1)
j−1 ,T

(i−1)
j ) = p≥j(u

(≥j) | U (i−1)
j−1 ,T

(i−1)
j ).

Marginalizing, we conclude that the distribution of u(j) conditional on U (i−1)
j−1 is invariant to any

linear transformation W satisfying (51). Since any rotation of S⊥ can be extended to a rotation of
Rd satisfying (51), we have that the component of u(j) in S⊥ is rotationally invariant, giving the
lemma.

B.2 Proof of Lemma 6

Before proving Lemma 6 we first list the relevant continuity properties of the compression function

ρ(x) =
x√

1 + ‖x‖2/R2
.

Lemma 15. Let J(x) = ∂ρ
∂x(x) = I−ρ(x)ρ(x)>/R2√

1+‖x‖2/R2
. For all x, y ∈ Rd we have

‖J(x)‖op =
1√

1 + ‖x‖2/R2

≤ 1, ‖ρ(x)− ρ(y)‖ ≤ ‖x− y‖, and ‖J(x)− J(y)‖op ≤
3

R
‖x− y‖.

(56)

Proof of Lemma 15. Note that ‖ρ(x)‖ ≤ R and therefore 0 � I − ρ(x)ρ(x)>/R2 � I. Conse-
quently, we have ‖J(x)‖op = (1 +‖x‖2/R2)−1/2 ≤ 1. The guarantee ‖ρ(x)− ρ(y)‖ ≤ ‖x− y‖ follows

immediately by Taylor’s theorem. For the last statement, define h(t) = 1√
1+t2

, and note that

|h(t)|, |h′(t)| ≤ 1. By triangle inequality and the aforementioned boundedness and Lipschitzness
properties of h, we have

‖J(x)− J(y)‖op

≤ h(‖y‖/R) ·
∥∥∥ρ(x)ρ(x)>/R2 − ρ(y)ρ(y)>/R2

∥∥∥
op

+
∥∥∥I − ρ(x)ρ(x)>/R2

∥∥∥
op
· |h(‖x‖/R)− h(‖y‖/R)|

≤
∥∥∥ρ(x)ρ(x)>/R2 − ρ(y)ρ(y)>/R2

∥∥∥
op

+
∥∥∥I − ρ(x)ρ(x)>/R2

∥∥∥
op
· |‖x‖/R− ‖y‖/R|.
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For the first term, observe that for any x, y we have ‖x‖, ‖y‖ ≤ 1, we have ‖xx>−yy>‖op ≤ 2‖x− y‖;
this follows because for any ‖v‖ = 1, we have

∥∥(xx> − yy>)v
∥∥ ≤ ‖x− y‖|〈v, x〉|+ ‖y‖|〈v, x− y〉| ≤

2‖x− y‖. Since ‖ρ(x)/R‖ ≤ 1, it follows that∥∥∥ρ(x)ρ(x)>/R2 − ρ(y)ρ(y)>/R2
∥∥∥

op
≤ 2

R
‖x− y‖.

For the second term, we again use that ‖ρ(x)‖ ≤ R to write∥∥∥I − ρ(x)ρ(x)>/R2
∥∥∥

op
· |‖x‖/R− ‖y‖/R| ≤ 1

R
|‖x‖ − ‖y‖| ≤ 1

R
‖x− y‖.

Proof of Lemma 6. The argument here is essentially identical to [13, Lemma 5]. Define y(i) =
(y(i,1), . . . , y(i,K)), where y(i,k) = ρ(x(i,k)). Observe that for each i and k, the oracle response
(F̂T,U (x(i,k)), ĝT,U (x(i,k), z(i))) is a measurable function of x(i,k) and (F̃T,U (y(i,k)), g̃T,U (y(i,k), z(i))).
Consequently, we can regard the sequence y(1), . . . , y(T ) as realized by some algorithm in Arand(K)
applied to an oracle with OF̃T,U (y, z) = (F̃T,U (y), g̃T,U (y, z)). Lemma 5 then implies that as long as

d ≥ d18 · 2302KT 2

p log 2KT 2

pδ e ≥ d18R
2KT
p log 2KT 2

pδ e, we have that with probability at least 1− δ,

max
k∈[K]

prog 1
4
(U>ρ(x(i,k))) = max

k∈[K]
prog 1

4
(U>y(i,k)) < T, (57)

as long as i ≤ (T − log(2/δ))/2p.
We now show that the gradient must be large for all of the iterates. Let i and k be fixed. We

first consider the case where
∥∥x(i,k)

∥∥ ≤ R/2. Observe that (57) implies that prog1(U>y(i,k)) < T

and so by Lemma 2.5, if we set j = prog1(U>y(i,k)) + 1, we have

|〈u(j), y(i,k)〉| < 1 and
∣∣∣〈u(j),∇F̃T,U (y(i,k))

〉∣∣∣ ≥ 1. (58)

Now, observe that we have〈
u(j),∇F̂T,U (x(i,k))

〉
=
〈
u(j), J(x)>∇F̃T,U (y(i,k))

〉
+ η
〈
u(j), x(i,k)

〉
.

