Skip to main content
Log in

Action prediction with the Jordan model of human intention: a contribution to cooperative control

  • Original Article
  • Published:
Cognition, Technology & Work Aims and scope Submit manuscript

Abstract

Human intentions are internal processes that can be deduced by observation of their resulting actions. Hence, an observation-based model of human intention is needed. The Jordan model of human intention in traffic is presented and applied on empirical data for two different intentions: driver’s braking intention and pedestrian’s crossing intention. The analysis shows that the behavior postulated within the theoretically developed Jordan model is observable in both sets of empirical data of drivers and of pedestrians while they perform intended actions. It can be assumed, that the Jordan model is universally applicable on very distinct intentions, not only limited to traffic scenarios. The Jordan model enhances the development of cooperative control among humans and machines. On the way towards a design of cooperative behavior among humans and vehicles in traffic, the Jordan model contributes with a systematic sequence and description of human behavior that is reflecting intention. Consequently an integration of the Jordan model of human intention with the model of cooperative and shared control Flemisch et al. (Ergonomics 57(3):343–360, 2014) is proposed. This integration facilitates the cooperation between human and system on strategic, tactical, and operational level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajzen I (1985) From intentions to actions: a theory of planned behavior. In: Kuhl J, Beckmann J (eds) Action control. Springer, Heidelberg, pp 11–39

    Chapter  Google Scholar 

  • Anscombe GEM (1957) Intention. Cornell University Press, New York

    Google Scholar 

  • Blaschke C, Schmitt J, Färber B (2007) Fahrmanöver-Prädiktion über CAN-BUS Daten. VDI-Berichte, vol 2015. VDI-Verlag, Düsseldorf, pp 165–172

    Google Scholar 

  • Brouwer N, Kloeden H, Stiller C (2016) Comparison and evaluation of pedestrian motion models for vehicle safety systems. In: Paper presented at IEEE 19th international conference on intelligent transportation systems (ITSC), Rio de Janeiro, Brazil, pp 2207–2212

  • Das S, Manski CF, Manuszak MD (2005) Walk or wait? An empirical analysis of street crossing decisions. J Appl Econometr 20(4):529–548

    Article  MathSciNet  Google Scholar 

  • Davidson D (1963) Actions, reasons and causes. J Philos 60(23):685–700

    Article  Google Scholar 

  • Diederichs F (2017) Entwicklung von verhaltensbasierten Verfahren zur Erkennung von Fahrerintention für die Prädiktion von Fahrmanövern. Dissertation, University of Stuttgart. Schriftenreihe zu Arbeitswissenschaft und Technologiemanagement 36, Fraunhofer Verlag, Stuttgart, Germany

  • Diederichs F, Pöhler G (2014) Driving maneuver prediction based on driver behavior observation. In: Proceedings of the 5th international conference on applied human factors and ergonomics (AHFE), pp 68–73

  • Diederichs F, Schüttke T, Spath D (2015) Driver intention algorithm for pedestrian protection and automated emergency braking systems. In: Paper presented at IEEE 18th 19th international conference on intelligent transportation systems (ITSC), Las Palmas, Spain, pp 1049–1054

  • Donges E (1982) Aspekte der Aktiven Sicherheit bei der Führung von Personenkraftwagen. Automobil-Industrie 27:183–190

    Google Scholar 

  • Egan CD, Willis A, Ness H, Stradling S (2008) Visual gaze behaviour of children and adult pedestrians at signalized and unsignalized road crossings. Technical report, Napier University, Edinburgh

  • Fishbein M, Ajzen I (1975) Belief, attitude, intention, and behavior. Addison-Wesley, Boston

    Google Scholar 

  • Flemisch FO, Bengler K, Bubb H, Winner H, Bruder R (2014) Towards cooperative guidance and control of highly automated vehicles. H-mode and conduct-by-wire. Ergonomics 57(3):343–360

    Article  Google Scholar 

  • Flemisch F, Abbink D, Itoh M, Pacaux-Lemoine M-P, Weßel G (2018) Joining the blunt and the pointy end of the spear: towards a common framework of joint action, human-machine cooperation, cooperative guidance and control, shared-, traded- and supervisory control. In: Cognition technology and work. special issue on shared and cooperative control of humans and machines

