
Knowl Inf Syst (2007)
DOI 10.1007/s10115-006-0064-0

Knowledge and
Information Systems

REGULAR PAPER

Ramón F. Brena · José L. Aguirre ·
Carlos Chesñevar · Eduardo H. Ramı́rez ·
Leonardo Garrido

Knowledge and information distribution
leveraged by intelligent agents

Received: 7 February 2006 / Revised: 9 November 2006 / Accepted: 25 November 2006
C© Springer-Verlag London Limited 2007

Abstract Knowledge and Information distribution is indeed one of the main pro-
cesses in Knowledge Management. Today, most Information Technology tools for
supporting this distribution are based on repositories accessed through Web-based
systems. This approach has, however, many practical limitations, mainly due to
the strain they put on the user, who is responsible of accessing the right Knowl-
edge and Information at the right moments. As a solution for this problem, we
have proposed an alternative approach which is based on the notion of delegation
of distribution tasks to synthetic agents, which become responsible of taking care
of the organization’s as well as the individuals’ interests. In this way, many Knowl-
edge and Information distribution tasks can be performed on the background, and
the agents can recognize relevant events as triggers for distributing the right infor-
mation to the right users at the right time.

In this paper, we present the JITIK approach to model knowledge and in-
formation distribution, giving a high-level account of the research made around
this project, emphasizing two particular aspects: a sophisticated argument-based
mechanism for deciding among conflicting distribution policies, and the em-
bedding of JITIK agents in enterprises using the service-oriented architecture
paradigm. It must be remarked that a JITIK-based application is currently being
implemented for one of the leading industries in Mexico.

Keywords Knowledge management · Multiagent systems · Defeasible
argumentation

R. F. Brena (B) · J. L. Aguirre · E. H. Ramı́rez · L. Garrido
Centro de Sistemas Inteligentes, Tecnológico de Monterrey, 64849 Monterrey, N.L., México
e-mail: {ramon.brena, jlaguirre, eduardo.ramirez, leonardo.garrido}@itesm.mx

C. I. Chesñevar
Department of Computer Science and Engineering, Universidad Nacional del Sur, B8000CPB
Bahı́a Blanca, Argentina
e-mail: cic@cs.uns.edu.ar

R. F. Brena et al

1 Introduction

Information and Knowledge (IK) are each day more valuable assets in modern
organizations [3, 13, 32]. Indeed, a central concern in Knowledge Management
(KM) [23, 33] is to facilitate knowledge flow, either within an organization or
from/to other relevant actors. IK distribution systems could be visualized as a kind
of information switch, which finds adequate routing paths for IK from sources to
consumers—the latter being normally humans and members of the given organi-
zation (employees, partners, etc.).

Many technologies have been applied to distribute information to users, but
they can be classified in “push” and “pull” modalities [18]. Push modality means
that a system delivers information to a user without the user initiative (like the
email delivery) whereas pull modality means that a user actively gets information
from an electronic resource, typically the Web. The so-called “push technologies”
(also called “Webcasting”, “Netcasting” and other names) were proposed in the
90s as an alternative way to distribute IK to users [18]. In this type of systems, the
user selects information “channels,” and/or fills a “user profile” and gets updated
information from these selected channels. Push systems sounded promising, be-
cause the user could be relieved from getting information updated, which is for
sure a boring and repetitive task. Advocators of push systems claimed that users
would be poured with a wealth of useful information by just staying “plugged”
to their information sources. Though push systems have made their way since
the 90’s [22], their application as a general information distribution paradigm is
nowadays fairly restricted [8], mainly due to problems related to the bandwidth
efficiency, and the flooding of information to users.

An alternative user interaction paradigm (more general than push systems) has
been proposed by Nicholas Negroponte [36]. His proposal consists of a delegation
paradigm for user interaction with the computer, aiming to gradually replace the
dominating “point-and-click” interaction paradigm. In the latter, the user asks di-
rectly for an action to be executed on the computer (for example, double-clicking
an item), and an immediate answer is expected from the computer. In contrast, in
the delegation paradigm, the user delegates some more or less permanent tasks to
the computer, which is expected to execute the “appropriate” actions at the “right”
times, instead of immediately.

In the last years Negroponte’s ideas have been materialized in technologi-
cal terms through a number of the emerging agent technologies [7, 48]. Agent
technologies are by no means monolithic pieces of knowledge, but rather encom-
pass many aspects which promote the delegation paradigm (such as communica-
tion, coordination techniques, cooperation, autonomy, competition, distribution,
mobility, among other issues). Agents are long-life autonomous computational
processes which thrive to achieve their goals (eventually goals delegated by a
user or another agent), and which interact with the external world or with other
agents [48]. Intelligent Agents offer the promise of much more modularity, flex-
ibility, and adaptability when building complex systems, particularly multiagent
systems [48]. This requires the development of specialized methodologies and al-
gorithms which allow agents to communicate and interact by coordinating, coop-
erating, competing with other agents, etc.

Knowledge and information distribution leveraged by intelligent agents

In the last years, we have developed the JITIK multiagent framework [1, 9, 11,
14, 15], a knowledge and information distribution approach based on the idea of of
delegation of distribution tasks to synthetic agents, which became responsible for
taking care of the organization’s as well as the individuals’ interests. In this way,
many Knowledge and Information distribution tasks are performed on the back-
ground, and the agents can recognize relevant events as triggers for distributing
the right information to the right users at the right time. In our approach, users are
represented by personal agents, and a community of specialized agents takes care
of different aspects of information distribution. Currently, we are implementing a
particular version of our framework for one of the leading industries in Mexico.1

In this paper, we present the JITIK approach to model knowledge and informa-
tion distribution among the members of a large or distributed organization, giving
a high-level account of the research made around this project. Our presentation
will emphasize two particular aspects: the definition of a sophisticated argument-
based mechanism for deciding among conflicting distribution policies, and the
embedding of JITIK agents in enterprises using the service-oriented architecture
paradigm. The rest of this paper is organized as follows: Sect. 2 summarizes the
main aspects of the JITIK framework. We will describe how ontologies are han-
dled within JITIK, and which kind of services are available. In particular, we will
describe a formalization of information distribution which will be useful for mod-
eling the argument-based mechanism for dealing with conflicts among distribution
policies. Next, in Sect. 3, we present a case study, similar to an application we
are currently implementing in an enterprise, which will serve as an example for
specific technologies presented in later sections of the paper. Section 4 presents
an argument-based formalization which allows to cope with such conflicts. We
provide a detailed example, based on the case study, along with a description of
the underlying argument-based formalism. Section 5 analyzes how JITIK can be
embedded in enterprise systems by means of Web Services under the Service-
Oriented Architecture paradigm. Section 6 discusses the main contributions of
the proposed approach as well as some related work in the area. Finally, Sect. 7
summarizes the most important conclusions that have been obtained.

2 The JITIK approach

JITIK [1, 9, 10] is a multiagent-based system for disseminating pieces of IK
among the members of a large or distributed organization, thus supporting a
Knowledge-management function. It is aimed to deliver the right IK to the ad-
equate people just-in-time.

The JITIK agent model is shown in Fig. 1. Personal Agents work on behalf of
the members of the organization. They filter and deliver useful content according
to user preferences. The Site Agent provides IK to the Personal Agents, acting as
a broker between them and Service agents. Service agents collect and detect IK
pieces that are supposed to be relevant for someone in the organization. Examples
of service agents are the Web Service agents, which receive and process external
requests, as well as monitor agents which are continuously monitoring sources of

1 For the sake of confidentiality, we generalize this application in the following, omitting
names.

R. F. Brena et al

Fig. 1 The JITIK agent model

IK (Web pages, databases, etc.). Other Service agents monitor at time intervals the
state of an IK resource, like a Web page, data in an enterprise’s database, etc.

