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ABSTRACT 

This paper proposes and estimates a spatial panel ordered-response probit model with temporal 

autoregressive error terms to analyze changes in urban land development intensity levels over 

time. Such a model structure maintains a close linkage between the land owner’s decision 

(unobserved to the analyst) and the land development intensity level (observed by the analyst), 

and accommodates spatial interactions between land owners that lead to spatial spillover effects. 

In addition, the model structure incorporates spatial heterogeneity as well as spatial 

heteroscedasticity. The resulting model is estimated using a composite marginal likelihood 

(CML) approach that does not require any simulation machinery and that can be applied to data 

sets of any size. A simulation exercise indicates that the CML approach recovers the model 

parameters very well, even in the presence of high spatial and temporal dependence. In addition, 

the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity 

when both are actually present will lead to bias in parameter estimation. A demonstration 

exercise applies the proposed model to examine urban land development intensity levels using 

parcel-level data from Austin, Texas.   

 

Keywords: Spatial econometrics, panel data, random coefficients, urban land development 

intensity, composite marginal likelihood (CML) approach. 
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1. INTRODUCTION 

1.1 Background and Motivation 

There is increasing interest and attention on recognizing and explicitly accommodating spatial 

dependence among decision-makers in models of continuous and discrete choices. While 

specification and modeling considerations related to spatial dependence appear to have 

originated initially in urban and regional modeling, such considerations have now permeated into 

economics and mainstream social sciences, including agricultural and natural resource 

economics, public economics, geography, sociology, political science, and epidemiology. The 

reader is referred to a special issue of Regional Science and Urban Economics, edited by Arbia 

and Kelejian (2010), for a collection of recent papers on spatial dependence, and to Elhorst 

(2009) and Lee and Yu (2010) for good reviews of recent research on spatial panel data models. 

Anselin (2010), Brady and Irwin (2011), and Anselin et al. (2008) are additional resources for 

overviews of the developments in the spatial econometrics field. 

At the same time that spatial considerations are receiving widespread attention, a specific 

kind of discrete choice structure – the ordered-response multinomial structure – has also seen a 

literal explosion in application in many different disciplines, including sociology, biology, 

political science, marketing, and transportation sciences. Ordered-response models may be used 

when analyzing ordinal discrete outcome data, including ratings data (for instance, of consumer 

products and movies), or likert-scale type attitudinal/opinion data (for example, of traffic 

congestion levels and teacher evaluations), or intensity data (such as of land use development 

levels and pain levels). In all of these situations, the observed outcome data may be considered to 

be the result of the partitioning or thresholding of an underlying latent continuous variable into 

mutually exclusive (non-overlapping) intervals. Some recent examples of the use of ordered-

response structures include examining crash severity (Quddus et al., 2010), analyzing job 

satisfaction (Luechinger, et al., 2010), studying trip generation (Roorda et al., 2010), and 

examining monetary policies of a bank (Xiong, 2011). The reader is referred to Greene and 

Hensher (2010) for a comprehensive history and review of the ordered-response model structure.  

It should be clear from above that both spatial dependencies as well as ordered-response 

structures are becoming common place in the tool box of researchers in a wide variety of 

disciplines. However, there has been little research at the interface of spatial dependence and 

ordered-response structures. In particular, much of the literature on spatial dependency has been 
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confined to the case of continuous dependent variables (and not discrete dependent variables), 

while much of the ordered-response literature has focused on the case of a (non-spatial) 

univariate ordered-response system. Of course, in the past decade, spatial dependence structures 

developed in the context of continuous dependent variables are increasingly being considered for 

binary discrete choice dependent variables (see Franzese et al., 2010 and Bhat and Sener, 2009 

for good reviews). The two dominant techniques, both based on simulation methods, for the 

estimation of such spatial binary discrete models are the frequentist recursive importance 

sampling (RIS) estimator (see Beron et al., 2003 and Beron and Vijverberg, 2004) and the 

Bayesian Markov Chain Monte Carlo (MCMC)-based estimator (see Kakamu and Wago 2007 

and LeSage and Pace, 2009). Such methods may be extended to ordered-response structures in a 

relatively straightforward manner. However, both the RIS and MCMC-based methods are 

confronted with multi-dimensional normal integration (of the order of the number of 

observations in the estimation sample when using the general flexible spatial dependence forms 

adopted for continuous models), and are therefore computationally expensive-to-infeasible to 

implement (for both binary and ordered-response structures) with the typical computational 

resources at hand for anything other than small sample sizes (see Bhat, 2011, Smironov, 2010, 

and Franzese et al., 2010).  

In contrast to the extant simulation-based inference procedures discussed above, an 

approach that has seen some (though very limited) use recently in the context of (non-spatial) 

multivariate binary and ordered-response models is the composite marginal likelihood (CML) 

approach. This is an estimation technique that is gaining substantial attention in the statistics 

field, though there has been relatively little coverage of this method in econometrics and other 

fields. The CML method, which belongs to the more general class of composite likelihood 

function approaches, is based on forming a surrogate likelihood function that compounds much 

easier-to-compute, lower-dimensional, marginal likelihoods. The CML method is easy to 

implement and has the advantage of reproducibility of results. Under usual regularity 

assumptions, the CML estimator is consistent and asymptotically normal distributed. Thus, the 

CML is an appealing inference approach when traditional simulation methods become 

computationally cumbersome or even intractable. Recent studies that use this approach for non-

spatial multivariate binary/ordered-response modeling include Yi et al., 2011, Varin and Czado 

2010, Ferdous et al., 2010, and Bhat et al., 2010a.  
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1.2 The Current Paper  

The methodological focus of the current paper is to develop a formulation for a spatial panel 

ordered-response model and propose a practical composite marginal likelihood (CML) inference 

approach to obtain model parameter estimates. Spatial dependence is introduced through 

contemporaneous “spillover” effects in both the exogenous variables as well as the error terms, 

using a spatial lag specification on the latent variables of decision-makers (that underlie the 

observed ordinal variables of decision-makers). Such a specification recognizes that spatial 

dependence is a substantive issue, and is caused by didactic interactions among decision-making 

agents (as opposed to considering spatial dependence only in the error terms, which is 

tantamount to viewing spatial dependence as “nuisance” dependence). In addition to spatial 

dependence, we incorporate (unobserved) spatial heterogeneity by allowing the sensitivity to 

exogenous variables to vary across decision-makers. This is achieved through the use of an 

individual-specific, time-stationary, random coefficients formulation for the latent variables. 

Finally, we also accommodate time-varying dependency effects across the latent variables of the 

same agent at different points in time. 

The empirical focus of the current paper is on using the spatial lag specification to 

examine the land development intensity levels of spatial units, recognizing the spatial 

dependence in the development intensities of proximately located spatial units due to interactions 

between land owners of the corresponding spatial units. Such interactions should naturally arise 

because land owners of proximately located spatial units (say, parcels), acting as profit-

maximizing economic agents, are likely to be influenced by each other’s perceptions of net 

stream of returns from land use development. The peer influences may also be due to strategic or 

collaborative partnerships between land owners (see, for example, Carrión-Flores et al., 2009). 

The net result is that changes in observed variables (such as accessibility to the city-center) 

and/or unobserved variables (such as neighborhood politics and zoning guidelines) that affect the 

land use development returns (LUDR) perception of one land owner will also likely lead to a 

shift in the LUDR perception of land owners of neighboring parcels. At the same time, spatial 

heterogeneity can arise in the land development context because different land owners may have 

different intrinsic LUDR perceptions and may respond differently to the exogenous variables, 

based on such unobserved factors as individual experiences, risk-taking behavior, and even 

vegetation conservation values. Such land owner-specific random coefficients and resulting 
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temporal correlations of the land owner’s choices across time have been ignored thus far in the 

literature. Finally, we also accommodate time-varying dependency effects across the LUDR 

perceptions of the same decision agent at different points in time, which may be attributed to the 

effects of recent experiences and events that may influence the risk-taking or risk-averseness or 

other LUDR-related perceptions of individual land owners. As such, these effects fade over time.  

In this paper, we first formulate the spatial panel ordered-response model, next propose a 

CML inference procedure, and then undertake simulation experiments to examine the ability of 

the inference procedure to recover underlying model parameters. Subsequently, we demonstrate 

the applicability of the proposed formulation and inference procedure by modeling urban land 

use development intensity patterns in Austin, Texas, using data from the years 2000, 2003, 2006, 

and 2008. The land use information used in the current empirical analysis is available at a parcel-

level spatial resolution. While various different levels and thresholds may be employed to define 

the intensity level of land development, we adopt a four category ordinal system: (1) 

undeveloped land (open space, vacant parcel, etc.), (2) less-intensely developed land (residential 

parcels with single-family detached or two-family attached home), (3) medium-intensely 

developed land (includes all other types of residential parcels), and (4) most-intensely developed 

land (includes office, commercial, industrial parcels, etc.). The data set comprises 783 parcels 

from each of the four years.  

