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arbitrage process within a Housing Market Area: tra
imperfect information and inelastic supply. In an
submarkets are still substitutes, although imperfect. J
(2003) have demonstrated that these differences can b
a b s t r a c t

This paper seeks to address the problem of the empirical identification of housing market segmentation,
once we assume that submarkets exist. The typical difficulty in identifying housing submarkets when
dealing with many locations is the vast number of potential solutions and, in such cases, the use of
the Chow test for hedonic functions is not a practical solution. Here, we solve this problem by undertak-
ing an identification process with a heuristic for spatially constrained clustering, the ‘‘Housing Submarket
Identifier’’ (HouSI). The solution is applied to the housing market in the city of Barcelona (Spain), where
we estimate a hedonic model for fifty thousand dwellings aggregated into ten groups. In order to deter-
mine the utility of the procedure we seek to verify whether the final solution provided by the heuristic is
comparable with the division of the city into ten administrative districts.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A housing market is the collection of alternative locations con-
sidered by households as location substitutes, with houses in dif-
ferent submarkets being imperfect substitutes within the same
broader market.1 Housing market segmentation is widely recogni-
sed in the literature, and several studies have stressed its impor-
tance. Goodman and Thibodeau (2007) propose a number of
reasons as to why an understanding of how metropolitan areas are
partitioned into housing submarkets is important: (a) it increases
the accuracy of statistical models when estimating house prices
(Goodman & Thibodeau, 2003); (b) it improves the modelling of spa-
tial and temporal variations in house prices; (c) it improves the abil-
ity to price the risk associated with financing homeownership for
lenders and investors; (d) it can reduce search costs for those
demanding housing; and (e) it avoids inducing spatially correlated
errors that bias the coefficients on variables correlated with the er-
rors. Bourassa, Cantoni, and Hoesli (2007) further emphasise the
importance of submarket differentiation in their study of house price
prediction in a mass appraisal context. They report equally, or even
more, accurate predictions when using a traditional hedonic model
ll rights reserved.
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incorporating a series of dummy variables to define submarkets as
when using more complicated models (such as lattice SAR and
CAR or geostatistical models).

Many techniques have been adopted in the detection of sub-
markets and housing segmentation: cluster analysis (Bourassa,
Hamelink, Hoesli, & MacGregor, 1999), GIS and ESDA analysis
(Tu, Sun, & Yu, 2007), cointegration analysis (Jones et al., 2003),
fuzzy clustering (Hwang & Thill, 2009), non-parametric smoothing
and spline functions (Pavlov, 2000), neural networks (Kauko,
2004), classification regression trees (Fan, Ong, & Koh, 2006),
and household mobility patterns (Jones, Leishman, & Watkins,
2004; Royuela & Vargas, 2009). The most frequently applied tech-
nique by far has been the use of hedonic models for house prices.
The basic assumption is that hedonic coefficients for housing char-
acteristics, such as living space, capitalise neighbourhood ameni-
ties, such as public education. Separate models for global
housing markets and for housing submarkets are computed and,
then, F-tests for nested models are used. These tests tell us
whether or not there is a significant reduction in the sum of
squared residuals by splitting the subsample into submarkets.
The usual result is that housing submarkets matter and this is
what is to be expected, especially when using large datasets. In
this study, we adopt this approach, considering as our crucial cri-
terion the proximity between the vectors of hedonic price charac-
teristics of each submarket.

The main problem faced by researchers is how best to combine
a large number of spatial units into a smaller number of housing
submarkets, considering that the number of different ways that

http://dx.doi.org/10.1016/j.compenvurbsys.2012.04.005
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N dwellings or areas can be grouped into M submarkets is particu-
larly large (Cliff & Hagget, 1970; Cliff, Haggett, Ord, Bassett, & Da-
vies, 1975; Keane, 1975).2 The literature has tackled this problem in
two ways. On the one hand, different methods have been used to
delineate submarkets (see above). On the other hand, the literature
employs a small number of previously defined (in administrative
terms, for instance) submarket regions, which might include districts
or census tracks (as in Watkins, 2001,3 Adair, Berry, & McGreal,
1996; Goodman & Kawai, 1982; Schnare & Struyk, 1976). Both ap-
proaches provide discrete submarkets, which has been criticised on
the grounds that neighbourhoods (housing submarkets) are not eas-
ily defined a priori and, consequently, continuous solutions are
deemed preferable (Redfearn, 2009; Sunding & Swoboda, 2010).

Our paper seeks to address the problem of the empirical identi-
fication of housing market segmentation, once we assume that
submarkets exist. We undertake this identification process by
implementing a heuristic for spatially constrained clusters, the
‘‘Housing Submarket Identifier’’ (HouSI). This heuristic combines
two strategies: (a) the construction of initial feasible solutions
based on the region-growing strategy (Taylor, 1973 and Openshaw,
1977), and (b) the local improvement of a feasible solution based
on the Tabu Search algorithm (Openshaw & Rao, 1995 and Duque,
Anselin, & Rey, 2011). A more formal definition of the problem of
aggregating N areas into M regions, while optimising a predefined
aggregation criterion, is available in Duque, Ramos, and Surinach
(2007) and Duque, Church, and Middleton (2011).

HouSI builds on the existing literature on modelling housing
submarkets. It achieves this by using estimates of hedonic param-
eters and their standard errors, which are then incorporated into
the objective function to assess the solution quality. Moreover,
HouSI can improve the use of hierarchical linear modelling (Good-
man & Thibodeau, 1998) as its results depend neither on the start-
ing point nor on the order of adjacency.