The Ontology agent contains knowledge about the interest areas for the mem-
bers of the organization and about its structure [12]. That knowledge is hierarchi-
cally described in the form of taxonomies, usually one for interest areas and one
describing the structure of the organization. For example, in an academic insti-
tution, the interest areas could be the science domains in which the institution is
specialized, and the organizational chart of the institution gives the structure of
the organization. This is going to be further described in the following sections.

Site agents are the heart of a “cluster” composed by one site agent and sev-
eral personal agents served by the former. In an organization, clusters would be
associated to departments, divisions, etc., depending on their size. Networks can
be made up connecting several site agents. Distributed organizations like multina-
tional companies would have a web of many connected site agents.

2.1 Ontology handling in JITIK

In JITIK, we declared users and information attributes through the use of the
so-called ontologies [5]. Ontologies are structured representation of concepts,
classes, individuals, properties, and other categories. We used open standards like
DAML-OIL [24], which allow to publish in the Internet ontological knowledge in
a way understandable both by humans and machines.

The way we stored ontologies is innovative in that it combines centralized
and distributed ontology storage. We call this method “hybrid” local-global This
allows to fine-tune the percentage of ontologies that is stored locally at each per-
sonal agent, and the remaining ontologies are going to be stored in a central-
ized, Internet-accessible ontology agent (OA). Personal agents are endowed with
a “client ontology component” (COC) which gives it basic ontology handling ca-
pabilities. This arrangement works in the following way:

Knowledge and information distribution leveraged by intelligent agents

– Standard agents start with a subset of a common ontology, which is loaded at
startup from an Internet resource. They use their local ontologies, handled by
the COC, as long as the local knowledge suffices for the agent’s activity.

– When further knowledge is required—for instance, an unrecognized term ar-
rives from the other agent—the COC queries the OA, and receives a tailored
addition to the basic ontology, that allows the agent to continue working. The
COC stores locally the ontology addition so it could be used later.

Client agents try to fulfill their ontology knowledge needs using the knowl-
edge in the COC. If necessary, the COC makes a query to the OA, and interprets
and uses the answer, and eventually incorporates it into the local knowledge. In
[16], we provide empirical evidence that shows that our hybrid local-global ap-
proach can be more efficient than both a completely centralized and a completely
distributed approach.

2.2 JITIK services

Among the services provided by JITIK, we have the following.

Recommendation services: A user’s profile is represented by a set of points in the
taxonomies, as each user could have many interests and could be located at
different parts of the organizational structure. As JITIK keeps track of user
interests and preferences, it is able to recommend content to users on demand.
Recommended content may be used in Portals or Web applications.

Subscription services: JITIK allows users to subscribe to changes in specific ar-
eas. Also, users may customize the media and frequency of JITIK notifications
using simple Web-based interfaces. Rules may be defined so that messages rel-
ative to certain topics are handled with higher priorities. A rule may state that
several alerts should be sent to their cell-phone via SMS, and also define that
interest-area messages be sent in a weekly summary via email. Organization
managers may set high-level distribution rules.

Content distribution services: Enterprise applications can deliver content to the
system using its semantic-based content distribution services. When new con-
tent is received, it is classified and distributed to those users who could be
interested. Users receive the notifications of new content as specified by their
own rules.

2.3 Formalizing IK distribution in JITIK

As explained earlier, JITIK aims at disseminating pieces of IK among the mem-
bers of a large or distributed organization, thus supporting a Knowledge-manage-
ment function. The Site Agent is in charge of providing IK to the Personal Agents,
acting as a broker between them and Service agents. Clearly, in large or distributed
organizations, there are usually complex decision-making situations regarding IK
distribution, specially in the presence of potentially incomplete information con-
cerning metadata and user profiles, as well as competing policies, which may be
complicated and could include several exceptions. Therefore, it is important that

R. F. Brena et al

Site agents are provided with appropriate knowledge representation and inference
capabilities to solve such problems.

Next, we will provide a basic formalization for the main problem a JITIK Site
Agent has to solve, namely distributing items among users according to possibly
conflicting policies. Consider a set I = {i1, i2, . . . , ik} of information items, which
has to be distributed among a set U = {u1, . . . , us} of users. Every item i ∈ I
should be delivered to only a distinguished subset User ⊆ U . To accomplish this
task, the Site Agent will apply a distribution policy p that can be formally defined
as a mapping p : I → ℘(U). Distributing an item i to a user u is compliant with
a policy p when (i, {. . . , u, . . .}) ∈ p.

In any real-world organization, it is clear that policies are not formulated in
this way, but instead they are specified by a number of constraints enforced by
the organization (e.g., access rights). If P is a set of possible policies in the or-
ganization, given two policies p1, p2 ∈ P , we say they are in conflict whenever
(i, {. . . , u, . . .}) ∈ p1 but (i, {. . . , u, . . .}) �∈ p2, or viceversa. A conflict means
that an information item i cannot be compliant with two policies p1 and p2 at the
same time. We can define a dominance partial order ≺ among possible policies in
P , writing p1 ≺ p2 to indicate that a policy p2 is preferred over policy p1 in case
they are in conflict. In this setting, the “information distribution problem” to be
solved by a JITIK Site Agent could then be recast as follows: Send every informa-
tion item i ∈ I to a user u ∈ U following a distribution p iff p is compliant with
every nondominated policy p′ ∈ P.2

Note that dominance characterizes a transitive ordering among policies, with
the following particular feature: a policy pi can be dominated by another policy
p j , making pi not valid. However, p j can on its turn be dominated by another pol-
icy pk . If that is the case, the policy pi may be perhaps valid again (as the policy
p j was “defeated” by policy pk). Such a situation can be recast in an argument-
based system for defeasible reasoning [17], in which defeasible rules (i.e., rules
supporting conclusions that may be no longer valid when new information is avail-
able) are allowed. By chaining defeasible rules to reach a conclusion, we have
arguments instead of proofs. Arguments may compete, rebutting each other, so a
process of argumentation is a natural result of the search for arguments. Adjudi-
cation of competing arguments must be performed, comparing arguments in order
to determine what beliefs are ultimately accepted as warranted or justified. Pref-
erence among conflicting arguments is defined in terms of a preference criterion
which establishes a relation “ � ” among possible arguments.

3 A case study

In this section, we will illustrate how JITIK Agents work in the context of a real-
world problem. To do so, we will describe a generic application similar to the one
we are currently implementing for one of the leading industries in Mexico.3 Con-
sider a “news center” in a big enterprise, where a flow of news is originated, both

2 Note that characterizing p depends on the specific sets U , I , and P under consideration.
Here, we do not discuss the problem of finding out whether such a mapping actually exists, but
rather focus on enforcing dominance on conflicting policies.

3 For the sake of confidentiality, some relevant details are generalized and names are inten-
tionally omitted.

Knowledge and information distribution leveraged by intelligent agents

Fig. 2 Information flow in a News Center (case study)

from internal and external news. News are “tagged” both by human employees
and by automated text classifiers. Once the information is tagged, the problem is
to deliver those news to the right persons in the company by considering their in-
formation needs as well as their preferences and roles in the company. Information
flow of this case study is depicted in Fig. 2.