Using that J(x) = I−ρ(x)ρ(x)>/R2√
1+‖x‖2/R2

, this is equal to

〈
u(j),∇F̃T,U (y(i,k))

〉
√

1 +
∥∥x(i,k)

∥∥2
/R2

−
〈
u(j), y(i,k)

〉〈
y(i,k), F̃T,U (y(i,k))

〉
/R2√

1 +
∥∥x(i,k)

∥∥2
/R2

+ η
〈
u(j), y(i,k)

〉√
1 +

∥∥x(i,k)
∥∥2
/R2.

Since
∥∥y(i,k)

∥∥ ≤ ∥∥x(i,k)
∥∥ ≤ R/2, this implies

∣∣∣〈u(j),∇F̂T,U (x(i,k))
〉∣∣∣ ≥ 2√

5

∣∣∣〈u(j),∇F̃T,U (y(i,k))
〉∣∣∣− ∣∣∣〈u(j), y(i,k)

〉∣∣∣

∥∥∥F̃T,U (y(i,k))

∥∥∥
2R

+ η

√
5

2

.
By Lemma 2 we have

∥∥∥F̃T,U (y(i,k))
∥∥∥ ≤ 23

√
T . At this point, the choice η = 1/5, R = 230

√
T , as

well as (58) imply that
∣∣∣〈u(j),∇F̂T,U (x(i,k))

〉∣∣∣ ≥ 2√
5
−
(

1
20 + 1

2
√

5

)
≥ 1

2 .
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Next, we handle the case where
∥∥x(i,k)

∥∥ > R/2. Here, we have∥∥∥∇F̂T,U (x(i,k))
∥∥∥ ≥ η∥∥∥x(i,k)

∥∥∥− ∥∥∥J(x(i,k))
∥∥∥

op

∥∥∥∇F̃T,U (y(i,k))
∥∥∥ ≥ R

10
≥
√
T .

where the second inequality uses that
∥∥J(x(i,k))

∥∥
op
≤ 1√

1+‖x(i,k)‖2/R2
≤ 2/

√
5 which follows from

Lemma 15 and
∥∥x(i,k)

∥∥ > R/2.

B.3 Proof of Lemma 7

To establish Lemma 7 we first prove a generic result showing that composition with the compression
function ρ and an orthogonal transformation U never significantly hurts the regularity requirements
in our lower bounds. In the following, we use the notation a ∨ b := max{a, b}.
Lemma 16. Let F : RT → R be an arbitrary twice-differentiable function with ‖∇F (x)‖ ≤ `0
and ‖∇F (x)−∇F (y)‖ ≤ `1 · ‖x− y‖, and let g(x, z) and a random variable z ∼ Pz satisfy for all
x, y ∈ RT ,

E[g(x, z)] = ∇F (x), E‖g(x, z)− F (x)‖2 ≤ σ2, and E‖g(x, z)− g(y, z)‖2 ≤ L̄2‖x− y‖2. (59)

Let R ≥ `0 ∨ 1, d ≥ T , and U ∈ Ortho(d, T ). Then the functions

F̂U (x) = F (U>ρ(x)) and ĝU (x, z) = J(x)>Ug(U>ρ(x), z)

satisfy the following properties.

1. F̂U (0)− infx F̂U (x) ≤ F (0)− infx F (x).

2. The first derivative of F̂U is (`1 + 3)-Lipschitz continuous.

3. E
∥∥ĝU (x, z)−∇F̂U (x)

∥∥2 ≤ σ2 for all x ∈ Rd.

