Skip to main content
Log in

A spatial interaction model with spatially structured origin and destination effects

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

We introduce a Bayesian hierarchical regression model that extends the traditional least-squares regression model used to estimate gravity or spatial interaction relations involving origin-destination flows. Spatial interaction models attempt to explain variation in flows from n origin regions to n destination regions resulting in a sample of N = n 2 observations that reflect an n by n flow matrix converted to a vector. Explanatory variables typically include origin and destination characteristics as well as distance between each region and all other regions. Our extension introduces latent spatial effects parameters structured to follow a spatial autoregressive process. Individual effects parameters are included in the model to reflect latent or unobservable influences at work that are unique to each region treated as an origin and destination. That is, we estimate 2n individual effects parameters using the sample of N = n 2 observations. We illustrate the method using a sample of commodity flows between 18 Spanish regions during the 2002 period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. If one starts with the standard gravity model and applies a log-transformation, the resulting structural model takes the form of (1) (c.f., equation (6.4) in Sen and Smith 1995).

  2. For our conventional spatial contiguity matrix D which has zeros on the diagonal and row sums of unity, the inverse is well defined for ρ < 1.

  3. Of course for the destination effects parameters, we have: ϕ = (I n  − ρ d D)−1 u d .

  4. Row sums of unity and zeros on the main diagonal.

  5. Of course, one of the regions would need be eliminated from each of the matrices VW to avoid have a perfect linear combination of dummy variables.

  6. For clarity of presentation, we set forth conditional distributions involved in our sampling scheme in vector-matrix notation rather than the moment matrix form.

  7. We exclude the intraregional model from the data generating process as well as estimation procedure.

References

  • Ballester C, Calvó-Armengol A, Zenou Y (2006) Who’s who in networks. Wanted: the key player. Econometrica 74:1403–1417

    Article  Google Scholar 

  • Banerjee S, Gelfand AE, Polasek W (2000) Geostatistical modelling for spatial interaction data with application to postal service performance. J Stat Plan Inference 90:87–105

    Article  Google Scholar 

  • Barry RP, Pace RK (1997) Kriging with large data sets using sparse matrix techniques. Commun Stat Comput Simul 26:619–629

    Google Scholar 

  • Besag JE, York JC, Mollie A (1991) Bayesian image restoration, with two applications in spatial statistics. (with discussion). Ann Inst Stat Math 43:1–59

    Article  Google Scholar 

  • Besag JE, Kooperberg CL (1995) On conditional and intrinsic autoregressions. Biometrika 82:733–746

    Google Scholar 

  • Bonacich PB (1987) Power and centrality: a family of measures. Am J Sociol 92:1170–1182

    Article  Google Scholar 

  • Cressie N (1995) Bayesian smoothing of rates in small geographic areas. J Reg Sci 35:659–673

    Article  Google Scholar 

  • Fischer MM, Scherngell T, Jansenberger E (2006) The geography of knowledge spillovers between high-technology firms in Europe evidence from a spatial interaction modelling perspective. Geogr Anal 38(3):288–309

    Google Scholar 

  • Gelfand, Baerjee (2004) Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC, Boca Raton

  • Gelfand AE, Sahu S, Carlin BP (1995) Efficient parameterizations for normal linear mixed models. Biometrika 82(3):479-488

    Article  Google Scholar 

  • LeSage JP, Fischer MM, Scherngell T (2007) Knowledge spillovers across Europe, evidence from a poisson spatial interaction model with spatial effects. Pap Reg Sci 86(3):393–421

    Article  Google Scholar 

  • LeSage JP, Pace RK (2008) Spatial econometric modeling of origin-destination flows. J Reg Sci 48(5):941–967

    Article  Google Scholar 

  • Llano C (2004) Economía espacial y sectorial: el comercio interregional en el marco input-output. Instituto de Estudios Fiscales. Investigaciones 1-2004

  • Llano C, Esteban A, Pulido A, Prez J (2010) Opening the interregional trade black box: the C-intereg database for the Spanish economy (1995–2005). Int Reg Sci Rev 33:302–337

    Article  Google Scholar 

  • Oliver J, Luria J, Roca A, Prez J (2003) en La apertura exterior de las regiones en España: Evolución del comercio interregional e internacional de las Comunidades Autónomas. 1995–1998. Institut dÉstudis Autonòmics. Generalitat de Catalunya. Ed Tirant lo Blanch. Valencia

  • Sen A, Smith TE (1995) Gravity models of spatial interaction behavior. Springer, Heidelberg

    Book  Google Scholar 

  • Smith TE, LeSage JP (2004) A Bayesian probit model with spatial dependencies. In: LeSage JP, Kelley Pace R (eds) Advances in econometrics: volume 18: spatial and spatiotemporal econometrics. Elsevier Ltd, Oxford, pp 127–160

  • Sun D, Tsutakawa RK, Speckman PL (1999) Posterior distribution of hierarchical models using car(1) distributions. Biometrika 86:341-350

    Article  Google Scholar 

  • Sun D, Tsutakawa RK, Kim H, He Z (2000) Bayesian analysis of mortality rates with disease maps. Stat Med 19:2015–2035

    Article  Google Scholar 

  • Tiefelsdorf M (2003) Misspecifications in interaction model distance decay relations: a spatial structure effect. J Geogr Syst 5:25–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. LeSage.