The rest of the paper is structured as follows. Section 2 discusses the model structure and 

the estimation approach, Section 3 presents a simulation study to evaluate the ability of our 

proposed approach to recover model parameters and also demonstrates the effects of ignoring 

spatial dependency and spatial heterogeneity when they are actually present. Section 4 describes 

the data sources and sample formation procedures for the Austin data sample used in this paper. 

Section 5 presents the empirical results and elasticity effects. The final section summarizes the 

important findings from the study and concludes the paper.         

 

2. THE MODEL 

2.1 Basic Formulation 

Let q be an index for spatial units (q = 1, 2, …, Q, where Q denotes the total number of spatial 

units/parcels in the data set), and let t be an index for time period (t = 1, 2, …, T, where T is the 
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number of panel observations for each spatial unit; in the current paper, T = 4).1 Let l be an index 

for the observed land use development category, which may take one of L discrete ordinal values 

(i.e., l∈{1, 2, …, L}). Assume that the land use development returns (LUDR) perception of the 

land owner of the qth parcel at time t is *
qty  (in the rest of this section, we will use the term 

“parcel” to refer to the spatial unit of analysis, though any other spatial unit may be used 

depending on the nature of the analysis). The LUDR perception is not observed by the analyst. 

But, in the usual ordered-response framework, we write this latent perception ( *
qty ) as a function 

of relevant covariates, and relate this latent propensity to the observed land use l through 

threshold bounds as follows (see McKelvey and Zavoina, 1975): 

lyywy qtqt

Q

q
tqqqqt =++= ∑

=′
′′ ,

1

** εδ qt
'
qxβ  if  qq βbβ ~,*

1 +=<<− lqtl y ψψ ,          (1)  

The basic idea of the ordered-response formulation is that land owners with a low LUDR 

perception will keep their land undeveloped, while land owners with a high LUDR perception 

will invest their land in intense land use development. In the above equation, the first term 

reflects the spatial lag structure, where qqw ′  is the spatial proximity-based weight corresponding 

to units q and q′  (with 0=qqw  and 1=∑
′

′
q

qqw ) for each (and all) q, and ( )10 << δδ  is the 

spatial autoregressive parameter. qtx  is a (K×1) vector of exogenous variables corresponding to 

parcel q and time period t ( qtx  includes a constant), qβ  is a corresponding (K×1) vector of 

random coefficients that is K-dimensional multivariate normal (MVNK). For later use, we will 

partition qβ  into a (K×1) mean vector b  and a (K×1) random component qβ
~  with mean zero 

and variance LLΩ ′=  (i.e., ],[MVN~~
K Ω0βq ) . It is not necessary that all elements of qβ  be 

random; that is, the analyst may specify fixed coefficients on some exogenous variables in the 

model, though it will be convenient in presentation to assume that all elements of qβ  are 

random. Also, note that the element of b corresponding to the constant is fixed to zero for 

identification. The upper bound threshold for ordinal level l is represented by lψ  

                                                            
1 In the empirical context of the current paper, the number of panel observations is the same across spatial units, i.e., 
the data set is a balanced panel. However, the methodology in this paper is generic and equally applicable to 
unbalanced panels. 
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( +∞=−∞=<<<< − LLL ψψψψψψψ and  ;... 01210 ). The term qtε  in the above equation is a 

standard normal error term uncorrelated across parcels for a particular time period t. However, 

we allow a first-order autoregressive correlation pattern within each spatial unit-specific series of 

observations so that tt
tqqtCov −′
′ = ρεε ),(  ( )10 << ρ . 

 The formulation above generates spatial dependence through the spatial lag term, the nature of  

which is related to the specification of the weight terms qqw ′ . This can take the form of a discrete 

function such as a contiguity specification ( qqw ′ =1 if the parcels q and q′  are adjacent and 0 

otherwise) or a specification based on a distance threshold ( ∑=′
'

'' ,/
q

qqqqqq ccw where 'qqc  is a 

dummy variable taking the value 1 if the parcel q′  is within the distance threshold and 0 

otherwise). It can also take a continuous form such as those based on the inverse of distance qqd ′  

and its power functions ),0(1)1(
1

>⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
=

−

′
′′′ ∑ n/d/dw

q

n
qq

n
qqqq  the inverse of exponential 

distance, and the shared border length qqd ′
~  between parcels ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑′

'
'''' ,~~/~~

q
qqqqqqqqqq dcdcw  (where 

'
~

qqc  is a dummy variable taking the value 1 if the parcels q and q′  are adjoining, and 0 

otherwise). All of these functional forms for the weight matrix may be tested empirically.  In 

addition to spatial dependence, the random coefficient vector qβ  accommodates spatial 

heterogeneity as well as implicitly generates spatial heteroscedasticity. Note that we are able to 

disentangle spatial dependence and spatial heterogeneity because of the availability of panel 

data. Further, the vector qβ  generates time-invariant temporal dependence effects in the LUDR 

perceptions of the same land owner. 

Several restrictive models are obtained from the model developed here. If ,0=ρ  this 

indicates lack of time-varying temporal correlation. If ,0=δ  the result is a non-spatial model. If 

the elements of Ω  are zero, the indication is the lack of time-invariant temporal effects as well 

as unobserved spatial heterogeneity. If the elements of Ω  corresponding to the non-diagonal 

elements of Ω  are zero, but not the diagonal elements, it represents the case of the presence of 

time-invariant and unobserved heterogeneity effects, but without correlation between these 
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effects. If the elements of Ω  except for that corresponding to the constant are collectively zero, 

the model collapses to a random-effects structure. If ,0=ρ ,0=δ and all elements of Ω  are 

identically zero, the result is a standard ordered-response model. 

 

2.2 Matrix Formulation 

The model proposed above may be written in a more compact form to facilitate the discussion of 

the estimation technique. To do so, we define the following vectors and matrices: 

) ..., , , ,( **
3

*
2

*
1 ′= Qtttt yyyy*

ty  1( ×Q  matrix), 

])(y,...,)(y,)(y,)[(yy *
T

*
3

*
2

*
1

* ′′′′′=  1( ×QT  matrix), 

) ..., , , ,( 321 ′= Qtttt εεεεtε  1( ×Q  matrix), 

)ε ..., ,ε ,ε ,ε(ε T321 ′′′′′=  1( ×QT  matrix), 

),...,,,( 321 ′= qtKqtqtqt xxxxqtx 1( ×K  matrix), 

),...,,,( ′= Qt3t2t1tt xxxxx KQ ×(  matrix), 

),...,,,( ′′′′′= T321 xxxxx  KQT ×(  matrix), 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

′

=

Qt

3t

2t

1t

t

x

x
x

x

x

000

000
000
000

~  KQQ ×(  block diagonal matrix), 

  )~,...,~,~,~(~ ′′′′′= T321 xxxxx  KQQT ×(  matrix), 

  )~,...,~,~,~(~ ′′′′′= Q321 βββββ  1( ×KQ  matrix).   

Also, collect all the weights qqw ′  into a spatial weight matrix W. The vector β~  above has a mean 

vector of zero and a variance matrix ΩIQ ⊗  (of size QT×QT), where QI  is an identity matrix of 

size Q. Note also that the error vector tε  is distributed multivariate normal with a mean vector of 

zero and a temporal autoregressive covariance matrix Λ  (of size T×T) given below: 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−

−

−

−

1

1
1

1

321

32

2

12

TTT

T

T

T

ρρρ

ρρρ
ρρρ
ρρρ

Λ               (2) 

Then, the error vector ε  is distributed multivariate normal with a mean vector of zero and a 

covariance matrix QIΛ⊗  (of size QT×QT). 

Using the vector and the matrix notations defined above, Equation (1) may be re-written 

compactly as: 

εβxxbyWIy *
T

* +++⊗= ~~)(δ , 

where TI  is an identity matrix of size T. After further matrix manipulation to write *y  in reduced 

form, we obtain: 

,~~ SεβxSSxby* ++=  ( )[ ] ( )[ ]11 −− −⊗=⊗−= WIIWIIS QTTQT δδ  (3) 

The expected value and the variance of *y  are then as follows: 

BSxby* ==)(E , and           

ΣSIΛSSxΩIxSy QQ
* =′⊗+′′⊗= )(~)(~)(Var  (4) 

 An important point from the reduced form in Equation (3) is that our contemporaneous 

spatial lag formulation specifies a spatial externality effect due to the time-invariant random 

coefficients too (see the βxS ~~  component on the right side of Equation (3)). That is, spatial 

dependence is implicitly generated in the observation-unit specific (time-invariant) coefficients. 