4. E‖ĝU (x, z)− ĝU (y, z)‖2 ≤ (L̄2 + 9σ2 + 9)‖x− y‖2 for all x, y ∈ Rd.

Proof of Lemma 16. Property 1 is immediate, since the range of ρ is a subset of RT . For property
2, we use the triangle inequality along with Lemma 15 and the assumed smoothness properties of F
as follows:∥∥∥∇F̂U (x)−∇F̂U (y)

∥∥∥
≤
∥∥∥J(x)>U∇F (U>ρ(x))− J(x)>U∇F (U>ρ(y))

∥∥∥+
∥∥∥J(x)U∇F (U>ρ(y))− J(y)U∇F (U>ρ(y))

∥∥∥
≤
∥∥∇F (U>ρ(x))−∇F (U>ρ(y))

∥∥+
∥∥∇F (U>ρ(y))

∥∥ · ‖J(x)− J(y)‖op

≤ `1 · ‖ρ(x)− ρ(y)‖+ `0 · ‖J(x)− J(y)‖

≤
(
`1 +

3`0
R

)
‖x− y‖.

For the variance bound (property 3), observe that we have

E
∥∥∥ĝU (x, z)−∇F̂U (x)

∥∥∥2
= E

∥∥∥J(x)>Ug(U>ρ(x), z)− J(x)>U∇F (U>ρ(x))
∥∥∥2

≤ E
[∥∥∥J(x)>U

∥∥∥2

op
·
∥∥∥g(U>ρ(x), z)−∇F (U>ρ(x))

∥∥∥2
]

≤ E
∥∥∥g(U>ρ(x), z)−∇F (U>ρ(x))

∥∥∥2
≤ σ2.
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Here the second inequality follows from (56) and the fact that U ∈ Ortho(d, T ), and the third
inequality follows because the variance bound in (59) holds uniformly for all points in the domain
RT (in particular, those in the range of x 7→ U>ρ(x)).

Lastly, to prove property 4 we first invoke the triangle inequality and the elementary inequality
(a+ b)2 ≤ 2a2 + 2b2.

E‖ĝU (x, z)− ĝU (y, z)‖2

= E
∥∥∥J(x)>Ug(U>ρ(x), z)− J(y)>Ug(U>ρ(y), z)

∥∥∥2

≤ 2E
∥∥∥J(x)>Ug(U>ρ(x), z)− J(x)>Ug(U>ρ(y), z)

∥∥∥2
+ 2E

∥∥∥(J(x)> − J(y)>
)
Ug(U>ρ(x), z)

∥∥∥2

For the first term, we use the Jacobian operator norm bound from (56) and the assumed mean-squared
smoothness of g:

E
∥∥∥J(x)>Ug(U>ρ(x), z)− J(x)>Ug(U>ρ(y), z)

∥∥∥2
≤ E

∥∥∥g(U>ρ(x), z)− g(U>ρ(y), z)
∥∥∥2

≤ L̄2 E‖ρ(x)− ρ(y)‖2

≤ L̄2 E‖x− y‖2.

For the second term, we use the Jacobian Lipschitzness from (56):

E
∥∥∥(J(x)> − J(y)>

)
Ug(U>ρ(x), z)

∥∥∥2
≤ 9

R2
‖x− y‖2 · E

∥∥g(U>ρ(x), z)
∥∥2

We now use the assumed Lipschitzness of F and variance bound for g:

E
∥∥∥g(U>ρ(x), z)

∥∥∥2
= E

∥∥∥g(U>ρ(x), z)−∇F (U>ρ(x))
∥∥∥2

+
∥∥∥∇F (U>ρ(x))

∥∥∥2
≤ σ2 + `20.

Putting everything together, we have

E‖ĝU (x, z)− ĝU (y, z)‖2 ≤
(
L̄2 + 9σ2/R2 + 9`20/R

2
)
· ‖x− y‖2.

Proof of Lemma 7. For property 1, observe that F̂T,U (0) = FT (0), and

min
x
F̂T,U (x) ≥ min

x
FT (U>ρ(x)) ≥ min

x
FT (U>x) ≥ min

x
FT (x).

For properties 2, 3, and 4 we observe from Lemma 16 that F̂T,U and ĝT,U , ignoring the quadratic
regularization term, satisfy the same smoothness, variance, and mean-squared smoothness bounds
as in Lemma 2/Lemma 4/Lemma 8 up to constant factors. The additional regularization term in
(27) leads to an additional η = 1/5 factor in the smoothness and mean-squared-smoothness.