  • Gerdes A (2006) Driving manoeuvre recognition. Technical report, German Aerospace Center, Braunschweig

  • Grayson GB (1975) Observations of pedestrian behaviour at four sites. Technical report, Road User Characteristics Division, Transport and Road Research Laboratory, Crowthorne

  • Hagen K, Schulze C, Schlag B (2010) Verkehrssicherheit von schwächeren Verkehrsteilnehmern im Zusammenhang mit dem geringen Geräuschniveau von Fahrzeugen mit alternativen Antrieben (FAT-Schriftenreihe Vol. 245)

  • Hamaoka H, Hagiwara T, Tada M (2013) A study on the behavior of pedestrians when confirming approach of right/left-turning vehicle while crossing a crosswalk. In: Proceedings of the Eastern Asia Society for transportation studies, vol 9

  • Heckhausen H, Gollwitzer PM (1987) Thought contents and cognitive functioning in motivational versus volitional states of mind. Mot Emot 11(2):101–120

    Article  Google Scholar 

  • Itoh M, Flemisch F, Abbink D (2013) A hierarchical framework to analyze shared control conflicts between human and machine. IFAC PapersOnLine 49(19):96–101

    Article  Google Scholar 

  • Kadali BR, Vedagiri P (2013) Modelling pedestrian road crossing behaviour under mixed traffic condition. Eur Transp 55:1–17

    Google Scholar 

  • Kloeden H, Brouwer N, Ries S, Rasshofer RH (2014) Potenzial der Kopfposenerkennung zur Absichtsvorhersage von Fußgängern im urbanen Verkehr. Workshop Fahrerassistenzsysteme, Walting, pp 67–78

  • Kobiela F (2011) Fahrerintentionserkennung für autonome Notbremssysteme Dissertation, Technische Universität Dresden. VS Verlag für Sozialwissenschaften, Wiesbaden, Germany

    Chapter  Google Scholar 

  • Koehler S, Goldhammer M, Bauer S, Doll K, Brunsmann U, Dietmayer K (2012) Early detection of the pedestrian’s intention to cross the street. In: Paper presented at 15th international IEEE conference on intelligent transportation systems (ITSC), Anchorage, AK, USA, pp 1759–1764

  • Kopf M (2005) Was nützt es dem Fahrer, wenn Fahrerinformations- und -assistenzsysteme etwas über ihn wissen? In: Fahrerassistenzsysteme mit maschineller Wahrnehmung (S. 117–139). Springer

  • Lee SE, Olsen EC, Wierwille WW (2004) A comprehensive examination of naturalistic lane-changes. Technical report, NHTSA, Washington

  • Makoto I, Flemisch F, Abbink D (2016) A hierarchical framework to analyze shared control conflicts between human and machine. IFAC PapersOnLine, 2016 49(19):96–101

    Google Scholar 

  • Martirosjan A, Griesche S (2012) Driver intention modelling for partly automated vehicles—the benefit and necessity of a driver and situation adaptive approach. In: Paper presented at 30th European annual conference on human decision-making and manual control (EAM 2012), Braunschweig, Germany

  • Montel MC, Brenac T, Granie M-A, Millot M, Coquelet C (2013) Urban Environments, Pedestrian friendliness and Crossing Decisions. In: Report presented at 92nd annual meeting of the transportation research board, France

  • Nee J, Hallenbeck ME (2003) A motorist and pedestrian behavioral analysis relating to pedestrian safety improvements. Technical report no. WA-RD 560.1, Washington State Transportation Center (TRAC), Seattle

  • Oliver N, Pentland AP (2000) Driver behavior recognition and prediction in a smart-car. In: Verly JG (ed) Proceedings of SPIE—the International Society for Optical Engineering, vol 4023, pp 280–290)

  • Pacaux-Lemoine M-P, Flemisch F (2016) Layers of shared and cooperative control, assistance and automation. IFAC PapersOnLine 49(19):159–164

    Article  Google Scholar 

  • Pentland A, Liu A (1999) Modeling and prediction of human behavior. Neural Comput 11(1):229–242