For instance, the preference and responsiveness to signals relevant to decision-making (such as 

how land owners respond to market place proximity or to proximity to lakes and other recreation 

centers) may themselves be correlated based on proximity of landowners’ parcels. This is in 
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addition to the usual “spillover” effects (or spatial externality effects) originating from the 

exogenous variables ( x ) and the error terms (ε ).2   

 

2.3 Estimation Approach 

The parameter vector to be estimated is ),,,,,,,,( 1321 ′′= − ρδψψψψ ωbθ L , where ω  is a 

column vector obtained by vertically stacking the lower triangle elements of the matrix L (recall 

that ).'LLΩ =  Let the actual observed land development intensity level of spatial unit q at time 

period t be mqt (mqt ∈{1, 2, …, L}). Then, the likelihood function for the model is: 

( ) ,),()(
*

** yΣb|ymyθ dPL QT
D

y

φ∫===                (5) 

where }  2 1, ... 2 1 , :{ ,,
*

),1,(
*

* T...,,,tQ,,,qyD tmqqttmqy qtqt
==∀<<= − ψψy  and (.)QTφ  is the 

multivariate normal density function of dimension QT. m is a QT×1-vector of observed ordinal 

outcomes as follows: ),...,,,,...,,...,,,,,...,,,( 32123222121312111 ′= QTTTTQQ mmmmmmmmmmmmm . 

The integration domain *yD  is simply the multivariate region of the elements of the *y  vector 

determined by the observed vector of ordinal outcomes.  

The dimensionality of the rectangular integral in the likelihood function is QT. As 

discussed earlier, the use of numerical simulation techniques based on a maximum simulated 

likelihood (MSL) approach or a Bayesian inference approach, even if feasible, can lead to 

convergence problems during estimation (Bhat et al., 2010b; Müller and Czado, 2005). The 

alternative is to use the composite marginal likelihood (CML) approach, as discussed in Section 

1.1.  In the current study we use the pairwise composite marginal likelihood method based on the 

product of the likelihood contributions from pairs of observation units across time periods. To 

write this function, define two threshold vectors of size QT×1 as follows: 

,),...,,,...,...,,,,...,,( ,1,,1,2,1,12,1,2,1,22,1,11,1,1,1,21,1,1 212221212111
′= −−−−−−−−− TmQTmTmmQmmmQmm QTTTQQ

ψψψψψψψψψτ

.),...,,,...,...,,,,...,,( ,,,,2,,12,,2,,22,,11,,1,,21,,1 212221212111
′= TmQTmTmmQmmmQmm QTTTQQ

ψψψψψψψψψϑ  

                                                            
2 The spatially structured effects probit model used in earlier studies that accommodates random effects at an 
aggregate regional level (see LeSage and Pace, 2009 and the references therein) is a restrictive spatial dependency 
specification compared to the one adopted here. In particular, if the only random coefficient was on the constant 
term, and this randomness was at an aggregate region level rather than a disaggregate parcel level, and if there are 
no additional spatial externality effects due to exogenous variables and the error term ε, then the spatial dependency 
in the reduced form of Equation (4) is similar to that in the spatially structured effects probit model.  
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Let g be an index that can takes the values from 1 to QT. Then, 

( ) [ ] [ ] [ ] [ ]( )

,
)()(
)()(

,

1

1 1 gg2gg2

gg2gg2

1

1 1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Φ+Φ−

Φ−Φ
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===

∏ ∏

∏ ∏
−

= +=′ ′′′′

′′′′

−

= +=′
′′

QT

g

QT

gg gggg

gggg

QT

g

QT

gg
ggggCML

νμμνμ
νμν

PL

,,,,
,,,,

mymyθ

ϕ

ϕϕϕ
           (6) 

where 
[ ] [ ]

[ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ]
. , ,

gggg

gg
gg

gg

gg
g

gg

gg νμ
′′

′
′ =

−
=

−
=

ΣΣ

Σ

Σ

Bτ

Σ

B
g

ϑ
ϕ   

In the above expression, [ ]gϑ  represents the thg  element of the column vector ,ϑ   and similarly 

for other vectors. [ ]ggΣ  represents the thgg  element of the matrix Σ . The CML estimator is 

obtained by maximizing the logarithm of the function in Equation (6). The asymptotic 

covariance matrix )ˆ(θVCML  may be computed from the Godambe sandwich information matrix 

as discussed in detail in Bhat (2011).   

The pairwise marginal likelihood function of Equation (6) comprises 2/)1( −QTQT  

pairs of bivariate probability computations, which can itself become quite time consuming. 

Fortunately, in a spatial-temporal case where spatial dependency drops quickly with inter-

observation distance, the pairs formed from the closest spatial observation units provide much 

more information than pairs from spatial units that are far away. In fact, as demonstrated by 

Varin and Vidoni (2009), Bhat et al. (2010b), and Varin and Czado (2010) in different empirical 

contexts, retaining all pairs not only increases computational costs, but may also reduce 

estimator efficiency. We examine this issue by creating different distance bands and, for each 

specified distance band, we consider only those pairings in the CML function that are within the 

spatial distance band. Then, we develop the asymptotic variance matrix )ˆ(θVCML  for each 

distance band and select the threshold distance value that minimizes the total variance across all 

parameters as given by )]ˆ([ θVCMLtr   (i.e., the trace of the matrix )]ˆ([ θVCML ).    

A final issue regarding estimation. The positive definiteness of Σ  is ensured as long as 

10,10 <<<< ρδ  and the matrix Ω  is positive-definite. To ensure the constraints on the 

autoregressive terms ,ρδ and  we parameterize these terms as )]~exp(1/[1 δδ +=  and 

)],~exp(1/[1 ρρ +=  respectively. Once estimated, the ρδ ~ and  ~ estimates can be translated back 
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to estimates of ρδ and . The matrix Ω  can be guaranteed to be positive definite by writing the 

logarithm of the pairwise-likelihood in terms of the Cholesky-decomposed elements of Ω  and 

maximizing with respect to these elements of the Cholesky factor. That is, we write Ω  as LL ′  

(where L is the lower triangular Cholesky factor of Ω ), and estimate the elements of the matrix 

L. 

 

3. SIMULATION STUDY 

In this section, we undertake a simulation experiment with two objectives in mind. The first 

objective is to examine the ability of the proposed CML inference approach to recover the 

parameters of the spatial panel ordered-response model in this paper. The second is to examine 

the effects of ignoring spatial dependence and spatial heterogeneity (when both are actually 

present).  

 

3.1 Experimental Design 

To set up the experiment, we generate 400 observations (i.e., QT = 400) using prespecified 

values for the θ  vector.  We assume that the generated observations correspond to 100 parcels 

(i.e., Q = 100) and 4 time periods (i.e., T = 4). We further assume that there are three ordered 

categories of the observed land use development intensity level and the corresponding threshold 

values are set to –1 ( 1ψ ) and 1 ( )2ψ . We also consider three independent variables (x) in the 

analysis, all of which are drawn from standard univariate normal distributions. We consider the 

coefficient on the first variable to be fixed, but allow randomness in the next two elements of the 

coefficient vector. Specifically, the covariance matrix of qβ  is specified to be as follows: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
000

00
00
000

2
33

2
22

σ
σΩ  

The mean vector for qβ  is set to b = (0.5, 0.8, 1). Next, we generate the weight matrix (W) by 

borrowing the spatial locations of 100 parcels in Austin, Texas, based on the 2008 land use 

survey data that is used in the empirical analysis of this paper (see Section 4). While several 

different functional forms may be used to generate the weights from the spatial configuration of 

the 100 parcels, we use a continuous inverse of distance specification in this simulation analysis. 
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We also consider all the 2/)1( −QTQT  pairs of bivariate probability computations in the 

composite marginal likelihood function for the simulation. To examine the potential impact of 

different levels of spatial and temporal dependence on the ability of the CML approach to 

recover model parameters, we consider two values of the spatial autoregressive coefficient δ  

corresponding to low dependence (δ = 0.25) and high dependence (δ = 0.75), as well as two 

values of the temporal autoregressive coefficient ρ  corresponding to low dependence (ρ = 0.25) 

and high dependence (ρ = 0.75).  Thus, in total, there are four possible combinations of the 

spatial and temporal autoregressive coefficients considered in the simulations. 

The set-up above is used to develop the B matrix and the Σ matrix (see Equation (4)) for 

each of the four combinations just discussed. A )1( ×QT  vector of the latent variable *y  (in 

Equation (3)) is drawn from the multivariate normal distribution with mean B and covariance 

structure Σ. The generated latent variables are then translated into the “observed” vector y using 

the specified threshold values. For each of the four combinations, the data generation process is 

undertaken 20 times with different realizations of the latent variable *y  from the values of B and 

Σ. 

The CML estimation procedure is applied to each data set to estimate data-specific values 

of the vector ),,,,,,( 33,2221 ′′= ρδσσψψbθ . The Godambe information-based covariance matrix 

and the corresponding standard errors are also computed. Finally, for each of the four 

combinations of the spatial and temporal dependency coefficients, the mean estimate for each 

model parameter across the twenty data sets is obtained and a parameter-specific mean absolute 

percentage bias or APB value (relative to the “true” value of the parameter) is computed. 