B.4 Proof of Theorem 3

We prove the lower bound for the bounded variance and mean-squared smooth settings in turn. The
proofs follow the same outline as the proofs of Theorem 1 and Theorem 2, relying on Lemma 6 and
Lemma 7 rather than Lemma 1 and Lemma 4, respectively. Throughout, let ∆0, `1, ς and ¯̀

1 be the
numerical constants in Lemma 7.
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Bounded variance setting. Given accuracy parameter ε, initial suboptimality ∆, smoothness
parameter L and variance parameter σ2, we define for each U ∈ Ortho(d, T ) a scaled instance

F ?T,U (x) =
Lλ2

`1
F̂T,U

(x
λ

)
, where λ =

`1
L
· 4ε, and T =

⌊
∆

∆0(Lλ2/`1)

⌋
=

⌊
L∆

`1∆0(4ε)2

⌋
. (60)

We assume T ≥ 4, or equivalently ε ≤
√

L∆
64`1∆0

. Let g?T (x, z) denote the corresponding scaled

version of the stochastic gradient function ĝT,U . Now, by Lemma 7, we have that F ?T,U ∈ F(∆, L)
and moreover,

E‖g?T,U (x, z)−∇F ?T,U (x)‖2 =

(
Lλ

`1

)2

E
∥∥∥ĝT,U (x

λ
, z
)
−∇F̂T,U

(x
λ

)∥∥∥2
≤ (4ςε)2

p
.

Therefore, setting p = min
{

(4ςε)2/σ2, 1
}

guarantees a variance bound of σ2.
Next, Let O be an oracle for which OF ?T,U (x, z) = (F ?T,U (x), g?T,U (x, z)) for all U ∈ Ortho(d, T ).

Observe that for any A ∈ Arand(K), we may regard the sequence
{
x

(i,k)
A[OF?

T,U
]/λ
}

as queries an

algorithm A′ ∈ Arand(K) interacting with the unscaled oracle O
F̂T,U

(x, z) = (F̂T,U (x), ĝT,U (x, z)).

Instantiating Lemma 6 for δ = 1
2 , we have that w.p. at least 1

2 , mink∈[K]

∥∥∇F̂T,U( 1
λx

(t,k)
A[OF?

T,U
]

)∥∥ > 1
2

for all t ≤ T−2
2p . Therefore,

E min
k∈[K]

∥∥∇F ?T,U(x(t,k)
A[OF?

T,U
]

)∥∥ =
Lλ

`1
· E min

k∈[K]

∥∥∇F̂T,U( 1
λx

(t,k)
A[OF?

T,U
]

)∥∥ ≥ Lλ

4`1
= ε, (61)

by which it follows that

mrand
ε (K,∆, L, σ2) >

T − 2

2p
=

(⌊
L∆

16`1∆0ε2

⌋
− 2

)
1

2p
≥ 1

27`1∆0
· L∆

pε2
≥ 1

211`1∆0ς
· L∆σ2

ε4
,

where the second inequality uses that bxc − 2 ≥ x/4 whenever x ≥ 4.

Mean-squared smooth setting. We use the scaling (60), choose p = min
{

(4ςε)2/σ2, 1
}

as
above, and let

L =
`1
¯̀
1
L̄
√
p =

`1
¯̀
1

min

{
4ςε

σ
, 1

}
L̄ ≤ L̄.

Using Lemma 7 and the calculation from the proof of Theorem 2, this setting guarantees that
OF ?T,U (x, z) is in the class O(K,σ2, L̄). Consequently, the inequality (61) implies the lower bound

m̄rand
ε (K,∆, L̄, σ2) >

T − 2

2p
=

(⌊
L̄∆
√
p

16¯̀
1∆0ε2

⌋
− 1

)
1

2p
.

When
L̄∆
√
p

16¯̀
1∆0ε2

≥ 4, we have T ≥ 4 and (62) along with bxc − 2 ≥ x/4 for x ≥ 4 gives

m̄rand
ε (K,∆, L̄, σ2) ≥ L̄∆

27 ¯̀
1∆0ε2

√
p
≥ 1

29 ¯̀
1∆0ς

· L̄∆σ

ε3
. (62)

Moreover, we choose c′ so that ε ≤
√

L̄∆
64¯̀

1∆0
≤
√

L̄∆
8 holds. Lemma 11 then gives the lower bound

m̄rand
ε (K,∆, L̄, σ2) > c0 ·

σ2

ε2
, (63)
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for a universal constant c0. Together, the bounds (62) and (63) imply the desired result when
L̄∆
√
p

16¯̀
1∆0ε2

≥ 4. As we argue in the proof of Theorem 2, in the complementary case
L̄∆
√
p

16¯̀
1∆0ε2

< 4, the

bound (63) dominates (62), and consequently the result holds there as well.

