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Abstract  

Agent-based simulation has become an important modeling approach in activity-travel analysis. 

Social activities account for a large amount of travel and have an important effect on activity-

travel scheduling. Participants in joint activities usually have various options regarding location, 

participants, and timing, and take different approaches to make their decisions. In this context, 

joint activity participation requires negotiation among agents involved so that conflicts among the 

agents can be addressed. Existing mechanisms do not fully provide a solution when utility 

functions of agents are nonlinear and non-monotonic. Considering activity-travel scheduling in 

time and space as an application, we propose a novel negotiation approach, which takes into 

account these properties, such as continuous and discrete issues, nonlinear and non-monotonic 

utility functions, by defining a concession strategy and a search mechanism. The results of 

experiments show that agents having these properties can negotiate efficiently. Furthermore, the 

negotiation procedure affects individuals’ choices of location, timing, duration, and participants. 

Keywords 

Negotiation, nonlinearity, activity-travel scheduling, joint activity participation, 

multi-agent simulation 
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Introduction 

Existing approaches to the modeling of joint activities in activity-based analysis, as this field has 

developed in geography, urban planning, and transportation research, focus on households while 

virtually ignoring the larger social networks of individuals. Household joint activities have been 

predominantly modeled in terms of discrete choice models, assuming explicitly or implicitly 

complete information settings (e.g., Scott et al. 2002, Gliebe et al. 2002; Zhang et al. 2005; 

Kuwano et al. 2011).  

 

In fact, social activities account for a large amount of travel (e.g., Van den Berg et al. 2012) and 

have an important effect on activity-travel scheduling. Modeling activity scheduling in social 

groups offers a challenge because participants usually have various options regarding location, 

participants, and timing, and take different approaches to make their decisions. Ronald et al. 

(2009) have assumed a host, who acts as the initiator, processes all the members' information, and 

eventually makes a decision for all. Therefore, the environment is fully cooperative in that all the 

agents “vote” for one agent as an administrator who will collect the proposals from all the agents 

and later make a fair decision on the joint activity among these agents. Such an approach seems 

especially appropriate in situations of mutual agreements on joint activities and the host being well 

aware of the utility of each participant. Fang et al. (2011) have described a multi-objective 

approach for scheduling joint participation by adopting the non-dominated sorting genetic 

algorithm-II (NSGA-II) with multiple objectives. In this approach, the preferences of all 

participants are known in advance and are used to find optimal opportunities. Neutens et al. (2010) 

have made similar assumptions because they require knowledge of the time constraints for all the 

participants, and the utility function of the group.  

 

However, these conditions may not be met in social networks of acquaintances, where there may 

not be a single participant to command all; and utility functions or preferences or time constraints 

may be private to each participant. In these situations, the environment becomes semi-cooperative 

in that participants are trying to satisfy their needs whilst compromising to others' needs. 

 

Under these circumstances, a process of coordination and possible conflict resolution is therefore 

required. This process has some essential features in common with negotiation in agent-based 

systems, which can be described as a "distributed search through a space of potential agreements" 

(Jennings et al. 2001). It involves defining the issues on which an agreement needs to be made 

(e.g., where to meet, at what time, who is invited to the activity), the rules of the interaction (i.e., 

the exchange of information and choices), and how agents move towards an agreement (e.g., if the 

agents do not agree, some of them will make a concession by suggesting different proposals, such 

as a different location, or a shorter duration, or a later start time etc.). This approach can be used at 

different temporal and geographical scales; is not restricted to household members; and can take a 

dynamic environment into account.  
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Although some work has been previously carried out in semi-cooperative environments (e.g., Ren 

et al. 2010), it has been restricted to one issue and two players. In activity-travel scheduling, 

however, negotiation about joint activities involves usually multiple issues, such as the time to 

start a joint activity, the duration of the activity, where to conduct the activity, and with whom to 

undertake the activity. Some of these issues involve discrete choices, such as location and 

participants, while other choices are continuous, such as duration. Moreover these issues may be 

interrelated and therefore the utility function could be nonlinear. 

 

Before undertaking any empirical analyses, it is important to examine the face validity of the 

model. Numerical simulations are valuable in that context as they allow investigating whether the 

formulated model is in line with one's theoretical expectations. As a start, we focus on small scale 

computer simulations so as to better understand strategic behaviors, such as compromising to 

others; and collect preliminary results about the performance of the model. 

 

Thus, in this paper, we present a negotiation protocol in agent-mediated joint activity-travel 

scheduling. We develop a negotiation approach to cater for the problems inherent in semi-

cooperative environments with nonlinear, non-monotonic, and continuous utility functions 

involving several issues and multiple players. Results of simulations show that the negotiators do 

reach an agreement by following the protocol. Section 2 discusses related work. Section 3 outlines 

the proposed negotiation model with a concession strategy. In Section 4, the results of an 

illustrative experiment are given in order to demonstrate the performance of our proposed 

negotiation protocol. Finally, Section 5 concludes and discusses further work. 

Related work 

Negotiation has been extensively studied over the last decades and most research work has been 

conducted in fields such as social psychology, game theory, and artificial intelligence (Jennings et 

al. 2001; Osborne et al. 1994). One crucial feature of a negotiation process is information. In most 

realistic cases agents have incomplete information about their opponent(s) (Fatima et al. 2004). 

Game theory is compelling as a tool for negotiation in cases where it is possible to characterize the 

preferences and possible strategies of participants (Jennings et al. 2001). Game theoretic models 

have been proposed for bargaining with incomplete information (Avineri 2006; Hollander 2006). 

For instance, Rubinstein (Rubinstein 1985) has developed a model in which agents have 

incomplete information about time preferences. Sandholm and Vulkan (1999) have considered 

uncertainty about agent deadlines. All these models are built on the assumption that information 

about some uncertain parameter (in the form of possible values and a corresponding probability 

distribution) is part of the common knowledge of agents.  