Similarly, the mean standard error for each model parameter is computed across the twenty data 

sets and is labeled as the asymptotic standard error (ASE) for the parameter.  

The main purpose of the methodology proposed here is to accommodate spatial dynamics 

and spatial heterogeneity in the context of panel data. Therefore, to examine the potential 

problems that could arise from ignoring spatial dynamics and spatial heterogeneity, we estimate 

two additional models on the twenty data sets generated for each combination of spatial and 

temporal dependence levels. The first model ignores the spatial autocorrelation coefficient δ  

(that is, assumes δ = 0), while the second model assumes away any spatial heterogeneity (that is, 
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assumes that all elements of the covariance matrix Ω  are identically zero).3 For ease in 

presentation, we will refer to the first model as the ordered-response model with spatial 

heterogeneity (or the ORH model), and the second model as the ordered-response model with 

spatial dependence (or the ORS model). We compare these two restrictive formulations with the 

general ordered-response model with spatial dependence and heterogeneity (or the ORSH 

model), based on the mean APB measure across all parameters and the adjusted composite log-

likelihood ratio test (ADCLRT) value (see Pace et al., 2011 and Bhat, 2011 for more details on 

the ADCLRT statistic, which is the equivalent of the log-likelihood ratio test statistic when a 

composite marginal likelihood inference approach is used; this statistic has an approximate chi-

squared asymptotic distribution). The ADCLRT statistic needs to be computed for each data set 

separately, and compared with the chi-squared table value with the appropriate degrees of 

freedom. Here we identify the number of times (out of the 20 model runs corresponding to the 20 

data sets) that the ADCLRT value rejects the ORH and ORS models in favor of the ORSH 

model.   

 

3.2 Simulation Results 

Tables 1a and 1b provide the results for the ability of the CML approach to recover the 

parameters of the spatial panel ordered-response model, while Table 2 provides the results 

showing the implications of ignoring spatial dynamics and spatial heterogeneity when present. 

We discuss these results in the subsequent two sections, each section focusing on a specific 

objective of the simulation exercise.  

 

3.2.1 Ability of CML to Recover Model Parameters 

In the low spatial autoregressive coefficient (δ ) case in Table 1a, the absolute percentage bias 

(APB) ranges from 0.03% to 6.22% for the low temporal autoregressive coefficient (ρ ) case 

(overall mean value of 2.28% - see last row of table under the sub-column titled “absolute 

percentage bias”), and from 0.09% to 7.67% for the high temporal autoregressive coefficient 

case (overall mean value of 3.06%). In the high spatial autoregressive coefficient case (see Table 

                                                            
3 Of course, as indicated earlier, setting all elements of Ω to zero also implies the absence of time-stationary 
temporal dependence across observations for the same parcel, as well as leads to a reduction in spatial dependence 
(see Section 2.2).  
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1b), the APB ranges from 2.50% to 7.62% for the low ρ  case (mean of 5.05%), and from 0.55% 

to 13.74% for the high ρ  case (mean of 6.88%). Overall, these are very good measures for the 

ability to recover parameter estimates, and indicate that the CML is able to recover parameters 

well. Of course, the results indicate that the recovery of parameters is particularly good for the 

mean of the coefficients on the exogenous variables (the APB values for the b vector elements 

are, in general, less than 5%; see the first numeric row panel of Tables 1a and 1b). On the other 

hand, the standard deviations of the coefficients on the exogenous variables (i.e., the 22σ  and 

33σ  parameters that correspond to the square root of the elements of the Ω  matrix) are better 

recovered for the case of low spatial dependence than for the case of high spatial dependence 

(see the higher APBs corresponding to these parameters in the third numeric row panel of Table 

1b compared to Table 1a).  This is not surprising, since these covariance parameters enter the 

likelihood function in a more complex non-linear fashion in general than the mean parameters of 

the coefficients. This is particularly so in the presence of high spatial dependence, since the S 

matrix gets applied in a non-linear fashion to the Ω  matrix during estimation (see Equation (4)). 

But when the spatial dependence is low, the non-linear effect is not as high as in the case of the 

high spatial dependence case, leading to the better recovery ability of the standard deviation 

parameters. The results also indicate that the ability to recover the threshold parameters (i.e., 1ψ  

and )2ψ  is, in general, better and more stable in the case of low temporal dependence than in the 

case of high temporal dependence (see the lower APBs corresponding to these threshold 

parameters in Tables 1a and 1b). This is an issue that needs further exploration in future studies.  

Finally, there are also patterns in the ability to recover the spatial and temporal 

autoregressive parameters. For the low spatial autoregressive parameter (δ = 0.25), the APB 

values are 0.58% and 3.45% for the low and high temporal autoregressive coefficient cases, 

respectively. For the high spatial autoregressive parameter (δ = 0.75), the corresponding APB 

values are 7.62% and 10.14%, respectively. The implication is that the spatial dependency 

parameter may be relatively easy to recover when the magnitudes of the spatial and temporal 

dependency autoregressive coefficients are both small. However, for the temporal dependency 

parameter ρ , the results indicate very good recovery and stability for all different combinations 

of the δ  and ρ  parameters. This is because the parameter ρ  is directly associated with the 

magnitude of correlation across observations on the same spatial unit, and changes in this 
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parameter will have immediate and substantial impacts on the log-likelihood function (regardless 

of the magnitude of the spatial dependency effect or the magnitude of ρ  itself).  

The asymptotic standard error (ASE) values of the parameters indicate that the CML 

estimator appears to be quite efficient. In particular, the ASE values of all the parameters, except 

δ  and ρ ,  range from 1-4% of the mean estimates. For δ  and ρ , the ASE values range from 

0.5-8.2% and 0.7-8.9% of the mean estimates, respectively.  

 

3.2.2 Effects of Ignoring Spatial Effects 

This section focuses on the implications of ignoring each of spatial dynamics and spatial 

heterogeneity when both are present. To examine the effect of ignoring spatial dynamics when 

present, the results of the ORH model may be compared with those from the ORSH model. On 

the other hand, to assess the impact of ignoring spatial heterogeneity when present, the results of 

the ORS model may be compared with those from the ORSH model. Table 2 provides the 

results. As may be observed, two sets of mean APB values (across model parameters) are 

computed for the ORSH model, one for comparison with the ORH model and another for 

comparison with the ORS model. For comparison with the ORH model, the mean APB values 

for the ORSH model are computed without considering the APB values for the δ  parameter, 

because the δ  parameter is implicitly fixed at zero in the ORH model. For comparison with the 

ORS model, the mean APB values for the ORSH model are computed without considering the 

APB values for the 22σ  and 33σ  parameters (that correspond to the square root of the elements of 

the Ω  matrix characterizing spatial heterogeneity). Note again that the 22σ  and 33σ  parameters 

are implicitly fixed to zero in the ORS model.  

The results indicate that the mean APB values are higher for the ORH and ORS models 

than for the ORSH model. Not surprisingly, the ORH model performs better in the two low 

spatial dependence cases than in the two high spatial dependence cases, since ignoring spatial 

dependence when such dependence is low should be of less consequence than ignoring such 

dependence when high. However, even in the two low spatial dependence cases, the ORH model 

may be rejected compared to the “correct” ORSH specification based on the adjusted composite 

likelihood ratio test (ADCLRT) statistic (note that the ORSH specification rejects the simpler 

ORH and ORS specifications for each of the twenty data sets generated). The results also 
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indicate that the ORS model (which ignores spatial heterogeneity) performs very poorly across 

the board. In this regard, we should also point out that the ORSH and ORH models always 

converged, while the ORS model experienced occasional convergence-related problems in the 

high spatial dependence case. In particular, because of convergence problems, the results in 

Table 2 for the ORS model are based on estimations on fifteen data sets for the (δ = 0.75 , ρ =  

0.25) case and on eighteen data sets for the (δ = 0.75 , ρ = 0.75) case. Also, the ORS model is 

clearly outperformed by the ORSH model. 

 Overall, the simulation results show that, irrespective of the magnitude of spatial and 

temporal dependences, the CML estimator recovers the parameters of the spatial panel ordered-

response model very well. The CML estimator also seems to be quite efficient based on the low 

asymptotic standard error estimates of the parameters compared to the mean estimates of the 

parameters. In addition, the results clearly highlight the bias in estimates if spatial dependence 

and/or spatial heterogeneity are ignored when both are actually present. An interesting 

suggestion from our simulation study is that ignoring spatial heterogeneity is of much more 

serious consequence than ignoring spatial lag dynamics. Further theoretical and empirical 

exploration of this finding is left for future work.  

