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Abstract

Big Geo Data promises tremendous benefits to the GIS Science community in particular and the 

broader scientific community in general, but has been primarily of use to the relatively small body 

of GI-Scientists who possess the specialized knowledge and methods necessary for working with 

this class of data. Much of the greater scientific community is not equipped with the expert 

knowledge and techniques necessary to fully take advantage of the promise of big spatial data. 

IPUMS-Terra provides integrated spatiotemporal data to these scholars by simplifying access to 

thousands of raster and vector datasets, integrating them and providing them in formats that are 

useable to a broad array of research disciplines. IPUMS-Terra exemplifies a new class of National 

Spatial Data Infrastructure because it connects a large spatial data repository to advanced 

computational resources, allowing users to access the needle of information they need from the 

haystack of big spatial data. The project is trailblazing in its commitment to the open sharing of 

spatial data and spatial tool development, including describing its architecture, process 

development workflows, and openly sharing its products for the use general use of the scientific 

community.
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1 Introduction

IPUMS-Terra is a spatial data infrastructure project that focuses on the integration of 

heterogeneous big data. It does so by developing new methods and technologies capable of 

handling the diversity, volume, and complexity of scientific spatial data in the era of big 

data. IPUMS-Terra focuses on creating an integrated data repository with population and 

environmental data by collecting, preserving, documenting, and harmonizing datasets for a 

diverse community of researchers.
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The term big data became popular in the early 2000’s (Laney, 2001). However, geospatial 

datasets have always been large, requiring additional computational strategies to support 

their analysis (Armstrong, 2000; Ding & Densham, 1996). What separates big data from 

large data are the additional foundational characteristics termed the v’s of big data: volume, 

velocity, and variety (Laney, 2001). With respect to the IPUMS-Terra application and spatial 

data integration more generally, we would offer two additional characteristics: value and 

veracity. The IPUMS-Terra’s big data repositories reflect these characteristics.

The IPUMS-Terra data collection is big data, as it draws on allied datasets from the Institute 

of Social Research and Data Innovation (ISRDI), including the Integrated Public Use 

Microdata Series International projects (IPUMS-I) and the National Historical Geographic 

Information System (IPUMS-NHGIS). IPUMS-I contains over 300 censuses with half a 

billion person records with a total data volume of approximately three terabytes (Minnesota 

Population Center, 2017). NHGIS data collection is approximately 400 gigabytes, 

containing decennial census data from 1790 to present describing housing, population, and 

economic characteristics from the United States (Minnesota Population Center, 2011). 

Additionally, the IPUMS-Terra’s raster data collection is approximately half a terabyte and 

provides users access to over 4,000 global rasters on agriculture, climate, and land cover 

datasets.

IPUMS-Terra’s integration across three data structures: microdata, vector data, and raster 

data is truly innovative, particularly in how it handles and processes data types with varying 

characteristics. Microdata are fixed-width files on individuals and households, typically 

derived from surveys collected by government agencies. Vector data are geographic 

boundaries of areas, such as census units or administrative regions. Raster data are gridded 

and referenced representations of aerial imagery and satellite sensor data of the earth’s 

surface. They have typically been translated into earth features such as elevation or land 

cover.

IPUMS-Terra deals to varying extents with the ‘v’s of big data. However, it currently does 

not consume and process data in real time, velocity. Historically, each of the IPUMS data 

projects has been developed and maintained as separate data repositories. A motivation for 

the development of IPUMS-Terra was to connect these repositories and data structures to 

promote heterogeneous big data integration. The velocity component of IPUMS-Terra is 

slow, but it is constantly in motion.

Validity and value are paramount characteristics of big data in IPUMS-Terra. ISRDI focuses 

on providing curated datasets that promote compatibility and comparability for researchers. 

The center disseminates approximately one terabyte of data each month to thousands of 

researchers, resulting in hundreds of publications each year (Kugler & Fitch, 2018). The 

development of this Spatial Data Infrastructure (SDI) project is important because it 

provides simplified access to big data through its big data integration processes. In this 

paper, we focus on the development, standardization, and generalization of processes that 

benefit researchers through IPUMS-Terra.
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2 Big Integrated Spatial Data Infrastructure

Big data integration or data fusion is a fast expanding area of research that stands to benefit 

many scientific research areas through the creation of new datasets and making existing ones 

more readily available to a broader array of users. New datasets are developed primarily by 

integrating existing heterogeneous sources while broadening the use of existing ones often 

involves making them compatible with existing data and analytical processes (Abdalla, 

2016; Butenuth et al., 2007). Data fusion techniques have a long history in remote sensing 

(i.e., feature extraction and value estimations) (Sohn & Dowman, 2007). These techniques 

are increasingly being applied in industry, academia, health, and the public sectors, but have 

not yet been substantially automated within a SDI (Deschamps, Greenlee, Pultz, & Saper, 

2002; Jiang et al., 2016).