    Article  Google Scholar 

  • Puca RM (2014) Intention. In: Wirtz MA (ed) Dorsch-Lexikon der Psychologie, 17th edn. Verlag Hans Huber, Göttingen, p 801

    Google Scholar 

  • Rasmussen J (1979) On the structure of knowledge: a morphology of mental models. (Riso-M-2192). Riso National Laboratory, Electronics Department, Roskilde

    Google Scholar 

  • Rehder E, Kloeden H (2015) Goal-directed pedestrian prediction. In: Paper presented at 2015 IEEE international conference on computer vision workshop (ICCVW), Santiago, Chile, pp 139–147

  • Rothenbücher D, Li J, Sirkin D, Mok B, Ju W (2016) Ghost driver: a field study investigating the interaction between pedestrians and driverless vehicles. In: Paper presented at 25th IEEE international symposium on robot and human interactive communication (RO-MAN), New York, USA, pp 795–802

  • Salvucci DD (2004) Inferring driver intent: a case study in lane-change detection. In: Proceedings of the Human Factors and Ergonomics Society annual meeting, vol 48(1), pp 2228–2231

    Article  Google Scholar 

  • Scherf O, Zecha S (2009) Method for determining a probable movement area/location area of a living being and vehicle for carrying out said method. Patent no. WO2,009,019,214 A3

  • Schmidt S, Färber B (2009) Pedestrians at the kerb—recognising the action intentions of humans. Transp Res Part F Traffic Psychol Behav 12(4):300–310

    Article  Google Scholar 

  • Schneemann F, Gohl I (2016a) Analyzing driver-pedestrian interaction at crosswalks: a contribution to autonomous driving in urban environments. In: Paper presented at IEEE intelligent vehicles symposium (IV), Gothenburg, Sweden, pp 38–43

  • Schneemann F, Heinemann P (2016b) Context-based detection of pedestrian crossing intention for autonomous driving in urban environments. In: Paper presented at IEEE/RSJ international conference on intelligent robots and systems (IROS), Daejeon, Korea, pp 1–6

  • Schoon JG (2006) Pedestrian behaviour at uncontrolled crossings. Traffic Eng Control 47(6):229–235

    Google Scholar 

  • Schroven F, Giebel T (2008) Fahrerintentionserkennung für Fahrerassistenzsysteme/Driver intent Recognition for advanced driver assistance systems. VDI-Berichte, vol 2048. VDI-Verlag, Düsseldorf pp 153–161

    Google Scholar 

  • Schubert R, Richter E, Wanielik G (2008) Comparison and evaluation of advanced motion models for vehicle tracking. In: Paper presented at 11th international conference on information fusion, Cologne, Germany, pp 1–6

  • Schweizer T, Thomas C, Regli P (2009) Verhalten am Fussgängerstreifen. Technical report, Fussverkehr Schweiz, :

  • Sisiopiku VP, Akin D (2003) Pedestrian behaviors at and perceptions towards various pedestrian facilities: an examination based on observation and survey data. Transp Res Part F Traffic Psychol Behav 6(4):249–274

    Article  Google Scholar 

  • Sullman MJM, Gras ME, Font-Mayolas S, Masferrer L, Cunill M, Planes M (2011) The pedestrian behaviour of Spanish adolescents. J Adolesc 34(3):531–539

    Article  Google Scholar 

  • Wilson DG, Grayson GB (1980) Age-related differences in the road crossing behaviour of adult pedestrians. Technical report, Transport and Road Research Laboratory, Crowthorne

  • Witzlack C, Beggiato M, Krems J (2016) Interaktionssequenzen zwischen Fahrzeugen und Fußgängern im Parkplatzszenario als Grundlage für kooperativ interagierende Automatisierung. VDI-Berichte, vol 2288. VDI-Verlag, Düsseldorf, pp 323–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Diederichs.

Additional information

Special Issue: Towards a Common Framework for Shared and Cooperative Control of Human and Machines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneemann, F., Diederichs, F. Action prediction with the Jordan model of human intention: a contribution to cooperative control. Cogn Tech Work 21, 711–721 (2019). https://doi.org/10.1007/s10111-018-0536-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10111-018-0536-5

Keywords

Navigation