C Proofs from Section 5

C.1 Statistical learning oracles

To prove the mean-squared smoothness properties of the construction (31) we must first argue about
the continuity of ∇Θi, where Θi : RT → R is the “soft indicator” function given by

Θi(x) := Γ

1−
(

T∑
k=i

Γ2(|xk|)
)1/2

 = Γ(1− ‖Γ(|x≥i|)‖).

Lemma 17. For all i ≥ j, ∇iΘj(x) is well-defined with

∇iΘj(x) =

−Γ′(1− ‖Γ(|x≥j |)‖) · Γ(|xi|)
‖Γ(|x≥j|)‖ · Γ

′(|xi|) · sgn(xi), i ≥ j and ‖Γ(|x≥j |)‖ > 0,

0, otherwise.
(64)

Moreover, Θj satisfies the following properties:

1. ‖∇Θj(x)‖ ≤ 62.

2. ‖∇Θj(x)−∇Θj(y)‖ ≤ 104 · ‖x− y‖.

Proof of Lemma 17. First, we verify that the function xi 7→ ‖Γ(|x≥j |)‖ is differentiable every-
where for each i. From here it follows from Observation 1 that Θj(x) is differentiable, and (64) follows

from the chain rule. Let i ≥ j, and let a =
√∑

k≥j,k 6=i Γ2(|xk|). Then ‖Γ(|x≥j |)‖ =
√
a2 + Γ2(|xi|).

This function is clearly differentiable with respect to xi when a > 0, and when a = 0 it is equal to
Γ(|xi|), which is also differentiable.

Property 1 follows because for all j,

‖∇Θj(x)‖ ≤ 6

‖Γ(|x≥j |)‖
·
√∑

i≥j(Γ(|xi|)Γ′(|xi|))2 ≤ 62, (65)

where we have used Observation 1.3.
To prove Property 2, we restrict to the case j = 1 so that x≥j = x and subsequently drop the ‘≥ j’

subscript to simplify notation; the case j > 1 follows as an immediate consequence. Define µ(x) ∈ RT
via µi(x) = Γ(|xi|)Γ′(|xi|)sgn(xi). Assume without loss of generality that 0 < ‖Γ(|x|)‖ ≤ ‖Γ(|y|)‖.
By triangle inequality, we have

‖∇Θ1(x)−∇Θ1(y)‖ ≤
∣∣Γ′(1− ‖Γ(|x|)‖)− Γ′(1− ‖Γ(|y|)‖)

∣∣ · ‖µ(x)‖
‖Γ(|x|)‖

+ Γ′(1− ‖Γ(|x|)‖) ·
∥∥∥∥ µ(x)

‖Γ(|x|)‖ −
µ(y)

‖Γ(|y|)‖

∥∥∥∥.
To proceed, we state some useful facts, all of which follow from Observation 1.3:

1. Γ is 6-Lipschitz.
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2. Γ′ is 128-Lipschitz, and in particular Γ′(1− ‖Γ(|x|)‖) ≤ 128 · ‖Γ(|x|)‖ (since Γ′(1) = 0).

3. ‖µ(x)‖ ≤ 6 · ‖Γ(|x|)‖ for all x.

4. ‖µ(x)− µ(y)‖ ≤ (128 · 1 + 62) · ‖x− y‖ = 164 · ‖x− y‖ for all x, y.

Using the first, second, and third facts, we bound the first term as

‖µ(x)‖
‖Γ(|x|)‖ ·

∣∣Γ′(1− ‖Γ(|x|)‖)− Γ′(1− ‖Γ(|y|)‖)
∣∣ ≤ 6

∣∣Γ′(1− ‖Γ(|x|)‖)− Γ′(1− ‖Γ(|y|)‖)
∣∣

≤ 128 · 6 |‖Γ(|x|)‖ − ‖Γ(|y|)‖|
≤ 128 · 62 |‖x‖ − ‖y‖|
≤ 5000 ‖x− y‖.

