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Abstract: Knowledge compilation is an approach to tackle the computational intractability of general reasoning 
problems. According to this approach, knowledge bases are converted off-line into a target compilation language 
which is tractable for on-line querying. Reduced ordered binary decision diagram (ROBDD) is one of the most 
influential target languages. We generalize ROBDD by associating some implied literals in each node and the new 
language is called reduced ordered binary decision diagram with implied literals (ROBDD-L). Then we discuss a 
kind of subsets of ROBDD-L called ROBDD-i with precisely i implied literals (0 ≤ i ≤ ∞). In particular, ROBDD-0 
is isomorphic to ROBDD; ROBDD-∞ requires that each node should be associated by the implied literals as many 
as possible. We show that ROBDD-i has uniqueness over some specific variables order, and ROBDD-∞ is the 
most succinct subset in ROBDD-L and can meet most of the querying requirements involved in the knowledge 
compilation map. Finally, we propose an ROBDD-i compilation algorithm for any i and a ROBDD-∞ compilation 
algorithm. Based on them, we implement a ROBDD-L package called BDDjLu and then get some conclusions 
from preliminary experimental results: ROBDD-∞ is obviously smaller than ROBDD for all benchmarks; 
ROBDD-∞ is smaller than the d-DNNF the benchmarks whose compilation results are relatively small; it seems 
that it is better to transform ROBDDs-∞ into FBDDs and ROBDDs rather than straight compile the benchmarks. 
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1 Introduction 

Reasoning problems in their general form are intractable and knowledge compilation has been emerging as a key 
direction of research for dealing with such kind of intractability [1-5]. The basic idea of knowledge compilation is 
to split the reasoning process into two phases: an off-line compilation phase, in which the propositional theory is 
compiled into some tractable target language, and an on-line query-answering phase, in which the compiled target 
is used to efficiently answer the queries. And the compiling time in off-line phase can be amortized by a 
(potentially) exponential number of on-line queries. 

The target language is one of key aspects for any compilation approach. There have existed dozens of target 
languages so far, such as Horn theories [1], prime implicates/implicants [6, 7], reduced ordered binary decision 
diagram (ROBDD) [8, 9], free binary decision diagram (FBDD) [5, 10], decomposable negation normal form 
(DNNF, three subsets d-DNNF, DNNFT and d-DNNFT) [3, 11, 12], EPCCL theory [4, 13] and so on. Therefore, it 
is important to choose an appropriate target language in practical applications. Darwiche and Marquis argue that 
the choice of a target language must be based on two key aspects: the succinctness of the target compilation 
language, and the class of queries and transformations that the language supports in polytime [5]. Moreover, they 
propose the classic knowledge compilation map, which analyzes many existing target compilation languages 
according to the above aspects. On this basis, some researchers extend the knowledge compilation map [12, 14, 
15]. 

ROBDD is one of the most tractable target languages which satisfy all of querying requirements involved in 
the knowledge compilation map (as far as we know, the compilation languages meeting these requirements include 
ROBDD, MODS, d-DNNFT and EPCCL theory [5, 12, 13]) and has been quite influential in many communities 
such as model checking [16], AI planning [17], abductive inference [18], terminological reasoning in description 
logic SHIQ [19] and so on. However, ROBDD seems a bit redundant for some Boolean formulas. For example, it 
is well known that the ROBDD representing the Boolean formula (x1 ↔ y1) ∧ … ∧ (xn ↔ yn) has exponential size 
over the variables order x1 < … < xn < y1 < … < yn. In fact, when xi is assigned some value (true or false), yi must 
have the same value. This characteristic limits the application of this language to some specific areas. Therefore, in 
order to reduce this kind of redundancy and extend its real applications, it is very necessary to make some small 
changes of ROBDD without loss of too much tractability. Based on this motivation, we do the following work in 
this paper: 

1. We add some literals called implied literals in the nodes of ROBDD meaning that the formula represented 
by the node implies them. We call this new target language ROBDD-L. Given a number i, we discuss a subset of 
ROBDD-L called ROBDD-i – precisely i implied literals in each node. It is obvious that ROBDD-0 is isomorphic 
to ROBDD. Then we show that there is exactly one ROBDD-i representing a given formula over a specific 
variables order. 

2. We show that ROBDD-∞ is an interesting subset of ROBDD-L: it is the most succinct subset of ROBDD-L 
and we propose an algorithm which can transform every sentence of ROBDD-L into an equivalent sentence of 
ROBDD-∞ in polytime. Furthermore, we prove that ROBDD-∞ can meet all the query requirements except SE 
mentioned in the knowledge compilation map (it is unknown whether ROBDD-∞ satisfies SE or not). 

3. We propose a compilation algorithm (called Build) which can compile any Boolean formula into ROBDD-i 
(0 ≤ i ≤ ∞). And we optimize Build to propose a ROBDD-∞ compilation algorithm called Build-inf and discuss 
three optimization techniques. In addition, we propose two algorithms called Inf2FBDD and Inf2ROBDD which 



can transform any ROBDD-∞ into FBDD and ROBDD, respectively. Combining Build, Build-inf, Inf2FBDD and 
Inf2ROBDD and all the operations supported by ROBDD-L in polytime, we devise a ROBDD-L package called 
BDDjLu and report some experimental results. 

2 Reduced Ordered Binary Decision Diagram with Implied Literals 

In the sequel X = {x1, … , xn} is the set of Boolean variables. A Boolean formula, hereafter simply called a 
formula, is constructed from true, false and variables using the negation operator ¬, conjunction operator ∧ and 
disjunction operator ∨. A literal is either a variable x (positive literal) or its negation¬x (negative literal). Given a 
literal l, its negation ¬l is ¬x if l is x and ¬l is x otherwise. A clause C is a set of literals representing their 
disjunction. C is a Horn clause if it contains at most one positive literal. A term T is a set of literals representing 
their conjunction. T is consistent iff there does not exist any variable x such that both x and ¬x belong to T. A 
Boolean formula in conjunctive normal form (CNF) is a set of clauses representing their conjunction. A CNF 
formula is Horn theory if all clauses are Horn clause. A Boolean formula in negation normal form (NNF) is 
constructed from true, false and literals using only the conjunction and disjunction operators. It is obvious that any 
clause, term and CNF formula is in NNF. A practical representation of NNF formula [3, 5] is a rooted, directed 
acyclic graph (DAG) where each leaf node is labeled with true, false or a literal; and each internal node is labeled 
with ∧ or ∨ and can have arbitrarily many children. 

An assignment A over the variables set X (we also say that A is a X-assignment) is a set of literals such that A 
does not contains any literal and its negation. A is complete over X if A contains one and only one literal for any 
variable x in X (i.e., there exists exactly one element in {x, ¬x} ∩ A for any variable x ∈ X), otherwise it is partial. 
It is obvious that there exists 2| X | complete assignments over X. Any complete assignment satisfies true and 
falsifies false. A complete assignment A satisfies a literal l over X iff l ∈ A, A falsifies it otherwise; A satisfies a 
formula ¬ϕ over X iff it falsifies ϕ, and A falsifies it otherwise; A satisfies a formula ϕ1 ∧ ϕ2 over X iff it satisfies 
both ϕ1 and ϕ2, and A falsifies it otherwise; A satisfies ϕ1 ∨ ϕ2 over X iff it satisfies either ϕ1 or ϕ2, and A falsifies 
it otherwise. A model M of any formula is a complete assignment satisfies it. We call a formula satisfiable if it has 
at least one model, and we say it is unsatisfiable otherwise. We say a formula over X is a tautology if all complete 
assignments over X satisfy it. Given two formulas ϕ1 and ϕ2 over X, ϕ1 implies ϕ2 (denoted by ϕ1 ⇒ ϕ2) iff the 
models of ϕ1 is subsumed by the ones of ϕ2, ϕ1 is equivalent to ϕ2 (denoted by ϕ1 ⇔ ϕ2) iff both ϕ1 ⇒ ϕ2 and ϕ2 
⇒ ϕ1. Now we give the definition of reduced ordered binary decision diagram with implied literals step by step. 