  

4. DATA  

4.1 Data Sources 

The primary data used in the empirical exercise of this paper is drawn from the land use data sets 

collected by the City of Austin Watershed Protection and Development Review Department for 

the years 2000, 2003, 2006, and 2008 (City of Austin, 2011).4 For each analysis year, the land 

use information considered in the empirical analysis represents the ground land use condition at 

that time.5 The City of Austin uses a 3-digit land use code that classifies the collected 

information into different land use types such as single-family, multi-family, mobile homes, 

apartment/condo, group quarters, office, industrial, and open space/vacant land (see City of 

Austin, 2011 for a complete list of land use classifications). This land use information is 

                                                            
4 2008 is the latest year for which land use information for the City of Austin is available.  
5 Specifically, the data sets describe ground conditions in October 2000, June 2003, June 2006, and October 2008, 
which are about equally spaced in time (the time period between successive data collection efforts spans between 2 
years 4 months and 3 years).  
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maintained at a parcel-level spatial resolution and made available to the public in Geographic 

Information System (GIS) format (shape file format).  

In addition to the land use information, several other GIS data sets/layers were obtained 

from the City of Austin (2011) and the Capital Area Council of Governments (CACOG, 2011). 

These secondary GIS data sets included a transportation network layer, a school location layer, a 

park location layer, a water body location layer, an aircraft landing facility location layer, a 

contour layer with information on average elevation at different points in the study area, and a 

layer on city boundaries for Austin and other neighboring cities.       

 

4.2 Sample Formation and Description 

The land use data (and the data from the secondary sources) were processed in several steps to 

obtain the sample for the current analysis. First, the land use GIS layers (created by the City of 

Austin) for the years 2000, 2003, 2006, and 2008 were spatially merged. Second, a 1.75 square 

miles (4.53 square kilometers) area near the western boundary of the City of Austin was selected 

for this study. This area was selected because the land use pattern here has undergone substantial 

changes between 2000 and 2008. Third, information on the land use of each parcel in each year 

was translated into four mutually exclusive ordinal land development intensity categories for this 

study: (1) undeveloped land (includes open space, rural area, agricultural land, and vacant 

parcels), (2) land developed with low level of intensity (includes residential parcels with single-

family detached and two-family attached homes, (3) land developed with medium level of 

intensity, including all other types of residential parcels such as apartment, condo, three/fourplex, 

group quarters, and retirement homes), and (4) land developed with high level of intensity, 

including parcels developed for office, commercial, and industrial use). Note, however, that the 

development intensity classification used in the application demonstration exercise here is 

simply one of many that may be used by the analyst. Specifically, the intensity classification may 

be customized to the planning purpose at hand. Fourth, variables derived from the secondary data 

sources were appended to the parcel-level data. The final sample for analysis includes land use 

information for 783 parcels.  

Table 3 presents the number (and the percentage) of parcels by land use development 

intensity (LUDI) and year of observation. The table clearly indicates the rapid pace of 

development between 2003 and 2006, which is consistent with the general ground reality in the 
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Austin area (see http://www.austintexas.gov/page/growth-watch-data-years). While 36-37% of 

the land parcels were undeveloped in 2000 and 2003, this percentage drops to 10-13% by 2006 

and beyond. During the analysis time period, the shares of medium-intensely and most-intensely 

developed parcels remained somewhat constant, indicating that the land owners found converting 

undeveloped parcels to less-intensely developed parcels to be the most profit maximizing 

investment. In terms of the independent variables, these were time-invariant since the GIS layers 

corresponding to parcels and those of lakes, public airfields, schools, and elevations did not 

change over time for the region of analysis under consideration in the current paper (however, 

variations in these independent variables pose no problems for our estimation procedure).  

    

5. EMPIRICAL ANALYSIS 

5.1 Model Selection and Variable Specification 

Several weight matrix specifications were considered in our empirical analysis to characterize 

the nature of the dynamics of the spatial lag dependence. These included (1) a contiguity 

specification that generates spatial dependence based on whether or not two parcels are 

contiguous, (2) another contiguity specification but based on shared boundary length, (3) the 

inverse of a continuous distance specification where the distance is measured as the Euclidean 

distance (crow fly distance) from the centroids of each parcel, (4) the inverse of the square of the 

continuous distance specification, and (5) the inverse of the exponential of the continuous 

distance specification. For the last three continuous distance-based specifications, we also 

explored alternative distance bands to select the pairs of observations for inclusion in the 

composite marginal likelihood (CML) estimation. As indicated earlier, this distance band 

determination may be based on minimizing the trace of the variance matrix of parameters given 

by )]ˆ([ θVCMLtr . Our results did not show substantial variations in the trace value for different 

distance bands (regardless of the specific continuous functional form used to represent the 

distance separation and the variable specification used), though the best estimator efficiency was 

obtained at about 0.25 miles for all the three continuous distance specifications formulations and 

all variable specifications we attempted. Further, the results indicated that for all variable 

specifications, the best spatial weight matrix specification was consistently the inverse of the 

continuous distance specification with the 0.25 mile distance band. This determination was based 

on the composite likelihood information criterion (CLIC) statistic, which may be used to 
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compare the data fit of non-nested formulations (see Varin and Vidoni, 2005). This CLIC 

statistic takes the form shown below: 

[ ]1)ˆ(ˆ)ˆ(ˆ)ˆ(logCLIC −−= θHθJθ trLCML  

 where θ̂  is the estimated model parameter vector, and )ˆ(ˆ θJ  and )ˆ(ˆ θH  are the “vegetable” and 

“bread” matrices used in the estimation of the asymptotic variance matrix )ˆ(θVCML  (see Bhat, 

2011 for details of how these matrices may be estimated in a spatial context). In the current 

context, the weight specification that provides the highest value of the CLIC statistic is preferred 

over the other competing weight specifications. Of all the weight matrix specifications that were 

considered here, the best three specifications and the corresponding CLIC statistics are presented 

in Table 4. These statistics correspond to the best variable specification that emerged from our 

empirical analysis (see the next paragraph for more on this) and for the optimal distance band of 

0.25 miles for the continuous distance weight specifications. The results in the table clearly show 

the superiority of the inverse of the continuous distance specification over other weight matrix 

specifications. Thus, all subsequent results in this paper correspond to the inverse distance 

weight specification with a 0.25 mile distance band.  

Concurrent with the weight matrix specification, we also explored several different 

variable specifications and functional forms of the variables. The final specification included the 

following three sets of variables: (1) proximity (in the form of distance) to natural amenities 

(such as parks and lakes), schools, and the central business district (CBD) area of Austin6, (2) 

ease of access to the transportation system (distance to Interstate IH-35 and distance to a public 

airfield), and (3) year-specific dummy variables (for the years 2006 and 2008) and geographic 

location/contour variables (whether or not the parcel is located within the Austin City limit and 

the average elevation of a parcel above the sea level). For the first two sets of variables, several 

linear and non-linear functional forms were considered (such as the logarithm of distance, the 

square of distance, and spline variables that allow piece-wise linear effects of distance on the 

utilities). In addition, we also considered dummy variables for different ranges of distance for 

these variables (for instance, parcel is within 2 miles of a park and parcel is within 5 miles of a 

                                                            
6 Parks as used here refers to such natural outdoor recreations areas as parks, greenbelts, and nature preserves. 
Similarly, a lake as used here refers to either Lake Travis, Lake Austin, Lady Bird Lake, Walter E. Long Lake, or 
Colorado River.  
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park). Further, various interactions of the many variables were also considered whenever 

adequate observations were available to test such interaction effects. The final specification was 

based on intuitive, data fit, and statistical significance considerations. Interestingly, all the 

distance variables were best reflected as dummy variables in this final specification, though the 

threshold value for translation of the distance variables to the dummy variables varied across the 

variables. The final specification includes some variables that are not statistically significant at 

the usual 5% level of significance. These are retained because the effects of these variables are 

intuitive and may provide guidance in future research efforts. The results of the final 

specification are discussed in the next section.  

 

5.2 Model Estimation Results 

Table 5 presents the model estimation results. The column titled “Parameter - Mean Estimate” 

provides the mean estimate of each parameter and the corresponding t-statistic of the mean 

estimate. Each of these estimates provides the mean effect of the corresponding row variable on 

the land use development returns (LUDR) perception of land owners. Since all the variables in 

the final specification appear as dummy variables, the relative magnitudes of the mean effects 

provide an estimate of the importance of the variable in affecting the LUDR perception of land 

owners. Note also that we attempted a (normally distributed) random coefficients specification 

for the variables through a general specification of the Ω  matrix. However, only the variance 

parameters corresponding to the constant, “distance to a lake”, and “distance to an airfield” 

variables turned out to be statistically significant. Further, we could not reject the null hypothesis 

that the off-diagonal (covariance) elements of the Ω  matrix corresponding to these random 

coefficients were all zero. The column titled “Parameter - Standard Deviation Estimate” provides 

the standard deviation estimates of the random coefficients and their corresponding t-statistics. 