Big data integration has three benefits for the scientific community. First, data integration 

breaks data silos, allowing researchers from different domains to access and use new data 

sources. Second, data integration promotes interdisciplinary research through the sharing of 

datasets. Much of the research conducted in scientific communities is domain specific, in 

which each discipline develops its models and algorithms for analyzing a particular data 

structure. The GIS community is no exception, in that many researchers are often experts in 

either raster or vector data analyses. This singular focus does not lend itself to 

interdisciplinary or team science research. Integrated data allows researchers to 

collaboratively apply techniques to the same data. Third, data integration is an opportunity to 

develop new data products and new models that will utilize heterogeneous datasets from 

other disciplines.

Integrated big data are of no use without a suitable infrastructure to provide access to these 

data and, ideally, the tools for analyzing them. Currently, there are few frameworks that 

support big data integration. In the case of spatial data infrastructure, we have seen the 

historical development of two classes of SDI which are broadly characterized as geospatial 

repositories and geospatial computation.

Geospatial repositories or geoportals were the first type of SDI. The term was coined in the 

1990s by the US National Research Council (National Research Council, 1993). To date, 

there are numerous geoportals and they are characterized by their spatial extent (e.g., 

regional or national scales) and the type of data they contain (Maguire & Longley, 2005). 

The primary functions of geoportals are geoservice cataloging and data discovery. A 

shortcoming of geospatial repositories is that while they contain large volumes of data, their 

geospatial services are typically unable to be applied to big data because they do not 

adequately scale (Jaeger et al., 2005).

The second class of SDI focuses on geocomputation and can be subdivided into cloud-based 

computation platforms and geocomputation platforms. Geocomputation in the cloud is a 

standard way of scaling out geospatial operations (Evangelidis, Ntouros, Makridis, & 

Papatheodorou, 2014; Yue, Zhou, Gong, & Hu, 2013). Yue et al. (2010) describes a Software 

as a Service (SaaS) approach for scaling out the GIS software package Geographic 

Resources Analysis Support System (GRASS) on the cloud. The flexibility of the cloud-
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based approach is that it allows for the development of highly customizable geoprocessing 

tools. A drawback to this approach is that the user must develop the entire process. If the 

analytical methods employed by the SaaS are not scalable, the resulting workflow will have 

suboptimal performance. Additionally, the highly specific and complex nature of these 

models makes them difficult to use for all but the most highly trained and motivated 

researchers.

Geocomputation platforms such as the CyberGIS Gateway and Geospatial Building Blocks 

(GABBs) are improvements on the cloud geocomputing approach. These portals provide 

advanced cyberinfrastructure geospatial tools and services for big spatial data (CyberGIS 

Gateway, 2016; Geospatial Data Analysis Building Blocks, 2016). The groups provide a 

number of application-specific parallel spatial libraries through their platforms such as 

ppsyal and the AgMIP (GABBS, 2017, cybergis toolkit, 2017). A downside to these 

platforms is that users are often required to bring data to these platforms for processing, 

which entails data handling and transfer times. What is more useful for a broader array of 

users are platforms that grant researchers access to large-scale datasets combined with a 

computational environment for processing these data, eliminating the need to move data 

themselves.

IPUMS-Terra offers data and computation via a hybrid cyberinfrastructure – essentially, the 

combination of a geospatial repository and geocomputation system – designed to allow 

researchers to focus on their work without dealing with storing, manipulating, or analyzing 

data. The core functionality of IPUMS-Terra is more similar to that of a spatial data 

warehouse in that the platform’s purpose is analytical (Shekhar, Lu, Tan, Chawla, & 

Vatsavai, 2001). Data warehouses are renowned for their Online Analytical Processing 

(OLAP) capabilities, a series of tools capable of analyzing large datasets, performing trend 

analyses, forecasting, data mining and report generation (Bédard, Merrett, & Han, 2001; 

Viswanathan & Schneider, 2011). Spatial data warehouses utilize Spatial Online Analytical 

Processes (SOLAP) to provide knowledge about spatial data (Di Martino, Bimonte, 

Bertolotto, & Ferrucci, 2009; Rivest, Bédard, Proulx, & Nadeau, 2003).

Conceptually, SOLAP platforms leverage large geospatial data repositories and 

geocomputational platforms to provide spatial analytical tools for big spatial data (Rivest, 

Bédard, & Marchand, 2001). IPUMS-Terra is a SOLAP and it benefits the scientific 

community by enabling geospatial data-driven analysis, exploration, and discovery, without 

requiring them to have expert knowledge about spatial data analysis.