Definition 1. A binary decision diagram with implied literals (BDD-L) is a rooted DAG. Each node v is 
either terminal or non-terminal and represents some formula φ(v) in NNF. There exist two kinds of terminal nodes: 
False node (denoted by ⊥) which represents false, and True nodes labeled by a set of literals L(v) called implied 
literals which represent the term conjoining all the literals in L(v). And each non-terminal node v is associated with 
a Boolean variable var(v), implied literals L(v) and two children, called low child lo(v) and high child hi(v). Given 
a non-False node v, it is denoted by 〈L(v)〉 if it is a True node, otherwise it is denoted by 〈var(v), lo(v), hi(v), L(v)〉. 
At each non-terminal node v, var(v) does not appear in L(v), any variable appearing in L(v) does not appear in its 
descendent nodes, and the low (resp. high) branch is depicted as a dash (resp. solid) line corresponding to the case 
where the variable is assigned false (resp. true). So given a non-terminal node v, we have that: 

( ) ( ( )) (( ( ) ( ( ))) ( ( ) ( ( )))).                                  v l L v var v lo v var v hi v ( )  φ φ φ= ∈ ∧ ¬ ∧ ∨ ∧ ∗∧

Usually, an implied literal corresponds to a simple fact implied by knowledge base, such as John does not like 
pink coat, Jim just like jeans and so on. In BDD-L, some or all simple facts are pulled out and stored explicitly at 
the root. From above Definition 1, we know that the only difference between BDD-L and BDD [8] is the implied 
literals. When every node in BDD-L is mandatory for no implied literal, then BDD-L is equivalent to BDD and (*) 
will be φ(v) = (¬var(v) ∧ φ(lo(v))) ∨ (var(v) ∧ φ(hi(v))). And FBDD can be seen as a special kind of BDD-0 such 
that each variable appears at most once on any path. For simplicity, we suppose that at least one child of a 
non-terminate node is non-False and the implied literals of a non-False node represent a consistent tern. 

In the implementation, we use a hash table called nodes table to record all the nodes in BDD-L, another hash 
table called implied literals table, which allows us to deal with the same sets of implied literals only once in some 
operations (see Section 4), is used to record all the sets of implied literals in BDD-L, L(v) for any node v in the 
nodes table is an index pointing to some entry in implied literals table, L(u) and L(v) share the same entry if L(u) = 
L(v), the data unit size in implied literals table records the size of L(v) in order to facilitate model counting (see 
Section 4). 



 
Nodes Table 

ID var low high L 

5 x1 3 4 0 

4 x2 1 2 2 

3 x1 0 1 1 

2 True - - 1 

1 True - - 0 

0 False - - - 

Implied Literals Table 

ID literals size

2 {¬x1} 1 

1 {x2} 1 

0 ∅ 0 

2 1,{ }x x¬  

1,x ∅  

1 2,{ }x x

,True ∅  False 2,{ }True x   

 
Figure 1. An example about BDD-L 

An example about BDD-L is showed in Figure 1. In the following, we denote the set of the variables 
appearing in v (i.e., var(v) and the variables appearing in L(v)) and its descendent nodes as VARS(v), the number of 
nodes in the BDD-L as | u |, where u is the root of the BDD-L, path(v) is a term and any literal ¬x (resp. x) belongs 
to it iff there exists some node v′ with the variable x such that its low (resp. high) branch appearing in the path 
from the root to v. The maximal set of implied literals, which is used frequently in this paper, is defined as follows: 

Definition 2. Given a BDD-L and a non-False node v in it, the maximal set of implied literals L∞(v) is defined 
as follows: 

( )  is a True node;
( ) { ( )} ( ( )) ( ) ;

( )
( ) { ( )} ( ( )) ( ) ;
( ) ( ( ( )) ( ( ))) otherwise.

L v v
L v var v L hi v lo v

L v
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L v L hi v L lo v
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∞

∞

∞ ∞

⎧
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Obviously, L(v) is a subset of L∞(v) for any non-False node v. Given any BDD-L, we can compute the 
maximal set of implied literals for all of its nodes in polytime with the use of dynamic programming, which is used 
in almost all algorithms in this paper. 

Definition 3. A BDD-L is ordered (OBDD-L) if 
1. The set of variables is imposed over a given linear order <; 
2. Given a node u and its child v, var(u) is less than any variable appearing in v; 
3. For any non-terminal node v, any variable appearing in L(v) is less than the ones appearing in L∞(v) but not 

in L(v), formally, 
((( ( ) ( )) ( ( ) \ ( ) ( ) \ ( ))) ).x x L v x L v x L v L v x L v L v x x∞ ∞′ ′ ′∀ ∈ ∨ ¬ ∈ ∧ ∈ ∨ ¬ ∈ → <  

From the above definition, it is obvious that BDD-L in Figure 1 is not ordered as it does not satisfy the 
condition 2 and 3 in Definition 3, and we have some simple conclusions which are used in the proofs of some 
propositions: given a non-False node v, it is easy to prove that φ(v) is satisfiable (used in the proof of Proposition 1) 
by induction, because at least one child of v is non-False and the implied literals represent a consistent term; given 
any node u and its child v in an OBDD-L, VARS(v) ⊂ VARS(u) (used in the proof of Proposition 4); given a 
non-False node v, the condition 3 is obviously satisfied if L(u) = L∞(u) (used in the proof of Proposition 4). And 
the following proposition holds: 

Proposition 1. Given any non-False node v in any OBDD-L, each element in L∞(v) is exactly a literal implied 
by φ(v), i.e., L∞(v) = {l : φ(v) ⇒ l}. 

Proof. By induction on the size of | v |. Assume that the conclusion holds for | v | ≤ n. The case | v | = 1 is 
immediately. We proceed by case analysis: 

(1) lo(v) = ⊥: We have that L∞(v) = L(v) ∪ {var(v)} ∪ L∞(hi(v)) from Definition 2. By induction hypothesis, 
L∞(hi(v)) = {l : φ(hi(v)) ⇒ l}. This means that there exists some formula ϕ such that φ(hi(v)) ⇔ ∧(l ∈ L∞(hi(v))) ∧ 
ϕ. Then by (*) 

( ) ( ( )) ( ( ) ( ( ( ))) ).v l L v var v l L hi vφ ϕ∞= ∈ ∧ ∧ ∈ ∧∧ ∧  
It is obvious that φ(v) ⇒ l for any l ∈ L∞(v). Assume that there exists some literal l such that φ(v) ⇒ l and l ∉ L∞(v). 
And any non-False node in OBDD-L represents a satisfiable formula. Then ϕ ⇒ l, this conflicts with the induction 
hypothesis. 

(2) hi(v) = ⊥: It is analogous to (1). 
(3) Otherwise, we have that L∞(v) = L(v) ∪ (L∞(lo(v)) ∩ L∞(hi(v))) from Definition 2. By induction hypothesis, 

L∞(hi(v)) = {l : φ(hi(v)) ⇒ l} (resp. L∞(lo(v)) = {l : φ(lo(v)) ⇒ l}). This means that there exists some formula ϕ 
such that φ(hi(v)) ⇔ ∧(l ∈ L∞(hi(v))) ∧ ϕ (resp. φ(lo(v)) ⇔ ∧(l ∈ L∞(lo(v))) ∧ ϕ′). Then by (*) 

( ) ( ( )) (( ( ) ( ( ( ))) ) ( ( ) ( ( ( ))) )).v l L v var v l L lo v var v l L hi vφ ϕ ϕ∞ ∞ ′= ∈ ∧ ¬ ∧ ∈ ∧ ∨ ∧ ∈ ∧∧ ∧ ∧  
It is obvious that φ(v) ⇒ l for any l ∈ L∞(v). Assume that there exists some literal l such that φ(v) ⇒ l and l ∉ L∞(v). 
By Definition 3, then ϕ ⇒ l or ϕ′ ⇒ l, this conflicts with the induction hypothesis.        ■ 

If we displace the OBDD-L with BDD-L in Proposition 1, then the proposition doesn’t hold. The BDD-L in 
Figure 1 is a counterexample for it, where L∞(v) = ∅ and the formula represented by this BDD-L implies any 



literal. 
Definition 4. An OBDD-L is reduced (ROBDD-L) if 
1. No two distinct nodes u and v have the identical variable, implied literals, low child and high child; 
2. No node has two identical children;  
Definition 5. Given a number 0 ≤ i ≤ ∞, a OBDD-L precisely has i implied literals (OBDD-i) if (1) each node 

v has i implied literals, or (2) j (j < i) implied literals and L(v) = L∞(v). A ROBDD-i is a reduced OBDD-i. 
Particularly, OBDD-∞ is also called “OBDD with as many implied literals as possible”. It is obvious that 

ROBDD-0 is isomorphic to ROBDD. By Proposition 1, we have that L(v) = L∞(v) for any node v in OBDD-∞, then 
the False node does not appear in any OBDD-∞. 