It is our belief that the use of discrete housing submarkets
rather than continuous delineations of housing submarket differ-
ences (built for instance with local weighted regressions)4 affords
the following advantages: (a) it helps policy makers to better define
place-based policies; (b) it improves political decisions by targeting
the right space to be controlled (Jenkins, 1978) and by ensuring that
the specific public policy actions implemented in a region have a
homogeneous impact throughout that region (Fischer, 1980); (c) it
is easy to implement and understand; and (d) in mass appraisal con-
texts, the consumption of degrees of freedom is not a great problem.

We examine housing market segmentation by conducting a
case study in the city of Barcelona (Spain), where we build a small
number of submarkets starting from 40 postal districts. As Hwang
and Thill (2009) argue, the body of literature has leaned toward
testing the distinctiveness of housing submarkets given a priori
housing submarkets. Consequently, in order to determine the util-
ity of the procedure we seek to verify whether the final solution
provided by the heuristic is comparable with the division of the
city into ten administrative districts (as in Adair et al., 1996; Good-
man & Kawai, 1982; Schnare & Struyk, 1976). Our results show that
the final division of the city undertaken with HouSI is superior to
that of the administrative districts identified in terms of housing
2 The number of feasible solutions when aggregating N areas into M spatially
contiguous regions is a large number that depends not only on parameters N and M,
but also on the spatial distribution of the areas to be aggregated. Keane (1975)
estimated that the number of solutions of aggregating N = 10 areas into M = 5 regions
is between 126 and 42,525.

3 Watkins proposes a list of complementary alternatives for building housing
submarkets: spatial, structural, demander based submarkets. The criticisms that
follow would obviously apply to the spatial dimension.

4 In local weighted regressions model parameters vary in space so as to reflect
spatial heterogeneity and, consequently, parameter estimates are a function of the
‘‘local’’ data.
prices by the Chow test, and that it is statistically significantly bet-
ter than any random aggregation of housing submarkets.

For simplicity’s sake, we do not undertake a review of the liter-
ature (for a survey of housing submarkets and related issues, see
Watkins, 2001; Kauko, 2004; Goodman and Thibodeau, 2007;
Páez, 2009; and Islam & Asami, 2009), but focus rather on present-
ing the heuristic (Section 2), the housing price hedonic models and
case study (Section 3), the results (Section 4), and the main conclu-
sions of our work (Section 5).
2. HouSI: Housing Submarket Identifier

We consider housing submarkets to be partitions of an entire
housing market, namely, a city. Dwellings in different submarkets
are poor substitutes. We proxy these submarket partitions by
defining regions composed of spatially contiguous areas in which
the houses are similar in terms of a given set of properties. This
assumption of spatial contiguity in the defining of the regions is
not arbitrary:

� Government policies and private sector marketing strategies are
usually geographically targeted. The use of homogeneous geo-
graphic regions to define the applicability and scope of a policy
or marketing strategy will increase the probability of achieving
the intended effects and of better predicting the unintended
effects (Jenkins, 1978).
� Tobler’s first law of geography5 (Tobler, 1970) suggests that

unobserved urban structures in the data, as well as unobservable
human associations (ethnic, family ties, neighbourhood interac-
tions, etc.), are likely to show geographic patterns that can be
bounded by spatially contiguous regions.

The aggregation of a set of geographic areas into spatially con-
tiguous regions while optimising an aggregation criterion has been
referred to in the literature by various names: region-building
(Byfuglien & Nordgard, 1973), conditional clustering (Lefkovitch,
1980), clustering with relational constraints (Ferligoj & Batagelj,
1982), constrained clustering (Legendre, 1987), contiguity con-
strained clustering (Murtagh, 1992), regional clustering (Maravalle
& Simeone, 1995), contiguity constrained classification (Gordon,
1996, 1999), regionalization (Wise, Haining, & Ma, 1997), or clus-
tering under connectivity constraints (Hansen, Jaumard, Meyer,
Simeone, & Doring, 2003).6 These contributions focus primarily on
identifying efficient ways to control for spatial contiguity, formulat-
ing different aggregation criteria, and designing strategies for explor-
ing the solution space in search of a near optimal solution. Spatially
constrained clustering has been applied to a wide range of empirical
problems including: electoral districting (Williams, 1995; Yamada,
2009), school districting (Caro, Shirabe, Guignard, & Weintraub,
2004), sales districting (Ríos-Mercado & Fernández, 2009; Zoltners
& Sinha, 1983), health care districting (Pezzella, Bonanno, & Nicoletti
1981), electrical power districting (Bergey, Ragsdale, & Hoskote,
2003), neighbourhood structure definition (Weeks, Hill, Stow, Getis,
& Fugate, 2007), Bayesian smoothing techniques (Li, 2007), intra-ur-
ban inequality assessment (Weeks, Hill, Getis, & Stow, 2006), unem-
ployment space–time changes (Duque, Artis, & Ramos, 2006),
wildness (Comber et al., 2010), among others.

In this paper, we propose a Housing Submarket Identifier (Hou-
SI) heuristic. To the best of our knowledge, this is the first time a
heuristic of this type has been applied to the delimitation of hous-
5 ‘‘Everything is related to everything else, but near things are more related than
distant things’’ (Tobler, 1970, p. 236)

6 See Murtagh (1985), Gordon (1996) and Duque et al. (2007) for a literature review
of these methods.
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ing submarkets. Below, we describe the overall strategy and the
three main components of HouSI.

2.1. Overall strategy

Our starting point is a large set of dwellings (L), which are dis-
tributed over a set of areas (n = 1, ... ,N). We need a large number of
dwellings per area (L1, . . . ,LN) in order to estimate a hedonic model
of housing prices for every area n, which generates a vector of
parameters Bn, and its respective variance–covariance matrix,
V(Bn). Our aim is to merge the N areas into M (m = 1, . . . ,M) analyt-
ical regions, so that each region m contains areas with similar char-
acteristics in terms of hedonic housing prices (Bm) and variance–
covariance matrices, V(Bm).