3 Challenges of Big Integrated Spatial Data Infrastructure

The development of an integrated spatial data infrastructure is not without challenges. A 

major issue with big data is identifying an architecture that supports all the characteristics of 

the data structures within the repository. For many projects, this requires utilizing new 

architectures, such as column-store or Hadoop-like platforms, which do not rely on 

traditional database indices that become outdated as the data continues to change. For 

IPUMS-Terra, a hybrid SDI, challenges arise primarily from geocomputation and 

geocataloging. Geocomputation challenges include the development of services and 
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architectures that support heterogeneous data processing, while geocataloging challenges 

focus on the integration of semantic content and metadata throughout the data access system 

to support data knowledge.

A significant challenge in providing geospatial services is identifying architectures that 

support heterogeneous data integration. Recently a number of authors have provided reviews 

on the open source big data platforms for spatial data (Eldawy & Mokbel, 2015; Haynes, 

Manson, & Shook, 2017; Olasz, Thai, & Kristóf, 2016). Their assessments indicate that 

essentially all of these platforms focus on implementing one geospatial data structure at the 

cost of the other (e.g., raster versus vector data models), which places a tremendous burden 

on the geospatial researcher because it forces the researcher to transform data between 

models and deal with several different platforms.

Because of the limitations imposed by available spatial data platforms, IPUMS-Terra does 

not currently utilize any high-performance geospatial system. Instead, it utilizes PostgreSQL 

with PostGIS for analyzing spatial data as it provides robust support for both vector and 

raster datasets for geospatial analysis. The system provides access to multiple raster formats 

including Network Common Data Format (NetCDF) and Georeferenced Tagged Information 

File (GeoTIFF). However, an ongoing challenge is the development of generalizable 

methods for processing raster datasets in PostgreSQL. The PostGIS raster datatype was only 

released in 2012 and does not currently support all the datatypes of the Geographic Data 

Abstraction Library (GDAL), arguably one of the most commonly adopted and powerful 

spatial toolkits. In response to these challenges, we provide strategies for incorporating large 

volumes of raster datasets and explain techniques that reduce the complexity of raster 

analysis.

A second challenge in developing IPUMS-Terra as a SOLAP platform, is the integration of 

semantics to support data access, data sharing, and data knowledge. A major goal of this 

project is to promote the access of geospatial data and methods to users who do not 

necessarily have the domain-specific skills necessary to access these datasets. Conversely, 

we give our primary user community of GIScientists access to valuable demographic 

datasets they, likewise, would not have the domain-specific knowledge to effectively use. For 

both groups of users, it is crucial that variable concepts and computational methods are 

represented in a way that makes them accessible to various user communities.

The approach that we have taken to the challenge of semantics is limited in comparison to 

much of the literature focusing on the standards often proposed for geosemantics 

(Lieberman & Goad, 2008; Percivall, 2010; Reitsma, Laxton, Ballard, Kuhn, & Abdelmoty, 

2009). Instead of attempting to create or use a general semantic framework, our approach 

primarily focuses on interoperability of the data structures within IPUMS-Terra (Friis-

Christensen, Schade, & Peedell, 2005; Vaccari, Shvaiko, & Marchese, 2009). Each data 

structure has a unique metadata framework developed around it to support its use within the 

system. This approach of utilizing metadata is similar to those put forth by those working on 

data integration and semantic enabled spatial data infrastructures, in which metadata is used 

to inform the processes that are applicable for each variable (Janowicz et al., 2010). 

Additionally, data and associated metadata that is moved into the system becomes 
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searchable through our user interfaces. To this end, we have adopted standardized metadata 

standards, which allow our metadata to be placed into other systems, such as DataOne 

(DataOne, 2014).

4 IPUMS-Terra

IPUMS-Terra addresses a number of the core challenges of big integrated spatial data 

infrastructure. The project provides researchers access to new datasets and uses spatial 

integration to transform them into data structures they already know(Figure 1a & b). Users 

are typically familiar with one data structure for analysis but may want to access and 

integrate data found in other formats (Figure 1a). Through IPUMS-Terra guided workflows 

this process is straightforward. IPUMS-Terra provides access to three different data 

structures: microdata that is stored in hierarchical flat files, geographic boundaries that are 

stored as PostGIS geometry types, and raster data that are stored as PostGIS raster types. In 

order to provide these integrated data, IPUMS-Terra offers six different forms of 

geotransformations (Figure 1b). IPUMS-Terra utilizes geolocations to perform 

transformations between existing datasets to allow users access to multiple data structures 

(Figure 1b).