 

A major limitation of these game-theoretic methods is that the equilibrium solutions are difficult to 

apply in practice, especially in negotiation with incomplete information, or private knowledge, or 

non-linear utility functions (e.g. Jennings et al. 2001; Wu et al. 2009). For example, game 
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theoretic models often assume perfect computational rationality which means that no computation 

is required to find mutually acceptable solutions within a feasible range of outcomes. Moreover, 

this space of possible agreements is often assumed to be fully known by the agents. This 

assumption is rarely true in real world cases because agents typically know their own information 

space, but they can hardly know that of their opponent(s). Furthermore, even if the joint space is 

known, knowing that a solution exists is entirely different to knowing what the solution actually is. 

 

Heuristic methods are the key means of overcoming the aforementioned limitations of game 

theoretic models. Heuristic methods aim to produce good, rather than necessarily optimal 

solutions. The methods themselves may either be computational approximations of game theoretic 

techniques or computational realizations of more informal negotiation models (Jennings et al. 

2001).   

 

In our case, an agent's utility function and his beliefs about other agents are not known to other 

agents. We therefore treat each agent's information as private knowledge. Moreover, the 

scheduling of joint activities involves various issues. Some of these issues have discrete choices 

while others have continuous choices. One issue may be interrelated with other issue(s) as well. 

The outcome of evaluating these different issues becomes non-linear. Therefore in this work, we 

propose heuristic computational methods of negotiation strategies for agents with private 

knowledge and nonlinear utility functions. Work that falls in this category is discussed below. 

 

Wainer et al. (2007) have described several protocols for scheduling a meeting with many 

participants. There is only one issue under discussion, the timing of the meeting. Several protocols 

are proposed which use different levels of privacy for the participants. Nevertheless, it is limited 

by the number of issues under discussion. 

 

Ito et al. (2007) have presented a protocol for interdependent multiple issues with nonlinear utility.  

Their process involves sampling the issue space and then adjusting to find local maxima. Agents 

then submit their best options and a mediator determines the best solution. The mediator assumed 

by them is unrealistic from our perspective. 

 

Wu et al. (2009) have described a negotiation protocol for multi-player multi-issue negotiations 

with incomplete information and presented results for a simulation with three agents and two 

issues. Again, the issues are assumed to be continuously-valued, and the utility function is 

assumed to be monotonically increasing. This has been extended by Ma et al. (2010) to include 

both discrete and continuous issues but it is still restricted by imposing certain forms of utility 

functions because the orthogonal strategy assumed requires either concave or convex curves. 

 

Ren et al. (2010) have presented a bilateral single-issue negotiation model, focusing on handling 

non-linear utility functions and demonstrated the model in a situation involving a dental patient 
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wanting to make an appointment. This work is inappropriate for our situation as it handles only 

two players with one discrete issue. 

 

Rindt et al. (2003) have reported on the development of a simulation kernel for agent-based 

activity microsimulation built on the re-characterization of human activity as interaction between 

autonomous entities. They start from the idea that “human activity is the negotiated interaction of 

socially and physically situated individuals and settings” and as a result their kernel assumes that 

behavior is adaptive. The framework described is flexible and does not impose many restrictions 

on negotiations, but it is not a complete model in itself. 

 

Given the wide variety of possibilities in different fields/problems, it should be clear that there is 

no universally best approach or technique for negotiation (Jennings et al. 2001). A systematic 

treatment of the negotiation cases involved in activity travel scheduling is still lacking. 

The Negotiation Model 

In this negotiation model, we assume agents, 1, …, N, are negotiating on four issues: start time of 

an activity, ST , location of the activity, LOC , participants of the activity, PAR , and the duration 

of the activity, DUR . Among these issues, ST , LOC , and PAR are discrete issues while DUR  

is a continuous issue.  

Utility Functions 

Given the activity travel scheduling issues, we assume that the proposed overall utility function for 

an offer i by a given agent a is defined as in Equation 1 (also see Figure 1). 

)DUR,(TToppcost - )DURln(1 )PAR ,LOC,(ST = )(offer iai,aiiiiaia
 (1) 

where };,,,{ iiiii DURPARLOCSToffer  
iST  is the start time variable; 

iLOC  is the location 

variable; 
iPAR  is the participant variable; 

iDUR  is the duration variable; aiTT ,  is the travel time 

to be spent for the joint activity at a certain location; and aoppcost  represents opportunity costs. 

In this formulation, beta represents an average utility of the activity per unit time. By multiplying 

the utility per unit time with the log of duration this is transformed into a total utility for the 

activity where the log transformation takes into account diminishing returns of time spent on the 

activity. In short, this formulation is consistent with economic theories of time use as first 

introduced by Becker et al. (1965).  

 

In this utility function, 
iST  is handled as a discrete variable instead of a continuous variable. This 

reflects the idea that in the real world individuals often express preferences for time of an activity 

on the basis of a discrete set of episodes (e.g., late in the morning, early in the afternoon, etc.) 

rather than on exact times. 
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iPAR  tells which agent(s) will be considered in offer i as participants. For example, if 
iPAR  does 

not include agent a, then it means that according to the proposal the joint activity will be carried 

out by the other agent(s). In this case, the values of 
iST , 

iLOC , 
iPAR , 

iDUR , and 
aiTT ,

 do not 

make any sense to agent a. Then agent a will let 
iDUR  and 

aiTT ,
 be equal to zero so that the 

resulting utility is also equal to zero. This reflects that, on the one hand, agent a has no interest on 

such an activity as he is not included; on the other hand, agent a has no interest in blocking such 

an activity for other agent(s). In this situation, the decision on such an activity will be made by the 

other agent(s). 