The construction of analytical regions requires the definition of
an aggregation criterion that evaluates each feasible solution,
which can be used to choose the best among all visited solutions.
The solution space is explored in two phases: (1) by constructing
a set of feasible solutions, where each solution is generated by
growing regions from an initial set of M areas selected at random;
(2) by applying a local search process that seeks to improve a given
feasible solution by exploring its neighbouring feasible solutions
while avoiding entrapment in a local optima. By adopting this ap-
proach we consider two available search operations to create new
solutions in heuristics: (i) exploration, or diversification, in the
construction phase, which enables the heuristic to find new zones
in the solution space that may contain potentially better solutions;
and (ii) exploitation, or intensification, in the local search phase,
which generates new solutions by performing small changes in
existing solutions.7

2.2. Objective function or aggregation criterion

The aggregation criterion is a critical component in each clus-
tering process, varying from application to application, where its
purpose is to evaluate the quality of a given candidate solution.
Examples of aggregation criteria in the literature include: maxi-
mising the level of intraregional homogeneity in terms of a set of
socioeconomic variables; minimising the difference in regional
population levels between the regions; maximising the level of
spatial compactness of the designed regions; maximising a mea-
sure of performance of an econometric model, among many others.
In addition, various attempts have been made at quantifying con-
cepts such as homogeneity, equality and compactness. Some
authors have also proposed aggregation criteria that result from
weighted combinations of two or more criteria.8

Based on the premise that breaking a housing market into sub-
markets makes sense as long as the resulting vectors of hedonic
parameters are sufficiently different for each submarket (since this
indicates that the hedonic characteristics differ depending on the
submarket under evaluation), our aggregation criterion seeks to
maximise the discrepancies between these submarket vectors of
hedonic parameters. In order to find a proper metric to summarise
these discrepancies we build a statistic which follows the form of a
generalised Wald test (Satorra & Neudecker, 1997):

T ¼ NB0MðH � Y�ÞBM ð1Þ

where BM is the vector including the parameters of all final submar-
kets (with dimension M � K � 1, M being the number of submarkets
and K the number of structural characteristics of the dwellings), Y�

is the generalised inverse of the average variance–covariance ma-
7 See Lin and Gen (2009) and Mashinchi, Orgun, and Pedrycz (2011) for more
information on the trade-off between these two strategies.

8 See Johnston (1968), Lankford (1969), and Fischer (1980) for more discussion on
the relevance of the aggregation criterion when identifying certain spatial patterns.
trix of all subsamples (with dimension K � K), and H is a composite
matrix (with dimension M �M) which allows the T statistic to sum-
marise the discrepancy between submarket parameters and the glo-
bal average, taking into consideration the average variance of the
estimates (included in Y�). Thus, overall, the larger the T statistic,
the higher the discrepancy between housing submarkets, and con-
sequently, the solution with the highest T will be preferred.9 This
procedure is theoretically consistent with the definition of housing
submarkets whereby dwellings in different submarkets are poor
substitutes, and consequently higher discrepancies between sub-
markets are preferred.10
2.3. Construction phase

This component of the heuristic seeks to generate a feasible
solution; i.e., to aggregate N small areas into M spatially contiguous
analytical regions, or housing submarkets, so that each area is as-
signed to one and only one submarket, and each submarket com-
prises at least one area. These solutions are then evaluated with
the aggregation criterion to determine the quality of the solution.

Many options are available in the literature for constructing an
initial feasible solution, where the choice should take into consid-
eration the following aspects:

� Shape of the regions: the shape of the regions depends on the
context of application. For example, some solutions require
regional compactness for minimising travel distance (in the
case of school districting), or minimising the risk of gerryman-
dering11 (in the case of electoral districting). Other solutions pre-
fer to allow for irregularly shaped regions so that the resulting
regions can capture a wide variety of spatial patterns of socioeco-
nomic variables. As we are unable to make any assumptions
regarding the shape of housing submarkets, the possibility of
allowing the spatial pattern to dictate the shape of the regions
is a key characteristic when deciding on the type of construction
method.
� Capacity of generating a wide range of feasible solutions: The

problem of aggregating N areas into M spatially contiguous
regions is classified as being non-deterministic polynomial-
time hard (or NP-hard) (Altman, 1997). Here, it is essential that
the heuristic is capable of undertaking a good exploration of the
solution space so as to increase the possibility of finding a good
initial feasible solution and of reducing the chance of premature
convergence (Weise, 2009).
� Speed: Having a fast algorithm for constructing an initial feasi-

ble solution allows us to generate, in a decent amount of time,
a large number of feasible solutions from which the best solu-
tion can be retained for further improvement.

In keeping with these requirements, we chose to implement the
construction phase using the ‘‘seeded regions strategy’’, in which
each region starts its growth from an initial area (seed). Subse-
quently, neighbouring areas are attached to this seed area until
all areas are assigned. Selecting the initial set of M seeds at random
ensures that each time the construction phase is run, a different
feasible solution is provided, which guarantees a good exploration
of the solution space. This strategy is also computationally efficient
and, unlike other strategies for constructing initial feasible solu-
tions (for example, methods based on location-allocation models),
9 Appendix A shows various details of the generalised Wald test.
10 Royuela and Vargas (2009) apply a similar criterion for finding housing

submarkets within a region.
11 Term used to describe the manipulation of the geographic boundaries of electoral

districts in order to benefit a particular party.
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it is able to design regions of any shape (compact, elongated, con-
centric or irregular regions).