Figure 2 are a ROBDD-0 and a ROBDD-1 about the formula (x1 ↔ y1) ∧ (x2 ↔ y2) over the variables order x1 
< x2 < y1 < y2. The nodes in ROBDD-0 are obviously less than those in ROBDD-1. Furthermore, all the ROBDDs-i 
(i > 0) presenting this formula over the same variables order are the same. If this formula is extended to (x1 ↔ y1) 
∧ … ∧ (xn ↔ yn) over x1 < … < xn < y1 < … < yn, then ROBDD-0 will have more than 2n + 1 nodes, while the 
number of nodes in ROBDD-i (i > 0) is 2n + 1. 

2{ }y  

2 1,{ }x y

1,x ∅  

2 1,{ }x y¬  

2{ }y¬  

1,x ∅  

2 ,x ∅  2 ,x ∅

1,y ∅  1,y ∅  1,y ∅ 1,y ∅

2 ,y ∅  2 ,y ∅

⊥ ∅
Figure 2. An example about ROBDD-0 (left) and ROBDD-1 

It is well known that for any formula there is exactly one ROBDD representing it. We will show that for any 0 
≤ i ≤ ∞, ROBDD-i also has this property. First, we give the definition of Condition [3, 5], which is a useful logical 
operation in practical applications. Note that we do not restrict this definition to the NNF formulas here. 

Definition 6. Let ϕ be a formula over the variables set X and let T be a consistent term. The conditioning of ϕ 
on T (denoted by ϕ | T, simply denoted by ϕ | l if T = {l}) is a formula obtained by replacing every variable x in ϕ 
with true (resp. false) if x ∈ T (resp. ¬x ∈ T). 

Given any formula ϕ, variable x, literal l and consistent term T, by Theorem 1 in [3], we have that: ϕ ⇔ (ϕ | l) 
∧ l if ϕ ⇒ l; ϕ ⇔ ϕ | x if ϕ | x ⇔ ϕ | ¬x (we say x can be omitted in ϕ). Given two equivalent formulas ϕ1 and ϕ2, 
all variables do not appear in both ϕ1 and ϕ2 can be omitted. And given an OBDD-L with root v, according to (*), 
φ(v) | L(v) ∪ ¬var(x) (resp. φ(v) | L(v) ∪ var(x)) is equivalent to φ(lo(v)) (resp. φ(hi(v))). These observations are 
used in the proofs of many propositions in this paper, including the following conclusion. 

Proposition 2. For any formula ϕ over the set of variables X = {x1, … , xn} with the linear order x1 < … < xn, 
and any 0 ≤ i ≤ ∞, there is exactly one ROBDD-i to represent ϕ. 

Proof. By induction on the size of X. The case | X | = 0 is obvious. Assume now that we have proven this 
proposition for | X | ≤ n. We proceed to show it for | X | = n + 1. 

First we show that there exists some ROBDD-i equivalent to ϕ. By the induction hypothesis, this assertion is 
obvious if there exists some variable x ∈ X that can be omitted in ϕ. Otherwise, we construct a ROBDD-i 
equivalent to ϕ (In fact, it is just the idea of the compilation algorithm Build, see Section 5). Let {l1, … , lm} be the 
set of literals implied by ϕ such that the variable of lj is less than the one of lj′ if j < j′, let L(v) = {l1, … , lm′}, where 
m′ = min{m, i}. If there does not exist any variable appearing in ϕ but not in L(v), then 〈L(v)〉 is equivalent to ϕ. 
Otherwise let var(v) be the minimum variable appearing in ϕ but not in L(v). It is obvious ϕ | L(v) ∪ {¬x} is not 
equivalent to ϕ | L(v) ∪ {x}. By the induction hypothesis, the ROBDDs-i corresponding to ϕ | L(v) ∪ {¬x} and ϕ | 
L(v) ∪ {x} are not identical to each other, and let lo(v) and hi(v) be their roots, respectively. It is obvious that the 
DAG with the root v is a ROBDD-i such that φ(v) is equivalent to ϕ. 

Then assume that there exist two ROBDDs-i with the roots u and v for ϕ, we prove that they are identical to 
each other. It is obvious that L(u) = L(v) by Proposition 1 and the definition of ROBDD-i. And if var(u) ≠ var(v), 
without loss of generality we assume that var(u) < var(v), this means that var(u) can be omitted in ϕ, then the 



ROBDD-i with the root u must have two identical children by the induction hypothesis. This conflicts with the 
condition 1 of Definition 4. So the formula represented by low (resp. high) child of v1 must be equivalent to the 
one represented by low (resp. high) child of v2 (otherwise the formula represented by v1 is not equivalent to the one 
represented by v2), then we know that the low (resp. high) child of v1 is identical to the low (resp. high) child of v2 
by induction hypothesis. This means that v1 is identical to v2.                 ■ 

7{ }x¬  

1 2,1 2,,{ , , }ix x xL

3 4,1 4,,{ , , }ix x xL  

6 5,{ }x x

7{ }x

1 2,1 2,,{ , , }ix x xL

5 4,1 4,,{ , , }ix x xL

6 5,{ }x x

7{ }x¬ 7{ }x

⊥6 ,x ∅

 
Figure 3. An example about OBDD-i (left) and ROBDD-i 

Although any ROBDD-i is a reduced OBDD-i, there exists some OBDD-i (0 < i < ∞) such that the 
corresponding ROBDD-i has more nodes. An example is showed in Figure 3, where the OBDD-i has 5 nodes and 
the ROBDD-i has 7 nodes. However, this kind of “strange phenomenon” will not occur when i = 0 or i = ∞. 

Proposition 3. Given any formula ϕ, the corresponding ROBDD-i has the least number of nodes among all 
OBDDs-i equivalent to ϕ and each OBDD-i can be transformed into the equivalent ROBDD-i in linear time if i = 0 
or i = ∞. 

Proof. An algorithm called Reduce which can transform any OBDD-i into the corresponding ROBDD-i in 
linear time is presented in Figure 4. The function MK is called to guarantee the condition 2 of Definition 4: given 
any node u, if some identical node has appeared before, then MK(v) returns the old one, otherwise it returns u. The 
condition 1 of Definition 4 is guaranteed by Line 5 (no matter whether i = ∞ or not, L(lo(u)) = ∅ if lo(u) = hi(u), so 
L(u) does not need to be changed). Every step in a single call (without consideration of the recursive calls) of 
Reduce can terminal in constant time, include the call of MK, whose running time is constant (readers are referred 
to [9] for the reason). With the cache G1, there are at most | v | recursive calls of Reduce. So Reduce(v) can 
terminate in linear time. And in a single call of Reduce, at most one new node is introduced into the result (i.e. a 
new node is introduced only when MK(u) returns u itself). We have that the nodes in the resulting ROBDD-0 or 
ROBDD-∞ is not more than the ones in the input. Then the conclusion is obvious by Proposition 2.  ■ 

 
Figure 4. The algorithm Reduce 

procedure Reduce(v) 
1: if G1(v) ≠ empty then return G1(v) endif 
2: Create a new node u 
3: if v is a non-terminal node then 
4:  u ← 〈var(v), Reduce(lo(v)), Reduce(hi(v)), L(v)〉 
5:  if lo(u) = hi(u) then u ← 〈var(hi(u)), lo(hi(u)), hi(hi(u)), L(v)〉 
6:  endif 
7: endif 
8: G1(v) ← MK(u) 
9: return G1(v) 

3 On the Succinctness of ROBDD-L 

In this section, we first show that ROBDD-∞ is the most succinct part in OBDD-L, then prove that ROBDD-i 
is not at least as succinct as ROBDD-j for i < j. These mean that ROBDD-i is indeed a different target language 
from ROBDD-j with i ≠ j and ROBDD-∞ is strictly more succinct than any ROBDD-i (i < ∞), including ROBDD. 
Finally, we show that ROBDD-∞ is strictly less succinct than any FBDD. From these results, we can obtain some 
other conclusions. The definition of succinctness is as follows [5]: 

Definition 7. Let L1 and L2 be two subsets of NNF. L1 is at least as succinct as L2, if and only if there exists a 
polynomial p such that for every sentence α ∈ L2, there exists an equivalent sentence β ∈ L1 where | β | ≤ p ⋅ | α |. 
Here, | α | and | β | are the sizes of α and β, respectively. L1 is strictly more succinct than L2 if and only if L1 is at 
least as succinct as L2, while L2 is not at least as succinct as L1. 