Individual interests and some information needs are taken into account by
means of news classification into a set of categories which are organized in a
tree. In this tree, a broad area like “marketing” has subareas like “TV advertis-
ing,” which, in turn, may have subareas. Users select a collection of nodes in this
tree in order to describe their information interests. Some of the information needs
of users are determined “a priori” by the company without user intervention, as,
for instance, when an information area matches an employee’s department or role
(for example, anybody in the marketing department is likely to receive useful in-
formation on marketing). Whether the individual policies prevail over corporate
ones when they are in conflict, is up to the particular enterprise. It is also the
case that some information items may correspond to sensitive information, so that
they are not delivered to anybody (so that a level of authorization or permission is
required).

Such distribution policies can be formulated in terms of the formalization we
provided earlier for information distribution. For example, consider the problem of
distributing information according to the hierarchical classification tree of topics.
Suppose a user u ∈ U has selected as his/her interests the set of topics T =
{t1, . . . , tn} which are nodes from the topic classification tree. We are going to
represent the “topic tag” of an information i by τ(i) and the “subarea” relation
by ς . Then, we are defining a policy where u is going to receive any information
i such that (τ (i), tk) ∈ ς∗, where tk ∈ T and ς∗ is the transitive closure of ς ,
meaning that if a user selects a topic tk he/she is automatically interested in any
subtopic of tk .

In the next section, we will analyze how to model reasoning capabilities in
JITIK Site Agents in terms of Defeasible Logic Programming [21], an argument-
based logic programming formalism. As a basis for our discussion, we will con-
sider a particular case study related to a news center.

R. F. Brena et al

4 Modeling reasoning in JITIK site agents via argumentation

As explained in Sect. 2.3, Site agents will be in charge of applying such distribu-
tion policies, and consequently they should be provided with appropriate knowl-
edge representation and inference capabilities to solve such problems. In order to
provide a rationally justified procedure for deciding which IK item goes to which
user, we will rely on an argument-based logic programming language called De-
feasible Logic Programming (DeLP).

Logical models of defeasible argumentation [17] have evolved in the last
decade as a successful approach to formalize defeasible, commonsense reason-
ing. Recent research has shown that argumentation can be integrated in a growing
number of real-world applications in a broad scope of areas such as legal reason-
ing, natural language processing, clustering, analysis of news reports [25], and
others.

4.1 Defeasible logic programming: formalizing argumentation in JITIK

In what follows, we will summarize the fundamentals of Defeasible logic pro-
gramming (DeLP) [21] in a particular general-purpose defeasible argumentation
formalism based on logic programming.4

A defeasible logic program in a set K = (�, �) of Horn-like clauses, where �
and � stand for sets of strict and defeasible knowledge, respectively. The set � of
strict knowledge involves strict rules of the form p ← q1, . . . , qk and facts (strict
rules with empty body), and it is assumed to be noncontradictory (i.e., an atom P
and its negation cannot be derived from �). The set � of defeasible knowledge
involves defeasible rules of the form p � q1, . . . , qk , which stands for “q1, . . . qk
provide a tentative reason to believe p.” The underlying logical language is that
of extended logic programming, enriched with a special symbol “� ” to denote
defeasible rules. Both default and classical negation are allowed (denoted not and
∼, resp.). Syntactically, the symbol “� ” is all that distinguishes a defeasible rule
p � q1, . . . qk from a strict (nondefeasible) rule p ← q1, . . . , qk . DeLP rules are
thus Horn-like clauses to be thought of as inference rules rather than implications
in the object language. Deriving literals in DeLP results in the construction of
arguments.

Definition 4.1 (Argument) Given a DeLP program P , an argument A for a query
q, denoted 〈A, q〉, is a subset of ground instances of defeasible rules in P and a
(possibly empty) set of default ground literals “not L,” such that: 1) there exists
a defeasible derivation for q from �∪A; 2) �∪A is noncontradictory (i.e, �∪A
does not entail two complementary literals p and ∼ p (or p and not p)), and 3)
A is minimal with respect to set inclusion.

An argument 〈A1, Q1〉 is a subargument of another argument 〈A2, Q2〉 if
A1 ⊆ A2. Given a DeLP program P , Args(P) denotes the set of all possible
arguments that can be derived from P .

The notion of defeasible derivation corresponds to the usual query-driven
derivation used in logic programming, performed by backward chaining on both

4 For an in-depth analysis, the reader is referred to ref. [21].

Knowledge and information distribution leveraged by intelligent agents

strict and defeasible rules; in this context a negated literal ∼ p is treated just as
a new predicate name no p. Minimality imposes a kind of “Occam’s razor prin-
ciple” [42] on arguments. The noncontradiction requirement forbids the use of
(ground instances of) defeasible rules in an argument A whenever � ∪ A entails
two complementary literals.

Definition 4.2 (Counterargument—Defeat) An argument 〈A1, q1〉 is a counter-
argument for an argument 〈A2, q2〉 iff

1. There is an subargument 〈A, q〉 of 〈A2, q2〉 such that the set � ∪ {q1, q} is
contradictory.

2. A literal not q1 is present in some rule in A1.

A partial order � ⊆ Args(P) × Args(P) will be used as a preference cri-
terion among conflicting arguments. An argument 〈A1, q1〉 is a defeater for an
argument 〈A2, q2〉 if 〈A1, q1〉 counterargues 〈A2, q2〉, and 〈A1, q1〉 is preferred
over 〈A2, q2〉 wrt �. For cases (1) and (2) earlier, we distinguish between proper
and blocking defeaters as follows:

– In case 1, the argument 〈A1, q1〉 will be called a proper defeater for 〈A2, q2〉
iff 〈A1, q1〉 is strictly preferred over 〈A, q〉 wrt �.

– In case 1, if 〈A1, q1〉 and 〈A, q〉 are unrelated to each other, or in case 2,
〈A1, q1〉 will be called a blocking defeater for 〈A2, q2〉.
Specificity [42] is used in DeLP as a syntax-based criterion among conflicting

arguments, preferring those arguments which are more informed or more direct
[42, 43]. However, other alternative partial orders could also be used.

As defeaters are arguments, they can on their turn be defeated by other argu-
ments. This leads to a recursive analysis, in which many alternative argumentation
lines can be computed. An argumentation line starting in an argument 〈A0, Q0〉
(denoted λ〈A0,q0〉) is a sequence [〈A0, Q0〉, 〈A1, Q1〉, 〈A2, Q2〉, . . . , 〈An, Qn〉
. . .] that can be thought of as an exchange of arguments between two parties,
a proponent (evenly-indexed arguments) and an opponent (oddly-indexed argu-
ments). Each 〈Ai , Qi 〉 is a defeater for the previous argument 〈Ai−1, Qi−1〉 in the
sequence, i > 0. In the same way as in an exchange of arguments between hu-
man contenders, an argumentation line λ〈A0,q0〉 is won by the proponent if he/she
presents the last argument (i.e., λ〈A0,q0〉 has odd length k = 2p + 1, p >= 0);
otherwise, the line is lost. An argument 〈A0, q0〉 is warranted iff all argumenta-
tion lines rooted in 〈A0, q0〉 are won. In order to avoid fallacious reasoning, there
are additional constraints (viz., disallowing circular argumentation, enforcing the
use of proper defeaters to defeat blocking defeaters, etc.5) on such an argument
exchange to be considered rationally valid. On the basis of such constraints, ar-
gumentation lines can be proven to be finite. Given a DeLP program P , solving a
query q0 wrt P can result in three different answers: a) YES (there is some war-
ranted argument 〈A0, q0〉); b) NO (there is some warranted argument 〈A0, ∼ q0〉);
c) UNDECIDED (neither a) nor b) hold). An efficient inference engine based on an
extension of Warren’s Abstract machine for PROLOG is available to solve queries
in DeLP.6

5 For an in-depth treatment of dialectical constraints in DeLP, the reader is referred to ref. [21].
6 See http://lidia.cs.uns.edu.ar/DeLP

R. F. Brena et al

4.2 Reasoning in JITIK under DeLP: proposed approach

The JITIK framework, as it stands, can take into consideration hierarchies for
users and content classification for determining how distribution rules are to be
applied. In the case of policies with exceptions, or competing policies, special-
ized criteria have to be explicitly encoded in both Site and Personal agents. In
many respects, such an approach is undesirable. On the one hand, such changes
involve modifying the underlying decision algorithm. The correctness of such
changes may be difficult to test, as unexpected side-effects might arise for new
future cases. On the other hand, the knowledge engineer should be able to encode
knowledge as declaratively as possible, including the possibility of representing
competing policies. Such knowledge should be independent of the rational pro-
cedure for determining which is the winning policy when conflicting situations
arise.