During the construction phase, a criterion needs to be defined
for selecting the next candidate area to be added to a growing re-
gion. A candidate area is any unassigned area that shares a border
with at least one growing region. In this case we apply an attri-
bute-based dissimilarity function from each candidate area to the
centroid of each growing region where the area can be assigned.
The centroid of each growing region (Cg) is calculated as:

Cg ¼
X

n

X
i

ðAin � sn=SgÞ ð2Þ

where Ain is the value of attribute i (where i = 1, . . . , I, being I the to-
tal number of attributes) in area n, sn is the size (in terms of the
number of dwellings) of area n, and Sg is the size of the growing re-
gion g, measured as the sum of sn belonging to the growing region.
Thus, the centroid of a given growing region is the size-weighted
average of its area attributes.12 Given the potentially significant size
differences between areas (e.g. in terms of population), this
weighted-centroid performs better than the simple average.

With the regional centroids, the dissimilarity between a candi-
date area, i, and each of its candidate adjacent growing regions, j, is
calculated with a statistic which follows the form of a Wald test of
structural change in the vector of the hedonic price estimates for
two subsamples, assuming the existence of different variances in
every estimation i and j (Ohtani & Toyoda, 1985; Toyoda & Ohtani,
1986), where Bi and Bj are the vector of parameters of the hedonic
regression of region i and j respectively, and VAR(Bi) and VAR(Bj)
are the variances of these estimates13:

Wij ¼ ðBi � BjÞ0ðVARðBiÞ þ VARðBjÞÞ�1ðBi � BjÞ ð3Þ

This expression is of particular interest, as the statistic Wij is
equal to Wji. This metric helps us to determine the best option
for merging an area i with a growing housing submarket (region).
The lower the statistic, the lower the discrepancy is between the
vector estimates of the hedonic model.14 This strategy should leave
large areas isolated, as the greater the sample size, the smaller the
estimation variance will be, and consequently, the Wij statistic can
be expected to be higher.

2.4. Local search phase

Once the best initial feasible solution has been selected, the fi-
nal step in the delineation of housing submarkets involves
attempting to improve the initial feasible solution by moving areas
between neighbouring regions while seeking to improve the aggre-
gation criterion. This procedure, known as ‘‘local search’’, has been
widely applied in spatial aggregation strategies and there exist
many heuristics for undertaking it. Some of these are fast, though
they can easily become trapped in a local optimal solution (e.g.,
greedy heuristic); others are computationally expensive, but incor-
porate strategies that allow them to escape from the local optimal
solution. The two most widely recognised heuristics of this kind,
within the context of spatial aggregation, are simulated annealing
(Kirkpatrick, Gelatt, & Vecchi, 1983) and tabu search (Glover, 1977,
12 In our case it is applied to both the vector of parameters and the vector of the
variance-covariance matrix.

13 Usually neighboring areas are merged if they pass the classical Chow F-test for
nested models. In the housing submarkets literature the Chow test is used to detect
whether two submarkets are differentiated, and when the number of observations for
every submarket is high, the usual result confirms heterogeneity. In our case, we use
the test to merge rather than to separate regions, regardless of the number of
observations.

14 We can merge area 1 with two alternative areas, 2 and 3, and for that purpose we
compute the Wald statistic W12 and W13. If W12 < W13 we will merge area 1 with area
2 instead of with area 3.
1989, 1990). Recent computational experiments involving spatial
aggregation models show that tabu search performs better than
simulated annealing in over 95% of cases (Duque, Anselin, et al.,
2011).

Pseudocode 1: HouSI
M, maxitr, l
1:
 K = set of areas

2:
 w = £, best initial feasible solution

3:
 for I = 1,2, . . . , matrix do
CONSTRUCTION PHASE

4:
 Ku = K, set of unassigned areas

5:
 G = set of growing regions. It is initiated with M seeds

selected at random

6:
 Ku = Ku � G

7:
 while Ku = £
8:
 N = set of areas that share a border with one or more
areas in G, and N # Ku
9:
 B = area in N that minimises the function Wij (i.e., the
distance between a given area i and the centroid of the
growing region j, Cg), and where area i shares a border
with growing region j
10:
 Ku = Ku � {B}, area B is assigned to a neighbouring
growing region
11:
 G = G [ {B}

12:
 if T(G) 6 T(w), where T is the generalised Wald test

(see Eq. (1))

13:
 w = G
LOCAL SEARCH

14:
 A = w, aspirational solution

15:
 U = w, current solution

16:
 c = 1 p

17:
 while c 6 230 M

18:
 g = set with elements (i,k) containing neighbouring

moves. Thus, for a given feasible solution, a
neighbouring move is any move of one area, i, from its
current region (the donor region) to another region, k,
(the recipient region), such that this move leads to
another feasible solution (i.e., it does not break the
spatial contiguity of the donor region, and the donor
region contains at least one area after removing area i
19:
 if g – £ and n = 0

20:
 X = move in g that leads to the lowest value of T

21:
 g = g � {X}

22:
 if X is a tabu move

23:
 if T(X) 6 T(A)

24:
 A = T(X)

25:
 U = T(X)

26:
 c = 1

27:
 Make the reverse move (i.e. return area i to its

donor region) tabu, or forbidden, during the
next l iterations (or moves)
28:
 elseif

29:
 go to line 18

30:
 elseif

31:
 if T(X) > T(A)

32:
 A = T(X)

33:
 U = T(X)

34:
 c = 1

35:
 Make the reverse move (i.e. return area i to its

donor region) tabu, or forbidden, during the
next l iterations (or moves)
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37:
 U = T(X)

38:
 c = c + 1

39:
 Make the reverse move (i.e. return area i to its

donor region) tabu, or forbidden, during the next
literations (or moves)
40: return A

See Nagel (1965), Sammons (1978) and Horn (1995) for a review of the different
means of generating neighbouring solutions within the context of spatial clustering.