Note that on the one hand the fact L1 is strictly less succinct than L2 does not prevent that L1 is more space 
efficient than L2 for some kind of knowledge bases, on the other hand the succinctness is only concerned about the 
best case, in fact for the compilation languages without uniqueness, the time cost of finding the best representation 
of the knowledge base is so high that usually it is impractical to use such kind of algorithms. Therefore, it is 
possible that given two languages L1 and L2 such that L1 is strictly more succinct than L2, compared with the L2 
compilers, some L1 compiler can generate more space efficient compilation results for some kind of knowledge 
bases. We will validate this assertion in Section 6. 



 
Figure 5. The algorithm Add-to-inf 

procedure Add-to-inf(v) 
1: function Add-to-inf-sub(v) 
2:  if G2(v) ≠ empty then return G2(v) endif 
3:  Create a new node u 
4:  v′ ← v 
5:  while v′ is non-terminal and var(v′) does not appear in L∞(v) do 
6:   if lo(v′) = ⊥ then v′ ← hi(v′) 
7:   else v′ ← lo(v′) 
8:   endif 
9:  endwhile 
10:  if v′ is a True node then u ← 〈L∞(v)〉 
11:  else 
12:   var(u) ← var(v′) 
13:   L(u) ← L∞(v) 
14:   lo(u) ← Add-to-inf(lo(v′)) 
15:   L(lo(u)) ← L(lo(u)) \ L∞(v) 
16:   hi(u) ← Add-to-inf(hi(v′)) 
17:   L(hi(u)) ← L(hi(u)) \ L∞(v) 
18:  endif 
19:  G2(v) ← u 
20:  return u 
21: end function Add-to-inf-sub 
22: if v = ⊥ node then return ⊥ endif 
23: For any node v′, compute L∞(v′) 
24: return Reduce(Add-to-inf-sub(v)) 

Proposition 4. ROBDD-∞ is the most succinct subset in OBDD-L. In fact, given any OBDD-L, let n be the 
number of the non-terminal nodes such that neither of its children is the False node, then this OBDD-L can be 
transformed into the corresponding ROBDD-∞ in polytime and the nodes of the ROBDD-∞ is not more than 2n + 
1. 

Proof. We use a specific algorithm to prove this proposition. An algorithm which can transform any OBDD-L 
into the equivalent ROBDD-∞ in polytime is presented in Figure 5. In order to avoid making too many recursive 
calls, we maintain a cache G2 which stores previously computed outputs of the function Add-to-inf-sub. On Lines 
5-9, we search the nearest node v′ from v such that neither of the children of v′ is the False node. It is obvious that 
this loop can terminal in polytime.  

We first show that the output of Add-to-inf-sub is indeed an OBDD-∞ equivalent to its input such that 
VARS(u) ⊆ VARS(v), and then Reduce(Add-to-inf-sub(v)) returns the corresponding ROBDD-∞ by Proposition 3. 
We prove it by induction on the size of | v |. The case | v | = 1 is immediate. Assume that the conclusion holds for | 
v | ≤ n. When | v | = n + 1, the output of Add-to-inf-sub obviously meets the requirements if v′ is a True node. 
Otherwise we have | lo(v′) | ≤ n and | hi(v′) | ≤ n. By the induction hypothesis, the output of Add-to-inf-sub(lo(v′)) 
(resp. Add-to-inf-sub(hi(v′)) is an OBDD-∞ equivalent to φ(lo(v′)) (resp. φ(hi(v′))). After Line 15 (resp. Line 17), 
the BDD-L with the root lo(u) (resp. hi(u)) is still an OBDD-∞. Given any literal l ∈ L(u) and x is the variable of l, 
if l appears in v′ or some ancestor node of v′, and then x doesn’t appear in any descendent node of v′, we have that 
x doesn’t appear in any descendent node of u because VARS(lo(u)) ⊆ VARS(lo(v′)) and VARS(hi(u)) ⊆ VARS(hi(v′)) 
by the induction hypothesis. Otherwise l ∈ L∞(lo(v′)) and l ∈ L∞(hi(v′)) by Definition 2, then by Proposition 1 and 
the induction hypothesis, l ∈ L(Add-to-inf-sub(lo(v′))) and l ∈ L(Add-to-inf-sub(hi(v′))), then l is deleted on Lines 
15 and 17, it means that x doesn’t appear in any descendent node u. So the output of Add-to-inf-sub(v) is a BDD-L. 
By Definition 3, var(v′) is less than any variable appearing in lo(v′) and hi(v′), and then var(v′) is less than any 
variable appearing in lo(u) and hi(u) because VARS(lo(u)) ⊆ VARS(lo(v′)) and VARS(hi(u)) ⊆ VARS(hi(v′)). We 
know that L(lo(u)) does not share any literal with L(hi(u)) and neither of lo(u) and hi(u) is the False node, this 
means that L(u) = L∞(u) by Definition 2, and then the condition 3 of Definition 3 is satisfied in v. So the output of 
Add-to-inf-sub(v) is an OBDD-∞.  

Then we show that the call of Add-to-inf-sub(v) can terminate in polytime for any ROBDD-L with the root v, 
then Add-to-inf(v) can terminate in polytime because we can compute L∞(v′) for any node v′ in polytime (Line 23) 
and the output can be transformed into the equivalent ROBDD-∞ in polytime by Proposition 3 on Line 24. It is 
obvious that a single call of Add-to-inf-sub can terminate in polytime because every step except the recursive calls 
can terminal in polytime. With the cache G2, there are at most n recursive calls of Add-to-inf-sub. So 
Add-to-inf-sub(v) can terminate in polytime. 

Finally, in a single call of Add-to-inf-sub, exactly two new nodes (i.e., lo(u) and hi(u)) will be introduced into 
the resulting OBDD-∞. Together with the root, there exist 2n + 1 nodes in the resulting OBDD-∞. By Proposition 
3, there exist at most 2n + 1 nodes in the resulting ROBDD-∞. In summary, the conclusion holds.    ■ 

It is pointed out that the algorithm Add-to-inf immediately give us a ROBDD-∞ compilation method, i.e., 
firstly compile the knowledge base into ROBDD, and then use the algorithm Add-to-inf to turn the result into 
ROBDD-∞. In addition, we point out one observation about Add-to-inf as follows: 



Observation 1. If the input of Add-to-inf-sub satisfies the formula represented by the low child of any node is 
not equivalent to the high child, then its output also satisfies this condition. We can prove it by induction. So we 
only need to delete the redundant nodes from the output of Add-to-inf-sub in the algorithm Reduce. 

As the algorithm Add-to-inf plays a key role in this paper, we give an example to show how it works. 
Example 1. Let us consider the ROBDD-0 in Figure 2. For simplicity, we omit the implied literals table here, 

and the nodes table of ROBDD is showed in Figure 6(a). First, we compute the maximal set of implied literals for 
each node in ROBDD. Then Add-to-inf-sub(v10) is called. As both children of v10 are non-False, Add-to-inf-sub(v9) 
is called on the Line 14. Similarly, Add-to-inf-sub(v7) is called on the Line 14. After running Lines 5-9, v′ = v1. 
Then u is assigned as 〈{¬y1, ¬y2}〉 and it is put into G2. L(lo(u)) is assigned as {¬y2} on Line 15, this means that 
vIV is generated. Then Add-to-inf-sub(v5) is called on the Line 16. Similarly, 〈{¬y1, y2}〉 and it is put into G2, 
L(hi(u)) is assigned as {y2} on Line 17, this means that vII is generated. Then 〈x2, IV, II, {¬y1}〉 is put into G2. Back 
to the calling of Add-to-inf-sub(v10), L(lo(u)) is assigned as {¬y1} on Line 15, this means that vVI is generated. 
Similarly, L(hi(u)) is assigned as {y1} on Line 17 and vV is generated. Finally, Add-to-inf-sub(v10) returns 〈x1, VI, V, 
∅〉, which is the root of the resulting OBDD-∞ (its nodes table is showed in Figure 6(c), and it is showed in Figure 
6(d)). On Lines 24, we run Reduce on the OBDD-∞, and the ROBDD-∞ in Figure 2 is generated. 

