Skip to main content
Log in

Modelling complexity in everyday operations: functional resonance in maritime mooring at quay

  • Original Article
  • Published:
Cognition, Technology & Work Aims and scope Submit manuscript

Abstract

Maritime operations are complex socio-technical activities, with many interacting agents. Such agents are acting based on different, sometimes conflicting, goals. The traditional approach for safety, based on decomposition and bimodality, might lead to ineffective analyses, ignoring the transient and hidden links among activities as they are performed in everyday work. In this sense, the Functional Resonance Analysis Method (FRAM) offers a representation of work-as-done, acknowledging variability as unavoidable and desirable in order to avoid failures and maintain production. This paper adopts FRAM in combination with an Abstraction/Agency framework to understand and contribute with new perspectives to the complexity of processes. This approach, in line with the principles of Resilience Engineering, is adopted in the traditionally underspecified operation of mooring at quay. The detailed model confirms the benefits of FRAM in representing complex highly coupled tasks, especially in combination with an analysis at different levels of abstractions. The outcomes of the study show how a FRAM model offers systemic and punctual insights for understanding emergent criticalities, analysing complex incident scenarios, identifying potential mitigating actions, exploring different varieties of work and gaining systemic knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akhatar MJ (2014) Fatigue at sea—a manning problem. J Marit Res 11:27–42

    Google Scholar 

  • Akyuz E, Celik M (2014) Utilisation of cognitive map in modelling human error in marine accident analysis and prevention. Saf Sci 70:19–28. doi:10.1016/j.ssci.2014.05.004

    Article  Google Scholar 

  • Akyuz E, Celik M (2015) Application of CREAM human reliability model to cargo loading process of LPG tankers. J Loss Prev Process Ind 34:39–48. doi:10.1016/j.jlp.2015.01.019

    Article  Google Scholar 

  • Akyuz E, Celik E (2016a) A modified human reliability analysis for cargo operation in single point mooring (SPM) off-shore units. Appl Ocean Res 58:11–20. doi:10.1016/j.apor.2016.03.012

    Article  Google Scholar 

  • Akyuz E, Celik M (2016b) A hybrid human error probability determination approach: the case of cargo loading operation in oil/chemical tanker ship. J Loss Prev Process Ind 43:424–431. doi:10.1016/j.jlp.2016.06.020

    Article  Google Scholar 

  • Akyuz E, Akgun I, Celik M (2016) A fuzzy failure mode and effects approach to analyse concentrated inspection campaigns on board ships. Marit Policy Manag 43:887–908. doi:10.1080/03088839.2016.1173737

    Article  Google Scholar 

  • Belmonte F, Schön W, Heurley L, Capel R (2011) Interdisciplinary safety analysis of complex socio-technological systems based on the functional resonance accident model: an application to railway trafficsupervision. Reliab Eng Syst Saf 96:237–249. doi:10.1016/j.ress.2010.09.006

    Article  Google Scholar 

  • Bennett KB (2015) Ecological interface design and system safety: one facet of Rasmussen’s legacy. Appl Ergon. doi:10.1016/j.apergo.2015.08.001

    Google Scholar 

  • Brodje A, Lundh M, Jenvald J, Dahlman J (2013) Exploring non-technical miscommunication in vessel traffic service operation. Cogn Technol Work 15:347–357. doi:10.1007/s10111-012-0236-5

    Article  Google Scholar 

  • Brooker P (2011) Experts, Bayesian Belief Networks, rare events and aviation risk estimates. Saf Sci 49:1142–1155. doi:10.1016/j.ssci.2011.03.006

    Article  Google Scholar 

  • Celik M (2009) Designing of integrated quality and safety management system (IQSMS) for shipping operations. Saf Sci 47:569–577. doi:10.1016/j.ssci.2008.07.002

    Article  Google Scholar 

  • Celik M, Topcu YI (2009) Use of an ANP to prioritize managerial responsibilities of maritime stakeholders in environmental incidents: an oil spill case. Transp Res Part D Transp Environ 14:502–506. doi:10.1016/j.trd.2009.05.008

    Article  Google Scholar 

  • Chen ST, Wall A, Davies P, Yang Z, Wang J, Chou YH (2013) A Human and Organisational Factors (HOFs) analysis method for marine casualties using HFACS-Maritime Accidents (HFACS-MA). Saf Sci 60:105–114. doi:10.1016/j.ssci.2013.06.009

    Article  Google Scholar 

  • Clay-Williams R, Hounsgaard J, Hollnagel E (2015) Where the rubber meets the road: using FRAM to align work-as-imagined with work-as-done when implementing clinical guidelines. Implement Sci 10:125. doi:10.1186/s13012-015-0317-y

