Skip to main content
Log in

Detection of crossover time scales in multifractal detrended fluctuation analysis

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alvarez-Ramirez J, Alvarez J, Dagdug L, Rodriguez E, Echeverria JC (2008) Long-term memory dynamics of continental and oceanic monthly temperatures in the recent 125 years. Physica A Stat Mech Appl 387(14):3629–3640

    Article  Google Scholar 

  • Anh V, Lam K, Leung Y, Tieng Q (2000) Multifractal analysis of Hong Kong air qualilty data. Environmetrics 11(2):139–149

    Article  Google Scholar 

  • Anh V, Yu ZG, Wanliss JA (2007) Analysis of global geomagnetic variability. Nonlinear Process Geophys 14(6):701–708

    Article  Google Scholar 

  • Barsky RB, Miron JA (1989) The seasonal cycle and the business cycle. J Polit Econ 97(3):503–534

    Article  Google Scholar 

  • Batty M, Longley P, Fotheringham S (1989) Urban growth and form: scaling, fractal geometry, and diffusion-limited aggregation. Environ Plan A 21(11):1447–1472

    Article  Google Scholar 

  • Borgani S, Murante G, Provenzale A, Valdarnini R (1993) Multifractal analysis of the galaxy distribution: reliability of results from finite data sets. Phys Rev E 47(6):3879–3888

    Article  Google Scholar 

  • Butler JB, Lane SN, Chandler JH (2001) Characterization of the structure of river-bed gravels using two-dimensional fractal analysis. Math Geol 33(3):301–330

    Article  Google Scholar 

  • Chaichoune K, Wiriyarat W, Thitithanyanont A, Phonarknguen R, Sariya L, Suwanpakdee S, Noimor T, Chatsurachai S, Suriyaphol P, Ungchusak K, Ratanakorn P, Webster RG, Thompson M, Auewarakul P, Puthavathana P (2009) Indigenous sources of 2007–2008 H5N1 avian influenza outbreaks in Thailand. J Gen Virol 90(1):216–222

    Article  Google Scholar 

  • Chen Z, Ivanov PC, Hu K, Stanley HE (2002) Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E 65(4):041, 107 (1–15)

    Google Scholar 

  • Ding X, Zhen D, Yang S (2002) Variations of the surface temperature in Hong Kong during the last century. Int J Climatol 22(16):715–730

    Article  Google Scholar 

  • Du G, Ning X (2008) Multifractal properties of Chinese stock market in Shanghai. Physica A Stat Mech Appl 387(1):261–269

    Article  Google Scholar 

  • Ertel JE, Fowlkes EB (1976) Some algorithms for linear spline and piecewise multiple linear regression. J Am Stat Assoc 71(355):640–648

    Article  Google Scholar 

  • Feder J (1988) Fractals. Plenum Press, New York

    Google Scholar 

  • Feder PI (1975) The log likelihood ratio in segmented regression. Ann Stat 3(1):84–97

    Article  Google Scholar 

  • Gato S, Jayasuriya N, Roberts P (2007) Temperature and rainfall thresholds for base use urban water demand modelling. J Hydrol 337(3–4):364–376

    Article  Google Scholar 

  • Globig A, Staubach C, Beer M, Kppen U, Fiedler W, Nieburg M, Wilking H, Starick E, Teifke JP, Werner O, Unger F, Grund C, Wolf C, Roost H, Feldhusen F, Conraths FJ, Mettenleiter TC, Harder TC (2009) Epidemiological and ornithological aspects of outbreaks of highly pathogenic avian influenza virus H5N1 of Asian lineage in wild birds in Germany, 2006 and 2007. Transbound Emerg Dis 56(3):57–72

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349

    Article  Google Scholar 

  • Guan Y, Poon LLM, Cheung CY, Ellis TM, Lim W, Lipatov AS, Chan KH, Sturm-Ramirez KM, Cheung CL, Leung YHC, Yuen KY, Webster RG, Peiris JSM (2004) H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A 101(21):8156–8161

    Article  Google Scholar 

  • Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI (1986) Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 33(2):1141–1151

    Article  Google Scholar 

  • Holschneider M (1995) Wavelets : an analysis tool. Clarendon Press/Oxford University Press, Oxford/New York

    Google Scholar 

  • Hu K, Ivanov PC, Chen Z, Carpena P, Stanley HE (2001) Effect of trends on detrended fluctuation analysis. Phys Rev E Stat Nonlin Soft Matter Phys 64(1):11,114.1–11,114.19

    Article  Google Scholar 

  • Hurst H (1951) Long term storage capacity of reservoirs. Trans Am Soc Civil Eng 116(76):770–799

    Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde E, Rego HHA, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Physica A Stat Mech Appl 295(3–4):441–454

    Article  Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Bunde A, Havlin S, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A Stat Mech Appl 316(1–4):87–114

    Article  Google Scholar 

  • Kantelhardt JW, Rybski D, Zschiegner SA, Braun P, Koscielny-Bunde E, Livina V, Havlin S, Bunde A (2003) Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods. Physica A Stat Mech Appl 330(1–2):240–245

    Article  Google Scholar 

  • Kim H, Fay MP, Yu B, Barrett MJ, Feuer EJ (2004) Comparability of segmented line regression models. Biometrics 60(4):1005–1014

    Article  Google Scholar 

  • Kim HJ, Fay MP, Feuer EJ, Midthune DN (2000) Permutation tests for join-point regression with applications to cancer rate. Stat Med 19(3):335–51