 

According to the form of the utility function, if the utility of doing or following a joint activity is 

larger than or equal to the utility of the opportunity cost, then the overall utility  )(offeria  is 

larger than or equal to zero and hence the agent is willing to carry out the joint activity or follow 

the decision made by other agent(s). If the value of  )(offeria  is negative, then the agent will 

not consider the joint activity. 

 

An example is shown in Figure 1 where the X-axis represents the 
iDUR  variable and the Y-axis 

the overall utility of agent a. A unique combination of 
iST , 

iLOC , 
iPAR , aiTT ,

 corresponds to a 

curve in the figure. It is also possible that a curve represents more than one combination that gives 

the agent the same utility outcome.  

 

The first term on the RHS of Equation 1 is operationalized as follows: 

 

)PAR ( )(LOC )(ST = )PAR ,LOC,(ST i,i,i,iii aPARaLOCaSTa
  (2) 

 

As an example, the utility function of the start time 
iST  can be defined as: 

 

22ST2114ST12       6

16ST14       4

21ST2018ST1612ST10       2

20ST18       0

24ST2210ST0     -

= )(ST

ii

i

iii

i

ii

i,

or

oror

or

iaST

  (3) 

 

In this example, agent a prefers to do the activity between 12:00 and 14:00 or between 21:00 and 

22:00 rather than at other times. Note that the discretization means that agents are not sensitive 

about whether the start time is 12:01 or 12:10. 
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)DUR,(TToppcost iai,a
 - the opportunity costs of undertaking a given activity - is operationally 

defined as follows: 

 

)DUR(TT )DUR,(TToppcost iai,iai,a a
     (4) 

where 
aiTT ,

 is the travel time to be spent for the joint activity at a certain location; a  represents 

a value of time. Assuming opportunity costs to be a linear function of travel time plus activity 

duration is based on the notion that time could be spent in many other ways and hence no 

diminishing returns occur on the level of opportunity costs. 

 

The parameters involved in the utility function can be estimated by conducting stated choice 

experiments in which values of the parameters are systematically varied and hence the utility 

function can be estimated (Hensher et al. 2005). Examples of such stated choice experiments in 

travel behavior analysis include Nijland et al. (2011) and Grigolon et al. (2012). Compared with 

the analysis in the literature, there are several key features for the negotiation model: 

 

 The overall utility function in Equation 1 is nonlinear, non-monotonic, and continuous. 

Our negotiation model can handle this and other types of utility functions as well. 

 There are four main issues concerned in the negotiation, three discrete issues and one 

continuous issue. Our model can handle more discrete issues but at most one continuous 

issue. 

 There can be more than two players involved in the negotiation, e.g., three or more. 

 

Multiple Offer Mechanism 

There are usually multiple offers conceivable which give the same amount of utility. Figure 1 

shows an example where three offers 1aoffer , 2aoffer , and 3aoffer  give the same value of 

utility, U. An agent is indifferent about these alternative offers because all of them have the same 

utility value to the agent. Therefore an agent is willing to submit these multiple offers together as a 

proposal.  
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FIGURE 1. The overall utility function of agent a and an example of multiple offers 

),,( 321 aaa offerofferoffer  of agent a. 

Concession Strategy 

The negotiation takes place round by round until an agreement for all or some of the agents is 

reached or until some agent reaches his deadline. In each round, agents send their proposals 

sequentially and the order is generated randomly before the beginning of every round. 

 

At any point in time, an agent assumes a so-called acceptable utility level to determine which 

offers he is willing to accept. A concession strategy is essential for an agent to decide the 

acceptable utility level that he is going to move to in the next round. The concession method 

depends on the information that an agent has at that moment. 

 

 If there are no proposals in the history of the process, then the agent is the first one to 

give a proposal. Because there is no proposal from the history for the agent to judge or 

accept, the agent uses his own utility function to determine proposals which give him the 

highest utility. Therefore, no concession strategy is required for this case. 

 

 If the agent is not the first one to give his proposal in the negotiation, then he can choose 

to concede by lowering his acceptance utility level by some amount. For example, in 

Figure 1 an agent a concedes by setting 1t

a

t

a UU  where 0  is a step size, t

aU  is 

the acceptable utility level at time t and 0t

aU . The bold line in green denotes the 

acceptable utility level of 1t

aU  and the dashed line in green denotes that of t

aU . The agent 

does not need to nor is allowed to know other agents’ utility curves. 

 

 

U)(offeraxa  

1aoffer  2aoffer  3aoffer  

1t

aU  
t

aU  
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 If the agent reaches the utility level equal to zero, then the agent cannot submit any new 

proposal(s) but he can still check if there is an agreement until all the agents come to 

utility of zero. 

 

 If all the agents come to the utility equal to zero, it means that it is not possible for all the 

agents to reach an agreement. Then each agent will check if there are agreement(s) for 

some of the agents including himself. If there is such an agreement, then the agent will 

submit it to the other agents with the appropriate time stamp. The system will choose the 

one with the earliest time stamp as the final agreement for the agents involved. 

 
Making a concession is not always the best choice for a rational agent. When there are some 

proposals submitted by other agents in the past, the agent can also decide to base his next move on 

previous proposals of others by moving towards their proposals, e.g., if the other agents have 

suggested an offer shared by them, 
qSOffer , then the agent will compute his utility as if he would 

accept this offer, denoted as )(SOfferqa
. If there is more than one shared offer, the agent 

computes all the utilities for him and identifies the best one denoted as 
pSOffer . A rational agent 

will compare which one gives him a higher utility. If the concession strategy gives him a higher 

utility, which means t

aa U)(SOfferp , he will give his proposal according to the utility level t

aU . 

Otherwise he will accept the proposal submitted by others before and consequently end the 

negotiation process. 