For the second term, we apply the second fact and the triangle inequality to upper bound by

Γ′(1− ‖Γ(|x|)‖) ·
∥∥∥∥ µ(x)

‖Γ(|x|)‖ −
µ(y)

‖Γ(|y|)‖

∥∥∥∥
≤ 128‖Γ(|x|)‖ ·

∥∥∥∥ µ(x)

‖Γ(|x|)‖ −
µ(y)

‖Γ(|y|)‖

∥∥∥∥
≤ 128

‖Γ(|x|)‖
‖Γ(|y|)‖ · ‖µ(x)− µ(y)‖+ 128‖Γ(|x|)‖‖µ(x)‖ ·

∣∣∣∣ 1

‖Γ(|x|)‖ −
1

‖Γ(|y|)‖

∣∣∣∣.
Using the fourth fact and the assumption that ‖Γ(|x|)‖ ≤ ‖Γ(|y|)‖, we have

‖Γ(|x|)‖
‖Γ(|y|)‖ · ‖µ(x)− µ(y)‖ ≤ 164‖x− y‖.

Using the third fact and ‖Γ(|x|)‖ ≤ ‖Γ(|y|)‖, we have

‖Γ(|x|)‖‖µ(x)‖ ·
∣∣∣∣ 1

‖Γ(|x|)‖ −
1

‖Γ(|y|)‖

∣∣∣∣ ≤ 6‖Γ(|x|)‖2 ·
∣∣∣∣ 1

‖Γ(|x|)‖ −
1

‖Γ(|y|)‖

∣∣∣∣
= 6
‖Γ(|x|)‖
‖Γ(|y|)‖ · |‖Γ(|x|)‖‖Γ(|y|)‖| ≤ 62‖x− y‖.

Gathering all of the constants, this establishes that

‖∇Θ1(x)−∇Θ1(y)‖ ≤ 104 · ‖x− y‖.

We are now ready to prove Lemma 8. For ease of reference, we restate the construction (31):

fT (x, z) = −Ψ(1)Φ(x1)ν1(x, z) +
T∑
i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] νi(x, z),

where

νi(x, z) := 1 + Θi(x)

(
z

p
− 1

)
.
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Proof of Lemma 8. To begin, we introduce some shorthand. Define

H(s, t) = Ψ(−s)Φ(−t)−Ψ(s)Φ(t),

h1(s, t) = Ψ(−s)Φ′(−t) + Ψ(s)Φ′(t),

h2(s, t) = Ψ′(−s)Φ(−t) + Ψ′(s)Φ(t).

The gradient of the noiseless hard function FT can then be written as

∇iFT (x) = −h1(xi−1, xi)− h2(xi, xi+1).

Next, define

gi(x, z) = −h1(xi−1, xi) · νi(x, z)− h2(xi, xi+1) · νi+1(x, z). (66)

With these definitions, we have the expression

∇ifT (x, z) = gi(x, z) +

(
z

p
− 1

) i∑
j=1

H(xj−1, xj) · ∇iΘj(x). (67)

We first prove that ∇fT is a probability-p zero chain. Since E[νi(x, z)] = 1 for all i and E( zp − 1) = 1,
it follows immediately from (67) that E[∇fT (x, z)] = ∇F (x). Now, let x be fixed and let i >
prog 1

4
(x) + 1. We claim that [∇fT (x, z)]i = 0 with probability 1. Since |xi−1|, |xi| < 1/4, it

follows from (66) that gi(x, z) = 0 and from (64) that ∇iΘj(x) = 0 for all j. This establishes
that [∇fT (x, z)]i = ∇iFT (x) = 0 for all z ∈ {0, 1}. Now, consider the case i = prog 1

4
(x) + 1.

Here (since |xi| < 1/4) we still have ∇iΘj(x) = 0 for all j, so ∇ifT (x, z) = gi(x, z). Since
Γ(|x≥i|) = Γ(|x≥i+1|) = 0, we have νi(x, z) = νi+1(x, z) = z

p , so gi(x, z) = ∇iFT (x) · zp . It follows
immediately that P(∃x : [∇fT (x, z)]prog 1

4
(x)+1 6= 0) ≤ p.

To bound the variance and mean-squared smoothness of ∇fT , we begin by analyzing the sparsity
pattern of the error vector

δ(x, z) := ∇fT (x, z)−∇FT (x, z).

Let ix = prog 1
2
(x) + 1. Observe that if j < ix, we have ‖Γ(|x≥j |)‖ ≥ Γ(|xix−1|) ≥ Γ(1/2) = 1, and

so Γ′(1− ‖Γ(|x≥j |)‖) = 0 and consequently ∇iΘj(x) = 0 for all i. Note also that if j > ix, we have
H(xj−1, xj) = 0. We conclude that (67) simplifies to

∇ifT (x, z) = gi(x, z) +

(
z

p
− 1

)
·H(xix−1, xix) · ∇iΘix(x). (68)

As in Lemma 4, we have νi(x, z) = 1 for all i < ix and gi(x, z) = ∇iFT (x) = 0 for all i > ix. Thus,
using the expression (66) along with (68), we have

δi(x, z) =
(
z
p − 1

)
H(xix−1, xix) · ∇iΘix(x)−

(
z
p − 1

)
h2(xix−1, xix) ·Θix(x), i = ix − 1,
h1(xix−1, xix) ·Θix(x), i = ix,
0, otherwise.