Appendix: Details regarding the MCMC sampler

Appendix: Details regarding the MCMC sampler

First, we show that the conditional posterior for δ takes the multivariate form presented in the text.

$$ \begin{aligned} p(\delta | \theta, \phi, \rho_o, \rho_d, \sigma^2_o, \sigma^2_d, \sigma^2_{\varepsilon}) &\propto \pi(\delta) \cdot \hbox{exp} \left\{ - \frac{1}{2 \sigma^2{\varepsilon}} (y - Z \delta - V \theta - W \phi)^{\prime} (y - Z \delta - V \theta - W \phi ) \right\} \\ &\propto \hbox{exp} \left\{ - \frac{1} {2 \sigma^2{\varepsilon}} (y - Z \delta - V \theta - W \phi)^{\prime} (y - Z \delta - V \theta - W \phi ) \right\} \\ &\quad\cdot \hbox{exp} \left\{ - \frac{1}{2 \sigma^2{\varepsilon}} \delta^{\prime} T^{-1} \delta \right\} \\ &\propto \hbox{exp} \left( - \frac{1}{2 \sigma^2{\varepsilon}} [\delta' (Z^{\prime} Z + T^{-1}) \delta - 2 Z^{\prime} (y - V \theta - W \phi)' \delta] \right) \\ &\propto \hbox{exp} \left( - \frac{1}{2 \sigma^2{\varepsilon}} \left[\delta - \Upsigma_{\delta}^{-1} \mu_{\delta}\right]^{\prime}\Upsigma_{\delta} \left [\delta - \Upsigma_{\delta}^{-1} \mu_{\delta}\right] \right) \\ \end{aligned} $$

where as reported in the text:

$$ \begin{aligned} \mu_{\delta} &= \frac{1}{\sigma^2{\varepsilon}} Z^{\prime} (y - V \theta - W \phi) \\ \Upsigma_{\delta} &= \frac{1}{\sigma^2{\varepsilon}} (Z^{\prime} Z + T^{-1}) \\ \end{aligned} $$

In this appendix, we follow Smith and LeSage (2004) in deriving the conditional posterior for the spatial autoregressive effects parameters θ. They note that:

$$ \begin{aligned} p(\theta | \ldots ) &\propto \hbox{exp} \left( -\frac{1}{2 \sigma^2_{\varepsilon}} [ V \theta - (y - Z \delta - W \phi)]^{\prime} [V \theta - (y - Z \delta - W \phi)] \right) \\ &\quad\cdot \hbox{exp} \left( - \frac{1}{2 \sigma^2_o} \theta^{\prime} B_o^{\prime} B_o \theta \right) \\ &\propto \hbox{exp} \left( - \frac{1}{2 \sigma^2_{\varepsilon} }\left [ \theta^{\prime} V^{\prime} V \theta - 2 (y - Z \delta - W \phi)^{\prime} V \theta + \theta^{\prime} \left( \sigma^{-2}_o B_o^{\prime} B_o \right) \theta\right] \right) \\ &= \hbox{exp} \left( - \frac{1}{2 \sigma^2_{\varepsilon}} \left[ \theta^{\prime} \left(\sigma^{-2}_o B_o^{\prime} B_o + V^{\prime} V\right) \theta - 2 (y - Z \delta - W \phi)^{\prime} V \theta\right] \right) \\ \end{aligned} $$

from which it follows that:

$$ \begin{aligned} \theta | \delta, \phi, \rho_o, \rho_d, \sigma^2_o, \sigma^2_d, \sigma^2_{\varepsilon}, y,Z &\sim N_{n}[\Upsigma_{\theta}^{-1} \mu_{\theta},\Upsigma_{\theta}^{-1}] \\ \mu_{\theta} &= \sigma^{-2}_{\varepsilon} V^{\prime} (y - Z \delta - W \phi) \\ \Upsigma_{\theta} &= \left(\frac{1}{\sigma^2_o} B_o^{\prime} B_o + \frac{1}{\sigma^2_{\varepsilon}} V^{\prime} V\right) \\ \end{aligned} $$
(22)

The conditional posteriors for σ 2 o , σ 2 d :

$$ \begin{aligned} p(\sigma^2_o | \ldots) &\propto \pi(\theta | \rho_o, \sigma^2_o) \pi(\sigma^2_o) \\ &\propto (\sigma^2_o)^{-n/2} \hbox{exp}\left( - \frac{1}{2 \sigma_o^2} \theta' B_o' B_o \theta \right) (\sigma^2_o)^{\nu_1 + 1} \hbox{exp} \left( -\frac{\nu_2}{\sigma_o^2} \right) \\ &\propto (\sigma^2_o)^{-(\frac{n}{2} + \nu_1 + 1)} \hbox{exp} \left[ - \theta' B_o' B_o \theta + \frac{2 \nu_2}{2 \sigma_o^2}\right ] \\ \end{aligned} $$

Which is proportional to the inverse gamma distribution reported in the text. A similar approach leads to \(p(\sigma^2_d | \ldots), \) and the conditional posterior for \(\sigma^2_{\varepsilon}: \)

$$ \begin{aligned} p(\sigma^2_{\varepsilon} | \ldots) &\propto (\sigma^2_{\varepsilon})^{-n/2} \hbox{exp}\left( - \frac{1}{2 \sigma^2_{\varepsilon}} e' e \right) (\sigma^2_{\varepsilon})^{\nu_1 + 1} \hbox{exp} \left( - \frac{\nu_2}{\sigma^2_{\varepsilon}} \right) \\ &\propto (\sigma^2_{\varepsilon})^{-(\frac{n}{2} + \nu_1 + 1)} \hbox{exp} \left[ - e' e + \frac{2 \nu_2}{2 \sigma^2_{\varepsilon}} \right] \\ e &= y - Z \delta - V \theta - W \phi \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeSage, J.P., Llano, C. A spatial interaction model with spatially structured origin and destination effects. J Geogr Syst 15, 265–289 (2013). https://doi.org/10.1007/s10109-013-0181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-013-0181-8

Keywords

JEL Classification

Navigation