Model 

Each agent ] [1,a N  has a negotiation deadline 
aT . A round is a moment when all the agents 

submit their proposals once. If the proposals can form an agreement in round t, the negotiation 

finishes successfully; otherwise the negotiation passes on to the next round. If no agreement is 

reached until the deadline, },...,min{ 1 NTTT , the whole negotiation will stop unsuccessfully and 

every agent gets zero utility (i.e., the utility he gets from spending time in another way). 

 

We use two agents a and b as an example to explain the following proposal generation process. 

Negotiation starts when the first proposal is made by an agent, say a. When agent a receives a 

proposal from agent b at time t, i.e., ,...)(...,)(Proposalb bpoffert  which includes multiple offers 

but 
bpoffer  is the best choice for agent a, he evaluates the offer 

bpoffer  using his utility function 

)( bpa offer . If the value of )( bpa offer  at time t is greater than or equal to the current acceptable 

utility  level of a , i.e., t

aU , then agent a accepts 
bpoffer  submitted by agent b. Otherwise a counter-

offer is made, denoted as ),...,,( 21 asaa offerofferoffer , where t

aaxa Uoffer )( ; x is an integer 

and ],1[ sx ; and s is the number of possible offers where this equation holds. If the deadline T 

is reached, then the negotiation ends and agent a has to quit.  
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We denote the agents, all or some, as a set SA which includes the agents to be considered in an 

agreement. Thus, a proposal is formally defined as: 

.],1[)(),...,,(

;)()(
)(Proposal

21

a

otherwisesxforUofferwhereofferofferoffer

Uofferifoffer
t

t

aaxaasaa

t

apap  

where as before, 
poffer  is one offer submitted by other agents SA in the past and 

poffer  brings 

the highest utility to agent a SA compared with other offers from other agents in the past; in fact, 

poffer  is Shared Offer explained below; t represents the current round; a SA is an index of agent; 

s is the total number of offers which meet the acceptance level utility t

aU  of agent a at time t.  

 

Definition 1: 

bjal offeroffer  means that 
bjal STST , 

bjal LOCLOC , 
bjal PARPAR , 

bjal DURDUR  

where 
aloffer  is submitted by agent a SA and 

bjoffer  is submitted by agent b SA. 

 

Since proposals submitted by various agents in SA  are broadcast to each other, agent a can keep a 

history of all these proposals by various agents in the negotiation. 

 

Definition 2: 

all oHistory (t) {Proposal ( )}y  where SAo ; [1, ]y t . 

 

Based on the history of all the proposals submitted by all the agents SA, (t)Historyall
, agent a is 

able to save all the proposals by the agents except agent a himself into (t)Historya
. 

 

Definition 3: 

a rHistory (t) {Proposal ( )}y  where SAa ; SAr  and ar ; [1, ]y t . 

 

Suppose there are M agents in SA and NM . According to (t)Historya
, agent a can further 

compare all the proposals by the other agents. When there are different moments 
1t , 

2t , …, 

],1[1 ttM
  such that  )(Proposal 11

tr
∩ )(Proposal 22

tr
∩…∩ )(Proposal 11 Mr t

M
=SSO and 

SSO≠Ø, it means that these proposals have one or more offers in common and agent a will save 

these shared offers into (t)rSharedOffe a
. 

 

Definition 4: 

}{SOffer(t)rSharedOffe ca
 where 

cSOffer SSO; ],1[ Zc ; Z is the total number of 
cSOffer  

in SSO. 

 

Definition 5: 
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An agreement is achieved by M agents when there are 
1t , 

2t , …, ],1[ ttM
 such that   

)(Proposal 11 t ∩ )(Proposal 22 t ∩…∩ )(ProposalM Mt ≠Ø.  

Search Mechanism 

The search for an agreement by an agent a in one round is carried out in the following steps. If 

there is no agreement and the deadline is not reached yet in this round, then the search process will 

continue in the next round. 

 

1. Agent a calculates his acceptable utility level denoted as 
t

aU  according to the agent’s 

concession strategy at negotiation round t;  

2. Based on all the available proposals in the history, (t)Historyall
, the agent finds the 

offer(s) which are shared by the other agents, (t)rSharedOffe a
;  

3. Agent a computes )(SOfferpa
 where 

pSOffer  is the best shared offer for him.  

4. The agent will accept 
pSOffer   only if t

aU)(SOfferpa
. Then there is an agreement 

and the search process ends.  

5. Before the deadline T is reached, if all agents come to utility equal to zero, agent a will 

give up searching for an agreement of all the agents but start to look for an agreement of 

some agents. 

a. Agent a will denote the valid subset of all participants as part  and find the 

offers shared by these participants, 
aSharedOfferPart (t) ; 

b. Agent a will repeat step 1 to 4 while replacing (t)rSharedOffe a
 by

aSharedOfferPart (t); 

c. If there is still no agreement for part , then agent a changes to another valid 

subset of all the participants and jumps to step 5.a. 

6. If the deadline T is reached, then there is no agreement and the search process ends. 

Protocol 

A negotiation protocol for N agents taking into account the search mechanism is proposed below. 

A detailed procedure is shown in pseudo code in Figure 2 where Line 10 to Line 13 is the search 

for an agreement; Line 15 to Line 17 is to submit a proposal by the current agent; Line 21 to Line 

29 is to search an agreement with fewer participants; Line 37 to Line 42 is to make a concession 

for all the agents after one round. Less formally, the protocol can be written as follows: 

 

1. All agents assign negotiation parameters before a negotiation starts, i.e., his own utility 

function, his own negotiation deadline. 

2. A round starts.  
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3. One agent is randomly assigned to start making a proposal. The agent calculates all his 

acceptable offers according to the utility function and the current acceptance utility level.  

4. If the existing shared offers by the other agents give equal or larger utility to the agent 

than his own counter-offer(s), then the negotiation is completed. If not and it is his 

deadline, then the negotiation is completed with no agreement. Otherwise the agent sends 

counter-offer(s) to the other agents. Then another randomly assigned agent will repeat 

Step 3 and step 4 until all the agents submit their counter-offers for the current round.  