4.1 IPUMS-Terra Use Case

IPUMS-Terra users can request customized, integrated datasets that contain variables 

originating from the following data structures: raster, area-level, and microdata. The user 

receives the dataset in a structure that meets their needs. For example, let’s examine the 

relationship between population growth and natural resource consumption in Brazil from 

1990–2010. Traditionally, the researcher would spend many weeks finding and generating 

all the components of the datasets necessary to complete this analysis. First, they would need 

to identify and gather the Brazilian decennial census datasets. These datasets are not often 

found in an easily accessible form and require expertise in demography to properly collect. 

Second, the researcher would join the censuses by their administrative units to the 

corresponding geographic boundary files, with the caveat that these files are often missing or 

incomplete for many regions of the world and that matching spatial units on a map to tabular 

census data can be complicated. Third, they would gather satellite imagery, or land cover 

products derived therefrom, and identify the pixel values of interest and perform a 

reclassification. This series of operations require expertise in remote sensing and geospatial 

analysis. Lastly, the researchers would develop zonal statistics based on the conflated raster 

and vector boundaries. Table 1 provides an example of variables that are within the IPUMS-

Terra system that would be suitable for this type of analysis.

Each of these steps poses a variety of barriers that require expertise to overcome and that 

limit the ability of researchers to conduct analyses. Our previous work has identified many 

of the technical issues as well as the solutions that are implemented in IPUMS-Terra that 

overcome the challenges of data integration and data processing (Haynes et al., 2017; 

Haynes, Ray, Manson, & Soni, 2015; Kugler, Manson, & Donato, 2017; Kugler et al., 2015). 

The power of IPUMS-Terra is that it provides a one-stop shop, where users can make a 

customized extract utilizing all the data within our system.
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An additional benefit is that when using IPUMS-Terra each of these variables is 

accompanied with detailed metadata that will help facilitate understanding of researchers 

from differing research domains. Through IPUMS-Terra the researcher can easily identify 

the data requirements necessary for the analysis and allow IPUMS-Terra to do the data 

processing. We describe approaches later for developing integrated geospatial workflows.

4.2 IPUMS-Terra Architecture

In addition to handing core tasks of data integration, IPUMS-Terra also offers additional 

tools for data discovery and access through its application layer (Figure 2). The application 

layer consists of three different applications that are designed to address the needs of 

different user communities. The first and main application is the IPUMS-Terra data finder 

(https://data.terrapop.org/), which allows for the creation of a customized subset of data, 

called an extract. The data finder has three different guided workflows (i.e., microdata, areal 

level, and raster) that allow the user to specify from the beginning the data format they 

would like to use. The second application, TerraClip (https://data.terrapop.org/terraclip) 

provides raster-only data outputs for users. The third application is TerraScope (https://

data.terrapop.org/terrascope) and its primary purpose is data visualization that lets users 

better understand the spatial and temporal relationships that exist within their data. 

TerraScope also allows for area-level only data extracts to be generated.

The second layer is the integration layer that translates web requests to actionable queries 

the underlying system can perform (Figure 2). The integration layer has two components: 1) 

a Ruby on Rails framework and 2) a geospatial services platform. The Ruby on Rails 

framework is the primary data integration engine. When a user creates an extract, the Ruby 

on Rails framework is tasked with assembling the required datasets. The geospatial services 

platform offers Web Mapping Services and Web Coverage Services, which are primarily 

used with TerraScope, the data visualization application.

The third and final layer is the data processing layer. The system architecture used for 

processing is designed to meet the storage and the data analytical needs necessary for all 

data types. Currently, microdata are stored as flat files. Microdata files are read and tabulated 

using a custom Java multi-threaded application. The spatial datatypes raster and vector are 

stored in a PostgreSQL database using the PostGIS extension. PostGIS allows for the 

storage and analysis of both vector and raster data types. Haynes et al. (2017) discusses 

some of the obstacles encountered with high-performance computing using both spatial data 

types.

5 IPUMS-Terra Solutions for Big Data Integration

The development of IPUMS-Terra, a SDI that provides streamlined access to integrated 

spatial data, is not without its challenges. In this section, we highlight some of the 

advancements that we have developed when dealing with different data structures that have 

allowed us to forge an integrated system. We detail these areas below:

1. data intake, where a wide array of microdata, area, and raster data are taken into 

the IPUMS-Terra system;
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2. data manipulation, where data are transformed into new data and among data 

types; and

3. data discovery and user access.

5.1 IPUMS-Terra Data Intake

IPUMS-Terra provides access to three different data structures: microdata, vector geographic 

boundaries, and raster datasets. In order to provide access to each of these data structures, 

they must be brought into the system with appropriate metadata that will allow them to be 

queried later. Our platform stack is a mix of Ruby on Rails and Python scripts that uses a 

series of custom-built connectors to move data into the database.