 (a) The nodes table of ROBDD-0 

ID var low high L L∞

10 x1 9 8 ∅ ∅ 

9 x2 7 5 ∅ {¬y1} 

8 x2 6 4 ∅ {y1} 

7 y1 3 0 ∅ {¬y1, ¬y2}

6 y1 0 3 ∅ {y1, ¬y2}

5 y1 2 0 ∅ {¬y1, y2}

4 y1 0 2 ∅ {y1, y2} 

3 y2 1 0 ∅ {¬y2} 

2 y2 0 1 ∅ {y2} 

1 True - - ∅ ∅ 

0 False - - - - 

(b) The cache G2

G2
ID

var low high L 

10 x1 VI V ∅ 

9 x2 IV II {¬y1} 

8 x2 III I {y1} 

7 True - - {¬y1, ¬y2} 

6 True - - {y1, ¬y2} 

5 True - - {¬y1, y2} 

4 True - - {y1, y2} 

2{ }y  

2 1,{ }x y  

1,x ∅

2 1,{ }x y¬

2{ }y¬2{ }y¬ 2{ }y  

(d) The resulting OBDD-∞ 

 

(c) The nodes table of OBDD-∞ 
ID var low high L 

VII y1 VI V ∅ 

VI y2 IV II {¬y1}

V y2 III I {y1}

IV y2 - - {¬y2}

III y2 - - {¬y2}

II y2 - - {y2}

I y2 - - {y2}

 
Figure 6. An example about the algorithm Add-to-inf. 

 
Proposition 5. Given any two number i < j, ROBDD-i is not at least as succinct as ROBDD-j. 
Proof. According to Definition 7, we just need to provide a counterexample here. Let us consider the formula 

below over the linear order x1 < … < x i + 1 < x1, 1 < … < x1, i+1 < … < xn, 1 < … < xn, i + 1: 
1 1,1 1 1, 1 ,1 , 1(( ) ( )) (( ) ( )).i n n nx x x x x x x x+ +↔ ∧ ∧ ↔ ∧ ∧ ↔ ∧ ∧ ↔L L L n i  

The size of ROBDD-i representing this formula is exponential, while the size of ROBDD-(i + 1) is polynomial. 
And ROBDD-(i + 1) is as same as ROBDD-j.   ■ 

Now we know that ROBDD-∞ is strictly more succinct than ROBDD by the above two propositions, then a 
question occurs: is it possible that ROBDD-∞ has a linear size as ROBDD for some kind of knowledge bases. The 
following proposition, which is useful for proving that the size of ROBDD-i (0 < i ≤ ∞) corresponding to some 
formula ϕ is exponential in the size of ϕ, will answer this question. 



Proposition 6. Given any formula ϕ over the variables x1 < … < xn and 0 < i ≤ ∞, if ϕ ⇒ C does not hold for 
any non-tautology clause such that xn does not appear in it, then we have that: all of the ROBDD-i corresponding 
to ϕ are the same; assume that ROBDD-i has the root v and ROBDD has the root u, then 

| | 1 | |  2 |   | 5
2

u v u−⎡ ⎤ ≤ ≤ ⋅ −⎢ ⎥⎢ ⎥
. 

Proof. The case ϕ = false is impossible. Given any non-terminal node v1 in ROBDD-1, we have that L∞(v1) 
has no other literal except xn and ¬xn, otherwise there exists some literal l such that l ∉ {xn, ¬xn} and ϕ ∧ path(v1) 
⇒ l by Proposition 1, and then ϕ ⇒ ¬path(v1) ∨ l, it is obvious that ¬path(v1) ∨ l is a non-tautology clause and xn 
does not appear in it, this is impossible. So there does not exist some node v2 such that var(v2) = xn, otherwise we 
have that: any father v3 of v2 satisfies L∞(v3) = ∅ by Definition 3 and Proposition 2; the children of v2 are ⊥ and 
〈∅〉 by Definition 4. These two assertions conflict with each other. Then given any True node v4, L∞(v4) has no 
other literal except xn and ¬xn for the same reason as v1. In summary, given any node v′ in ROBDD-1, | L∞(v1) | ≤ 1. 
Then by Definition 5, all of the ROBDD-i corresponding to ϕ are the same.  

We call Add-to-inf(u) to transform the ROBDD into the ROBDD-∞. Given any non-terminal node u1 in 
ROBDD with var(u1) < xn, neither of its children is the False node, otherwise, without loss of generality, assume 
that lo(u1) = ⊥, ϕ ∧ path(u1) ⇒ var(u1), and then ϕ ⇒ ¬path(u1) ∨ var(u1), it is obvious that ¬path(u1) ∨ var(u1) is 
a non-tautology clause and xn does not appear in it, this is impossible. So there exists some path from u1 to u2 such 
that var(u2) = xn, otherwise φ(u1) ⇔ true. Obviously, one child of u2 is ⊥, while other child is 〈∅〉. So xn cannot be 
omitted in any non-terminal node in ROBDD. Then the number of non-terminal nodes such that neither of its 
children is the False node in ROBDD is not more than | u | − 3. We have that | v | ≤ 2 ⋅ (| u | − 3) + 1 = 2 ⋅ | u | − 5 
by Proposition 4. 

Let non-False node u3 be one child of u1, the new node created in the single call of Add-to-inf-sub(u1) must be 
equivalent to φ(u3) if L∞(u3) is empty, the new node must be equivalent to φ(u3) or φ(u3) | xn if xn ∈ L∞(u3), the new 
node must be equivalent to φ(u3) or φ(u3) | ¬xn otherwise. Let Φ1 = {φ(u3): L∞(u3) = ∅, u3 ≠ 〈∅〉}, Φ2 = {φ(u3): xn 
∈ L∞(u3)}, Φ3 = {φ(u3) | xn: xn ∈ L∞(u3)}, Φ4 = {φ(u3): ¬xn ∈ L∞(u3)}, Φ5 = {φ(u3) | ¬xn: ¬xn ∈ L∞(u3)}. Obviously, 
the elements in Φj (1 ≤ j ≤ 5) are not equivalent to each other, the elements in Φ1 ∪ Φ2 ∪ Φ4 are not equivalent to 
each other, | Φ1 ∪ Φ2 ∪ Φ4 | = | Φ1 | + | Φ2 | + | Φ4 | = | u | − 3 (without the root u and the terminal nodes). Given 
any formula ϕ1 ∈ Φ1 ∪ Φ2 ∪ Φ3 ∪ Φ4 ∪ Φ5 without the appearance of xn, ϕ1 could only appears in Φ1, Φ3 and Φ5 
if ϕ1 = true, otherwise ϕ1 could only be equivalent to some formula in Φ3 and Φ5 because xn cannot be omitted in 
any non-terminal node in ROBDD. Let Φ6 = {ϕ1: ϕ1 ∈ Φ3 and ϕ1 is equivalent to some formula in Φ5}. It is 
obvious that 

6 3 5 2 4
| | 3| | min(| |,| |) min(| |,| |)

2
u −⎡ ⎤Φ ≤ Φ Φ = Φ Φ ≤ ⎢ ⎥⎢ ⎥

 

and each element in ROBDD corresponds to at least one node in the output of Add-to-inf-sub(u). By Observation 1, 
we only need to delete redundant nodes from the output of Add-to-inf-sub(u) because the input is an ROBDD, then 
we have that 

6
| | 3 | | 1| | 1 (| | 3) | | 1

2 2
u uv u − −⎡ ⎤ ⎡ ⎤≥ + − − Φ ≥ + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

.                         ■ 

Now we turn to show that ROBDD-∞ is strictly less succinct than FBDD: 
Proposition 7. ROBDD-∞ is strictly less succinct than FBDD. 
Proof. First, we use a specific algorithm to show that FBDD is as succinct as ROBDD-∞. An algorithm 

which can transform any ROBDD-∞ into the equivalent FBDD in polytime is presented in Figure 7. Here we treat 
FBDD as a subset of BDD-0, i.e., for any non-False in FBDD, L(v) = ∅. By induction, it is easy to prove that 
Inf2FBDD is correct. 