Our proposal consists of integrating the JITIK framework with DeLP, incor-
porating distribution policies for Site Agents explicitly in terms of defeasible
logic programs. As explained in Sect. 2, a JITIK Site Agent AgS is responsible
for distributing IK among different Personal Agents Ag1, . . . , Agn . We will use
DeLP programs to represent the knowledge of these agents. Thus, preferences of
different Personal Agents Ag1, . . . , Agn will be represented as DeLP programs
PAg1 , . . . ,PAgn . Distribution policies and preferences of the Site Agent AgS will
be represented by another DeLP program PS . In contrast with the programs asso-
ciated with Personal Agents, this program PS will contain corporate rules defining
hierarchies and (possibly conflicting) policies for IK distribution among personal
agents.

Given a list L = [Item1, . . . , Itemi] of IK items to be distributed by the
Site Agent AgS among different Personal Agents Ag1, . . . , Agn , a distinguished
predicate distribute(I, User) will be used to determine whether a particular IK
item I ∈ L is intended to be delivered to a specific user User . This query will
be solved by the DeLP inference engine on the basis of a program P which
will take into account the Site Agent’s knowledge, the metadata corresponding
to the incoming items to be distributed and the personal preferences of the dif-
ferent users involved. This is made explicit in an algorithm shown in Fig. 3.
Solving queries based on the distribute predicate wrt the DeLP inference engine
will automate the decision making process for Site Agents, providing a ratio-
nally justified decision even for very complex cases, as we will see in the next
section.

4.3 An example: distributing items at the news center

In this section, we take the case study of Sect. 3 as an example of how DeLP is
integrated into the JITIK system to distribute IK items to users using the described
argumentation framework. So, we are assuming a “News Center” that distributes
news to users according to their interests as well as the corporate policies. In such
a corporate environment, there would be people with different rights and respon-
sibilities (CEO, managers, supervisors, etc.). These people (users) will belong to
different areas of the organization (production, marketing, etc.), and will have
different personal interests and preferences which are characterized by their cor-

Knowledge and information distribution leveraged by intelligent agents

ALGORITHM DistributeItems
{Executed by Site Agent AgS to decide distribution of items in L}
INPUT: List L = [item1, . . . , itemk] of incoming items

DeLP program PS for Site Agent AgS

DeLP programs P1, . . . ,Pn for Personal Agents depending from AgS

OUTPUT: Item distribution to Personal Agents
according to policies and user preferences

BEGIN
P ′

S := PS ∪ {info(item1), . . . , info(itemk)}
{Encode incoming items as new facts for Site Agent}
FOR every item I ∈ L
FOR every Personal Agent Agi supervised by AgS

Let P = P ′
S ∪ PAgi

Using program P, solve query distribute(Item, Agi)
IF distribute(Item, Agi) is warranted

THEN
Send message I to agent Agi

END

Fig. 3 Algorithm for knowledge distribution using DeLP in a JITIK site agent

responding Personal Agents. In our example, IK items will correspond to memos,
which have to be delivered by a Site Agent to different users according to the orga-
nization policies. Personal interests and preferences of the different users involved
should also be taken into account.

Within the case study organization, areas and topics are organized in hierar-
chies. Thus, for example, a hierarchy of topics for news could be “computers—
hardware—processors.” The Site Agent is required to take this into account, per-
forming inheritance reasoning to infer consequences related to subareas: if a user
is not interested in news related to hardware, he will not be interested in news
related to processors either. Note that other organization policies could add excep-
tions to such hierarchies, e.g. by stipulating that a certain news item is mandatory,
and should be delivered without consulting the user preferences.

In our example, IK items made available from the organization to the Site
Agent will correspond to different news, which will be encoded with a predicate
in f o (I d, A, L , M, T, S), meaning that the news item with unique identifier I d
is about area A and it can be accessed by users of at least level L . Other attributes
associated with the news item are whether it is mandatory (M = 1) or optional
(M = 0), top secret (T = 1) or not (T = 0), and is originated at source S. Thus,
the fact

info(id3, computers, manager, 0, 0, marketing) ←
indicates that the news item id3 is about computers, it is intended at least for man-
agers, it is not mandatory nor secret, and it has been produced by the department
of marketing.

4.4 Characterizing organization knowledge in site and personal agents

Figure 4 shows a sample DeLP code associated with a Site and a Personal agent in
our organization.7 Strict rules s1–s9 characterize permissions and extract informa-

7 Note that we distinguish strict rules, defeasible rules, and facts by using si , di and fi as
clause identifiers, respectively.

R. F. Brena et al

Fig. 4 DeLP code for a site agent and a personal agent in JITIK

tion from news. Rule s1 defines that a user P is allowed access to item I if he/she
has the required permissions. Granted permissions are given as facts (f1, f2 and
f3). Permissions are also propagated using the strict rules s4, s5 and s6, where
the binary predicate depends establishes the organization hierarchy, stating that
the first argument person is (transitively) subordinated to the second one. This
predicate is calculated as the transitive closure of a basic predicate subordinate
(defined by facts f4 and f5), which establishes subordinate relationships pairwise.
Thus, having, e.g., granted permissions as CEO allows the CEO to have access

Knowledge and information distribution leveraged by intelligent agents

to every memo corresponding to lower level permissions. Note that the predicate
subordinate uses generic roles as arguments, not specific person identifiers.

Rule s2 and s3 define the predicate is About (I, A) as an information hierarchy
among subfields. The basic case corresponds to a subfield for which specific in-
formation is available (rule s2). Note that in our particular example facts f6 and f7
define the basic relationships in this hierarchy. Finally, rules s7 – s9 define auxil-
iary predicates source, mandatory (yes/no) and topsecret (yes/no) which allow to
extract these particular attributes from the news to be distributed that just extract
information from info, facts, simplifying the subsequent analysis.

Let us now consider the defeasible rules for our Site Agent. Rule d1 defines
when an item I is usually of interest for a specific user U , on the basis of the
user’s personal preferences. Rule d2 and d4 define a policy for news distribution
in our organization: a) an item (memo) I should be delivered to a user U if he is
allowed to read this news item, and it is mandatory for him to read it; b) an item
I should be delivered to a user U if he is allowed to read it, and it is interesting
for him. Rule d3 provides an exception for mandatory news: users which have at
least permission as managers are not forced to read news they are not interested
in, unless they are top secret ones.8

Finally, let us consider the DeLP program associated with a particular Personal
Agent (e.g., Joe). A number of facts represent Joe’s preferences: which are his
interest fields, and his personal belief about other parts of the organization (e.g.,
reliability with respect to the source of incoming memo).9 Joe can provide also
a number of defeasible rules associated with his preferences. Rule d ′

1 establishes
that Joe is not interested in a news item coming from an unreliable source. Rule d ′

2
defines how to handle “negative inheritance” within the hierarchy of interests: Joe
is not interested in any area A which is a subarea of another area Super A, such
that Super A is not interesting for him (e.g., if he is interested in computers but not
interested in hardware, he will not be interested in a news item about processors,
as processors are a subarea of hardware).