One example of these connectors is Mound, a standalone piece of software written using 

components from Ruby on Rails. It reads input data or metadata that is in Yet Another 

Markup Language (YAML) format and loads it into the database. The provided YAML 

contains specific database foreign-key relationships and supports a belongs-to-many 

relationship, which can be expressed in more human readable, data-centric terms. By 

combining Mound with Ruby on Rails models we can define the database schema of 

IPUMS-Terra and infer data relationships that correctly match database records with related 

foreign keys or intermediary join table entries. Source code for Mound can be found at 

https://github.com/mnpopcenter/mound.

5.1.1 Microdata Intake—IPUMS-Terra leverages existing data and metadata from 

IPUMS International (IPUMS-I). These two projects are integrated by taking a “snapshot” 

of the IPUMS-I database and metadata and then incorporating them into a new IPUMS-

Terra database. IPUMS-I processed data are stored by country and year in fixed-width files 

in a compressed format, while the metadata is stored in MySQL databases. These metadata 

must be transformed and stored into IPUMS-Terra’s PostgreSQL database. The 

transformation from MySQL to PostgreSQL is achieved by using a tool called 

jmysqltopostgres (https://github.com/maxlapshin/mysql2postgres). The tool is written in 

Ruby but utilizes the Java implementation of Ruby, JRuby. The Java implementation allows 

for greater flexibility and provides access to PostgreSQL’s “COPY” command which is 

necessary for large batch data loading to PostgreSQL. The tool issues a “SELECT” 

statement to the MySQL database; the result of the select operation is loaded into the 

PostgreSQL database using a single “COPY”. Using this tool results in a duplication of 

IPUMS-I metadata. However, it allows us the opportunity to replicate the IPUMS-I Ruby on 

Rails’ ActiveRecord model objects, which are used to represent key microdata elements, 

such as country, sample, and variable.

5.1.2 Area Data Intake—IPUMS-Terra area data – namely boundary variables and 

aggregated area-level census data – are loaded using metadata associated with the boundary 

files. The process begins by initially cross-matching all IPUMS-I countries with the 

appropriate census samples and geographic levels associated with the country. Since all 

datasets within IPUMS-Terra have explicit temporal definitions, their metadata too must 

have explicit temporal definitions. This allows countries like South Sudan and Sudan to exist 

in our system without confusion. Additionally, the presence of aggregate variables like “total 
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population” vary for each country. Therefore, the variable “total population” may exist for 

one or more time instances, but the variable “education attainment” may exist once or not at 

all for a country. In this way, the metadata facilitates the linkage between spatiotemporal 

geographic boundaries and their associated aggregate variables. A more detailed discussion 

of the boundary harmonization process can be found in Kugler (2015).

Once a defined country object, which consists of one or more geographic levels (e.g., state 

and county), is identified we can begin data loading, which takes place in two steps. The first 

step of data loading is to load the geographic boundaries. The second step loads the variables 

associated with the boundary. We use a combination of the Ruby language libraries of 

ActiveRecord and geoRuby for loading geographic files into the database. The geographic 

boundary files are transformed from Environmental Systems Research Institute (ESRI) 

shapefiles into Well Known Text (WKT), which can then be stored in an IPUMS-Terra 

PostgreSQL database.

Area variables (i.e., total population or education attainment) currently are primarily derived 

from IPUMS-I microdata. We use custom written software to derive aggregations, based 

upon rules found in a Hierarchical YAML file. Once the aggregations have been calculated 

they are loaded into IPUMS-Terra’s database using a “COPY” statement.

5.1.3 Raster Data Intake—Raster data intake also begins with retrieval of metadata for 

input into the database. Metadata loading is used for determining the types of operations that 

are possible for a given raster dataset. The intake includes raster variable name, raster spatial 

metadata, and a list of statistical operations that are appropriate for this dataset. We utilize 

the existing raster loading tool for PostGIS, raster2pgsql, which produces a tiled 

representation of the raster in a binary format that can be loaded into PostgreSQL. As we 

want to minimize the amount of intake necessary in building databases, we have developed a 

secondary tool in Ruby. This tool takes these preprocessed raster files and stores them in 

compressed binary format files. Then during the database building process, we are able to 

access these binary files and load them into the database without having to manually 

recompile them, reducing loading time by approximately 50%.

Due to the heterogeneous nature of the raster datasets, we take advantage of PostgreSQL’s 

schema concept to better define analysis concepts. Land cover and related rasters reside in a 

landcover schema, climate rasters in the climate schema, and so on. This segmentation 

allows for easier management of the system’s many rasters. During the database schema 

building, all the necessary stored procedures for analyzing raster datasets are loaded into the 

database.