 
Figure 7. The algorithm Inf2FBDD 

Inf2FBDD(v) 
1: if G3(v) ≠ empty then return G3(v) endif 
2: Create a FBDD node u 
3: if v = ⊥ then u ← ⊥; MK(u) 
4: else 
5:  if v is a non-terminal node then 
6:   u ← 〈var(v), Inf2FBDD(lo(v)), Inf2FBDD(hi(v)), ∅〉 
7:  else u ← 〈∅〉 
8:  endif 
9:  MK(u) 
10:  for any x ∈ L(v) do u ← 〈x, ⊥, u, ∅〉; MK(u) endfor 
11:  for any ¬x ∈ L(v) do u ← 〈x, u, ⊥, ∅〉; MK(u) endfor 
12: endif 
13: G3(v) ← u 
14: return u 

Then we show that ROBDD-∞ is not as succinct as FBDD by given a counterexample. Let us consider the 
formula ϕ = (x1 ↔ y1) ∨ … ∨ (xn ↔ yn) over the variables order x1 < … < xn < y1 < … < yn. It is well known that 



there exists a linear FBDD equivalent to ϕ and the size of ROBDD representing ϕ is exponential. Obviously, ϕ 
does not imply any non-tautology clause without the appearance of yn. By Proposition 6, the size of ROBDD-∞ 
representing ϕ is exponential. So the conclusion holds.       ■ 

By Propositions 4, 5, 7, Proposition 3.1 in [5], and the transitivity of succinctness, we know that: 
Corollary 1. ROBDD-∞ is strictly less succinct than DNNF and d-DNNF; ROBDD-∞ is incomparable to 

DNF, CNF, IP and PI. 

4 The Operations of ROBDD-∞ 

We have showed that ROBDD-∞ is the most succinct subset in OBDD-L in the previous section. In order to 
evaluate the inferential power of this interesting subset, we analyze the operations that ROBDD-∞ supports in 
polytime with respect to the criterion proposed in the knowledge map in this section. The following queries and 
transformations have been considered in the knowledge map. We just recall them here and readers are referred to 
[5] for their importance. 

Definition 8. Given any subset L of NNF, 
L satisfies CO (resp. VA) iff there exists a polytime algorithm that maps every formula ϕ from L to 1 if ϕ is 

consistent (resp. valid), and to 0 otherwise; 
L satisfies CE iff there exists a polytime algorithm that maps every formula ϕ from L and every clause C to 1 

if ϕ ⇒ C holds, and to 0 otherwise; 
L satisfies IM iff there exists a polytime algorithm that maps every formula ϕ from L and every term T to 1 if 

T ⇒ ϕ holds, and to 0 otherwise; 
L satisfies EQ (resp. SE) iff there exists a polytime algorithm that maps every pair of formulas ϕ, γ from L to 

1 if ϕ ⇔ γ (resp. ϕ ⇒ γ) holds, and to 0 otherwise; 
L satisfies CT iff there exists a polytime algorithm that maps every formula ϕ from L and some the variables 

set X which includes all of the variables appearing in ϕ to a non-negative integer that represents the number of 
models of ϕ over X (in binary notation). 

L satisfies ME iff there exists a polynomial p(., .) and an algorithm that outputs all models of an arbitrary 
formula ϕ from L over some the variables set X which includes all of the variables appearing in ϕ in time p(n, m), 
where n is the size of ϕ and m is the number of its models over X. 

Definition 9. Given any subset L of NNF, 
L satisfies CD iff there exists a polytime algorithm that maps every formula ϕ from L and every consistent 

term T to a formula from L that is logically equivalent to ϕ | T. 
L satisfies FO iff there exists a polytime algorithm that maps every formula ϕ from L and every subset X of 

the set of variables appearing in ϕ to a formula from L that is equivalent to ∃X.ϕ, i.e. the formula that does not 
mention any variable from X and for every formula γ that does not mention any variable from X, we have ϕ ⇒ γ 
precisely when ∃X.ϕ ⇒ γ. If the property holds for singleton X, we say that L satisfies SFO. 

L satisfies ∧C (resp. ∨C) iff there exists a polytime algorithm that maps every finite set of formulas ϕ1, … , 
ϕn from L to a formula of L that is logically equivalent to ϕ1 ∧ … ∧ ϕn (resp. ϕ1 ∨ … ∨ ϕn). 

L satisfies ∧BC (resp. ∨BC) iff there exists a polytime algorithm that maps every pair of formulas ϕ and γ  
from L to a formula of L that is logically equivalent to ϕ ∧ γ (resp. ϕ ∨ γ). 

L satisfies ¬C iff there exists a polytime algorithm that maps every formula ϕ from L to a formula of L that is 
logically equivalent to ¬ϕ. 
 

Table 1. The polytime query of ROBDD-∞. √ means “satisfies”,  means 
“does not satisfy unless P = NP”, and ? means “unknown”. 

o

L CO VA CE IM EQ SE CT ME 
ROBDD √ √ √ √ √ √ √ √ 

ROBDD-∞ √ √ √ √ √ ? √ √ 
FBDD √ √ √ √ ? o  √ √ 

d-DNNF √ √ √ √ ? o  √ √ 
 
Table 1 summarizes query-related properties of ROBDD-∞. As ROBDD, FBDD and d-DNNF are three of the 

most widely used target languages in practical applications, their properties are also showed here for comparison. 
Proposition 8. The results in Table 1 hold. 
Proof. CO, VA and EQ: Recall that for any formula, there is exactly one ROBDD-∞ representing it. This 

means, in particular, that there is exactly one ROBDD-∞ for the constant formula true (resp. false): the True node 
with no implied literal (resp. False node). And given two ROBDDs-∞, they are equivalent if and only if they are 
the same. So we have that: (1) Deciding the satisfiability and validity of a ROBDD-∞ can be done in constant time, 
it means that CO and VA are satisfied; (2) Deciding the equivalence between two ROBDDs-∞ can be done in 
polytime, it means that EQ is satisfied. 

CT, CE, IM and ME: Counting the models of a ROBDD-∞ over a set of variables can be done in linear time. 
An algorithm is presented in Figure 8. A single call of Count can terminal in constant time with the data unit size 
in implied literals table. With the cache G4, the number of recursive calls is | v |. Then this algorithm has a linear 
time complexity. Furthermore, we prove that the result of Count(v, X) equals to the number of models of φ(v) over 
X by induction on the size of | v |. The case | v | = 1 is immediate. Assume that Count(v, X) returns the correct 



result for | v | ≤ n. When | v | = n + 1, it is obvious that | lo(v) | ≤ n and | hi(v) | ≤ n. According to (*), the number of 
models of φ(v) equals to the sum of number of models of (∧l ∈ L(v)) ∧ ¬var(v) ∧ φ(lo(v)) and (∧l ∈ L(v)) ∧ 
var(v) ∧ φ(hi(v)). By the induction hypothesis and Definition 3, and the number of models of (∧l ∈ L(v)) ∧ ¬var(v) 
∧ φ(lo(v)) (resp. (∧l ∈ L(v)) ∧ var(v) ∧ φ(hi(v))) equals to Count(lo(v), X) / 2 | L(v) | + 1 (resp. Count(hi(v), X) / 2 | L(v) 

| + 1). So the induction hypothesis holds. It means that CT is satisfied. In Proposition 9, we will show that 
ROBDD-∞ satisfies CD. Then by Lemma A.3, A.4 and A.7 in [5], we know that ROBDD-∞ satisfies ME, CE and 
IM.   ■ 

   

 
Figure 8. The algorithm Count 

procedure Count(v, X) 
1: if G4(v) ≠ empty then return G4(v) endif 
2: if v is a terminal node then 
3:  if v = ⊥ then G4(v) ← 0 
4:  else G4(v) ← 2| X | − | L(v) | 
5:  endif 
6: else G4(v) ← (Count(lo(v), X) + Count(hi(v), X)) / 2 | L(v) | + 1 
7: endif 
8: return G4(v) 

We know that two broad areas in formal verification of hardware are distinguished: checking whether a 
combinational circuit complies with a given specification; checking whether a circuit's behavior conforms to 
certain desired properties. The former is a case of equivalence checking, while the latter is mostly a case of clausal 
entailment. So ROBDD-∞ is potential to be widely used in verification field.  

Note that we just need some fragment information (i.e., the size) of the implied literals in Count and we 
pre-record them in implied literals table so that we can visit a node of ROBDD-∞ in constant time. The same 
situation occurs in computing the minimum cardinality [3], which is useful in model-based diagnose, we only need 
an extra data unit in implied literals table to pre-record the number of negative literals in implied literals set. By 
Proposition 4, every OBDD-L can be transformed into the corresponding ROBDD-∞ in polytime, and then we 
have that: 

Corollary 2. OBDD-L satisfies CO, VA, CE, IM, EQ, CT and ME. 
 

Table 2. The polytime transformations of ROBDD-∞. √ means “satisfies”,  
means “does not satisfy”,  means “does not satisfy unless P = NP”, and ? 
means “unknown”. 