The tabu search heuristic allows for a temporal worsening of the
evaluation criterion in the hope of discovering a solution that is bet-
ter than the ‘‘best’’ solution obtained so far (the aspirational crite-
rion). The procedure begins with an initial feasible solution and
then moves to the best neighbouring solution, even if this leads to
a deterioration in the current aggregation criterion (the current solu-
tion).15 To prevent cycles, the reverse move is forbidden (or is tabu)
for a predefined number of iterations (lengthTabu). A tabu move is al-
lowed only if the move yields a better solution than that provided by
the aspirational criterion. The heuristic stops when a total of 230

ffiffiffiffiffi
M
p

iterations have been performed without any improvement in the
aspirational criterion.16 According to the literature, the most critical
parameter in this heuristic is the length of the tabu list, lengthTabu.
Pseudocode 1 contains a more formal description of the HouSI
heuristic.

3. The hedonic model

Wilkinson (1973) constructs a classification of housing charac-
teristics that incorporates structural (house specific) and locational
characteristics (neighbourhood specific). Cheshire and Sheppard
(1995) use a hedonic model in which both types of variable are
used.17 In most studies it is assumed that housing prices capitalise
location characteristics and, consequently, the use of house specific
hedonic prices is sufficient to determine whether there are any hous-
ing submarkets, whatever the reason might be for their existence
(structural, locational, and even demand characteristics, including
income and race). When considering housing market segmentation
based on pre-existing geographical units, not all studies include
locational variables (e.g. Watkins, 2001, merely includes the
‘‘crow-fly’’ distance to the city centre), as the use of dummies for
every region captures the spatial specificities.18
e that at each iteration, the best neighboring solution does not necessarily
an improvement of the aggregation criterion (also known as the current

); however, non-improving moves of this type are allowed for a limited
r of consecutive iterations to give the algorithm the capacity to escape from
timal solutions.
ough the Tabu Search algorithm has been widely applied within the context

ially constrained clustering, there are only a few studies that evaluate the
y of the algorithm to navigate the solution space for different parameter values
apierre, & Laporte, 2003; Bozkaya, Erkut, & Laporte, 2003; Ricca & Simeone,
any papers, including those by Openshaw, do not even mention the number

tions defined as stopping rule. In our case we decide to use the highest value
stopping rule reported in the peer reviewed papers that apply this algorithm
ial clustering. Bozkaya et al. (2003) use 115sqrt(m) and 230sqrt(m); Ricca and
e (2008) use 280; and Blais et al. (2003) use 100sqrt(m); where m is the
r of regions. As pointed out by Bozkaya et al. (2003), using sqrt(m) instead of m

mon practice that allows us to take into account the problem size in the
ter settings. Since the higher the parameter value for the stopping rule, the

the possibility of getting a better solution, we chose to use the highest reported
r this parameter: 230sqrt(m).

s approach has been widely used to estimate the value of green areas (Gunn,
forests (Hand, Thacher, & McCollum, 2008), improvements in transportation
s (Yiu & Wong, 2005), public goods (Gravel, Michelangeli, & Trannoy, 2006),
others.
en researchers have spatially disaggregated data, the use of locational
s for every dwelling can be a much more appropriate procedure.
The empirical model that we estimate here is a logarithmic
function, where the log of the housing price depends on the log
of the I structural characteristics of the dwellings:

lnðpÞ ¼
XI

i

biðlnðXiÞ þ e ð4Þ

Our study is undertaken in the second largest city in Spain,
Barcelona, in the north-east of the country. In 2001, the base
year for our study, it had a population of 1.5 million inhabitants.
The city is divided into 40 postal districts, which are shown in
Fig. 1.

Municipal housing price data are drawn from the Spanish Minis-
try for Housing and refer to the period 2000–2004. The database con-
tains 99,182 dwellings and takes into account the postal district in
which the dwelling is located, along with a small number of struc-
tural characteristics, including age and size.19 We do not have, how-
ever, the detailed location of every dwelling within every postal
district. Had this been available, alternative procedures could have
been adopted for building housing submarkets.

Table A1 (Appendix B) shows the basic statistics for all the
variables, while Figs. A2.1-A2.3 show the spatial distribution of
each variable by postal district. As we seek to identify housing
submarkets, we need to use comparable dwellings within the
same submarket. Thus, we focus on dwellings that do not present
extreme values in terms of price (between 72,000 € and
680,000 €), size (between 40 and 170 m2), and age (below 35
years old). Consequently, the database is restricted to 50,980
dwellings, i.e. more than 50% of the initial database.20 On average
we have over a thousand dwellings per postal district, with a min-
imum sample size of over a hundred dwellings per postal district
(Postal District – 8007).
4. Results

We estimated a log–log function for our hedonic model in
which the structural characteristics (age and size) were combined
with a list of time dummies. Subsequently, we incorporated dum-
mies for the city’s postal districts and the interactions with the
structural variables of age and size. In order to identify the model’s
sources of explanatory power, we considered starting with a sim-
ple model of structural characteristics (Model 1), subsequently
expanded to include time dummies (Tt, in Model 2), local dummies
(Di, in Model 3), and the interactions of these dummies with the
structural characteristics (Model 4).
Model 1 : lnðpÞ ¼ b0 þ b1 lnðsizeÞ þ b2 lnðageÞ þ e ð5Þ

Model 2 : lnðpÞ

¼ b0 þ b1 lnðsizeÞ þ b2 lnðageÞ þ
X2004

t¼2001

ctTt þ e ð6Þ
19 The database employs statistics provided by appraisal firms, as the real prices of
housing transactions are not published in Spain. We are aware that our procedure
presents certain weaknesses, including problems of bias (Dietrich, Harris, & MullerIII,
2000); dispersion (Hansz and Diaz-III, 2003); and econometrics (see Bond & Hwang,
2007, for a list of such problems associated with appraisals). However, our main
concern is whether the appraisal firms use a territorially-biased method or procedure
in their computations. Fortunately, we understand that this is not the case in
Barcelona, where appraisal firms are large and officially accredited. Thus, we assume
that price adjustments are not persistently inconsistent in space. This database was
previously used in Royuela and Vargas (2009).