    Article  Google Scholar 

  • Dekker S (2006) Resilience engineering: chronicling the emergence of confused consensus. In: Hollnagel E, Woods DD, Leveson N (eds) Resilience engineering: concepts and precepts. Ashgate Publishing, Ltd., Farnham, pp 77–94

    Google Scholar 

  • Dekker S, Pruchnicki S (2014) Drifting into failure: theorising the dynamics of disaster incubation. Theor Issues Ergon Sci. doi:10.1080/1463922X.2013.856495

    Google Scholar 

  • DMA (2006) Mooring accidents on board merchant ships. DMA, Copenhaghen

    Google Scholar 

  • DMAIB (2014a) Safety report April 2014: PACHUCA Mooring accident on 14 December 2012. DMAIB, Valby

    Google Scholar 

  • DMAIB (2014b) Summary report—TORM REPUBLICAN occupational accident on 3 December 2013. DMAIB, Valby

    Google Scholar 

  • Fukuda K, Sawaragi T, Horiguchi Y, Nakanishi H (2016) Applying systemic accident model to learn from near-miss incidents of train maneuvering and operation. IFAC-PapersOnLine 49:543–548. doi:10.1016/j.ifacol.2016.10.619

    Article  Google Scholar 

  • Fukuoka K, Furusho M (2016) Relationship between latent conditions and the characteristics of holes in marine accidents based on the Swiss cheese model. WMU J Marit Aff 15:267–292. doi:10.1007/s13437-015-0099-8

    Article  Google Scholar 

  • Gemelos IC, Ventikos NP (2008) Safety in greek coastal shipping: the role and risk of human factor revisited introduction: the problem. WMU J Marit Aff 7:31–49

    Article  Google Scholar 

  • Harrald JR, Mazzuchi TA, Spahn J, Van Dorp R, Merrick J, Shrestha S, Grabowski M (1998) Using system simulation to model the impact of human error in a maritime system. Saf Sci 30(1):235–247. doi:10.1016/S0925-7535(98)00048-4

    Article  Google Scholar 

  • Hetherington C, Flin R, Mearns K (2006) Safety in shipping: the human element. J Saf Res 37:401–411. doi:10.1016/j.jsr.2006.04.007

    Article  Google Scholar 

  • Hollnagel E (2010) The ETTO principle: efficiency-thoroughness trade-off—why things that go right sometimes go wrong. Risk Anal 30:153–154. doi:10.1111/j.1539-6924.2009.01333.x

    Article  Google Scholar 

  • Hollnagel E (2012) FRAM: the functional resonance analysis method: modelling complex socio-technical systems. Ashgate, Farnham

    Google Scholar 

  • Hollnagel E (2014) Safety-I and safety-II (the past and future of safety management). Ashgate, Farnham

    Google Scholar 

  • Hollnagel E, Pruchnicki S, Woltjer R, Etcher S (2008) Analysis of Comair flight 5191 with the functional resonance accident model. In: 8th International symposium of the Australian aviation psychology association

  • Hsu WK (2015) Assessing the safety factors of ship berthing operations. J Navig 68:576–588. doi:10.1017/S0373463314000861

    Article  Google Scholar 

  • Jia D-J, Li F-C (2016) Study on mooring safety for a ship with constant tension mooring system. J Dalian Marit Univ 42:1–8. doi:10.16411/j.cnki.issn1006-7736.2016.03.001

    Google Scholar 

  • Jia D-J, Li F-C, Zhao T-Y, Meng K (2016) Ship docking safety in severe sea state in harbor. Dalian Haishi Daxue Xuebao/J Dalian Marit Univ 42(1):21–26. doi:10.16411/j.cnki.issn1006-7736.2016.01.005

    Google Scholar 

  • Knapp S, Van De Velden M (2011) Global ship risk profiles: safety and the marine environment. Transp Res Part D Transp Environ 16:595–603. doi:10.1016/j.trd.2011.08.001

    Article  Google Scholar 

  • Lappalainen J, Kunnaala V, Tapaninen U (2014) Present pilotage practices in Finland. WMU J Marit Aff 13:77–99. doi:10.1007/s13437-013-0055-4

    Article  Google Scholar 

  • Li W, Ji R, Huang T (2016) Research on mooring system under typhoon state. In: Ocean. 2016—Shanghai, pp 1–4. doi:10.1109/OCEANSAP.2016.7485693

  • Ljung M, Lutzhoft M (2014) Functions, performances and perceptions of work on ships. WMU J Marit Aff 13:231–250. doi:10.1007/s13437-014-0057-x