•
o

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C 
ROBDD √ •  √ •  √ •  √ √ 

ROBDD-∞ √ •  •  •  ? •  •  •  
FBDD √ •  o  •  o  •  o  √ 

d-DNNF √ o  o  o  o  o  o  ? 
 
Table 2 summarizes transformation-related properties of ROBDD-∞. Again, Properties of d-DNNF, FBDD 

and ROBDD are also showed here for comparison. 
Proposition 9. The results in Table 2 hold. 
Proof. CD: An algorithm is presented in Figure 9. With the cache G5, this function Condition-sub will 

terminate in polytime. And we have showed that Add-to-inf can terminate in polytime in the previous section. So 
the algorithm Condition has a polynomial time complexity. Moreover, we prove that the result of Condition-sub(v, 
T) is an OBDD-L equivalent to φ(v) | T by induction on the size of | v |. The case | v | = 1 is immediate. Assume that 
the output of Condition-sub(v, T) is an OBDD-L equivalent to φ(v) | T and VARS(u) ⊆ VARS(v) for | v | ≤ n. When | 
v | = n + 1, it is obvious that | lo(v) | ≤ n and | hi(v) | ≤ n. By (*) and Definition 6, we have that 

( ) | ( ( )) | (( ( ) | ( ( )) | ) ( ( ) | ( ( )) | )).v T l L v T var v T lo v T var v T hi v Tφ φ φ= ∈ ∧ ¬ ∧ ∨ ∧∧  
Line 13 guarantees that at least one child of u is non-False if u is non-terminal. Then by the induction hypothesis 
and Definition 3, the DAG with the root u is an OBDD-L such that φ(u) ⇔ φ(v) | T and VARS(u) ⊆ VARS(v). Note 
that L(v) \ T and L(v) ∩ ¬T ≠ ∅ are needed to be computed just once for the same sets of implied literals set with 
the use of implied literals table. This means that the implied literals table is helpful for saving the computing time 
of the logical operations such as conditioning, clausal entailment and so on. 



 
Figure 9. The algorithm Condition 

procedure Condition(v, T) 
1: function Condition-sub(v, T) 
2:  if G5(v) ≠ empty then return G5(v) endif 
3:  Create a new node u 
4:  if L(v) ∩ ¬T ≠ ∅ then u ← ⊥ 
5:  else-if v is a True node then u ← 〈L(v) \ T〉 
6:  else 
7:   if var(v) ⊆ T then u1 ← ⊥ 
8:   else u2 ← Condition-sub(lo(v), T) 
9:   endif 
10:   if ¬var(v) ⊆ T then u2 ← ⊥  
11:    else u2 ← Condition-sub(hi(v), T) 
12:    endif 
13:   if both u1 and u2 are ⊥ then u ← ⊥ 
14:   else u ← (var(v), u1, u2, L(v) \ T) 
15:   endif 
16:  endif 
17:  MK(u) 
18:  G5(v) ← u 
19:  return u 
20: end function Condition-sub 
21: if v = ⊥ then return ⊥ endif 
22: return Add-to-inf(Condition-sub(v, T)) 

∨BC, ∨C, SFO and FO: Check the following formula over the variables order x1 < … < xn < y1 < … < yn < z: 
1 1(( ) ( ))n nx y x yϕ γ∨ = ↔ ∧ ∧ ↔ ∨L z  

The ROBDD-∞ corresponding to ϕ with the root v has a linear size and the ROBDD-∞ corresponding to γ only has 
the node 〈{z}〉. The ROBDD-0 corresponding to ϕ ∨ γ is obviously exponential and ϕ ∨ γ satisfies the condition in 
Proposition 6, so the size of the corresponding ROBDD-∞ is also exponential. Therefore, there exists no polytime 
algorithm which can map the ROBDDs-∞ corresponding to ϕ and γ to the ROBDD-∞ corresponding to ϕ ∨ γ. This 
means that ∨BC cannot be satisfied. Then ∨C also cannot be satisfied. Let var(u) = x, L(u) = ∅, lo(u) = v and hi(u) 
= 〈{z}〉. Obviously, φ(u) ⇔ (x ∧ ϕ) ∨ (¬x ∧ γ). So there exists no polytime algorithm which can map the 
ROBDD-∞ with the root u to the ROBDD-∞ corresponding to ∃x.φ(u) because ϕ ∨ γ ⇔ ∃x.((x ∧ ϕ) ∨ (¬x ∧ γ)). 
This means that SFO cannot be satisfied. Then FO also cannot be satisfied. 

∧C: By Corollary 1, ROBDD-∞ is not at least as succinct as CNF, and then there exists some CNF formula ϕ 
that cannot be transformed into the corresponding ROBDD-∞ in polytime. Obviously, each clause in ϕ can be 
transformed into the corresponding ROBDD-∞ in linear time. If ROBDD-∞ satisfies ∧C, then ϕ can be 
transformed into the corresponding ROBDD-∞ in polytime. This is impossible. So ∧C cannot be satisfied. 

¬C: Here is a counterexample over the variables order x1 < … < xn < y1 < … < yn: 
1 1(( ) ( ))n nx y xϕ = ↔ ∧ ∧ ↔L y  

Obviously, ¬ϕ satisfies the condition in Proposition 6 and the size of the ROBDD corresponding to it is 
exponential, so the size of the corresponding ROBDD-∞ is also exponential. However, the size of the ROBDD-∞ 
corresponding to ϕ is linear. So there exists no polytime algorithm which can map the ROBDD-∞ corresponding to 
ϕ to the ROBDD-∞ corresponding to ¬ϕ. This means that ¬C cannot be satisfied.   ■ 

We close this section by a detailed theoretical comparison between ROBDD, ROBDD-∞, FBDD and 
d-DNNF. ROBDD and ROBDD-∞ have the uniqueness over a specific variables order, while neither FBDD nor 
d-DNNF has this property. ROBDD-∞ is strictly more succinct than ROBDD, but it is strictly less succinct than 
FBDD, which is strictly less succinct than d-DNNF. From Table 1, ROBDD satisfies SE which ROBDD-∞ does 
not satisfy, while ROBDD-∞ satisfies EQ which neither FBDD nor d-DNNF satisfies. In the future, practical 
applications might need some other class of queries (i.e., not involved in the knowledge compilation map) such 
that ROBDD can answer them in polytime, while none of ROBDD-∞, FBDD and d-DNNF can, or both ROBDD 
and ROBDD-∞ can answer them in polytime, while neither FBDD nor d-DNNF can, or only d-DNNF cannot. 
From Table 2, it seems that both d-DNNF and ROBDD-∞ have some problems for the transformations, while 
FBDD is a bit better than them. Fortunately, the transformations usually are completed in the off-line phase. 

5 Compiling Propositional Theory into ROBDD-i 

In this section we present two compilation algorithms about ROBDD-i (0 ≤ i ≤ ∞). We focus on top-down 
compilation algorithms rather than bottom-up ones for the reasons that: we do not know whether ROBDD-∞ 
satisfies ∧BC or not; a well-known problem with the bottom-up methods is that the intermediate results that arise 
in the process can grow so large as to make further manipulation impossible, even when the final result would 
have a tractable size [20] (in the extreme case when the knowledge base is unsatisfiable, the final compilation 
result of ROBDD-i will has only one node, but the intermediate results may be satisfiable and have many nodes). 
First, we propose a compilation algorithm called Build for ROBDD-i (0 ≤ i ≤ ∞). Then we optimize it by the use of 



some specific models of propositional theory and devise another algorithm called Build-inf for ROBDD-∞. Finally, 
we introduce some techniques which are potential to improve the performance of Build and Build-inf when the 
input is in CNF. 

5.1 Compilation Algorithm 

The compilation algorithm Build is presented in Figure 10. Its correctness is guaranteed by the following 
proposition.  

Proposition 10. Given any propositional formula ϕ, Build(ϕ, i) can terminate in finite time and its output is 
the corresponding ROBDD-i. 