4.5 Solving conflicts for information distribution as DeLP queries

Let us assume that there is a list of information items [News1, News2, News5]
corresponding to news items to be distributed by our Site Agent, which encodes
organization policies as a DeLP program PS . By applying the algorithm given in
Fig. 3, these items will be encoded temporarily as a set Pi tems = {in f o(News1),
in f o(News2), in f o(News5)} (see Fig. 4).

For the sake of simplicity, we will assume that there is only one single Per-
sonal Agent involved, associated with a specific user joe, whose role is manager .
Joe’s Personal Agent mirrors his preferences in terms of a DeLP program P joe =
{d ′

1, d ′
2, f ′

1, f ′
2, f ′

3, f ′
4}, which together with PS and Pi tems will provide the knowl-

edge necessary to decide which IK items should be delivered to this specific
user. Following the algorithm in Fig. 3, the Site Agent will have to solve the
queries distribute(id1, joe), distribute(id2, joe) and distribute(id5, joe) wrt
the DeLP program PS ∪Pi tems ∪P joe. We will show next how every one of these

8 Note how this last condition is expressed in terms of default negation not in rule d3.
9 Note the use of explicit negation in these predicates.

R. F. Brena et al

queries is solved in different examples that show how DeLP deals with conflicts
among organization policies and user preferences.

Example 4.1 Consider the query distribute(id1, joe). In this case the DeLP in-
ference engine will find the argument 〈A1, distribute(id1, joe)〉, with10 A1 =

{distribute(id1, joe) −−≺ allowed(id1, joe),

interest(id1, joe);
interest(id1, joe) −−≺ isAbout(id1, computers),

interestField(computers, joe)}

However, in this case, a defeater 〈A2, ∼ interest (id1, joe)〉 for the argument〈A1, distribute(id1, joe)〉 will be found, with A2 =
{∼ interest(id1, joe) −−≺ isAbout(id1, computers)

interestField(computers, joe)

source(id1, external),

∼ relies(joe, external).}

Note that in this case, id1 comes from an external source, and according to joe’s
preference criteria, external sources are unreliable. Hence, the Site Agent will not
deliver this information item to him. There is a single argumentation line with two
nodes (even length) [〈A1, distribute(id1, joe)〉, 〈A2, ∼ interest (id1, joe)〉].
There are no other arguments to consider, and 〈A1, distribute(id1, joe)〉 is not
warranted.

Example 4.2 Consider now the query distribute(id2, joe). There is an argument〈B1, distribute(id1, joe)〉, with B1 =

{distribute(id2, joe) −−≺ allowed(id2, joe),

interest(id2, joe);
interest(id2, joe) −−≺ isAbout(id2, computers),

interestField(computers, joe)}

This argument has no defeaters, and hence only one associated argumentation line
[〈B1, distribute(id1, joe)〉]. The original argument is therefore warranted.

Example 4.3 Finally consider the query distribute(id5, joe). There is an argu-
ment 〈C1, distribute(id1, joe)〉, with C1 =

{distribute(id5, joe) −−≺ allowed(id5, joe), interest(id5, joe);
interest(id5, joe) −−≺ isAbout(id5, computers),

interestField(computers, joe)}

10 For the sake of clarity, we use semicolons to separate elements in an argument A = {e1 ; e2
; . . . ; ek }.

Knowledge and information distribution leveraged by intelligent agents

However, in this case, a defeater 〈C2, ∼ interest (id5, joe)〉 for the argument〈C1, distribute(id5, joe)〉 can be found, with C2 =

{∼ interest (id5, joe) −−≺ is About (id5, computers),

interest Field(computers, joe),

is About (id5, hardware),

∼ interest Field(hardware, joe).}

As in Example 4.1, the argument 〈C1, distribute(id1, joe)〉 is not war-
ranted. The DeLP inference engine searches then for alternative arguments for
distribute(id5, joe). There is another one, namely 〈D1, distribute(id5, joe)〉,
with D1=

{distribute(id2, joe)−−≺allowed(id2, joe),mandator y(id5, joe)}
which in this case is defeated by another argument 〈D2, ∼ mandatory(id5, joe)〉,
with D2 =

{∼ mandatory(id5, joe) −−≺ permissions(joe, manager),

∼ interest(id5, joe),

not topsecret(id5);
∼ interest(id5, joe) −−≺ isAbout(id5, computers),

interestField(computers, joe),

isAbout(id5, hardware),

∼ interestField(hardware, joe)}

which is on its turn defeated by a third, empty argument 〈D3, topsecret (id5)〉,
with D3 = ∅ (note that topsecret (id5) is logically entailed by the strict knowl-
edge of the Site Agent, and hence no defeasible information is needed). Argu-
ment 〈D3, topsecret (id5)〉 defeats 〈D2, ∼ mandatory(id5, joe)〉, reinstating the
argument 〈D1, distribute(id5, joe)〉. Thus an argumentation line of three argu-
ments is associated with 〈C1, distribute(id1, joe)〉, so that in this particular case
the argument 〈D1, distribute(id5, joe)〉 is warranted.

After solving the different queries as shown in the previous examples, the Site
Agent will proceed to deliver only news items id2 and id5 to joe’s Personal Agent,
but not news item id1.

5 Embedding JITIK agents in an enterprise system using Web Services

As stated in Sect. 2, the JITIK framework goals demand a seamless integration
of its agent components with other technologies like Web servers, databases, etc.
Indeed, such lack of integration in other agent-based systems has been one of
the main factors hindering their widespread use [48]. Thus, we have proposed
an alternative approach to integrating agents with conventional Internet-based
software. Our proposal is by no means a radical departure from other ones, but we
have shown [40] that in many contexts it is much simpler, cleaner, and efficient
than competing ones.

R. F. Brena et al

For integrating JITIK with Internet-based open systems, we relied on the so-
called “Service-Oriented approaches” (SOA) [2], which could be described as:
“the architectural style that supports loosely coupled services to enable business
flexibility in an interoperable, technology-agnostic manner. SOA consists of a
composite set of business-aligned services that support a flexible and dynam-
ically reconfigurable end-to-end business processes realization using interface-
based service descriptions” [6].

The Service-Oriented Architecture paradigm (SOA) improves the abstraction
and flexibility on which information systems may be designed and integrated
when compared to code-centric previous approaches. There exists three roles or
actors in a SOA: a service consumer, first locates a service provider in a service
registry or broker, then binds the service description, and finally performs an in-
vocation to the provider. The loose coupling principle suggests that the operations
between actors should be carried out interchanging as little information as possi-
ble, usually through message passing.

Even though the SOA architectural style is not bound to any particular im-
plementation technology, the Web Services standards are becoming a natural and
common choice for implementing it. For the purposes of this work, we understand
a Web Service as “a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL [51]). Other systems interact with the Web
Service in a manner prescribed by its description using SOAP-messages [52], typ-
ically conveyed using HTTP with an XML [50] serialization in conjunction with
other Web-related standards [53].”