    Article  Google Scholar 

  • Lundblad K, Speziali J (2008) FRAM as a risk assessment method for nuclear fuel transportation. In: International conference working on safety

  • Maritime and Coastguard Agency (2010) Code of safe working practices for merchant Seamen. In: Consolidat. ed. The Stationery Office (TSO), Norwich (UK)

  • Mazaheri A, Montewka J, Nisula J, Kujala P (2015) Usability of accident and incident reports for evidence-based risk modeling—a case study on ship grounding reports. Saf Sci 76:202–214. doi:10.1016/j.ssci.2015.02.019

    Article  Google Scholar 

  • Mikkers M, Henriqson E, Dekker S (2013) Managing multiple and conflicting goals in dynamic and complex situations: exploring the practical field of maritime pilots. J Marit Res 9:13–18

    Google Scholar 

  • Mukherjee PK, Brownrigg M (2013) Farthing on international shipping. 4th edn. Springer, Heidelberg, London. ISBN: 978-3-642-34598-2

  • Naikar N, Sanderson PM (2001) Evaluating design proposals for complex systems with work domain analysis. Hum Factors 43:529–542

    Article  Google Scholar 

  • OCIMF (2015) The hazards of Snap-back: initial learnings from a serious incident of mooring line failure. OCIMF, London

    Google Scholar 

  • Patriarca R, Bergström J, Di Gravio G (2017a) Defining the functional resonance analysis space: combining Abstraction Hierarchy and FRAM. Reliab Eng Syst Saf 165:34–46. doi:10.1016/j.ress.2017.03.032

    Article  Google Scholar 

  • Patriarca R, Di Gravio G, Costantino F (2017b) A Monte Carlo evolution of the Functional Resonance Analysis Method (FRAM) to assess performance variability in complex systems. Saf Sci 91:49–60. doi:10.1016/j.ssci.2016.07.016

    Article  Google Scholar 

  • Patriarca R, Di Gravio G, Costantino F, Tronci M (2017c) The Functional Resonance Analysis Method for a systemic risk based environmental auditing in a sinter plant: a semi-quantitative approach. Environ Impact Assess Rev 63:72–86. doi:10.1016/j.eiar.2016.12.002

    Article  Google Scholar 

  • Pickup L, Atkinson S, Hollnagel E, Bowie P, Gray S, Rawlinson S, Forrester K (2017) Blood sampling—two sides to the story. Appl Ergon. doi:10.1016/j.apergo.2016.08.027

    Google Scholar 

  • Praetorius G (2014) Vessel Traffic Service (VTS): a maritime information service or traffic control system? Understanding everyday performance and resilience in a socio-technical system under change. Chalmers University of Technology, Gothenburg

    Google Scholar 

  • Praetorius G, Hollnagel E (2014) Control and resilience within the maritime traffic management domain. J Cogn Eng Decis Mak. doi:10.1177/1555343414560022

    Google Scholar 

  • Praetorius G, Lützhöft M (2012) Decision support for vessel traffic service (VTS): user needs for dynamic risk management in the VTS. Work 41:4866–4872. doi:10.3233/WOR-2012-0779-4866

    Google Scholar 

  • Praetorius G, Hollnagel E, Dahlman J (2015) Modelling vessel traffic service to understand resilience in everyday operations. Reliab Eng Syst Saf 141:10–21. doi:10.1016/j.ress.2015.03.020

    Article  Google Scholar 

  • Praetorius G, Graziano A, Schröder-Hinrichs J-U, Baldauf M (2016) Fram in FSA—introducing a function-based approach to the formal safety assessment framework. Adv Intell Syst Comput. doi:10.1007/978-3-319-41682-3_34

    Google Scholar 

  • Rasmussen J (1985) The role of hierarchical knowledge representation in decision making and system management. IEEE Trans Syst Man Cybern SMC 15:234–243. doi:10.1109/TSMC.1985.6313353

    Article  Google Scholar 

  • Reason J (1990) The contribution of latent human failures to the breakdown of complex systems. Philos Trans R Soc Lond B Biol Sci 327:475–484. doi:10.1098/rstb.1990.0090

    Article  Google Scholar 

  • Reason J (2000) Human error: models and management. BMJ Br Med J 320:768–770

    Article  Google Scholar 

  • Sanderson P, Burns C (2017) Rasmussen and the boundaries of empirical evaluation. Appl Ergon. doi:10.1016/j.apergo.2016.10.003

    Google Scholar 

  • Sandhåland H, Oltedal H, Eid J (2015) Situation awareness in bridge operations—a study of collisions between attendant vessels and offshore facilities in the North Sea. Saf Sci 79:277–285. doi:10.1016/j.ssci.2015.06.021