The initial release of the IPUMS-Terra application initially over-simplified the raster data 

type because the rasters at that time only existed at single points in time. Unlike all our other 

data structures there was no initial need to have explicit spatiotemporal representations for 

the raster datasets as they covered the entire globe. We expanded the system as we began to 

work with time-series raster datasets such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Climatic Research Unit Time Series (CRU TS). In order to 

fully utilize both data collections, the metadata collection was redeveloped to support 
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temporal granularities. The current system is now configured to support vast amounts of 

sensor-derived data, which are represented by our existing classes of rasters. However, we 

are aware that there are other raster classes that are not yet represented in our system and our 

goal is to develop and maintain a flexible generalizable infrastructure that accurately 

represents and allows for the processing of raster spatial data.

5.2 IPUMS-Terra Data Processing

Once data are loaded into IPUMS-Terra, the data management and manipulation challenges 

begin. The benefit of the system to researchers is that they can choose data from various data 

structures and have the data transformed and delivered to them in the format of their 

choosing. This flexibility for researchers places enormous pressure on the framework to 

perform complex transformations, given the many unknowns regarding the size and density 

of the dataset that it is working with for a given user. We present three of the transformations 

that exemplify the complexity of big data integration and offer innovative approaches to 

dealing with complex big spatial data.

5.2.1 Microdata Tabulation to Area-level—All area level datasets, which originate as 

IPUMS-I microdata samples (i.e., Brazil 2001) must be tabulated. Tabulation of microdata 

into area level data begins by defining area level variables based upon their subcomponent 

microdata variables. Each resulting value must be determined and classified into either of 

two classes: count and percent. These classifications are used to define variable specific 

rules for automatic tabulation. Rules are represented as arrays of strings, which are similar to 

Structured Query Language (SQL) queries (Figure 3). Source code for the tabulator can be 

found at https://github.com/mnpopcenter/microdata-tabulator.

The tabulator is designed for flexibility and can be used to express operators traditionally 

used in the SQL “WHERE” statement. The tabulator can utilize operators which specify 

equality and inequality as well as ranges of values. Specifying multiple lines of rules 

produces an implicit “AND”; for rules that require more expressive predicate logic, the 

tabulator also supports parenthetical expressions as well as the “OR” operator.

The YAML description in Figure 2, looks syntactically similar to a SQL “WHERE” 

statement. However, the tabulator performs its analysis upon the fixed width files not within 

the database. Therefore, in addition to defining the variable through rules for calculation, the 

tabulator also employs rules that define the domain in which it operates. The domain is 

defined by a comma separated list of values that denote the representative start and stopping 

locations within the microdata file. The length of value to extract can also be defined by 

these rules.

The last set of rules that must be defined are the geographic tabulation levels, which are 

represented as a geographic configuration file. Microdata is aspatial with each line 

representing a person or household. However, each microdata record contains a ten-digit 

geographic identifier which will be used in the tabulation process. The geographic identifier 

is similar to the Federal Information Processing Standard (FIPS) code used by the United 

States government. The identifier contains nested levels of geographic specificity which can 

be extracted by knowing the range of values needed. The tabulator reads microdata, line by 
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line, storing the results in memory by geographic level and geographic unit. We provide 

tabulations for three geographic levels: 0, or national scale; 1, or what is commonly termed 

by demographers as administrative level one (i.e., state or province); and 2, the 

administrative level two, which maps onto counties, wards, municipios, and other smaller 

scale units.

5.2.2 Raster Data GeoTiff Summary—IPUMS-Terra’s raster datasets are large and 

complex. The current application provides spatial analysis capability for over 4,000 rasters 

containing data on agriculture, land cover, and climate. The metadata becomes an essential 

tool for clearly identifying the data analyses that are relevant for each data type. Raster 

summarizations are one of the services/data transformations that we provide through our 

system. Raster summarization is a method that provides an overview of a raster dataset for a 

given vector region. IPUMS-Terra identifies which raster summarizations are appropriate for 

the given raster dataset (Figure 4).

To accurately process and disseminate spatial data analyses, we utilized procedures that are 

stored within the database. Stored procedures are written in PostgreSQL’s supported 

procedural languages plpgsql or plpython. By way of example, we briefly discuss the stored 

procedures written in plpgsql that are currently used for conducting zonal statistics. The 

IPUMS-Terra framework contains multiple classes of rasters (e.g., float, categorical, binary, 

and custom) in Figure 4. All raster summarization stored procedures operate at two levels 

and use common table expressions (CTE) to improve the performance (Figure 5).