5. At the conclusion of a round, all negotiators calculate the concessions they are willing to 

make for the next round. Return to step 2 to commence a new round until all the agents 

come to utility of zero. 

6. If there is an agreement for some of the agents, then an agent will submit it to the other 

agents with the appropriate time stamp. The system will choose the one with the earliest 

time stamp as the final agreement for the involved agents. 

 

The concession process continues until there is an agreement, or the deadline is reached, or all 

acceptable utility levels have reached zero without an agreement. Therefore, if there is no mutual 

agreement at the end of the negotiation, the reason may be that the deadline is too soon for any 

agent to try all the possible proposals; or there is no acceptable mutual agreement among all or 

some of the agents. In other words, our proposed protocol can guarantee finding the agreement if 

the deadline is long enough and if there is at least one proposal which brings non-negative utility 

for all or some of the agents. If all or some of the agents do not reach a mutual agreement while 

deadlines are not restrictive, then negotiations are unsuccessful because there is in fact no solution 

even if all agents concede to a maximum extent. In case multiple agreements exist in the end, the 

system will choose one randomly because any of them satisfies the Pareto optimality requirement. 
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Figure 2. The pseudo code of the negotiation process for N agents. 

 

1. There are N agents; T is the maximum round of the negotiation process; 

2. )}({Proposal(t)History oall p  where ],1[ No ; ],1[ tp ; ],1[ Tt ; 

3. t

o
 denotes the utility level of an agent o in round t; t=1; bSubmit=true; 

4. while ( Tt ) do 

5.     Randomly arrange the sequence of agents; 

6.     i=1; 

7.     while ( Ni ) do 

8.         Find the shared offers (t)rSharedOffe i
; 

9.         Find the shared offer best for agent i, 
pSOffer , which satisfies 

))t((SOffer))t((SOffer qp ii
 where q  

qSOffer   (t)rSharedOffe i
 and qp ; 

10.         if ( t

iU)(SOfferpi
) then 

11.             agent i accepts 
pSOffer ; 

12.             there is an agreement for the agents; 

13.             break; 

14.         else 

15.             if (bSubmit==true) 

16.                 submit his offers, ),...,,( 21 sofferofferoffer , which gives him the utility t

iU ; 

17.             end if 

18.         end if 

19.         if (all the agents come to zero utility) 

20.         // each agent goes to check agreements for less participants, but the more the happier. 

21.             Find the valid subset of participants denoted as part  and find the offers shared by 

these participants, denoted as
aSharedOfferPart (t) ; 

22.             r=1; 

23.             while ( r T ) do 

24.                 Find the shared offer best for agent i, 
pSOfferPart , which satisfies 

p q(SOfferPart (t)) (SOfferPart (t))i i
 where q  

qSOfferPart   
aSharedOfferPart (t)  

and p q ; 

25.                 if (
i p(SOfferPart ) t

iU ) then 

26.                     agent i accepts 
pSOfferPart ; there is an agreement for the agents; break;                                        

27.                 end if 
28.                 r=r+1; 

29.            end while 

30.         end if 

31.         i=i+1; 

32.     end while 

33.     if (there is an agreement) then 

34.         break; 

35.     else 

36.         i=1; 

37.         while ( Ni ) do 

38.             
i

t

i

t

i UU 1 ; 

39.             if( t

iU <0) then t

iU =0; end if 

40.             if( t

iU ==0) then bSubmit=false; end if         

41.             i=i+1; 

42.         end while 

43.     end if 

44.     t=t+1; 

45. end while 
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The computation complexity for the above protocol is 

))(( 2

STLOCPAR NNNNTNTO  where T is the maximum number of rounds of the 

negotiation process; N is the total number of agents; PARN  is the number of available choices of 

PAR; LOCN  is the number of that for LOC; STN  is the number of that for ST. The exact 

computation time for finding an agreement is shown in Figure 12 at the end of Section 

Experiment. Given that the situations in our applications generally handle only several agents and 

a few typical issues with very limited choices, the computation time according to our experiment is 

acceptable. 

Theoretical Analysis towards the Negotiation Model 

As noted by Jennings et al. (2001) and Nisan et al. (2007), mechanism design involves the design 

of protocols for governing multi-agent interactions, such that these protocols have certain desirable 

properties, including Pareto optimal solutions, individual rationality, and guaranteed success. 

Pareto Optimal Solutions 

A solution Xx  is Pareto efficient or Pareto optimal if there is no other solution Xy for which 

)()( xy ii
 for all ],1[ Ni . Given an initial solution among a set of individuals, a change to a 

different solution that makes at least one individual better off without making any other individual 

worse off is called a Pareto improvement. A solution is defined as Pareto efficient or Pareto 

optimal when no further Pareto improvements can be made. 

 

Theorem 1 

The agreement achieved by our proposed protocol is Pareto efficient or Pareto optimal. 

Proof: 

Suppose our agreement is Xx  where },...,{ 1 Vxxx , V is the total amount of issues, and 

there is another agreement, Xy where },...,{ 1 Vyyy . According to our proposed protocol, 

the agreement x is the first agreement encountered. Each individual gains his utility as denoted 

)(xk
 and ],1[ Nk . The solution y is another one encountered after x. The utilities for all the 

individuals are )( yk
 and ],1[ Nk . 

 

Because y is encountered after x, based on our protocol in Figure 2, there must exist an agent i and 

an agent j such that )()( xy ii
 while )()( xy jj

 where ij  and ],1[ Nj . Hence, 

according to the definition of Pareto improvement, y is not a Pareto improvement on x. This 

situation is the same for any other agreement achieved after x. Therefore the solution x is Pareto 

efficient or Pareto optimal because no further Pareto improvements can be made. □ 
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Individual rationality 

A model is said to be individually rational if following the protocol, i.e. “playing by the rules”, is 

the best interests of negotiating participants. Individually rational models are essential because 

without them, there is no incentive for agents to engage in negotiations. 