    Article  Google Scholar 

  • Sawaragi T, Horiguchi Y, Hina A (2006) Safety analysis of systemic accidents triggered by performance deviation. In: 2006 SICE-ICASE international joint conference. IEEE, pp 1778–1781. doi:10.1109/SICE.2006.315635

  • Schröder-Hinrichs JU (2010) Human and organizational factors in the maritime world—are we keeping up to speed? WMU. J Marit Aff 9:1–3. doi:10.1007/BF03195162

    Article  Google Scholar 

  • Shorrock S (2016) The varieties of human work [WWW Document]. Humanist. Syst. blog. https://humanisticsystems.com/2016/12/05/the-varieties-of-human-work/. Accessed 25 Apr 2017

  • Soares CG, Teixeira AP (2001) Risk assessment in maritime transportation. Reliab Eng Syst Saf 74:299–309. doi:10.1016/S0951-8320(01)00104-1

    Article  Google Scholar 

  • Standards Board (1994) BS 6349-4:1994 Maritime structures (part 4: Code of practice for design of fendering and mooring system). Standards Board

  • Sujan M-A, Felici M (2012) Combining failure mode and functional resonance analyses in healthcare settings. Lecture notes in computer science (including subseries lecture notes in artificial intelligence. Lecture notes in bioinformatics) 7612 LNCS, pp 364–375. doi:10.1007/978-3-642-33678-2_31

  • Toffoli A, Lefèvre JM, Bitner-Gregersen E, Monbaliu J (2005) Towards the identification of warning criteria: analysis of a ship accident database. Appl Ocean Res 27:281–291. doi:10.1016/j.apor.2006.03.003

    Article  Google Scholar 

  • Turan O, Kurt RE, Arslan V, Silvagni S, Ducci M, Liston P, Schraagen JM, Fang I, Papadakis G (2016) Can we learn from aviation: safety enhancements in transport by achieving human orientated resilient shipping environment. Transp Res. doi:10.1016/j.trpro.2016.05.132

    Google Scholar 

  • UK P&I Club (2009) Risk focus: mooring. UK P&I Club, London

    Google Scholar 

  • Valdez Banda OA, Goerlandt F, Montewka J, Kujala P (2015) A risk analysis of winter navigation in Finnish sea areas. Accid Anal Prev 79:100–116. doi:10.1016/j.aap.2015.03.024

    Article  Google Scholar 

  • van Westrenen F (2014) Modelling arrival control in a vessel traffic management system. Cogn Technol Work 16:501–508. doi:10.1007/s10111-014-0279-x

    Article  Google Scholar 

  • van Westrenen F, Praetorius G (2014) Maritime traffic management: a need for central coordination? Cogn Technol Work 16:59–70. doi:10.1007/s10111-012-0244-5

    Article  Google Scholar 

  • Woltjer R, Haraldsson J, Pinska-Chauvin E, Josefsson B (2013) Resilience in ATM operations: incorporating robustness and resilience in safety assessment. In: Proceedings of the 5th resilience engineering association symposium. Soesterberg, pp 25–27

  • Woods DD (1988) Coping with complexity: the psychology of human behaviour in complex systems. In: Goodstein LP, Andersen HB, Olsen SE (eds) Task, errors and mental models. Taylor & Francis, Bristol, pp 128–148

    Google Scholar 

  • Yip TL (2008) Port traffic risks—a study of accidents in Hong Kong waters. Transp Res Part E Logist Transp Rev 44:921–931. doi:10.1016/j.tre.2006.09.002

    Article  Google Scholar 

  • Zheng Z, Tian J, Zhao T (2016) Refining operation guidelines with model-checking-aided FRAM to improve manufacturing processes: a case study for aeroengine blade forging. Cogn Technol Work. doi:10.1007/s10111-016-0391-1

    Google Scholar 

Download references

Acknowledgements

The authors developed a VBA code to execute the multi-layer representation conducted in this study, and they interfaced it with the FRAM Model Visualizer (FMV), a free software based on professor Hollnagel’s FRAM, written and developed by Rees Hill, which the authors acknowledge for his contribution to the development of FRAM. Furthermore, the authors thank the safety experts and accident investigators of the Danish Maritime Accident Investigation Board (DMAIB) involved in this research, who supported the gathering of operational data and played a fundamental role for the development of the case study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Patriarca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patriarca, R., Bergström, J. Modelling complexity in everyday operations: functional resonance in maritime mooring at quay. Cogn Tech Work 19, 711–729 (2017). https://doi.org/10.1007/s10111-017-0426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10111-017-0426-2

Keywords

Navigation