The first variable in Table 5 corresponds to the constant, whose mean estimate is fixed at 

zero for identification. However, the statistically significant estimate of the standard deviation on 

the constant indicates that there is unobserved heterogeneity in the LUDR perception across land 

owners, attributable to such unobserved factors as individual experiences, risk-taking behavior, 

and vegetation conservation values. In the following sections, we discuss the effects of the non-

constant variables on the latent LUDR perception by variable category.  
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5.2.1 Proximity to Natural Amenities, School, and the CBD  

The effects of this set of variables suggests that parcels located within close proximity of a park 

(distance ≤ 2 miles) and/or a lake (distance to a lake ≤ 5 miles distance) are perceived by land 

owners as providing high returns to development relative to parcels located farther away from 

such natural amenities. These effects are to be expected, since areas with good access to natural 

recreation are prime profitable locations for residential land use (see Geoghegan 2002). 

Interestingly, however, the results show substantial variation in the LUDR perceptions of land 

owners of parcels within 5 miles of a lake, with 32% of landowners having a negative LUDR 

perception and 68% having a positive LUDR perception. This may suggest variations in nature 

conservation values across land-owners, so that some land owners of parcels close to lakes may 

place a high premium on keeping their land undeveloped and “pristine”.   

Proximity to a school also affects land development intensity level. As expected, owners 

of parcels close to a school (school ≤ 2 miles) are likely to perceive their parcels as having high 

development value (see Li and Liu, 2007). The final variable in this category indicates a lower 

LUDR perception for parcels located in close proximity (≤ 9 miles) of the Austin CBD relative 

to those located farther away (> 9 miles). This is interesting, and suggests the tension between 

the urban amenities (access to retail places and public services such as hospitals) on the one hand 

that may increase the demand for development in already densely developed areas, and the urban 

“disamenities” (such as traffic congestion effects and air quality problems) on the other hand that 

may decrease demand for development in already dense neighborhoods (see Irwin and 

Bockstael, 2002, and Carrión-Flores and Irwin, 2004). According to our results, the 

“disamenities” effect exceeds the “amenities” effect offered by parcels located in close proximity 

to the Austin CBD area, leading to an overall negative LUDR perception for these parcels.  

 

5.2.2 Ease of Access to the Transportation System  

Several earlier studies (for instance, see Carrión-Flores and Irwin, 2004 and Chakir and Parent, 

2009) have found that proximity and access to major roadways generally has a positive impact 

on development intensity (even if certain kinds of developments such as industrial facilities are 

precluded by zoning regulations to be located very close to major roadways). The result on the 

“distance to IH-35” variable in Table 5 is consistent with these earlier studies, and indicates that 
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parcels in the analysis area within 9 miles of IH-35 are less likely to be in an undeveloped state 

than parcels farther away from IH-35.  

The second variable in the ‘access to transportation system” category shows that land 

owners of parcels that are proximal to a public airfield (distance to an airfield ≤ 1 mile) are, on 

average, likely to have a negative perception of the profitability of development of their land; 

that is, these land owners are more likely to keep their land undeveloped than invest money in 

development. This is perhaps because of noise pollution and air space invasiveness effects of 

aircrafts landing or taking off from airfields. However, it is important to note that there is 

heterogeneity in the LUDR perception of land owners of parcels close to airfields, with 25% of 

land-owners perceiving a positive LUDR (see the standard deviation estimate of the “distance to 

airfield ≤ 1 mile” variable in Table 5). Such LUDR heterogeneity is not surprising, since some 

parcels close to airfields may not be that impacted by aircraft noise and space invasiveness 

because of the alignment of runways vis-à-vis the parcel location. For these parcels, the close 

proximity to air transport may be more of a “pull” effect than a “push” effect. 

 

5.2.3 Year-Specific Dummy Variables and Other Variables 

The dummy variables for 2006 and 2008 essentially reflect the higher propensity of parcels to be 

developed in some form or the other relative to 2000 and 2003. This trend of a higher 

development intensity pattern after 2005 (relative to before 2005) is consistent with the actual 

trend observed in land development intensity in the Austin area (see, for example, 

http://austin.housealmanac.com). The final two variables suggest that land owners of parcels 

located within Austin city limits and located at a lower elevation (less than or equal to 1000 ft 

above sea level) have a lower LUDR perception than land owners of parcels located outside 

Austin city limits and at a higher elevation (more than 1000 ft above sea level), respectively.  

 

5.2.4 Autoregressive Parameters and Thresholds 

The results indicate the presence of spatial dependence in land use development decisions. 

Specifically, the estimated spatial autoregressive coefficient (δ) is 0.905 and highly statistically 

significant, strongly supporting the hypothesis of the presence of spatial spillover effects in the 

LUDR perceptions of land owners of proximally located spatial units. That is, there is strong 

evidence of didactic interactions between land owners of proximally located parcels.  
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The temporal autoregressive coefficient (ρ) is also moderately statistically significant 

with a magnitude of 0.344. This is evidence of the presence of land owner-specific unobserved 

effects that fade over time. Of course, this temporal fading effect is in addition to the time-

invariant unobserved effects that influence the LUDR perception of a land owner at all time 

points (as captured by the random coefficients on the constant, the “distance to a lake” variable, 

and the “distance to a public airfield” variable).  

Finally, the thresholds values serve to translate the latent propensity into the observed 

ordered categories of the land use type. 

       

5.2.5 Overall Measures of Fit 

The results of the spatial panel ordered-response model  with spatial dependence and 

heterogeneity (i.e., the ORSH model)  estimated in the current paper show clear evidence of 

spatial heterogeneity, spatial lag dynamics due to didactic interactions between land owners, as 

well as time-variant temporal correlation in the LUDR perceptions of the same individual. Thus, 

the model estimated here is superior to a model that ignores these spatial and temporal effects. 

One can also assess the data fit degradation from ignoring spatial and temporal effects by 

estimating a simple ordered-response (OR) model that assumes away the presence of these 

spatial-temporal effects. An adjusted composite likelihood ratio test (ADCLRT) statistic can then 

be computed from the composite marginal log-likelihood (CML) value at convergence 

)753,718( −=  of the ORSH model estimated here and the CML value of the simple OR model 

)701,734( −= . This statistic has a chi-square asymptotic distribution with five degree of freedom, 

and soundly rejects the OR model at any reasonable level of significance (the ADCLRT value is 

11,874, which is higher than the chi-squared table value with five degrees of freedom at 

practically any level of significance). This again demonstrates very strong evidence of spatial 

dynamics and temporal dependence at play in land-use development intensity decisions.  

 

5.3 Elasticity Effects 

The parameter estimates presented in Table 5 do not directly provide the marginal effects of 

variables on the probability of the ordinal land use development intensity (LUDI) categories (as 

observed by Franzese and Hays, 2008, this is an issue seldom considered in the spatial choice 

literature, with many papers simply presenting the parameter results and stopping there). To 
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obtain a sense of the marginal effects, we compute an “arc-elasticity effect” for each variable. 

Specifically, we develop the procedure to evaluate the effect of a change in an independent 

variable in a given year on the percentage change in the aggregate share of each ordinal land use 

development intensity (LUDI) category for a specified year, while accommodating the spatial 

and temporal dependency effects. The aggregate share (across parcels) for each LUDI category is 

obtained by aggregating the parcel-level probabilities for that category for the specified year (the 

probabilities themselves are computed as discussed in the next paragraph). Thus, the elasticity 

computed is a measure of the percentage change in the aggregate share of each LUDI category 

due to a change in an exogenous variable. 

The procedure to compute the probability for an LUDI category for each parcel-year 

combination in the ORSH model (needed for the elasticity effects computations) is similar to that 

used to generate the data samples in our simulation experiment. Specifically, the estimated 

counterpart of ),,,,,,,,( 1321 ′′= − ρδψψψψ ωbθ L  (say θ̂ ) is used to develop estimates of the B 

matrix (say B̂ ) and the Σ matrix (say Σ̂ ) in Equation (4). A )1( ×QT -vector realization of the 

latent variable *y  is next drawn from the multivariate normal distribution with mean B̂  and 

covariance structure Σ̂ . The generated latent variables are then translated into the “observed” 

vector y using the estimated threshold values. This “observed” vector is immediately converted 

into a set of dummy variables for each parcel and each year, each dummy variable representing 

whether or not the parcel in each year is “observed” in each of the L different LUDI categories. 

The procedure above of drawing realizations of *y from the multivariate normal distribution with 

mean B̂  and covariance structure Σ̂ is repeated 1000 times, and the probability of a parcel being 

in each LUDI category for each year is computed as the average across the 1000 dummy variable 

value realizations for that LUDI category for the parcel-year combination. 