 

Theorem 2 

The model proposed by us is individually rational. 

Proof: 

Because whether the outcome is an agreement or disagreement, every player gets a utility no less 

than zero, which is also the utility for every player if he does not participate in the negotiation. 

Therefore, the negotiation protocol is individually rational. □ 

Guaranteed success 

Theorem 3 

The model proposed by us guarantees success if there is no time limit and a solution exists. 

Proof: 

If we assume that there is no agreement found, it means that the values of all the issues by one 

agent are not the same as the others. This may result when the deadline of the negotiation is too 

early. In contrast, our model guarantees success if there is no time limit. Hence it ensures that an 

agreement is certain to be reached if the utility functions for all or some of the agents share a 

common subset on all the issues, as shown by the pseudo code in Figure 2. □ 

Implication of the Negotiation Process 

There are essentially two basic approaches to model human beings’ decision making process 

(Zeleny 1982). One is the outcome-oriented approach while another is the process-oriented 

approach. The rational (maximized social welfare where the sum of all the individuals’ utilities is 

maximized) model is the conventional model in travel behavior analysis and this model is an 

outcome-oriented model. However individuals are not necessarily perfect utility maximizers. Our 

negotiation model is an attempt to better capture the process and thus to have a better basis for 

predicting outcomes correctly. In addition, utility maximization is very computationally 

demanding and becomes prohibitive in large-scale simulation systems. In contrast, the negotiation 

model is much more scalable especially when the number of issues in the decision problem 

becomes large.  

Experiment 

In this section, we demonstrate the negotiation procedure by employing the proposed negotiation 

approach between three agents with nonlinear utility functions as an example. The best choice for 

each agent on location, start time, duration, and participants is shown to be changed in the 

negotiation procedure.  
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Setting 

Assume there are three agents representing three friends to negotiate a joint shopping activity. 

They are interested in four issues: location, participants, start time, and the duration. In order to 

simplify the negotiation process, the deadline for all negotiators is 100 rounds. The maximum 

number of rounds here can be even decreased further so as to speed up the negotiation process, 

which will be discussed and shown in a later section (Comparison with Theoretical Results). The 

duration for going shopping should be within [0, 9] hours. For the remaining issues, the agents 

have their own preferences, also in the range [0, 10]. The acceptance utility level is decreased by 

4.13 units per round. According to the utility curves shown in Figures 3, 4, and 5, the average of 

the maximum utility is about 413.0 units for agent 2 in Figure 4. Therefore, using this value of 

4.13 per round, an agent can scan through all his utility curves after 100 rounds if necessary. 

 

Agent 1 wants to go shopping with agent 2 and/or agent 3 together. His preferred stores/locations 

are V&D, C&A, or HEMA. Table 1 shows the preference values for each agent on the level of the 

parameters. In addition, the values of 1 , 2 , and 3  are 10, 20, and 30, respectively. These 

values have been chosen for illustration purposes only, however, in applications they could be 

derived from data collected on people’s preferences. As an example, agent 1’s preference value for 

shopping location V&D is 5 and the travel time, 
1,iTT , to this location is 20 minutes which is 

denoted between brackets. 

TABLE 1. Values for Three Parameters , , and  

Start time     

10 4 4  -  

12 8 4 3 

14 9 8 9 

16 4  -  1 

18  -   -  3 

20 4  -   -  

21 8  -   -  

Location     
V&D 5 (20 minutes) 9 (10 minutes) 5 (15 minutes) 

C&A 6 (25 minutes) 3 (12 minutes) 5 (20 minutes) 

HEMA 4 (30 minutes) 4 (20 minutes)  -  

Participants     
1,2,3 8 6 5 

1,2 2 4 3 

1,3 4 0 9 

 

iST
iLOC iPAR

iST 1

ST
2

ST

3

ST

iLOC 1

LOC

2

LOC

3

LOC

iPAR 1

PAR

2

PAR

3

PAR
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Figure 3. The utility curves of agent 1. 

 

 

Figure 4. The utility curves of agent 2

 

Figure 5. The utility curves of agent 3. 

 

Figure 6. The proposals by agent 1. 

 

Result 

By employing the proposed model, agents 1, 2, and 3 can efficiently generate and exchange their 

offers during the negotiation. All offers in each negotiation round are generated and displayed in 

Figures 6, 7, and 8, respectively. 

 

In Figure 6, the dashed line on the top gives the initial acceptable utility level that can be achieved 

by agent 1. The dashed line at the bottom gives the final acceptable utility level when the 

negotiation finishes. This is also shown for the other two agents in Figures 7 and 8. When there is 

an agreement for some or all agents, the offer agreed is pointed out by the cross point of a vertical 

line and a horizontal line with a small circle in the center. 

 

In the first round, the first proposal submitted by agent 1 is shown by the star lying on the upper 

dashed line. When the other agents generate their proposals, they will first consider the proposals 

submitted by others before. If the proposals in the history of the process fall on their utility curves, 

then they compare whether those proposals give a higher utility than their acceptable utility level. 

If not, it means that those proposals can only give them less utility. Then they will submit their 
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own proposals according to their best acceptable utility level. In our example, the first proposals 

are as follows: 

 Agent 1 submits {14, C&A, {1,2,3} ,5.4 hours};  

 Agent 2 submits {14 ,V&D, {1,2,3}, 5.2 hours};  

 Agent 3 submits {14,V&D, {1,3}, 6.8 hours}. 