    Article  Google Scholar 

  • Lam SN, Lee DC (1993) Fractals in geography. PTR Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Lerman P (1980) Fitting segmented regression models by grid search. Appl Stat 29(1):77–84

    Article  Google Scholar 

  • Leung Y, Ge E, Yu Z (2011) Temporal scaling behavior of avian influenza A (H5N1): the multifractal detrended fluctuation analysis. Ann Assoc Am Geogr 101(6):1221–40

    Article  Google Scholar 

  • Livina V, Kizner Z, Braun P, Molnar T, Bunde A, Havlin S (2007) Temporal scaling comparison of real hydrological data and model runoff records. J Hydrol 336(1–2):186–198

    Article  Google Scholar 

  • Mandelbrot B (1967) Hong long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775):636–638

    Article  Google Scholar 

  • Mandelbrot B (1983) The fractal geometry of nature. W.H. Freeman, New York

    Google Scholar 

  • Movahed MS, Hermanis E (2008) Fractal analysis of river flow fluctuations. Physica A Stat Mech Appl 387(4):915–932

    Article  Google Scholar 

  • Movahed MS, Jafari GR, Ghasemi F, Rahvar S, Tabar MRR (2006) Multifractal detrended fluctuation analysis of sunspot time series. J Stat Mech Theory Exp 2006(2):1–17

    Article  Google Scholar 

  • Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22(19):3055–3071

    Article  Google Scholar 

  • Munasinghe S, Brown G, Pereira A, Keeble B, Nair P, Sundkvis T (2008) Public health response to an avian influenza influenza (H5N1) poultry outbreak in Suffolk, United Kingdom, in November 2007. Eurosurveillance 13(5):1–3

    Google Scholar 

  • Munster VJ, Baas C, Lexmond P, Waldenstrm J, Wallensten A, Fransson T, Rimmelzwaan GF, Beyer WEP, Schutten M, Olsen B, Osterhaus ADME, Fouchier RAM (2007) Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 3(5):636–638

    Article  Google Scholar 

  • Normile D (2005) Avian influenza. Europe scrambles to control deadly H5N1 strain. Science 310(5747):417

    Article  Google Scholar 

  • Oswiecimka P, Kwapien J, Drozdz S (2005) Multifractality in the stock market: price increments versus waiting times. Physica A Stat Mech Appl 347:626–42

    Article  Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of dna nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(2):1685–1689

    Article  Google Scholar 

  • Si Y, Skidmore AK, Wang T, de Boer WF, Debba P, Toxopeus AG, Li L, Prins HH (2009) Spatio-temporal dynamics of global H5N1 outbreaks match bird migration patterns. Geosp Health 4(1):65–78

    Google Scholar 

  • Smith GJD, Fan XH, Wang J, Li KS, Qin K, Zhang JX, Vijaykrishna D, Cheung CL, Huang K, Rayner JM, Peiris JSM, Chen H, Webster RG, Guan Y (2006) Emergence and predominance of an H5N1 influenza variant in china. Proc Natl Acad Sci U S A 103(45):16,936–16,941

    Article  Google Scholar 

  • Stanley HE, Meakin P (1988) Multifractal phenomena in physics and chemistry. Nature 335:405–409

    Article  Google Scholar 

  • Telesca L, Lapenna V (2006) Measuring multifractality in seismic sequences. Tectonophysics 423(1–4):115–123

    Article  Google Scholar 

  • Telesca L, Lapenna V, Macchiato M (2005) Multifractal fluctuations in earthquake-related geoelectrical signals. New J Phys 7:214

    Article  Google Scholar 

  • Thomas I, Frankhauser P, Badariotti D (2010) Comparing the fractality of European urban neighbourhoods: do national contexts matter? J Geogr Syst. doi:10.1007/s10109-010-0142-4

  • Tiwari RC, Cronin KA, Davis W, Feuer EJ, Yu B, Chib S (2005) Bayesian model selection for join point regression with application to age-adjusted cancer rates. J R Stat Soc Ser C 54(5):919–939

    Article  Google Scholar 

  • Vorosmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288

    Article  Google Scholar 

  • Wallace R (1993) A fractal model of hiv transmission on complex sociogeographic networks: towards analysis of large data sets. Environ Plan A 25:137–148

    Article  Google Scholar 

  • Wallace R (1994) A fractal model of hiv transmission on complex sociogeographic networks. part 2: spread from a ghettoized ‘core group’ into a ‘general population’. Environ Paln A 26:768–778

    Google Scholar 

  • WHO (2006) Avian influenza (“bird flu”) (http://www.who.int/mediacentre/factsheets/avian_influenza/en/)

  • Yu B, Neil D (2007) Global warming and regional rainfall: the difference between average and high intensity rainfalls. Int J Climatol 11(6):653–61

    Article  Google Scholar 

  • Yu B, Barrett MJ, Kim HJ, Feuer EJ (2007) Estimating joinpoints in continuous time scale for multiple change-point models. Comput Stat Data Anal 51(5):2420–2427

    Article  Google Scholar 

  • Yu ZG, Anh V, Eastes R (2009) Multifractal analysis of geomagnetic storm and solar flare indices and their class dependence. J Geophys Res 114(13):A0524. doi:10.1029/2008JA013854

    Google Scholar 

Download references

Acknowledgments

This work was supported by an earmarked grant (CUHK 447109) of Hong Kong Grants Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yee Leung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, E., Leung, Y. Detection of crossover time scales in multifractal detrended fluctuation analysis. J Geogr Syst 15, 115–147 (2013). https://doi.org/10.1007/s10109-012-0169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-012-0169-9

Keywords

JEL Classification

Navigation