In the current paper, we examine the elasticity effects of changes in variables in the year 

2008 on the percentage changes in the shares of the LUDI categories in the year 2008. We also 

compute the standard errors of the elasticity effects by using 100 bootstrap draws from the 

multivariate sampling distribution of θ̂ .7 All the exogenous variables in the current analysis are 

                                                            
7 But note that one can also compute the arc elasticity effects over time using our procedure. For example, we can 
examine the effects of the location of a park in one year on the LUDI levels in subsequent years. However, to 
conserve on space, we focus in this paper on changes in variables in 2008 on the LUDI levels in 2008.  
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introduced as dummy variables. To compute the pseudo-elasticity effects for each of these 

variables, the value of each variable is changed to one for the subsample of parcels for which the 

variable takes a value of zero, and to zero for the subsample of parcels for which the variable 

takes a value of one. The shifts in expected aggregate shares for each ordinal land use 

development intensity (LUDI) category in the two subsamples is then added after reversing the 

sign of the shift in the second subsample. Next, the effective percentage change in the expected 

share of each ordinal LUDI category is computed due to a change in the dummy variable from 0 

to 1.   

 The elasticity effects and their standard errors (in parenthesis) for the ORSH model and 

the simple ordered-response (OR) model are presented in Table 6, along with the p-value for the 

difference in elasticity estimates from the two models. The first entry under the “ORSH model” 

column in the table indicates that, on average, parcels located within a 2-mile radius of a park are 

20.96% less likely to be undeveloped relative to parcels located more than 2 miles away from a 

park. The other entries under the “ORSH model” columns (and the “OR model” columns) may 

be similarly interpreted.  

Several observations may be made from the results in Table 6. First, the numbers in the 

table indicate the relative importance of each exogenous variable in influencing the ordinal land 

use development intensity category. For instance, the ORSH model (and the OR model) results 

indicate that proximity to a lake is the most important determinant of intense land development, 

with parcels located closer to a lake (≤ 5 miles) being about 150% (2.5 times) more likely to be 

intensely developed compared to parcels located far away (> 5 miles) from a lake (see the 

“ORSH model” and “OR model” sub-columns of the last column of Table 6 under the row 

“Distance to a lake ≤ 5 miles”). On the other hand, parcels located near an airfield and within 

Austin city (at least in the context of the area used in the current demonstration exercise) are the 

least likely to be intensely developed. Similarly, parcels located far away from IH-35 (> 9 miles 

from IH-35) and parcels within Austin city limits are the most likely to be in an undeveloped 

state (see the first two numeric sub-columns in Table 6). Second, the elasticity effects of both the 

ORSH and the OR models are in the same direction. However, a visual comparison of the results 

indicates that the elasticity effects predicted by the ORSH model are higher than the OR model 

prediction (the only exception is the effect of “Parcel is located in Austin” variable on the most-

intensely developed land use category). The higher magnitudes from the ORSH model reflect the 
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spatial multiplier effect caused by spatial dependence. Specifically, a change in a variable 

relevant to one land owner (that has an impact on the LUDR perception of the land owner) also 

affects the LUDR perceptions of land owners of proximally located parcels, which then have a 

“circular” and reinforcing influence back on the LUDR perception of the land owner (this spatial 

multiplier effect is captured by the S  matrix in Equation (3)). In contrast, the OR model ignores 

the presence of the “spillover” phenomenon and assumes away any spatial interaction effects 

among land owners. Finally, the entries in the p-value columns for each ordinal land use 

intensity category indicate that many of the differences in elasticity effects between the ORSH 

and OR models are statistically significant at the 0.1 level or lower, clearly underscoring the 

importance of accommodating spatial dynamics and spatial heterogeneity in the current 

empirical context.     

 

6. SUMMARY AND CONCLUSIONS 

This paper proposes and estimates a spatial panel ordered-response probit model with temporal 

autoregressive error terms to analyze changes in urban land development intensity level over 

time. Such a model structure maintains a close linkage between the land owner’s decision 

(unobserved to the analyst) and the land development intensity level (observed by the analyst), 

and accommodates proximity-based spatial didactic interactions among the land owners that 

causes “spillover” effects. In addition, temporal dependency (due to unobserved factors) is 

generated across the LUDR perceptions of the same land owner over time – the effects of some 

of these factors may fade away over time, while the effects of other factors may remain time-

invariant. The model structure also incorporates (unobserved) spatial heterogeneity by allowing 

the sensitivity to exogenous variables to vary across land owners.  

The paper addresses the well recognized econometric challenge of estimating spatial 

discrete choice models with medium-to-large sized sample by using a composite marginal 

likelihood (CML) inference approach in estimation. The CML approach can be applied to data 

sets of any size and does not require any simulation machinery. To evaluate the ability of the 

CML approach to recover model parameters in a spatial-temporal context, we undertake a 

simulation exercise. The results indicate that the CML approach recovers the parameters 

reasonably well. In addition, the simulation study demonstrates that ignoring spatial dependency 

and spatial heterogeneity when both are actually present will introduce substantial bias. Further, 
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there is a suggestion in the result that ignoring spatial heterogeneity is of much more serious 

consequence than ignoring spatial lag dynamics.        

 The model system proposed in the current paper is applied in a demonstration exercise to 

examine urban land development intensity levels using parcel-level data from Austin, Texas. 

These results reinforce the findings from the simulation exercise, and indicate the potentially 

substantial biases in elasticity effects if spatial dependence and/or heterogeneity are ignored.  

Future efforts need to continue to undertake simulation experiments to evaluate the performance 

of the composite marginal likelihood approach for estimating models with spatial and temporal 

dependence (for example, with varying sample sizes, varying levels of dependence, and larger 

number of data repetitions), and on application of this inference approach for spatial discrete 

choice modeling.  
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Table 1a Ability of the CML Approach to Recover the Parameters of the Spatial Panel 
Ordered-Response Model - The Low Spatial Autoregressive Coefficient Case  

Parameter 

Low temporal autoregressive coefficient (ρ=0.25) High temporal autoregressive coefficient (ρ=0.75) 

True Value 

Parameter Estimates 
Asymptotic 
Standard 

Error (ASE)
True Value

Parameter Estimates 
Asymptotic 
Standard 

Error (ASE)
Mean 

Estimate 

Absolute 
Percentage 
Bias (APB)

Mean 
Estimate 

Absolute 
Percentage 
Bias (APB)

1b  0.5000 0.4986 0.28 0.0056 0.5000 0.5075 1.49 0.0055 

2b  0.8000 0.7942 0.73 0.0100 0.8000 0.8124 1.55 0.0103 

3b  1.0000 1.0161 1.61 0.0113 1.0000 1.0767 7.67 0.0119 

1ψ  -1.0000 -1.0622 6.22 0.0104 -1.0000 -1.0217 2.17 0.0100 

2ψ  1.0000 1.0116 1.16 0.0110 1.0000 1.0320 3.20 0.0117 

22σ  1.0000 1.0397 3.97 0.0183 1.0000 0.9734 2.66 0.0180 

33σ  1.0000 0.9406 5.94 0.0182 1.0000 0.9479 5.21 0.0180 

δ 0.2500 0.2514 0.58 0.0200 0.2500 0.2586 3.45 0.0212 

ρ  0.2500 0.2501 0.03 0.0222 0.7500 0.7507 0.09 0.0053 

Overall mean value across 
parameters 2.28 0.0141 - - 3.06 0.0124 

 
 

Table 1b Ability of the CML Approach to Recover the Parameters of the Spatial Panel 
Ordered-Response Model - The High Spatial Autoregressive Coefficient Case 

Parameter 

Low temporal autoregressive coefficient (ρ=0.25) High temporal autoregressive coefficient (ρ=0.75) 

True Value 

Parameter Estimates 
Asymptotic 
Standard 

Error (ASE)
True Value

Parameter Estimates 
Asymptotic 
Standard 

Error (ASE)
Mean 

Estimate 

Absolute 
Percentage 
Bias (APB)

Mean 
Estimate 

Absolute 
Percentage 
Bias (APB)

1b  0.5000 0.4780 4.40 0.0058 0.5000 0.4978 0.43 0.0065 

2b  0.8000 0.8354 4.43 0.0103 0.8000 0.8270 3.37 0.0117 

3b  1.0000 1.0528 5.28 0.0121 1.0000 1.0975 9.75 0.0143 

1ψ  -1.0000 -1.0757 7.57 0.0123 -1.0000 -1.1374 13.74 0.0142 

2ψ  1.0000 1.0250 2.50 0.0119 1.0000 0.9945 0.55 0.0125 

22σ  1.0000 0.9499 5.01 0.0179 1.0000 0.8710 12.90 0.0326 

33σ  1.0000 0.9444 5.56 0.0168 1.0000 0.9115 8.85 0.0202 

δ 0.7500 0.6929 7.62 0.0034 0.7500 0.6739 10.14 0.0034 

ρ  0.2500 0.2422 3.12 0.0087 0.7500 0.7339 2.15 0.0103 

Overall mean value across 
parameters 5.05 0.0110 - - 6.88 0.0140 
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Table 2 Effects of Ignoring Spatial Effects When Present  