20 We would have worked with a broader final database if we had had access to
more structural characteristics. Regrettably, this was not the case.



Fig. 1. City of Barcelona and its postal districts.

Table 1
Model results.

Model 1 Model 2 Model 3 Model 4

Constant 7.6127 7.2415 7.7244 7.7758
(0.0243) (0.0181) (0.0152) (0.0594)

lsize 1.0693 1.0842 0.9473 0.9227
(0.0053) (0.0038) (0.0032) (0.0128)

lage �0.0505 �0.0647 �0.0631 �0.0344
(0.0010) (0.0007) (0.0006) (0.0019)

D_2001 0.0853 0.0928 0.0950
(0.0050) (0.0040) (0.0039)

D_2002 0.2109 0.2279 0.2307
(0.0049) (0.0039) (0.0039)

D_2003 0.4004 0.4124 0.4137
(0.0049) (0.0039) (0.0038)

D_2004 0.5971 0.6072 0.6085
(0.0048) (0.0038) (0.0038)

District dummies NO NO YES YES

Age and size interactions
with district dummies

NO NO NO YES

Residuals sum squared 4365.51 2276.92 1426.97 1367.54
R2 0.5045 0.7416 0.8380 0.8448
Adj. R2 0.5045 0.7415 0.8379 0.8444
AIC 427294.4 394118.8 370375.6 368362.8
N 50980 50980 50980 50980

Note: Standard errors in parentheses. Models 3–4 consider the postal district
(08030) with the most observations as their base category. As usual in estimates
with large datasets, standard errors are small enough to make all parameters sig-
nificant at 1%.

21 More complex regressions could result in more efficient estimates, but as we are
interested in submarket differentiation we adopt the more parsimonious option from
the literature. As mentioned by an anonymous referee, incorporating district
dummies may account for spatial autocorrelation, and thus diminish the utilities of
using AR or SAR models.
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Model 3 : lnðpÞ ¼ b0 þ b1 lnðsizeÞ þ b2 lnðageÞ

þ
X2004

t¼2001

ctTt þ
X40

i¼1

diDi þ e ð7Þ

Model4 : lnðpÞ ¼ b0 þ
X2004

t¼2001

ctTt þ
X40

i¼1

diDi þ
X40

i¼1

b1iDi lnðsizeÞ

þ
X40

i¼1

b2iDi lnðageÞ þ e ð8Þ
Table 1 shows the basic results obtained with these models. The
structural characteristics explain more than 50% of the model’s to-
tal variance (model 1). We find that doubling the size of the dwell-
ing involves more than doubling its price, while doubling a house’s
age results in a 5% fall in price. Adding time dummies (model 2) ex-
plains an additional 25% of the total variance, while incorporating
spatial differentiation via the 40 postal districts (model 3) helps to
explain an additional 10% of the total variance. As suggested by
Bourassa et al. (2007), all estimates were performed using simple
OLS regressions.21

Model 4 considers the spatial differentiation of the parameters
(constant, age and size) for the 40 initial districts, resulting in a
modest increase in adjustment compared to the previous specifica-
tions. If we examine the parameters for each district, important
differences are noted (see Table 2 for a summary). Thus, the largest
size parameter of a postal district is almost twice that of the small-
est. The age parameter differs markedly between postal districts,
with the highest being 13 times greater than the lowest. Finally,
we computed Moran’s I global spatial autocorrelation statistic. This
was high and significant for the key parameters, indicating that
these parameters present a spatial pattern. Appendix C shows
the detailed results for each postal district in model 4, together
with the maps of the key parameters (Figs. A3.1–A3.3).

With the results we have so far, we could proceed, as elsewhere
in the literature, and attempt to combine postal districts into a
small number of submarkets using Chow tests. The usual method
is to use a city’s administrative units, such as districts, to test
whether or not submarkets matter. However, it is important to
bear in mind that administrative districts are not always suitable
for delineating housing submarkets: as McMillen (2010, p.139)



Table 2
Distribution of municipal parameters in model 4.

Constant Size Age

Min 7.358 0.616 �0.152
Q1/4 7.614 0.885 �0.081
Median 8.003 0.935 �0.070
Q3/4 8.158 0.996 �0.054
Max 9.721 1.114 �0.012
Moran’s I 0.0198 0.4088 0.5661

Fig. 3. Analytical housing submarkets.

Table 3
Model comparison.

Administrative districts HouSi solution

R2 0.8187 (0.006) 0.8282 (0.000)
AIC �31848.85 (0.005) �34574,72 (0.000)
Residuals sum squared 1596.0 (0.005) 1512,9 (0.000)

Note: in parenthesis are showed the p-value of every statistic according to the
empirical distribution computed using 1000 aggregations of the 40 original postal
districts into 10 random areas.
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points out, regression models for administrative units ‘‘face poten-
tial problems with omitted variables since spatial effects do not
necessarily match district boundaries perfectly.’’ If, for whatever
reason, these units do not exist, then the researcher has to build
them, and this is no easy task as there is an enormous amount of
combinations that need to be tested. Moreover, if we were to fol-
low a hierarchical alternative, the starting point would (as Good-
man & Thibodeau, 1998, stress) condition all the results from the
procedure. In this case, the HouSI heuristic appears as a methodo-
logical alternative to that of aggregating 40 postal districts into ten
housing submarkets. This number allows us to compare the sub-
markets with the option of defining them according to the city’s
administrative districts.

We consider as the input for the heuristic the results from mod-
el 4, where each postal district has three parameters: a constant,
and the size and age parameters. The other parameters of the heu-
ristic are set as follows: M = 10, maxitr = 5000, and l = 85.