(69)

It follows immediately that the variance can be bounded as

E‖∇fT (x, z)−∇FT (z)‖2 ≤ 2

p
H(xix−1, xix)2‖∇Θix(x)‖2

+
2

p
h2

1(xix−1, xix) ·Θix(x)2 +
2

p
h2

2(xix−1, xix) ·Θix(x)2.
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From (65) we have ‖∇Θix(x)‖ ≤ 62, and from (35) we have |H(x, y)| ≤ 12, so the first term

contributes at most 2·144·64
p . Since |Θi(x)| ≤ 1, Lemma 2 implies that the second and third term

together contribute at most 4·232

p . To conclude, we may take

E‖∇fT (x, z)−∇FT (z)‖2 ≤ ς2

p
,

where ς ≤ 103.
To bound the mean-squared smoothness E‖∇fT (x, z)−∇fT (y, z)‖2, we first use that E[δ(x, z)] =

0, which implies

E‖∇fT (x, z)−∇fT (y, z)‖2 = E‖δ(x, z)− δ(y, z)‖2 + ‖FT (x)− FT (y)‖2.
We have ‖∇FT (x)−∇FT (y)‖ ≤ `1‖x− y‖ by Lemma 2.2. For the other term, we use the sparsity

pattern of δ(x, z) established in (69) along with the fact that E
(
z
p − 1

)2
≤ 1

p to show

E‖δ(x, z)− δ(y, z)‖2 ≤ 3

p

∑
i∈{ix,iy}

(h1(xi−1, xi) ·Θi(x)− h1(yi−1, yi) ·Θi(y))2

︸ ︷︷ ︸
=:E1

+
3

p

∑
i∈{ix,iy}

(h2(xi−1, xi) ·Θi(x)− h2(yi−1, yi) ·Θi(y))2

︸ ︷︷ ︸
=:E2

+
3

p

T∑
i=1

(
H(xix−1, xix) · ∇iΘix(x)−H(yiy−1, yiy) · ∇iΘiy(y)

)2
︸ ︷︷ ︸

=:E3

,

where iy = prog 1
2
(y) + 1.

We bound E1 and E2 using similar arguments to Lemma 4. Focusing on E1, and letting i ∈ {ix, iy}
be fixed, we have

(h1(xi−1, xi) ·Θi(x)− h1(yi−1, yi) ·Θi(y))2

≤ 2(h1(xi−1, xi)− h1(yi−1, yi))
2Θi(x)2 + 2(Θi(x)−Θi(y))2h1(yi−1, yi)

2.

Note that by Lemma 17, (i) Θi is 62 Lipschitz and Θi ≤ 1 and (ii) h1 is 23-Lipschitz and |h1| ≤ 5
(from Observation 2 and Lemma 2). Consequently,

E1 ≤ 2 · 105 · ‖x− y‖2.
Since h2 is 23-Lipschitz and has |h2| ≤ 20, an identical argument also yields that

E2 ≤ 5 · 106 · ‖x− y‖2.
To bound E3, we use the earlier observation that for all i and j 6= ix we haveH(xj−1, xj)∇iΘj(x) =

0, and likewise that H(yj−1, yj)∇iΘj(y) = 0 for all j 6= iy. This allows us to write

E3 =

T∑
i=1

 ∑
j∈{ix,iy}

H(xj−1, xj) · ∇iΘj(x)−H(yj−1, yj) · ∇iΘj(y)

2

≤ 2
∑

j∈{ix,iy}

T∑
i=1

(H(xj−1, xj) · ∇iΘj(x)−H(yj−1, yj) · ∇iΘj(y))2.
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Letting j ∈ {ix, iy} be fixed, we upper bound the inner summation as

T∑
i=1

(H(xj−1, xj) · ∇iΘj(x)−H(yj−1, yj) · ∇iΘj(y))2

≤ 2
T∑
i=1

(H(xj−1, xj) · (∇iΘj(x)−∇iΘj(y)))2 + ((H(xj−1, xj)−H(yj−1, yj)) · ∇iΘj(y))2

= 2H(xj−1, xj)
2‖∇Θj(x)−∇Θj(y)‖2 + 2(H(xj−1, xj)−H(yj−1, yj))

2‖∇Θj(y)‖2.

