Skip to main content
Log in

Spatio-temporal autocorrelation of road network data

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Modelling autocorrelation structure among space–time observations is crucial in space–time modelling and forecasting. The aim of this research is to examine the spatio-temporal autocorrelation structure of road networks in order to determine likely requirements for building a suitable space–time forecasting model. Exploratory space–time autocorrelation analysis is carried out using journey time data collected on London’s road network. Through the use of both global and local autocorrelation measures, the autocorrelation structure of the road network is found to be dynamic and heterogeneous in both space and time. It reveals that a global measure of autocorrelation is not sufficient to explain the network structure. Dynamic and local structures must be accounted for space–time modelling and forecasting. This has broad implications for space–time modelling and network complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anselin L (1995) Local indicators of spatial association: LISA. Geogr Anal 27(2):1–25

    Google Scholar 

  • Black WR (1992) Network autocorrelation in transportation network and flow systems. Geogr Anal 24(3):207–222

    Article  Google Scholar 

  • Black WR, Thomas I (1998) Accidents on Belgium’s motorways: a network autocorrelation analysis. J Transp Geogr 6(1):23–31

    Article  Google Scholar 

  • Box G, Jenkins G (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  • Castells M (2010) Globalisation, networking, urbanisation: reflections on the spatial dynamics of the Information Age. Urban Stud 47(13):2737–2745

    Article  Google Scholar 

  • Chandra S, Al-Deek H (2008) Cross-correlation analysis and multivariate prediction of spatial time series of freeway traffic speeds. Transp Res Rec 2061:64–76

    Article  Google Scholar 

  • Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344

    Article  Google Scholar 

  • Cliff AD, Ord JK (1969) The problem of spatial autocorrelation. In: Scott AJ (ed) Lond Pap in Reg Sci. Pion, London, pp 25–55

    Google Scholar 

  • De Montis A, Caschili S, Chessa A (2011) Time evolution of complex networks: commuting systems in insular Italy. J. Geogr Syst 13(1):49–65

    Article  Google Scholar 

  • Ding Q, Wang X, Zhang X, Sun Z (2011) Forecasting traffic volume with space-time ARIMA model. Adv Mater Res 156–157:979–983

    Google Scholar 

  • Doreian P, Teuter K, Wang C (1984) Network autocorrelation models: some Monte Carlo results. Sociol Methods Res 13(2):155–200

    Article  Google Scholar 

  • Dougherty MS, Cobbett MR (1997) Short-term inter-urban traffic forecasts using neural networks. Int J Forecast 13(1):21–31

    Article  Google Scholar 

  • Dow MM (2007) Galton’s problem as multiple network autocorrelation effects: cultural trait transmission and ecological constraint. Cross-Cult Res 41(4):336–363

    Google Scholar 

  • Dow MM, Eff EA (2008) Global, regional, and local network autocorrelation in the standard cross-cultural sample. Cross-Cult Res 42(2):148–171

    Article  Google Scholar 

  • Dow MM, Burton ML, White DR, Reitz KP (1984) Galton’s problem as network autocorrelation. Am Ethnolog 11(4):754–770

    Article  Google Scholar 

  • Elhorst JP (2003) Specification and estimation of spatial panel data models. Int Reg Sci Rev 26(3):244–268

    Article  Google Scholar 

  • Farber S, Páez A, Volz E (2009) Topology and dependency tests in spatial and network autoregressive models. Geogr Anal 41(2):158–180

    Article  Google Scholar 

  • Flahaut B, Mouchart M, San Martin E, Thomas I (2003) The local spatial autocorrelation and the kernel method for identifying black zones: a comparative approach. Accid Anal Prev 35(6):991–1004

    Article  Google Scholar 

  • Florax RJGM, Rey S (1995) The impact of misspecified spatial structure in linear regression models. In: Anselin L, Florax RJGM (eds) New Dir in Spat Econom. Springer-Verlag, Berlin, pp 111–135

    Chapter  Google Scholar 

  • Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5(3):115–145

    Google Scholar 

  • Getis A, Aldstadt J (2004) Constructing the spatial weights matrix using a local statistic. Geogr Anal 36(2):90–104

    Article  Google Scholar 

  • Griffith DA (1996) Some guidelines for specifying the geographic weights matrix contained in spatial statistical models. In: Arlinghaus SL, Griffith DA, Drake WD, Nystuen JD (eds) Pract Handb of Spat Stat. CRC Press, Boca Raton, FL, pp 82–148

    Google Scholar 

  • Griffith DA (2010) Modeling spatio-temporal relationships: retrospect and prospect. J Geogr Syst 12(2):111–123

    Article  Google Scholar 

  • Griffith DA, Heuvelink GB (2009) Deriving space–time variograms from space–time autoregressive (STAR) model specifications. In StatGIS 2009 conference, Milos, Greece, June

  • Griffith DA, Lagona F (1998) On the quality of likelihood-based estimators in spatial autoregressive models when the data dependence structure is misspecified. J Stat Plan Inference 69(1):153–174

    Article  Google Scholar 

  • Hackney JK, Bernard M, Bindra S, Axhausen KW (2007) Predicting road system speeds using spatial structure variables and network characteristics. J. Geogr Sys 9(4):397–417

    Article  Google Scholar 

  • Hardisty F, Klippel A (2010) Analysing spatio-temporal autocorrelation with LISTA-Viz. Int J Geogr Inf Sci 24(10):1515–1526

    Article  Google Scholar 

  • Jiang B (2007) A topological pattern of urban street networks: universality and peculiarity. Physica A 384(2):647–655