Fig. 2 shows the administrative subdivisions of the city, while
Fig. 3 shows the housing submarkets resulting from HouSI, i.e.
the analytical regions with the most homogeneous vectors of hous-
ing prices. A comparison of the two maps reveals that (a) analytical
housing submarkets are more size-heterogeneous than the admin-
istrative districts; (b) some administrative districts can be divided
in different submarkets, most notably those that lie to the east of
the city (for example, district number 10); (c) large analytical
housing submarkets, by contrast, can be found in the centre and
to the north-west of the city. There are also major overlaps, as
are to be expected of districts that have not just been built ran-
domly in the city space. On the contrary, administrative (norma-
tive) regions are ‘‘the expression of a political will; their limits
are fixed according to the tasks allocated to the territorial commu-
Fig. 2. Administrative districts.
nities, according to the sizes of population necessary to carry out
these tasks efficiently and economically, and according to histori-
cal, cultural and other factors’’ (Eurostat, 1999, p. 7). Specific
knowledge of the city helps explain these differences, which can
be classified along two main lines: those of accessibility and city
transformation.

� The city’s oldest district (number 1) expanded in the nineteenth
century (district number 2) and merged vertically, from the
coastal mountain chain (to the northwest) to the sea (in the
southeast), with a number of small towns that surrounded Bar-
celona. The city’s underground system was built to reflect this
growth. As a result, the housing submarkets present a mono-
centric structure, with regions being differentiated by their dis-
tance from the centre (see, for instance, regions 7 and 8 in
Fig. 3), with property prices being highest in the city centre. This
creates the two small regions for our analysis (regions 4 and 10
in Fig. 3).
� Barcelona has undergone a major urban transformation over the

last 35 years (the period of analysis), at times scheduling major
global events as the justification for their undertaking. This was
the case of the 1992 Olympic Games and the 2004 World Forum
of Cultures.22 Urban regeneration projects have dramatically
transformed the city’s seafront, which had previously been a
deprived, industrial area. Today, this has been replaced by region
number 6 in Fig. 3, which occupies the area along the coast, and
22 For more information on this event see www.barcelona2004.org.



(a) R2 (b) AIC (c) SSR

Fig. 4. Empirical distribution of R2, AIC and sum of squared residuals after 1000 random permutations.
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there is a marked differentiation with the area to the east of the
city (administrative district number 10 in Fig. 2), where urban
regeneration has only had a partial effect.

To consider the quantitative differences between the solution
provided by HouSI and the administrative division of the city, we
ran a regression for each so that they could compete. We use model
4 specification (Eq. (8)), and consequently every spatial division,
both the analytic submarkets derived from HouSI and the adminis-
trative units (postal districts), presents specific parameters. Table 3
shows the comparative statistics for both hedonic models: R2; AIC
statistic; and the sum of squared residuals (SSR).23 Additionally, in
order to show the goodness of our procedure, we ran 1000 random
aggregations of the 40 postal districts into 10 regions in order to find
the empirical distribution of each considered statistic. Table 3 shows
each statistic and its empirical p-values in parenthesis, and Fig. 4a–c
show the empirical distributions of each statistic.

Both models (administrative units and analytical regions) per-
formed better than a single model for the entire city, thereby con-
firming the superiority of the submarket option. Thus, our line of
argument is not so much whether or not we need to consider hous-
ing submarkets, but rather how they are best configured. We con-
clude that the HouSI solution provides a better result (R2 = 0.8282)
than that provided by the administrative division of the city
(R2 = 0.8187). In evaluating this 1% improvement it should be re-
called that: (1) in the first set of regressions adding multiplicative
dummies to all variables and districts only improved the hedonic
models by 0.6%; (2) the maximum adjustment we could expect is
the detailed estimate for the 40 postal district (model 4 in Table
1, R2 = 0.8448); and (3) according to the empirical distributions
of the statistics considered, HouSi provides a much better result
than that afforded by the administrative regions.

It might be argued that these differences are not great and that,
therefore, the administrative districts could just as equally serve as
housing submarkets. Indeed, our findings demonstrate that such
districts are not spatially random entities, but rather they are close
reflections of historical movements and their social and economic
realities. As such, our procedure has shown itself capable of build-
ing homogeneous housing submarkets that, at the very least,
reproduce similar levels of homogeneity as those presented by
these politically and socially based areas. In short, our procedure
enables researchers to build efficient and theoretically consistent
housing submarkets.
23 We do not consider the usual common sense test (Schnare & Struyk, 1976) as we
use a model in which time dummies hold for the full sample and, consequently, we do
not have the standard error for each submarket. In any case, as we keep the number of
variables and analytical regions constant, our statistics are in line with the expected
results of the Schnare and Struyk statistic.
5. Conclusions

This paper’s prime aim has been to explore new alternatives for
constructing housing submarkets when merging large numbers of
spatial units into a small number of such submarkets. Housing sub-
markets are characterised by their wide range of hedonic function
parameters and, thus, two neighbourhoods can be said to belong to
the same housing submarket when their hedonic functions are
similar. Here, we have proposed a spatially constrained clustering
heuristic, HouSI, specifically designed for identifying housing sub-
markets. HouSI performs parameter comparisons between poly-
gons using a metric built as a Wald test of structural change for
two subsamples of different variance plus a generalised Wald test
for comparing a list of parameter vectors.

The empirical evidence indicates that HouSI serves as a poten-
tially good alternative to the massive use of Chow tests. Future re-
search should be directed towards endogenizing the parameter M,
so that the optimal number of submarkets can be defined by the
heuristic.
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Appendix A. The generalised Wald test in a compacted form

Satorra and Neudecker (1997) develop a compact matrix
expression for generalised Wald tests of equality of moment vec-
tors in order, primarily, to evaluate the discrepancy between the
weighted average of the parameters under consideration and all
parameter vectors. These authors use the generalised Wald test
statistic developed in Moore (1977):

T � Nr0Q 0ðQYQ 0Þ�Qr

where N is the total sample size, r is the vector of parameters of all
subsamples, Y is the total variance covariance matrix of the param-
eters estimates, and finally, Q can be expressed as:

Q ¼
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Satorra and Neudecker (1997) provide the following compact
expression of the Moore formula:

T � Nr0ðH � Y�Þr

where Y is the weighted average of the variance covariance matrix
of all of all parameters vectors:



Fig. A2.2. Spatial distribution of average housing size.