Despite a continuous maturing of MultiAgent Systems technologies, they are
still far from becoming mainstream in enterprise applications [49], delivering their
promise of robust and flexible new-generation information systems. Some reasons
for this can be traced back to methodological or cultural issues [47], but we think
there are important architectural issues as well. In fact, current approaches for
integrating agents and composing their function and services rely on low-level
communication mechanisms [31], which have very little to do with enterprise-
wide integration issues.

The SOA approach and Web Services technologies could be used to overcome
the technical limitations required to integrate a MultiAgent System into an enter-
prise service-oriented environment. In a similar way, the SOA ideas can be trans-
lated to the application internals to allow agents to provide a stable framework
for building robust Agent-based applications. A number of recent works report
how the SOA approach has been applied in several AI and multiagent systems and
components (e.g., [41, 54]).

In conformance with the SOA ideas, the main architectural principle for in-
tegrating a MultiAgent system into an enterprise environment consists of decou-
pling applications through the exposure of “coarse-grained” service interfaces. As
shown in Fig. 5, the underlying metaphor used to determine the design strategy
was the aim to create a “black-box” in which agents can live and perform com-
plex knowledge-intensive tasks. Neither enterprise applications nor its developers
should be aware that a service is provided by agents if the system offers a standard
SOAP endpoint as interface. Several integration architectures for agent-based ap-
plication exist (e.g., ref. [46]). However, a particular approach called “Embedded

Knowledge and information distribution leveraged by intelligent agents

Fig. 5 Decoupled architecture (top-level view)

Web Service Architecture (EWSA)” has proven to be enough simple and effec-
tive for this purpose, with a clear focus on agent-to-application communication.
The proposal’s main idea suggests embedding a Web Server into an agent-based
application and defining an interaction model upon which software agents and
Web-components [44] may communicate in order to provide services. Details on
the approach can be found in ref. [40].

Besides application integration, the service-oriented approach has gained mo-
mentum for intra-application component communication. The SOA paradigm
has been reinforced by a new generation of noninvasive lightweight frameworks
(e.g. [28, 29]) that leverage contemporary software design principles and allow ap-
plication developers to produce enterprise-level, yet simple applications. The use
of a lightweight framework like Spring [26] helps agent project teams to decom-
pose an application in to simple components that access and reuse a collection of
platform services, thus simplifying programming and allowing a greater abstrac-
tion to the specific agent development.

We have developed and implemented [15, 40] a generic application architec-
ture (shown in Fig. 6) where some general-purpose services may be provided by

Fig. 6 Platform services framework (layered component view)

R. F. Brena et al

Subscription
Service

Classification
Service

Web Service
Component

1. writeArticle(topic, content)

End-user

2. publish Content(topic, content)

3. findRelatedTopics() 4. notifySuscribers()

5. findUsers()

SiteAgent
Personal
Agents

6. informUsers()

Notification
Service

7. DeliverNotifications()

Content
Management

System

Fig. 7 Case study control flow

robust third-party tools. Each of the boxes in Fig. 6 represents a platform service
that is configured and instantiated by the lightweight container; the container also
fulfills the “service registry” role described earlier. Each platform service is com-
posed of a particular kind of application component concerning a specific techni-
cal domain. The layer metaphor gives an insight about the abstraction level of each
application tier, where high-level service components (i.e., Web-components and
agents) consume the services of low-level components (i.e., data-access objects).

Using the service-oriented approach, the news delivery and classification case
study causes the flow of events between services and agents as described in Fig.
7. The flow of events goes as follows:

– Once the user of the content management system (CMS) publishes a new ar-
ticle, it triggers a notification to the JITIK service. The CMS application will
invoke the content-distribution service using a standard coarse-grained inter-
face.

– After that, the classification service will attempt to match a set of topics for
the article, according the contents of the ontology of the organization.

– When the content is classified, the request is passed into the agent-layer where
agents determine the set of content receivers considering their interest profiles
and personal preferences.

Knowledge and information distribution leveraged by intelligent agents

– Finally, relevant information will be delivered to users through the internal
notification services, the system may leverage the use of several distribution
media (Email, SMS) to alert users of new documents and other application
events.

In the presented example, there are generic (Web, Agent, Persistence) and cus-
tom services (shaded) like the Scheduling and Notification services. For this spe-
cific case, services were defined and implemented as follows:

Embedded Web Server: Implemented using the Tomcat Web Server [27], it pro-
vides application with the capability of receiving HTTP requests and turning
them to a particular Web-component or Servlet in conformance with the JSR-
154 [44] specification.

Agent platform: The execution environment for the agents provided by the agent
platform in conformity with FIPA [19] specifications. Particularly imple-
mented with the JADE [4] platform.

Scheduling service: Allows the agents and users of the applications to schedule
periodic or time-triggered execution of custom jobs using the Quartz Sched-
uler [45]. Job components are defined using an application-specific hierar-
chy of tasks and events (i.e., CheckMail, CheckAppointments, StartWorkflow,
etc.).

Notification service: Allows the agents and Web-components to access the enter-
prise notification infrastructure, namely the mail service using the JavaMail
API and several SMS systems. Notification components are the drivers for the
distinct enterprise notification providers.

Semantic processing service: Provides access to a set of classification and infer-
ence tools like the Jess rule engine [20]. Allows agents to perform simplified
queries to rule bases using native Java calls.

Persistence service: Implemented using the JDBC API and the components in
conformance with DAO pattern, it is a low-level platform service that provides
a simplified object access to enterprise datasources to the servlets, agents, jobs
and other components in the application. It also offers access to directory ser-
vices such as LDAP for user authentication and profile synchronization.

Following this approach, the particular agent-model of the system is designed
and implemented on the Agent platform, enabling agents with the capability of
invoking any of the underlying platform services. We believe that the use of such
a framework becomes critical in agent projects where the agent developers do not
share the same set of skills and concerns enterprise application developers have.
In such cases, the use of service-oriented principles helps such heterogeneous de-
velopment teams to achieve a clear division of work.

6 Discussion: related work

We contend that an agent-based approach to IK distribution could overcome the
limitations of older systems based on older delegation-based systems, like push
technologies. Indeed, according to ref. [18], the reasons why push technologies
were not as successful as they were supposed to be were mainly (a) excessive
network load; (b) Excessive intrusion; and (c) Information overload.

R. F. Brena et al

Concerning the network load, it is clear that if users are being constantly fed
with information they actually do not consult, this implies a bandwidth waste.
Of course, the critical aspect here is that the amount of received information out-
weighs by several orders of magnitude the actual information users need. The
resulting information overload is indeed a major concern. The whole idea of push
systems is to increase individual efficiency, and not hindering it with masses of
useless information to consult. In that respect, we think that the usefulness of in-
formation is the one critical issue for the usability of push systems. So, the next
question to solve is how to be more selective about the pushed information.

In the implementation project that inspired the case study we presented in
Sect. 4, the enterprise representatives made clear to us that avoiding information
overflow was a major concern. Reaching that goal in JITIK was possible mainly
due to two aspects:

– In JITIK we “tailor” information to users using metadata of both of them in a
two-tier way: first, the site agent makes a basic information filtering, limiting
the information by means of ontology information. This reduces the network
overload by avoiding indiscriminate information distribution. Then, personal
agents take into account finer user preferences, both about the information
itself as well as the ways users prefer to receive the information. This leads to
a substantial reduction in the received useless information.