 

It is clear that there is no agreement at this moment: while the agents agree on start time, only 1 

and 2 agree on the composition of the participants, only 2 and 3 agree on location, and there is no 

consensus regarding duration. (For durations to be considered as “equal” a margin of 0.5 is 

allowed.) 

 

In the future rounds, agent 1 will decrease his acceptable utility level step by step according to his 

concession strategy described above (in section Concession Strategy). Eventually, at round 71, 

when agent 3 decides on his proposals at this time, he checks the history of proposals and finds 

one offer shared by the other two agents: {14, V&D, {1,2,3}, 2.5}. These two offers are {14, 

V&D, {1,2,3}, 2.1} by agent 1 in round 30 and {14, V&D, {1,2,3}, 2.5} by agent 2 in round 14. 

Agent 3 compares the utility brought by this proposal and his acceptable utility level and then 

chooses to follow this proposal because it brings him a higher utility. He does not choose to make 

this proposal earlier because at that time it does not return a higher utility than his own proposal. 

 

The final agreement is shown in Figures 6, 7, and 8 by the intersection of two lines. The 

negotiation process comes to an end at round 71. It is shown that, in our experiment, the best 

choices for individual agents, i.e. Agent 1 {14, C&A, {1,2,3} , 5.4}, Agent 2 {14 ,V&D, {1,2,3}, 

5.2}, and Agent 3 {14,V&D, {1,3}, 6.8}, have been changed to {14, V&D, {1,2,3}, 2.5} where 

the location is changed to V&D, participant is changed to {1,2,3}; and the duration is changed to 

2.5 hour. 

 

 

Figure 7. The proposals by agent 2. 

 

Figure 8. The proposals by agent 3. 
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Comparison with Theoretical Results 

In our case, social welfare refers to the sum of utilities across all the participants in the negotiation. 

The maximized social welfare solution (Andreu 1995) is the one which maximizes the sum of the 

utilities across all agents. Because our solution does not extensively search for all the possible 

agreements, the agreement achieved by our proposed algorithm does not guarantee to maximize 

social welfare. However it is useful to understand how close it is to the point of maximum social 

welfare or in other words the perfect situation. Therefore, we design the following experiment to 

determine the performance. 

 

Besides that, the result achieved in the previous subsection is only for one run of the negotiation 

model. It will be more meaningful if we can determine the performance of our model on average 

across more runs. Hence the following experiment is necessary for a more thorough evaluation. 

Experiment Setup 

The setup is similar as before. However, in terms of number of rounds we impose a maximum of 

10 rounds (instead of 100 rounds). A run, as before, is composed of multiple rounds. The change 

of the maximum number of rounds here is aimed at speeding up the negotiation process. The side 

effect is a decrease in the precision of the results. 

 

To make the comparison for a range of utility function specifications, we carry out multiple runs 

while varying the values of parameters for each agent. There are multiple ways to vary the 

parameters in the utility functions, e.g., adjusting the values of 
iST ,  

iLOC ,  
iPAR , and . We 

will impute random variation. Eventually 1000 runs will be carried out, which aims to give a stable 

result (He et al. 2003). In the experiment, we arbitrarily give agent 1, 2, and 3 the initial values of 

 as 1 =80, 2 =70, and 3 =60.  

 

In the first part of experimentation, we randomly draw values of 
iST ,  

iLOC ,  
iPAR  (see Table 

1) and the value of  at the beginning of each run. The range for each of these values is [0, 10] 

and a uniform probability distribution is assumed. 

 

In the second part, we expect to observe some trend when the utility functions are changed in a 

specific systematic way. That is to say, it is interesting to change the cost per hour, . In total, we 

conduct the experiment for 1000 runs with different values of  for three agents which include  

10 times making a change on 1 , another 10 times of making a change on 2 , and finally 10 

times of making a change on 3 . We decrease monotonically the cost parameter by assuming that 

the step size, denoted as , is set to 6. Then the values of the opportunity costs parameter is 

varied for the three agents as 1 =80 , 74, ..., 26; 2 =70, 64, ..., 16; and  3 =60 , 54, ..., 6. 
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Result 

The result for the first part of the random changes on the values of preferences for 
iST ,  

iLOC ,  

iPAR , and the value of  is shown in Figure 9. The X axis represents the serial number of runs 

from 1 to 1000. The Y axis is the ratio of the overall utilities for three agents achieved by our 

proposed protocol over that achieved by the maximized social welfare solution.  

 

The total number of agreements out of 1000 runs/negotiations is 900 where 720 agreements shown 

by stars in the figure are achieved by three agents and the other 180 shown by circles in Figure 9 

are achieved by two out of three agents. Moreover, the ratio of our Pareto optimal solution over the 

maximized social welfare solution by three agents is mostly more than 0.9, which means that the 

outcome of our solution is quite close to that of the maximized social welfare solution. However, 

the location choice differs a lot between these two sets of solutions.  

 

Compared to the agreements achieved by three agents, those achieved by two agents are very 

scattered if we look at all the small circles in Figure 9. The reason is that in case of a partial 

agreement, each agent chooses the agreement that he encounters first in his history list for any two 

participants (there will be more than one agreement)  and this somewhat arbitrary choice will lead 

sometimes to a big difference between our solution and the maximized social welfare solution. 

 

The remaining 100 unsuccessful runs are denoted by arrows at the bottom line of Figure 9. That is 

because there is no possible agreement first by all three agents and neither later by two agents. 

 

 

Figure 9. The ratio of the utilities gained 

by our Pareto optimal solution over the 

utilities gained by the maximized social 

welfare solution for three agents in a 

random parameter setting.  

 

Figure 10. The ratio of utilities for three 

agents achieved by our model over that by 

the maximized social welfare solution for 

three agents in a systematic setting. 

 

Figure 10 gives the result of the second part of experiments on achieving agreements in 1000 runs. 