We may now upper bound this quantity by applying the following basic results:

1. H(xj−1, xj) ≤ 12 by (35).

2. |H(xj−1, xj)−H(yj−1, yj)| ≤ 20‖x− y‖, by (35).

3. ‖∇Θj(y)‖ ≤ 62 by Lemma 17.1.

4. ‖∇Θj(x)−∇Θj(y)‖ ≤ 104 · ‖x− y‖, by Lemma 17.2.

It follows that E3 ≤ 3 · 1010 · ‖x− y‖2. Collecting the bounds on E1, E2, and E3, this establishes that

E‖∇fT (x, z)−∇fT (y, z)‖2 ≤
¯̀2
1

p
· ‖x− y‖2.

with ¯̀
1 ≤

√
1011 + `21.

C.2 Active oracles

Proof of Lemma 9. Adopting the notation of the proof of Lemma 1 (with K = 1), we see that
the equality P(γ(t) − γ(t−1) /∈ {0, 1} | G(t−1)) = 0 holds for our setting as well. Moreover, we claim
that

P(γ(t) − γ(t−1) = 1 | G(t−1)) ≤ 2p. (70)

Given the bound (70), the remainder of the proof is identical to that of Lemma 1, with 2p replacing
p. To see why (70) holds, let (x(1), i(1)), . . . , (x(t), i(t)) ∈ G(t−1) denote the sequence of queries made
by the algorithm. We first observe that, by the construction of gπ, we have γ(t) = 1 + γ(t−1) only if
ζ1+γ(t−1)(π(i(t))) = 1. Therefore,

P(γ(t) − γ(t−1) = 1 | G(t−1)) ≤ P
(
ζ1+γ(t−1)(π(i(t))) = 1 | G(t−1)

)
. (71)

Next, let b ∈ {0, 1}NT
denote a (random) vector whose ith entry is bi := ζ1+γ(t−1)(π(i)). The

vector b has NT−1 elements equal to 1 and its distribution is permutation invariant. Note that, by
construction, the vector b is independent of {ζj(π(i))}j 6=1+γ(t−1),i∈NT . Consequently, the gradient

estimates g(1), . . . , g(t−1) depend on b only through their (1 + γ(t−1))th coordinate, which for iterate
t′ ≤ t− 1 is

g
(t′)

1+γ(t−1) =
[
∇1+γ(t−1)FT (x(t′))

]
bi(t′) .

From this expression we see that g(t′) depends on b only for index queries in the set

S(t−1) := {i(t′) | t′ < t and ∇1+γ(t−1)FT (x(t′)) 6= 0} ∈ G(t−1).
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Moreover, for every i ∈ S(t−1) we have that bi = 0, because otherwise there exists t′ < t such that

g
(t′)

1+γ(t−1) 6= 0 which gives the contradiction γ(t−1) ≥ γ(t′) ≥ prog0(g(t′)) ≥ 1 + γ(t−1) > γ(t−1). In

conclusion, we have for every i ∈ NT

P
(
ζ1+γ(t−1)(π(i)) = 1 | G(t−1)

)
= P

(
bi = 1 | bj = 0 ∀j ∈ S(t−1)

)
=

{
NT−1

NT−|S(t−1)| i /∈ S(t−1)

0 otherwise,
(72)

where the last equality follows from the permutation invariance of b.
Combining the observations above with the fact that |S(t−1)| ≤ t− 1 ≤ T

4p ≤ 1
4NT ≤ 1

2N
T gives

the desired result (70), since

P(γ(t) − γ(t−1) = 1 | G(t−1))
(71)

≤ P
(
ζ1+γ(t−1)(π(i(t))) = 1 | G(t−1)

) (72)

≤ NT−1

NT − t ≤
2

N
= 2p.

We remark that the argument above depends crucially on using a different bit for every coordinate.
Indeed, had we instead used the original construction gT in Eq. (17) and set gπ(x; i) = gT (ζ1(π(i))),
an algorithm that queried roughly N random indices would find an index i? such that ζ1(π(i?)) = 1
and could then continue to query it exclusively, achieving a unit of progress at every query. This
would decrease the lower bound from Ω(T/p) = Ω(NT ) to Ω(N + T ).
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