– At the site-agent level, the use of sophisticated inference mechanism, like
the use of ontologies and argumentation for solving the IK distribution prob-
lem gives much greater flexibility and generality than traditional database ap-
proaches. As we have seen in Sect. 4, argumentation allows to nicely model
decision making under conflicting policies. This can be efficiently automated
in terms of DeLP.

To the best of our knowledge there are virtually no other efforts like JITIK
for distributing knowledge and information on the basis of an argument-based ap-
proach. In ref. [35] the authors present a defeasible reasoning method for dealing
with workflow processes, and it shares some goals with our work, as they also are
able to deal with exceptions and imprecise information, but the application domain
is quite different. A somehow related research is reported in ref. [34] about meth-
ods for helping in decision-making processes using argumentation. Besides the
differences in the intended application of this system, there is also an important
difference in the approach as they use static predefined argumentation schemas,
whereas here we propose a general method for constructing arguments that is not
restricted to a finite number of argument structures. Other works related to ours
involve decision making and negotiation using argumentation among agents [37–
39] In contrast, in our system, the argumentation process itself is not distributed,
and it always takes place in the DeLP inference engine called by the Site Agent.
Other argumentation-based decision-support proposals focus on the planning pro-
cess for workgroup support, like the “dialectical planning” of Karacapilidis [30].
In none of the earlier-mentioned references, the problem of IK distribution is con-
sidered as is done in this paper.

Knowledge and information distribution leveraged by intelligent agents

7 Conclusion

In this paper we have presented the JITIK approach to model knowledge and infor-
mation distribution, giving a high-level account of the research made around this
project. We presented its basic architecture, as well as some additional technolo-
gies that gave it more flexibility, like the use of argumentation-based reasoning
procedures and integration technologies for agents making use of Web Services.

We think that the JITIK effort can be integrated with a number of alterna-
tive architectures and technologies, supporting thus the claim that it is possible
to build intelligent delegation-based systems to distribute knowledge and infor-
mation in a flexible and efficient way. In particular, we have presented a novel
argument-based approach for supporting IK distribution processes in large orga-
nizations by providing an integration of the JITIK multiagent platform with a de-
feasible argumentation formalism. The main advantage obtained through the use
of an argumentation engine in JITIK is an increased flexibility, as it is not neces-
sary to explicitly encode actions for every possible situation. This is particularly
important in corporate environments with potentially conflicting IK distribution
criteria.

The practical feasibility of our proposal is currently being validated through
an implementation project of an information distribution center in one of the lead-
ing industries in Mexico. Although such project has involved integrating a large
agent-based platform in a complex enterprise software environment, the results
obtained so far have been successful and very promising. In the near future, we
also intend to extend our approach for a distributed version of DeLP that could al-
low several JITIK Site Agents to perform collaborative decision making. Research
in this direction is currently being pursued.

Acknowledgements This work was supported by the Monterrey Tech CAT-011 Research Chair,
by Projects TIC2003-00950, TIN 2004-07933-C03-03, by Ramón y Cajal Program (MCyT,
Spain), and by CONICET (Argentina).

References

1. Aguirre JL, Brena R, Cantu FJ (2001) Multiagent-based knowledge networks. Expert Syst
Appl 20(1):65–75

2. Arsanjani A (2001) A domain-language approach to designing dynamic enterprise
component-based architectures to support business services. In: 39th international confer-
ence and exhibition on technology of object-oriented languages and systems, August 2001.
TOOLS 39, pp 130–141

3. Atkinson R, Court R, Ward J (1998) The knowledge economy: knowledge producers and
knowledge users. The new economic index, http://www.webcitation.org/5Lok8rHAK

4. Bellifemine F et al (1999) JADE — A FIPA-compliant agent framework. In: Proceedings
of PAAM99, London, pp 97–108

5. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):28–37
6. Borges B, Holley K, Arsanjani A. (2004) Service-oriented architecture. http://

www.webcitation.org/5LoIY9AGX
7. Bradshaw JM (ed) (1997) Software agents. AAAI MIT Press, Menlo Park, CA
8. Brena R, Aguirre J (2004) Push technologies leveraged by intelligent agents. In: The 8th

world multi-conference on systemics, cybernetics and informatics proceedings, Orlando,
Florida, USA, pp 236–238

R. F. Brena et al

9. Brena R, Aguirre JL, Treviño AC (2001a) Just-in-time information and knowledge:
agent technology for KM bussiness process. In: Proceedings of the 2001 IEEE con-
ference on systems, man and cybernetics, IEEE press, Tucson, Arizona, USA,
pp 3303–3308

10. Brena R, Aguirre JL, Treviño AC (2001b) Just-in-time knowledge flow for distributed or-
ganizations using agents technology’. In: Proceedings of the knowledge technologies 2001
conference, Austin, TX

11. Brena R, Ceballos H (2004a) Combining global and local ontology handling in a multiagent
system. In: Barr V, Markov Z (eds) Proceedings of the seventeenth international Florida
artificial intelligence research symposium conference, , AAAI press, Miami Beach, Florida,
USA, pp 418–424

12. Brena R, Ceballos H (2004b) A hybrid local-global approach for handling ontologies in a
multiagent system. In: Yager RR, Sgurev VS (eds) Proceedings of the 2004 informations
systems international conference, Varna, Bulgaria, IEEE, pp 261–266

13. Carrillo J (1998) Managing knowledge-based value systems. J Knowl Manage 1(4):280–
286

14. Ceballos H, Brena R (2004a) Finding compromises between local and global ontol-
ogy querying in multiagent systems. In: Meersman R, Tari Z (eds) On the move
to meaningful Internet systems 2004: CoopIS, DOA, and ODBASE: OTM confeder-
ated international conferences proceedings, LNCS, Springer-Verlag, Berlin, vol 3291,
pp 999–1011

15. Ceballos H, Brena R (2004b) Web-enabling multiagent systems. In: Advances in artificial
intelligence IBERAMIA 2004: 9th Ibero-American conference on AI, LNCS, Springer-
Verlag, Berlin, vol 3315, pp 53–61

16. Ceballos H, Brena R (2005) Combining local and global access to ontologies in a multiagent
system. J Adv Comput Intell Intell Inf 9(1):5–12

17. Chesñevar C, Maguitman A, Loui R (2000) Logical models of argument. ACM Comput
Surv 32(4):337–383

18. Chin P (2003) Push technology: still relevant after all these years? Intranet J,
http://www.webcitation.org.5LvGUSopy

19. Foundation for Intelligent Physical Agents (2002) FIPA abstract architecture specification,
http://www.fipa.org/specs/fipa00001/SC00001L.html

20. Friedman-Hill E (2005) Jess, the rule engine for the Java platform.
http://www.webcitation.org/5LvH1dQaJ

21. Garcı́a A, Simari G (2004) Defeasible logic programming: an argumentative approach. The-
ory Pract Logic Program 4(1):95–138

22. Himelstein RSL (1999) PointCast: the rise and fall of an internet star. Bus Week Online,
http://www.webcitation.org/5LvHCUwsi

23. Horibe F (1999) Managing knowledge workers. Wiley, New York
24. Horrocks I (2002) DAML+OIL: a description logic for the semantic Web. Bull IEEE Com-

put Soc Tech Comman Data Eng 25(1):4–9
25. Hunter A (2001) Hybrid argumentation systems for structured news reports. Knowl Eng

Rev (16):295–329
26. Interface21 Limited (2005) The Spring Java/J2EE application framework,

http://www.springframework.org/
27. Johnson R (2003) Introducind the spring framework. TheServerSide.COM
28. Johnson R (2002) Expert one-on-one J2EE design and development. Wrox, Birmingham,

UK
29. Johnson R (2005) J2EE development frameworks. Computer 38(1):107–110
30. Karacapilidis N, Gordon T (1996) Dialectical planning: designing a mediating system

for group decision making. Proceedings of the 10th Workshop Planen und Konfigurieren,
pp 205–216

31. Labrou Y, Finin T, Peng Y (1999) Agent communication languages: the current landscape.
IEEE Intell Syst 14(2):45–52

32. Liebowitz J, Beckman T (1998) Knowledge organizations. CRC Press, St. Lucie
33. Liebowitz J, Wilcox L (1997) Knowledge management. CRC, Boca Raton, FL
34. Lowrance JD, Harrison IW, Rodriguez AC (2000) Structured argumentation for analysis.