All these 1000 runs have their agreements. In particular, in most runs out of these 1000 

runs/negotiations the ratio of our Pareto optimal solution and the maximized social welfare 
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solution is more than 0.95. The better performance in the second part compared with the first part 

of experiments is due to the smaller change of utility functions in the second part. On the one 

hand, all the three agents have valid utility curves higher than zero. On the other hand, there exists 

at least one solution shared by all the three agents according to their utility curves.  

 

We can conclude from Figures 9 and 10 that our protocol performs very well in that it always finds 

an agreement when the deadline is long enough and when all the agents or part of the agents 

indeed share common values for all the parameters while their utilities are always non-negative. In 

the meanwhile the search for our Pareto optimal solution shown in Figure 11 can be finished much 

quicker than the search for the maximized social welfare solution. According to the figure, our 

solution costs about half of the time spent by the search for the maximized social welfare solution. 

The reason is that the latter one requires all the agents to go through all the concessions. 

 

In addition, the execution time for finding an agreement in 1000 runs is given in Figure 12. 

According to Figure 12, the average execution time is about 0.2 seconds. Given this result, our 

model can meet the requirement of scalability and therefore be embedded in large scale agent-

based simulation of dynamic joint activity scheduling.  

 

 

Figure 11. The ratio of calculation time 

for achieving an agreement by our model 

over that by the maximized social welfare 

solution in the same setting as Figure 10.  

 

Figure 12. The exact calculation time for 

achieving an agreement by our model in 

the same setting as Figure 10. 

 

Discussion 

The proposed negotiation model is suitable to be applied in a more comprehensive activity 

scheduling system. On the one hand, the utility function used in the negotiation model takes care 

of the issues most likely to be considered in activity travel scheduling processes. On the other 

hand, in our multi-agent based dynamic activity-travel scheduling system (Ma et al. 2012), each 

agent is enabled to exchange messages so that negotiation can be realized to solve possible 

conflicts among agents. Therefore this system allows us to include certain aspects of social 
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behavior of individuals which cannot be accommodated in existing utility-maximization systems. 

Within such a complicated environment, negotiation agents (i.e., agents who can negotiate through 

sending messages and making decisions.) will bring a big difference compared with other 

approaches to solve conflicts. For example, the proposed negotiation model can protect agents’ 

private information from being disclosed to other agents, which simulates more of the real world. 

Moreover, agents can compromise and therefore have rights on determining their own pace of 

reaching an agreement. Several mechanisms which can speed up the negotiation procedure and 

further enhance realism, such as credit and power, have been discussed in Ma et al. (2011a, 

2011b). We have also shown in the experiment section that our results are different compared to 

the maximized social welfare approach where the sum of utilities by all the agents is maximized.  

 

There are also other issues related to activity-travel negotiation and scheduling processes, such as 

available transport modes, travel time, travel cost, etc. It is possible to follow the protocol of 

negotiation proposed in this work to negotiate these travel related issues as well. The most likely 

one in our application is to negotiate joint travel solutions separately where issues such as travel 

start time, travel duration, transport mode, travel cost, joint travel with other participants, and so 

on, can be handled more thoroughly. Since we focus on joint activity in this work, the issues 

discussed in our negotiation model are still limited given our focus. 

 

As we have claimed in the section on the utility function, the parameters involved in our 

negotiation model can be estimated by conducting stated choice experiments. Moreover, other 

parameters, i.e., the range of deadlines of the negotiation process for each agent, such as the step 

size, , during conceding, can be better investigated through questionnaires.  

 

The negotiation protocol proposed in our work can handle one continuous attribute, i.e. the 

duration of the joint activity. If there are more than one continuous attributes, e.g. two, then the 

search space will be expanded to more dimensions, e.g., 3D. In that case, the difference in utility 

function between agents together with the number of continuous attributes will determine the 

shape of the search space and hence determine which search strategy is best for the complex 

search surface. The negotiation protocol and the search strategy rely a lot on the nature of the 

problem. Except this limitation, the number of discrete issues and number of agents can be less or 

more, which will not cause an extra burden to our proposed negotiation protocol. Moreover, the 

utility functions of different participants assumed in applications do not need to be the same as we 

have proposed in this study. The utility functions can be linear or nonlinear, monotonic or non-

monotonic, and continuous or discrete; all is up to the specific demands of an application.  

 

Conclusions and Future Work 

We have proposed a negotiation model for a semi-cooperative environment in which utility 

functions are nonlinear, non-monotonic, and private. Our approach searches the solution space by 
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allowing agents to gradually concede utility whilst looking for a common solution. The solution 

achieved by our model is Pareto optimal; satisfies individual rationality; and our approach 

guarantees success.  

 

In our application area of interest, the mechanism has been shown to be successful in finding an 

agreement for a shopping activity involving three people as a typical example. According to our 

experiments, our proposed mechanism can find the solution when the deadline is sufficiently long 

and when the solution is available in the utility functions of the participating agents. Given the 

computational performance, the model is applicable in large-scale multi-agent simulations. In the 

meanwhile, we have shown through the experiments that the location choices together with start 

time, participant, and duration are affected by the process of negotiation. 

 

Since there is no universally best approach or technique for negotiation, it is worthwhile to explore 

and discuss other scenarios within the framework of our protocol. Our model can be easily 

extended to cases with other discrete issues in addition to the current issues, such as which day to 

carry out the shopping activity.  Our proposed protocol is also possible to deal with cases that do 

not include continuous issues. Besides the current semi-cooperative environment, competitive 

environments for negotiation can be considered as well. Finally, the utility function can be 

different: linear or nonlinear, monotonic or non-monotonic, and continuous or discrete.  

 

Future work on our agenda includes integrating the negotiation procedure into a larger scale agent-

based simulation of activity-travel behavior. In addition, the data collection is ongoing. After the 

data collection is finished, empirical estimation of the parameters and validation need to be 

conducted in future research. 
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