    Article  Google Scholar 

  • Kamarianakis Y, Prastacos P (2005) Space-time modeling of traffic flow. Comput Geosci 31(2):119–133

    Article  Google Scholar 

  • Leenders RT (2002) The specification of weight structures in network autocorrelation models of social influence. SOM rep ser No. 02B09

  • Liu H, van Zuylen HJ, van Lint H, Salomons M (2006) Predicting urban arterial travel time with state-space neural networks and kalman filters. Transp Res Rec J Transp Res Board 1968(1):99–108

    Article  Google Scholar 

  • Min W, Wynter L, Amemiya Y (2007) Road traffic prediction with spatio-temporal correlations. In: Proceedings of the sixth trienn symp on transp anal, phuket Island, Thailand, June 2007

  • Min X, Hu J, Chen Q, Zhang T, Zhang Y (2009) Short-term traffic flow forecasting of urban network based on dynamic STARIMA model. In: Proceedings of the 12th international IEEE conference on intelligent transportation systems, St. Louis, Missouri, USA, 3–7 Oct 2009

  • Min X, Hu J, Zhang Z (2010) Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model. In: Proceedings of the 13th international IEEE conference on intelligent transportation systems, 19–22 Sept 2010, pp 1535–1540

  • Mizruchi MS, Neuman EJ (2008) The effect of density on the level of bias in the network autocorrelation model. Soc Netw 30:190–200

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Google Scholar 

  • Neuman EJ, Mizruchi MS (2010) Structure and bias in the network autocorrelation model. Soc Netw 32(4):290–300

    Article  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  • Olden JD, Neff BD (2001) Cross-correlation bias in lag analysis of aquatic time series. Marine Biol 138(5):1063–1070

    Article  Google Scholar 

  • Páez A, Scott DM, Volz E (2008) Weight matrices for social influence analysis: an investigation of measurement errors and their effect on model identification and estimation quality. Soc Netw 30(4):309–317

    Article  Google Scholar 

  • Patil GP (2009) Impacts and Wider Impacts on Statistics (of Cliff and Ord’s 1969 article on Spatial Autocorrelation). Geogr Anal 41(4):430–435

    Article  Google Scholar 

  • Peeters D, Thomas I (2009) Network autocorrelation. Geogr Anal 41(4):436–443

    Article  Google Scholar 

  • Pfeifer PE, Deutsch SJ (1980) A three-stage iterative procedure for space-time modelling. Technometrics 22(1):35–47

    Article  Google Scholar 

  • Pflieger G, Rozenblat C (2010) Introduction. Urban networks and network theory: the city as the connector of multiple networks. Urban Stud 47(13):2723–2735

    Article  Google Scholar 

  • Richards PI (1956) Shock waves on the highway. Oper Res 4(1):42–51

    Article  Google Scholar 

  • Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42(1):59–66

    Article  Google Scholar 

  • Smith BL, Williams BM, Keith Oswald R (2002) Comparison of parametric and nonparametric models for traffic flow forecasting. Transp Res Part C Emerg Technol 10(4):303–321

    Article  Google Scholar 

  • Soper HE, Young AW, Cave BM, Lee A, Pearson K (1917) On the distribution of the correlation coefficient in small samples. Appendix II to the papers of “Student” and R. A. Fisher. A co-operative study. Biometrika 11(4):328–413

    Google Scholar 

  • Stetzer F (1982) Specifying weights in spatial forecasting models: the results of some experiments. Env and Plan A 14(5):571–584

    Article  Google Scholar 

  • van Lint JWC, Hoogendoorn SP, van Zuylen HJ (2005) Accurate freeway travel time prediction with state-space neural networks under missing data. Transp Res Part C Emerg Technol 13(5–6):347–369

    Article  Google Scholar 

  • Vlahogianni EI, Golias JC, Karlaftis MG (2004) Short-term traffic forecasting: overview of objectives and methods. Transp Rev A Transnatl Transdisciplinary J 24(5):533–557

    Google Scholar 

  • Wang J, Cheng T, Heydecker BG, Haworth J (2010) STARIMA for journey time prediction in London. In: Heydecker BG (ed) Proceedings of the 5th IMA conference on math in transp

  • Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442

    Article  Google Scholar 

  • Williams BM, Hoel LA (2003) Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J Transp Eng ASCE 129(6):664–672

    Article  Google Scholar 

  • Wu C, Ho J, Lee D (2004) Travel-time prediction with support vector regression. IEEE Trans Intell Transp Sys 5(4):276–281

    Article  Google Scholar 

  • Xie F, Levinson D (2007) Measuring the structure of road networks. Geogr Anal 39(3):336–356

    Article  Google Scholar 

  • Xu Z, Sui DZ (2007) Small-world characteristics on transportation networks: a perspective from network autocorrelation. J Geogr Syst 9(2):189–205

    Article  Google Scholar 

  • Yue Y, Yeh AGO (2008) Spatiotemporal traffic-flow dependency and short-term traffic forecasting. Environ Plan B 35(5):762–771

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Transport for London for providing the journey time data. This research is carried out under the STANDARD project, which is sponsored by the UK Engineering and Physical Sciences Research Council under Research Grant EP/G023212/1. The support from Chinese NSF (40830530) is acknowledged. The authors are grateful to three anonymous reviewers and the editor for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, T., Haworth, J. & Wang, J. Spatio-temporal autocorrelation of road network data. J Geogr Syst 14, 389–413 (2012). https://doi.org/10.1007/s10109-011-0149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-011-0149-5

Keywords

JEL Classification

Navigation