In: Proceedings of the 12th international conference on systems research, informatics, and
cybernetics, Baden-Baden, Germany, pp 47–57

Knowledge and information distribution leveraged by intelligent agents

35. Luo Z, Sheth A, Miller J, Kochut K (1998) Defeasible workflow, its computation and ex-
ception handling. In: Proceedings of the CSCW-98 workshop: towards adaptive workflow
systems, Seattle, WA, http://www.webcitation.org/5LvIsPVZV

36. Negroponte N (1996) Being digital. Random House, New York
37. Parsons S, Jennings NR (1998) Argumentation and multi-agent decision making. In: Pro-

ceedings of the AAAI spring symposium on interactive and mixed-initiative decision mak-
ing, Stanford, CA, pp 89–91

38. Parsons S, Sierrra C, Jennings N (1998) Agents that reason and negotiate by arguing. J
Logic Comput 8:261–292

39. Rahwan I, Ramchurn SD, Jennings NR, Mcburney P, Parsons S, Sonenberg L (2003)
Argumentation-based negotiation. Knowl Eng Rev 18(4):343–375

40. Ramirez E, Brena R (2005) ‘Integrating agent technologies into enterprise systems using
web services’. In: ICEIS 2005, proceedings of the seventh international conference on en-
terprise information systems, Miami, USA, pp 11–15

41. Schuschel H, Weske M (2004) Automated planning in a service-oriented architecture. In:
13th international IEEE workshops on enabling technologies: Infrastructure for collabora-
tive enterprises, WET ICE, pp 75–78

42. Simari G, Loui R (1992) A mathematical treatment of defeasible reasoning and its imple-
mentation. Artif Intell 53:125–157

43. Stolzenburg F, Garcı́a A, Chesñevar C, Simari G (2003) Computing generalized specificity.
J Non-Class Logics 13(1):87–113

44. Sun Microsystems, Inc. (2003) JSR-000154 Java(TM) Servlet 2.4 Specification (Final re-
lease), http://jcp.org/aboutJava/communityprocess/final/jsr154/ index.html

45. The OpenSymphony Group (2005) Quartz enterpise job scheduler,
http://www.opensymphony.com/quartz/

46. Whitestein Technologies, A.G. (2003) Web services agent integration project,
http://wsai.sourceforge.net

47. Wooldridge M (1999) Multiagent systems: a modern approach to distributed artificial intel-
ligence. MIT Press., Cambridge, MA

48. Wooldridge M (2001) An introduction to multiagent systems. Wiley, Baffins Lane,UK
49. Wooldridge M (1997) Agent-based software engineering. Softw Eng IEE Proc 144(1):26–

37
50. World Wide Web Consortium (W3C) (2000) Extensible markup language (XML) 1.0, 2nd

Edn, http://www.webcitation.org/5LvJRvkNn
51. World Wide Web Consortium (W3C) (2001) web services description language (WSDL)

1.1, http://www.w3c.org/TR/wsdl
52. World Wide Web Consortium (W3C) (2003a) Simple object access protocol,

http://www.w3.org/TR/SOAP
53. World Wide Web Consortium (W3C) (2003b) Web services glossary, working draft,

http://www.w3c.org/TR/ws-gloss/
54. Yang SJH, Lan BCW, Chung J-Y (2005) A new approach for context aware SOA. In: The

2005 IEEE international conference on e-Technology, e-Commerce and e-Service, EEE ’05,
Hong Kong, China, pp 438–443

R. F. Brena et al

Author biographies

Ramón F. Brena is Full Professor at the Center of Intelli-
gent Systems, Tech of Monterrey, Mexico, since 1990, where
he is Head of a Research Group in Distributed Knowledge
and Multiagent Systems. Dr. Brena holds a Ph.D. from the
INPG, Grenoble, France, where he presented a Doctoral The-
sis related to knowledge in program synthesis. His current
research and publication areas include intelligent agents and
multiagent systems, knowledge processing and distribution,
semantic web, and artificial Intelligence in general. Past re-
search include program synthesis and software reuse, as well
as automated reasoning. Dr Brena is a member of the SMIA
(AI Mexican Society), the AAAI, the ACM, and is in the SNI,
CONACyT.

José L. Aguirre is Associate Professor at the ITESM Cam-
pus Monterrey in the Center for Intelligent Systems since
1990. He received the bachelor degree in computer systems
engineering from de ITESM Campus Quertaro in 1980 and
another Bachelors degree in informatics engineering from the
ENSIMAG in Grenoble, France in 1985. After that, he re-
cieved a PH degree in Informatics with major in Artificial
Intelligence from the INPG in Grenoble, France in 1989. He
is now an Invited Researcher at the HELIX group of INRIA
in Montbonnot, France.

Carlos I. Chesñevar is Researcher and Professor at the Uni-
versidad Nacional del Sur, Bahı́a Blanca, Argentina, and Ex-
ternal Researcher at the Artificial Intelligence Research In-
stitute (IIIA-CSIC, Bellaterra, Spain). He holds the degrees
of Magister in computer science and Ph.D. in computer sci-
ence (Universidad Nacional del Sur, Argentina). His recent
research activities have been focused on the development of
argument-based software applications in the context of differ-
ent real-world problems. Part of his current research is also
involved with the study of extensions of logic programming
which combine vague knowledge and defeasible argumenta-
tion. His research interests cover defeasible argumentation,
logic programming, intelligent systems, recommender sys-
tems, multiagent Systems, and semantic Web.

Knowledge and information distribution leveraged by intelligent agents

Eduardo H. Ramı́rez holds a M.Sc. degree in information
technology from the Tech of Monterrey, Mexico, where he
collaborated as a Research Assistant and Staff Engineer at
the Center of Intelligent Systems. He is involved in the devel-
opment and enterprise implementation of the JITIK Project.
He is Cofounder and CTO of Ensitech, S.C. a high-tech
startup with consultancy and research activities in distributed
computing and Web technologies. His current Ph.D. research
work and interests involve agent-oriented software engineer-
ing, Web services and service oriented architectures, semantic
web, rich internet applications and collaborative knowledge
management.

Leonardo Garrido is Professor and Researcher of the
Center of Intelligent Systems at the Monterrey Institute of
Technology (ITESM). He holds a M.S. in computer systems
and a Ph.D. in artificial intelligence (with specialization in
autonomous agents and multiagent systems). During his
doctoral studies, he was a visiting Research Scholar in the
Robotics Institute at Carnegie Mellon University (CMU)
for 3 years, where he conducted research on multiagent
meeting scheduling and learning models about other agents
in multiagent environments. He has published in several
international conferences specialized in Agents, multiagent
systems and artificial intelligence. During the most recent
years, he has served as Member of program and scientific
committees of several conferences, such as the International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS) and the Mexican International Conference on
Artificial Intelligence (MICAI). He has also served as

external reviewer for several top journals and conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

