Skip to main content
Log in

Minimizing the effects of inaccurate sediment description in borehole data using rough sets and transition probability

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Lithologies for water wells in Canada constitute a major data source for describing the subsurface geology. Generally the datasets contain inconsistent descriptions and consequently have limited utility for deriving relevant geological information. The Geological Survey of Canada (GSC) has developed a standardization scheme to address the problem but the scheme does not thoroughly resolve the data inaccuracy problem. This study applies rough sets and transition probability to evaluate the GSC scheme using a protocol based on high quality borehole data. Our results demonstrate that misclassifications exist in the description of fine geologic materials, particularly, clay and silt. The results based on transition probability show that the data inaccuracy problem persists even when borehole data are standardized using the GSC scheme. The study provides information for the borehole data that is equivalent to metadata for users to quantify the level of uncertainty associated with inconsistent sediment description in the borehole data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Lithology describes the physical properties of rocks based on color, mineralogy, composition and grain size.

  2. Stratigraphy describes the spatial ordering or the vertical sequence of geological rock layers.

  3. Diamicton is unsorted and unstratified rock debris composed of a wide range of particle sizes.

References

  • Barnett PJ, Sharp DR, Russell HAJ, Brennand TA, Gorrell G, Kenny F et al (1998) On the origin of the Oak Ridges Moraine. Can J Earth Sci 35:1152–1167. doi:10.1139/cjes-35-10-1152

    Article  Google Scholar 

  • Carle SF (1999) T-PROGS: transition probability geostatistical software version 2.1: Hydrologic Sciences Graduate Group University of California, Davis

  • Carle SF, Fogg GE (1997) Modelling spatial variability with one and multidimensional continuous-lag Markov chains. Math Geol 29(7):891–918. doi:10.1023/A:1022303706942

    Article  Google Scholar 

  • Chapman LJ, Putman DF (1984) The physiography of Southern Ontario, special vol 2. Ontario Research Foundation, University of Toronto Press, Toronto

  • City of Toronto (2005) Oak Ridges Moraine. http://www.toronto.ca/moraine/index.htm. Accessed on 20 June 2006

  • Dumedah G, Schuurman N, Yang W (2008) Minimizing effects of scale distortion for spatially grouped census data using rough sets. J Geogr Syst 10(1):47–69. doi:10.1007/s10109-007-0056-y

    Article  Google Scholar 

  • Elfeki A, Dekking M (2001) A Markov chain model for subsurface characterization: theory and applications. Math Geol 33(5):569–589. doi:10.1023/A:1011044812133

    Article  Google Scholar 

  • Guerin R (2005) Borehole and surface-based hydrogeophysics. Hydrogeol J 13(1):251–254. doi:10.1007/s10040-004-0415-4

    Article  Google Scholar 

  • Howard RA (1971) Markov models, vol 1. In: Dynamic probabilistic systems. Wiley, New York

  • Hsieh B-Z, Lewis C, Lin Z-S (2005) Lithology identification of aquifers from geophysical well logs and fuzzy logic analysis: Shui-Lin Area, Taiwan. Comput Geosci 31:263–275. doi:10.1016/j.cageo.2004.07.004

    Article  Google Scholar 

  • Jones NL (2003) Seepage and groundwater modeling. Department of Civil and Environmental Engineering, Brigham Young University. http://class.et.byu.edu/ce547/. Accessed on 10 August 2004

  • Ohrn A (1999) Discernibility and rough sets in medicine: tools and applications, computer and information science. Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356. doi:10.1007/BF01001956

    Article  Google Scholar 

  • Pawlak Z (1997) Rough set approach to knowledge-based decision support. Eur J Oper Res 99:48–57. doi:10.1016/S0377-2217(96)00382-7

    Article  Google Scholar 

  • Pawlak Z, Grzymala-Bausse J, Slowinski R, Ziarko W (1995) Rough Sets. Emerging technologies. Commun ACM 38(11):89–95. doi:10.1145/219717.219791

    Article  Google Scholar 

  • Price M (1985) Introducing groundwater. George Allen & Unwin, London

    Google Scholar 

  • Russell HAJ, Logan C, Brennand TA, Hinton MJ, Sharp DR (1996) Regional geoscience database for the Oak Ridges Moraine project (southern Ontario). In: Current Research 1996-E; Geological Survey of Canada, pp 191–200

  • Russell HAJ, Brennand TA, Logan C, Sharp DR (1998) Standardization and assessment of geological descriptions from water well records: greater Toronto and Oak Ridges Moraine areas, southern Ontario. In: Current Research; Geological Survey of Canada, pp 89–102

  • Schuurman N (2002) Flexible standardisation: making interoperability accessible to agencies with limited resources. Cartogr Geogr Inf Sci 29(4):343–353. doi:10.1559/152304002782008350

    Article  Google Scholar 

  • Sharp DR, Dyke LD, Hinton SE, Russell HAJ, Brennand TA, Barnett PJ et al (1996a) Groundwater prospects in the Oak Ridges Moraine area, southern Ontario: application of regional geological models. In: Current Research 1996-E; Geological Survey of Canada, pp 181–190

  • Sharp DR, Dyke LD, Hinton SE, Russell HAJ, Brennand TA, Barnett PJ, Pugin A (1996b) Groundwater prospects in the Oak Ridges Moraine area, southern Ontario: application of regional geological models. In: Current Research; Geological Survey of Canada, pp 181–190

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240. doi:10.2307/143141

    Article  Google Scholar 

  • Tolman CF (1937) Ground water. McGraw-Hill, New York

    Google Scholar 

  • Tood DK (1964) Ground water hydrology. Wiley, New York

    Google Scholar 

  • Zhang J, Goodchild MF (2002) Uncertainty in geographical information. Taylor & Francis, New York

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Terrain Sciences Division of the Geological Survey of Canada for providing the borehole data for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gift Dumedah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumedah, G., Schuurman, N. Minimizing the effects of inaccurate sediment description in borehole data using rough sets and transition probability. J Geograph Syst 10, 291–315 (2008). https://doi.org/10.1007/s10109-008-0066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-008-0066-4

Keywords

JEL Classification

Navigation