The top-level functions focus on vector dataset verification. PostGIS is very lenient in that it 

will load corrupt boundaries (e.g., boundaries with topology errors such as intersecting 

vertices) into its system that have the potential for failing during subsequent function calls. 

In practice, we have found that the function ST_Clip has high topological requirements and 

does not tolerate any topological errors. It is also possible to introduce new topological 

errors when converting a vector dataset to a new projection. The top-level function’s purpose 

is to project boundaries if necessary, then verify and remove any topological errors and then 

pass these clean boundaries to a secondary procedure which performs the zonal statistics.

The secondary processing functions have been developed to improve performance for 

specialized datasets. The development of highly tuned functions allows us to eliminate errors 

and improve performance when conducting raster summary statistics. We provide pseudo 

code and a description of two of these secondary data processing functions. The processing 

functions allow different analysis products to be derived from a categorical landcover raster. 

In the example, we demonstrate how different analytics and be performed on the same 

landcover raster. Additional stored procedures can be found https://github.com/mnpopcenter/

ipums-terra-spatial-functions.

The first stored procedure, Figure 6, returns the mode category and the number of unique 

categories, which is computationally intensive because the system must count all pixels and 

their values that fall within the boundaries. Additionally, PostgreSQL does not have a modal 

function, therefore we use a windowing function from PostgreSQL to return the largest 

category for each geographic unit.
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The second stored procedure, Pseudo code 2, utilizes two-raster datasets, to determine the 

percent area of a particular landcover value(s). We utilize the ST_Reclassification function 

of PostGIS to extract the specific landcover values of interest. In this case, we have not used 

the multiband capabilities of PostGIS for storing our raster datasets, instead, each of these 

datasets are stored as separate tables. The first dataset is the landcover or data raster and the 

second is the area reference raster. The landcover dataset would be the same dataset as what 

was used in Stored Procedure 1, whereas the area reference raster is a floating-point raster 

and each pixel value contains the area value of the earth’s surface. This calculation utilizes 

both the area reference raster and the data raster in the analysis. By employing the 

ST_MapAlgebra function we are able to determine results on demand for any given user 

input. A benefit of this approach is that when new reclassification variables are added in the 

raster metadata, the underlying stored procedures perform the calculations without any 

changes to the calculation stored procedures.

5.2.3 IPUMS-Terra NetCDF Data—The integration of the Climate Research Unit Time 

Series (CRU TS) into IPUM Terra presented new challenges emblematic of more general 

challenges facing SDI, namely issues of data conversion and size. We encountered two 

problems integrating the CRU TS data into our system. NetCDF files cannot be directly read 

into PostGIS and while it is possible to convert each NetCDF file into a GeoTIFF, the in-

database file size would be prohibitively large, with over 1300 raster bands for one climate 

variable. The spatial resolution of the CRU TS dataset is also an issue with a relatively 

coarse resolution of 0.5 decimal degrees. This coarse resolution also limits the efficacy of 

raster summarizations. Most GIS systems, including PostGIS, rasterize the polygons to the 

resolution of the raster cells when performing raster summarization. In doing this, many 

small geographic units are eliminated. In an effort to preserve geographic detail, we 

developed a polygon template of the CRU TS dataset. When the CRU TS template is 

intersected with the boundary polygons, every boundary polygon is assigned a portion of a 

CRU TS pixel. Polygons that intersect multiple CRU TS pixels have their resulting value 

determined through proportional allocation.

The volume and temporal granularity of the CRU TS dataset encouraged new architecture 

development. The CRU TS dataset is loaded into a large denormalized table, with functional 

indices on the following columns: pixel_id, id, year, month, and year-month combination. 

The pixel_ids are unique identifiers that represent the same geographic location across all 

variables and time points and are designed to be joined to the CRU TS template. When a 

user makes a request from the CRU TS dataset, IPUMS-Terra conducts a single spatial 

overlay query between the geographic boundary and the template. This query identifies all 

CRU TS pixel_ids that intersect the boundary of interest. These pixel_ids are joined to the 

larger CRU TS table for further calculations, which invoke secondary processing functions. 

This approach is similar to GeoTIFF Raster Summarization approach.

The development of the large denormalized table facilitates the raster summarization 

process, but it does not work well for researchers who would like to receive the CRU TS 

data as a GeoTIFF. In order to deliver data in this format, we utilize the Web Coverage 

Service (WCS) of GeoServer. GeoServer’s WCS supports time slicing and cropping of 

NetCDF files, which can be integrated into a stored procedure call from PostgreSQL. While 
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the data is delivered in the proper format, the result is not ideal as a single dataset is stored in 

two separate locations to support separate delivery products. Currently, we are investigating 

other alternatives.

