Skip to main content

Advertisement

Log in

Morphological similarities between DBM and a microeconomic model of sprawl

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

We present a model that simulates the growth of a metropolitan area on a 2D lattice. The model is dynamic and based on microeconomics. Households show preferences for nearby open spaces and neighbourhood density. They compete on the land market. They travel along a road network to access the CBD. A planner ensures the connectedness and maintenance of the road network. The spatial pattern of houses, green spaces and road network self-organises, emerging from agents individualistic decisions. We perform several simulations and vary residential preferences. Our results show morphologies and transition phases that are similar to Dieletric Breakdown Models (DBM). Such similarities were observed earlier by other authors, but we show here that it can be deducted from the functioning of the land market and thus explicitly connected to urban economic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. To our knowledge, however, the literature has not yet clarified whether the shape of the network is mainly an exogenous or an endogenous factor of sprawl.

  2. The dimension drops at γ = 0.39 but the fractal curve adjustment was not robust at that point due to reduced spatial expansion.

References

  • Anderson ST, West SE (2006) Open space, residential property values, and spatial context. Reg Sci Urban Econ 6(6):773–789

    Article  Google Scholar 

  • Andersson C, Lindgren K, Rasmunssen S, White R (2002) Urban growth simulation from “first principles”. Phys Rev E 66(2):026204

    Article  Google Scholar 

  • Batty M (1991) Generating urban forms from diffusive growth. Environ Plan A 3(4):511–544

    Article  Google Scholar 

  • Batty M, Longley P (1986) The fractal simulation of urban structure. Environ Plan A 18(9):1143–1179

    Article  Google Scholar 

  • Batty M, Longley P (1994) Fractal cities. Academic Press, London, p 394

    Google Scholar 

  • Benguigui L (1995a) A fractal analysis of the public transportation system of Paris. Environ Plan A 27(7):1147–1161

    Article  Google Scholar 

  • Benguigui L (1995b) A new aggregation model. Application to town growth. Physica A 219(1):13–26

    Article  Google Scholar 

  • Benguigui L (1998) Aggregation models for town growth. Philos Mag B 77(55):1269–1275

    Article  Google Scholar 

  • Benguigui L, Czamanski D, Marinov M (2001) City growth as a leap-frogging process: an application to the Tel-Aviv Metropolis. Urban Stud 38(10):1819–1839

    Article  Google Scholar 

  • Bogoyavlenskiy VA, Chernova NA (2000) Diffusion-limited aggregation: A relationship between surface thermodynamics and crystal morphology. Phys Rev E 61(2):1629–1633

    Article  Google Scholar 

  • Caruso G, Peeters D, Cavailhès J, Rounsevell M (2007) Spatial configurations and cellular dynamics in a periurban city. Reg Sci Urban Econ 37(5):542–567

    Article  Google Scholar 

  • Cavailhès J, Brossard T, Foltête J-C, Hilal M, Joly D, Tourneux F-P, Tritz C, Wavresky P (2006) Seeing and being seen: a gis-based hedonic price valuation of landscape. Working paper of INRA-CESAER, CNRS-ThéMA, Dijon, Besançon (France)

  • Cavailhès J, Frankhauser P, Peeters D, Thomas I (2004) Where Alonso meets Sierpinski: an urban economic model of fractal metropolitan area. Environ Plan A 36(8):1471–1498

    Article  Google Scholar 

  • Cheshire P, Sheppard S (1995) On the price of land and the value of amenities. Economica 62(246):247–267

    Article  Google Scholar 

  • Chikushi J, Hirota O (1998) Simulation of root development based on the dielectric breakdown model. Hydrol Sci 43(4):549–559

    Article  Google Scholar 

  • Couclelis H, (1985) Cellular worlds: a framework for modelling micro-macro dynamics. Environ Plan A 17(5):585–596

    Article  Google Scholar 

  • Frankhauser P (1991) Aspects fractals de structures urbaines. Espace géographique 19:45–69

    Google Scholar 

  • Galster GC, Hanson R, Ratcliffe MR, Wolman H, Coleman S, Freihage J (2001) Wrestling sprawl to the ground: defining and measuring an elusive concept. Housing Policy Debate 12(4):681–717

    Google Scholar 

  • Irwin EG (2002) The effects of open space on residential property values. Land Econ 78(4):465–480

    Article  Google Scholar 

  • Li B, Wang J, Wang B, Liu W, Wu Z (1995) Computer simulations of bacterial-colony formation. Europhys Lett 30(4):239–243

    Article  Google Scholar 

  • Lu Y, Tang J (2004) Fractal dimension of a transportation network and its relationship with urban growth: a study of the Dallas—Fort Worth area. Environ Plan B 31(6):895–911

    Article  Google Scholar 

  • Makse HA, Andrade JS, Batty M, Havlin S, Stanley HE (1998) Modeling urban growth patterns with correlated percolation. Phys Rev E 58(6):7054–7062

    Article  Google Scholar 

  • Makse HA, Havlin S, Stanley HE (1995) Modelling urban growth patterns. Nature 377:608–612

    Article  Google Scholar 

  • Mathiesen J, Jensen MH, Bakke JOH (2008) Dimensions, maximal growth sites, and optimization in the dielectric breakdown model. Phys Rev E 77(6):066203

    Article  Google Scholar 

  • Niemeyer L, Pietronero L, Wiesmann HJ (1984) Fractal dimension of dielectric breakdown. Phys Rev Lett 52(12):1033–1036

    Article  Google Scholar 

  • Peruani F, Solovey G, Irurzuni IM, Mola EE, Marzocca A, Vicente JL (2003) Dielectric breakdown model for composite materials. Phys Rev E 67(6):066121

    Article  Google Scholar 

  • Phipps M (1989) Dynamical behavior of cellular automata under the constraint of neighborhood coherence. Geogr Anal 21(3):197–216

    Article  Google Scholar 

  • Pietronero L, Wissman HJ (1984) Stochastic model for dielectric breakdown. J Stat Phys 36(5,6):909–916

    Article  Google Scholar 

  • Sanchez A, Guinea F, Sander LM, Hakim V, Louis E (1993) Growth and forms of Laplacian aggregates. Phys Rev E 48(2):1296–1304

    Article  Google Scholar 

  • Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1(2):143–186

    Article  Google Scholar 

  • van Vliet J, White R, Dragicevic S (2009) Modeling urban growth using a variable grid cellular automaton. Comput Environ Urban Syst 33(1):35–43

    Article  Google Scholar 

  • White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land use patterns. Environ Plan A 25(8):1175–1199

    Article  Google Scholar 

  • White R, Engelen G (1994) Cellular dynamics and GIS: modelling spatial complexity. Geogr Syst 1(2):237–253

    Google Scholar 

  • Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47(19):1400–1403

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Caruso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caruso, G., Vuidel, G., Cavailhès, J. et al. Morphological similarities between DBM and a microeconomic model of sprawl. J Geogr Syst 13, 31–48 (2011). https://doi.org/10.1007/s10109-010-0131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-010-0131-7

Keywords

JEL Classification

Navigation