Evaluation 
Metric 

δ = 0.25, ρ = 0.25 δ = 0.25, ρ = 0.75 δ = 0.75, ρ = 0.25 δ = 0.75, ρ = 0.75 

ORSH 
Model 

ORH 
Model ORS Model ORSH 

Model 
ORH 
Model 

ORS 
Model 

ORSH 
Model 

ORH 
Model ORS Model ORSH 

Model 
ORH 
Model ORS Model

Mean APB             

 

For comparison 
of ORSH model 
with ORH 
model 

2.49 3.07 - 3.01 3.07 - 4.73 16.14 - 6.47 17.53 - 

 

For comparison 
of ORSH model 
with ORS 
model 

1.51 - 35.14 2.80 - 29.09 4.99 - 27.61 5.73 - 29.14 

Mean composite 
log-likelihood 
value at 
convergence 

-135,448 -135,522 -139,956 -133,954 -134,050 -138,155 -133,275 -134,792 -136,781 -132,667 -134,143 -136,948 

Number of times 
the adjusted 
composite 
likelihood ratio 
test (ADCLRT) 
statistic favors 
the ORSH model 

- 

All twenty 
times when 
compared 

with 
84.32

1 =χ  
value 
(mean 

ADCLRT 
statistic is 

97.80) 

All  twenty 
times when 
compared 

with 
99.52

2 =χ  
value (mean 
ADCLRT 
statistic is 
6,693.97) 

- 

 All twenty 
times when 
compared 

with 
84.32

1 =χ  
value (mean 
ADCLRT 
statistic is 
139.38) 

 All  twenty 
times when 
compared 

with 
99.52

2 =χ  
value (mean 
ADCLRT 
statistic is 
5,834.31) 

- 

 All twenty 
times when 
compared 

with 
84.32

1 =χ  
value (mean 
ADCLRT 
statistic is 
2,173.70) 

 All  fifteen 
times when 
compared 

with 
99.52

2 =χ   
value (mean 
ADCLRT 
statistic is 
6,395.06) 

- 

 All twenty 
times when 
compared 

with 
84.32

1 =χ  
value 
(mean 

ADCLRT 
statistic is 
2,073.70) 

 All  eighteen
times when 
compared 

with 
99.52

2 =χ   
value (mean 
ADCLRT 
statistic is 
4,862.69) 
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Table 3 Number (Percentage) of Parcels by Land Use Development Intensity (LUDI) Level 

and Year of Observation 

Land Use  Development Intensity (LUDI) Level 
Year of Observation 

2000 2003 2006 2008 

Undeveloped land (includes open space, rural area, agricultural 
land, and vacant parcels) 

285 
(36.4) 

290 
(37.0) 

98 
(12.5) 

80 
(10.2) 

Low intensity developed land (includes residential parcels with 
single-family detached and two-family attached homes) 

469 
(59.9) 

450 
(57.5) 

642 
(82.0) 

660 
(84.3) 

Medium intensity developed land (includes all other residential 
parcels such as apartment, condo, three/fourplex, group 
quarters, and retirement homes) 

14 
(1.8) 

26 
(3.3) 

22 
(2.8) 

22 
(2.8) 

High intensity developed land (includes parcels developed for 
office, commercial, or industrial use)  

15 
(1.9) 

17 
(2.2) 

21 
(2.7) 

21 
(2.7) 

Total number of parcels 783 783 783 783 

 
 
 
 

Table 4 Model Selection Based on the Weight Matrix Specification 

 

Weight Matrix Specification 

Contiguity  

Inverse of 
continuous distance 
(0.25 mile distance 

band) 

Inverse of 
continuous distance 

square (0.25 mile 
distance band) 

Log-composite likelihood at convergence -724619.52 -718753.28 -720435.17 

Trace value 1780.35 1343.63 2338.49 

CLIC statistic -726399.87 -720096.92 -722773.66 
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Table 5 Model Estimation Results (Weight Matrix: inverse of distance, Distance Band 0.25 miles) 

  Parameter - Mean 
Estimate 

Parameter - Standard 
Deviation Estimate 

  Estimate t-stat Estimate t-stat 

Constant 0.000 - 0.006 4.25 
Closeness to natural amenities, school, and the CBD     
Distance to a park ≤ 2 miles (base: park > 2 miles) 0.112 1.21 - - 
Distance to a lake ≤ 5 miles (base: lake > 5 miles) 0.623 5.38 1.301 8.38 
Distance to a school ≤ 2 miles (base: school > 2 miles) 0.044 1.19 - - 
Distance to the downtown area ≤ 9 miles (base: downtown > 9 miles)  -0.203 -1.56 - - 
Ease of access to the transportation system      
Distance to IH-35  ≤ 9 miles (base: IH-35 > 9 miles)  0.322 5.15 - - 
Distance to a public airfield ≤ 1 miles (base: airfield > 1 miles)  -0.224 -2.44 0.355 1.91 
Year-specific dummy variables and other variables      
Year 2006 (base: Years 2000/2003) 0.136 4.08 - - 
Year 2008 0.147 4.36 - - 
Parcel is located in Austin city (base: parcel is located outside Austin city) -0.807 -4.88 - - 
Average elevation of parcel  ≤ 1000 feet above mean sea level (base: average elevation > 1000 feet)  -0.242 -3.39 - - 

Auto-regressive parameters*     
Spatial auto-regressive co-efficient (δ )  0.905 50.49 - - 
Temporal auto-regressive co-efficient ( ρ ) 0.344 1.59 - - 

Thresholds      

1ψ  -5.438 -6.66 - - 

2ψ  -1.850 -6.77 - - 

3ψ  -1.267 -6.14 - - 

* Standard errors of the auto-regressive parameters are estimated using the delta method.



35 

 
 

Table 6 Elasticity Effects of Variables on the Land Use Development Intensity Level (Standard Error)* 

Variable 

Undeveloped land Less-intensely  
developed land 

Medium-intensely  
developed land 

Most-intensely  
developed land 

ORSH 
model 

OR 
model 

p-value 
for 

difference

ORSH 
model 

OR 
model 

p-value 
for 

difference 

ORSH 
model 

OR 
model 

p-value 
for 

difference

ORSH 
model 

OR 
model 

p-value 
for 

difference 

Distance to a park ≤ 2 miles  
(base: park > 2 miles) 

-20.96 
(4.96) 

-4.89 
(12.55) - -4.78 

(4.44) 
-0.17 
(0.61)  - 30.64 

(16.85)
3.61 

(8.92) 0.157 56.65 
(19.40)

3.97 
(14.55) 0.030 

Distance to a lake ≤ 5 miles  
(base: lake > 5 miles) 

-79.10 
(6.12) 

-67.37 
(6.12) 0.176 -79.25 

(3.86) 
-7.87 
(3.15) 0.000 -25.47 

(68.61)
80.66 

(10.49) 0.127 167.64 
(15.73)

148.36 
(21.05)  - 

Distance to a school ≤ 2 miles  
(base: school > 2 miles) 

-56.05 
(26.43) 

-10.44 
(10.54) 0.110 3.29 

(3.90) 
0.00 

(0.46)  - 10.38 
(2.41)

6.25 
(7.01)  - 8.05 

(3.17)
6.9 

(11.33)  - 

Downtown ≤ 9 miles  
(base: Downtown > 9 miles)  

68.54 
(18.17) 

41.32 
(10.72) 0.198 3.10 

(11.67) 
0.29 

(1.39)  - -58.03 
(13.38)

-29.85 
(8.14) 0.073 -67.17 

(7.57)
-42.39 

(9.70) 0.045 

IH-35 ≤ 9 miles  
(base: IH-35 > 9 miles)  

-173.26 
(97.81) 

-4.62 
(9.40) 0.087 7.96 

(7.72) 
-0.07 
(0.4)  - 31.52 

(5.47)
3.31 

(7.08) 0.002 40.62 
(3.62)

3.86 
(10.72) 0.001 

Airfield  ≤ 1 miles  
(base: Airfield > 1 miles)  

57.73 
(7.42) 

30.95 
(6.50) 0.007 8.06 

(10.65) 
1.11 

(1.05)  - -77.99 
(38.30)

-29.17 
(7.14)  - -108.92 

(40.98)
-38.32 

(9.83) 0.094 

Parcel is located in Austin city  
(base: parcel is located outside Austin city) 

216.30 
(41.12) 

129.93 
(9.54) 0.041 -4.25 

(26.77) 
0.69 

(4.50)  - -105.35 
(12.63)

-96.79 
(6.57)  - -108.09 

(6.76)
-121.62 

(6.46) 0.148 

Elevation ≤ 1000 feet above mean sea level  
(base: elevation > 1000 feet) 

120.97 
(49.74) 

32.52 
(6.62) 0.079 -2.06 

(13.14) 
0.53 

(1.09)  - -54.95 
(9.15)

-24.19 
(4.35) 0.003 -58.86 

(4.41)
-36.00 

(5.92) 0.002 

* The standard errors of the elasticity effects are computed using 100 bootstrap draws. A “-” entry in the table indicates that the difference is not statistically 
significant even at the 0.20 level of significance. 