5.3 IPUMS-Terra Data Delivery

While the data loading and data processing steps of an integrated system are technically 

challenging, the system is of no use if the user does not get their data. The User Interface 

(UI) functions like a wizard or workflow, guiding the user along the path and building a 

customized JavaScript Object Notation (JSON) file which is submitted to the system for 

processing. The result is a customized data extract in any of the three main formats: 

microdata in a CSV, aggregate data in CSV with associated ESRI Shapefile, and raster data 

as a GeoTIFF. These data structures fit the needs of a broad variety of members of our user 

community. Extract sizes from IPUMS-Terra can be large depending on the type and amount 

of data sources. For example, a microdata extract for France 2011 is very large and would 

constitute what we would call a “tall” extract with approximately 20 million-person records. 

This extract would be several gigabytes with the standard eight microdata default variables 

of country, year, sample, household serial number, form type, person number, person weight, 

and residence status. With the addition of variables like age, sex, and income, the extract size 

increases and grows wider. Adding additional contextual variables (which are derived from 

raster environmental datasets) exacerbates this process and potentially creates an unwieldy 

extract. We recommend that users request extracts with only the variables they need to 

improve usability. Typical user extracts are tall and narrow (e.g., microdata) or short and 

wide (area-level) and even those extracts can be several gigabytes.

A related challenge lies in raster summarization. Raster summarizations were initially 

degrading the performance of our system as they are computationally expensive. Haynes 

(2017) discusses why query performance times of raster analyses with PostgreSQL vary 

greatly and we have implemented a data caching system to reduce additional calculations. 

The caching key is generated from the following variables: geographic level, temporal time 

point or range, and the raster variable and raster operation (e.g., minimum value, maximum 

value). When any raster analysis is run the resulting value or values will be produced and 

stored with that key. The values are subsequently cached in a raster summarization table that 

can be keyed off from the geographic level’s identification id, a raster variable identification 

number, the summarization operation, and in some cases the raster band number. The 

caching mechanism works by first checking this caching table for any matches based on the 

aforementioned keys, and if nothing is found, the associated summarization stored procedure 

is called, and the values from that are then stored in the cache table.

6 Conclusion

The next step in the big data revolution is the integration of disparate data types, models, and 

sources. IPUMS-Terra focuses on the integration of heterogeneous data to promote the 

understanding of population and environment. IPUMS-Terra is a next-generation spatial data 

infrastructure project that demonstrates the value of linking big data computation to big data 

storage. Much of the value of this project lies in the benefit it provides to the broader 
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research community by allowing fast and easy access to geospatial data and geospatial 

analytical tools.

Integrating big data is a complex and challenging process as it involves aspects of 

computation and semantic integration. We have found that metadata, in many cases, is the 

connective tissue of this project. By integrating metadata in almost every stage of this 

project we have reduced complexity and redundancy of data while improving conceptual 

understanding of the system and data processing performance for the user. A critical 

challenge that still remains is developing better methods for storage, retrieval, and analysis 

of these datasets. In particular, there are no comprehensive high-performance computing 

solutions that natively deal with both raster and vector data formats. The lack of an 

integrated framework results in degraded performance when analyzing raster and vector 

datasets.

In sum, IPUMS-Terra is a new class of spatial data infrastructure whose goal is to provide 

fast and convenient access to big integrated data. The framework we have developed to 

support this project is a flexible stack of open-source tools and methods that we freely share 

with the research community. IPUMS-Terra continues to work with other research initiatives 

and a range of user communities to address pertinent research challenges concerning the 

integration of heterogeneous spatial data and the development of next-generation 

infrastructures and tools to support heterogeneous data integration.
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Fig. 1. 
IPUMS-Terra Data Structures and Data Transformations
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Fig. 2. 
IPUMS-Terra System Overview
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Fig. 3. 
IPUMS-TERRA YAML syntax for microdata tabulation
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Fig. 4. 
IPUMS-Terra Raster Summary Operations
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Fig. 5. 
PostgreSQL Stored Procedure Workflow for Raster Summaries
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Fig. 6. 
Pseudo Code for Categorical Summaries
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Fig. 7. 
Pseudo Code for Binary Summary
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Table 1

IPUMS-Terra Sample Extract for Brazilian Resource Consumption

Area Level Variables Raster Summarized Variables

POPTOTAL: Total Population EVRGRNBRDLF: Percent area of evergreen broadleaf forest

AGRIC: Percent of workforce in agriculture URBAN: Percent urbanized area

URBANIZ: Percent of population living in urban areas CROPLAND: Percentage area devoted to cropland

UNEMP: Percent of population unemployed
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