Fig. A3.1. Spatial distribution of the constant.

Fig. A3.2. Spatial distribution of the parameter ‘‘size’’.

Fig. A2.1. Spatial distribution of average housing prices.
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Fig. A2.3. Spatial distribution of average housing age. Fig. A3.3. Spatial distribution of the parameter ‘‘Age’’.



Table A1
Descriptive statistics.

N Mean Std. dev Min Q1/4 Me Q3/4 Max Moran’s I

Complete sample
Price 99182 238904 201823 10691 143877 195449 272779 10296041 0.4389
Size 99182 92.04 53.55 17 67 82 103 2891 0.4088
Age 99182 40.24 27.89 0 25 35 60 133 0.5661

Restricted sample
Price 50980 232674.3 101278 72872.7 159465.3 210502 282987 678662.9 0.5675
Size 50980 90.86 23.43 42 7 25 30 171 0.4450
Age 50980 20.74 12.88 0 74 88 104 35 0.3947

Correlations for complete sample (N = 99182) Correlations for restricted sample (n = 50980)

Price Size Age Price Size Age

Price 1 Price 1
Size 0.8570 1 Size 0.7039 1
Age �0.1231 �0.1153 1 Age �0.3425 �0.3040 1
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Y ¼
XG

g¼1

Ng

N
Yg

And where H can be expressed as:
Table A3
Results by postal districts.

Postal
district

Total sample Restricted sample Parameter estimation
(Model 4)

Obs Price
mean

Obs Price
mean

Constant Size Age

8001 4939 163,936 € 691 225,964 € 7.3943 1.0359 �0.0503
8002 1442 240,335 € 194 226,604 € 8.4072 0.8099 �0.0137
8003 3176 177,262 € 466 232,473 € 7.9603 0.9264 �0.0477
8004 3638 173,406 € 1150 207,888 € 8.3032 0.8239 �0.0447
8005 3086 233,859 € 1797 276,872 € 7.5351 1.0165 �0.0552
8006 1568 377,605 € 638 327,710 € 8.2032 0.9322 �0.0738
8007 535 467,129 € 108 342,442 € 9.7207 0.6161 �0.1096
8008 476 477,396 € 154 341,962 € 7.5253 1.1138 �0.1516
8009 618 368,425 € 169 316,995 € 8.4851 0.8455 �0.0554
8010 897 380,299 € 334 336,836 € 8.1326 0.9447 �0.0916
8011 1317 297,659 € 419 290,822 € 8.3944 0.8840 �0.1043
8012 2448 218,021 € 552 249,191 € 7.9583 0.9399 �0.0592
8013 2963 247,257 € 1501 269,886 € 8.0932 0.9246 �0.0791
8014 3775 207,871 € 2012 234,320 € 7.7486 0.9748 �0.0648
8015 3204 249,352 € 1190 286,759 € 8.1152 0.9236 �0.0787
8016 3123 172,156 € 2182 177,936 € 8.1216 0.8772 �0.0852
8017 1694 585,754 € 565 370,672 € 8.2131 0.9490 �0.0957
8018 2713 232,390 € 1969 253,287 € 7.8971 0.9330 �0.0660
8019 2351 194,986 € 1396 212,538 € 7.3575 1.0675 �0.1170
8020 3982 180,216 € 2963 181,830 € 8.2392 0.8499 �0.0916
8021 1309 590,552 € 377 374,267 € 8.0040 1.0007 �0.0840
8022 1412 480,913 € 506 346,327 € 7.9781 0.9779 �0.0510
8023 1905 303,605 € 1077 280,530 € 7.5579 1.0318 �0.0582
8024 2932 224,661 € 1511 237,341 € 7.8762 0.9565 �0.0735
8025 3529 229,670 € 1699 249,062 € 8.0917 0.9098 �0.0619
8026 3095 220,589 € 1773 243,717 € 8.1425 0.8849 �0.0635
8027 3651 207,275 € 2266 218,683 € 8.2291 0.8618 �0.0737
8028 4378 232,714 € 2824 255,911 € 7.4459 1.0430 �0.0469
8029 2844 280,890 € 1544 307,553 € 8.0238 0.9613 �0.0798
8030 4960 200,215 € 3978 204,568 € 7.7758 0.9227 �0.0344
8031 3311 189,312 € 1948 209,861 € 7.5823 0.9944 �0.0726
8032 4074 183,048 € 2671 182,142 € 7.5423 0.9928 �0.0675
8033 2372 139,238 € 1576 145,764 € 8.2710 0.7663 �0.0414
8034 1370 569,306 € 580 375,300 € 7.5141 1.0877 �0.0475
8035 1418 223,493 € 898 201,949 € 7.4239 1.0428 �0.0911
8036 1260 313,755 € 397 324,886 € 7.7135 1.0295 �0.0799
8037 834 350,395 € 284 351,656 € 8.0816 0.9373 �0.0758
8038 1845 187,176 € 1453 186,117 € 7.6248 0.9253 �0.0117
8041 1774 207,705 € 1152 218,857 € 8.0093 0.9171 �0.0728
8042 2964 153,789 € 2016 162,767 € 8.0022 0.8725 �0.0592

Total 99182 238,904 € 50980 232,674 € – – –
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Appendix B. Descriptive statistics

See Figs. A2.1–A2.3 and Table A1.
Appendix C. Results by postal districts

See Figs. A3.1–A3.3 and Table A3.
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