Proof. Let X be the set of variables appearing in ϕ. We prove the proposition by induction on the size of | X |. 
Assume that Build(ϕ, i) can terminate in finite time and its output is the ROBDD-i corresponding to ϕ with the 
root v such that VARS(v) ⊆ X if | X | ≤ n. The case | X | = 0 is immediate. When | X | = n + 1, we proceed by case 
analysis: 

ϕ is unsatisfiable: The conclusion is obvious. 
ϕ is equivalent to true after Line 9: The conclusion is obvious. 
Otherwise: After Line 9, let X1 and X2 be the set of variables appearing in ϕ | ¬xj and ϕ | xj, respectively. By 

the induction hypothesis, Build(ϕ | ¬xj, i) (resp. Build(ϕ | xj, i)) can terminate in finite time and its output is the 
ROBDD-i corresponding to ϕ | ¬xj (resp. ϕ | xj) such that VARS(lo(v)) ⊆ X1 (resp. VARS(hi(v)) ⊆ X2). Then 
Build(ϕj, i) can terminate in finite time, VARS(v) ⊆ X, the conditions in Definition 1 and Definition 3 are satisfied. 
Lines 4-8 guarantee the condition in Definition 5. The loop on Lines 10-16 guarantees that ϕ | ¬xj is not equivalent 
to ϕ | xj. By Proposition 2, lo(v) is not identical to hi(v). The call of MK guarantees the condition 1 in Definition 4. 
And the loop must terminate at some j, otherwise the condition on Line 17 will be satisfied, which corresponds to 
the case that ϕ is equivalent to true after Line 9. Then the output of Build(ϕ, X, i) is the ROBDD-i corresponding 
to ϕ.  ■ 

 

 
Figure 10. The algorithm Build 

procedure Build(ϕ, i) 
 // ϕ is a Boolean formula over the variables x1 < … < xn  
1: if ϕ is unsatisfiable then v ← ⊥ 
2: else 
3:  Create a new node v 
4:  for j = 1 to n and | L(v) | < i do 
5:   if ϕ implies xj then L(v) ← L(v) ∪ {xj} 
6:   else-if ϕ implies ¬xj then L(v) ← L(v) ∪ {¬xj} 
7:   endif 
8:  endfor 
9:  ϕ ← ϕ | L(v) 
10:  for j = 1 to n do 
11:   if xj cannot be omitted in ϕ then 
12:    v ← 〈xj, Build(ϕ | ¬xj, i), Build(ϕ | xj, i), L(v)〉 
13:    break 
14:   else ϕ ← ϕ | xj 
15:   endif 
16:  endfor 
17:  if j > n then v ← 〈L(v)〉 endif 
18: endif 
19: MK(v) 
20: return v 

 
It is pointed out that Line 11 in the algorithm Build is not needed any more if i = 0 or ∞, and we just need to 

call the algorithm Reduce to turn the result into ROBDD or ROBDD-∞. Particularly, we do not even need to Line 
1 and Lines 4-9 if i = 0, then Build is equivalent to Algorithm 5 in [20] when the input is in CNF. We can displace 
the algorithm Build with the algorithm Build-inf in Figure 11 if i = ∞. In the algorithm Build-inf, Decide(ϕ) will 
return a model of ϕ if it is satisfiable, otherwise the empty set will be returned. It is trivial to prove that it is correct 
to use the function Get-imps to compute all literals implied by ϕ. 



 
Figure 11. The algorithm Build-inf 

procedure Build-inf(ϕ) 
 // ϕ is a Boolean formula over the variables x1 < … < xn
1: function Get-imps(ϕ, Ω)  // this function also output Ω 
2:  C ← {l : ∀(M ∈ Ω).(¬l ∉ M)} 
3:  C′ ← ∅ 
4:  while there exists some literal l such that l ∈ C \ C′ do 
5:   M ← Decide(ϕ ∪ {¬l}) 
6:   if M ≠ ∅ then Ω ← Ω ∪ {M}; C ← C ∩ M 
7:   else C′ ← C′ ∪ {l} 
8:   endif 
9:  endwhile 
10:  return C′ 
11: end function Get-Imps 
12: function Build-inf-sub(ϕ, Ω) 
13:  Create a new node v 
14:  L(v) ← Get-Imps(ϕ, Ω) 
15:  ϕ ← ϕ | L(v) 
16:  if ϕ is true then v ← 〈L(v)〉 
17:  else 
18:   Let x be the least variable in ϕ 
19:   Ω1 ← {M \ ({x} ∪ L(v)} : x ∈ M} 
20:   Ω2 ← {M \ ({¬x} ∪ L(v)} : ¬x ∈ M} 
21:   v ← 〈x, Build(ϕ | ¬x, Ω1), Build(ϕ | x, Ω2), L(v)〉 
22:  endif 
23: end function Build-inf-sub 
24: M ← Decide(ϕ) 
25: if M = ∅ then return ⊥ 
26: return Reduce(Build-inf-sub(ϕ, {M})) 

Obviously, by using Get-imps, we can significantly reduce the number of calling the function Decide. In fact, 
the efficiency of the algorithm is heavily dependent on the calling number and efficiency of Decide. So Get-imps 
is helpful for improving the efficiency. It is pointed out that we can limit the literals in C to the ones appearing in ϕ 
on Line 2 if ϕ is in NNF because a NNF formula can only imply the literals appearing it. By some proof analogous 
to the one of Proposition 10, the algorithm Build-inf is correct: 

Proposition 11. Given any propositional formula ϕ, Build-inf(ϕ) can terminate in finite time and its output is 
the corresponding ROBDD-∞. 

5.2 Some Techniques to Improve the Performance of Build-inf 

The algorithm Build-inf in Figure 11 is adapted to any propositional formula. However, knowledge base often 
is represented as a CNF formula as human can read and write it with ease. Here are some techniques which are 
potential to improve the performance of Build and Build-inf to compile a CNF formula: (1) aims at reducing the 
number of calling the function Decide, (2) is used to reduce the time of such calling, and the purpose of (3) is to 
reduce the number of recursive calling of Build-inf-sub. 

(1) Horn lower approximation 
As previously pointed out, the efficiency of the algorithm is heavily dependent on the calling number of 

Decide. Given a CNF formula ϕ, a Horn lower approximation is a Horn theory implying ϕ, so ϕ implies a literal 
only if any Horn lower approximation of ϕ implies it. And it is well known that all implied literals of Horn theory 
can be computed in polytime. We exploit these properties to reduce the number of calling Decide, i.e., the function 
Get-imps will be displaced by the function Get-imps-CNF in Figure 12. We give an example to show how 
Get-imps-CNF works. 

Example 2. Let ϕ = {x1 ∨ x3, ¬x2 ∨ x3, ¬x1 ∨ ¬x4, x3 ∨ x4} and Ω = ∅. C = {x1, ¬x1, x2, ¬x2, x3, ¬x3, x4, ¬x4} 
after running Line 11. Obviously, ϕ does not imply x1. Assume that Decide(ϕ ∪ {¬x1}) on Line 14 returns a model 
M = {¬x1, ¬x2, x3, ¬x4}. Then Horn-app(ϕ, M) generates a Horn lower approximation ϕ′ = {x3, ¬x2 ∨ x3, ¬x1 ∨ 
¬x4}. ϕ′ only implies x3. After running Line 17, C = {x3}. Then we find that ϕ also implies x3. Note that we only 
need to employ SAT solver twice here, while solver will be called at least 3 up to 5 times in Get-imps (dependent 
on the models obtained by solver). 

In fact, a model M of ϕ is also a Horn lower approximation (each literal in M can be seen as a unit Horn 
clause). However, the approximation generated by Horn-app(ϕ, M) is obviously greater than M, i.e., M ⇒ 
Horn-app(ϕ, M), for example, the Horn approximation in Example 2 have 6 models. The idea of Horn theory 
approximation in [1] is generating a greatest lower bound (GLB). However, [21] showed that this problem is at 
least NP[ (log )]p O n -hard. It seems that generating a GLB is not desirable in Build-inf. 



 
Figure 12. The function Get-imps-CNF 

function Get-imps-CNF(ϕ, Ω) 
1: function Horn-app(ϕ, M) 
2:  for any C ∈ ϕ do 
3:   if there exists some x ∈ C ∩ M then C′ ← {x} 
4:   else-if there exists some x′ in C then C′ ← {x′} 
5:   else C′ ← ∅ 
6:   endif 
7:   C ← {¬x | ¬x ∈ C} ∪ C′ 
8:  endfor 
9:  return ϕ 
10: end function Horn-app 
11: C ← {l : ∀(M ∈ Ω).(Horn-app(ϕ, M) ⇒ l)} 
12: C′ ← ∅ 
13: while there exists some literal l such that l ∈ C \ C′ do 
14:  M ← Decide(ϕ ∪ {¬l}) 
15:  if M ≠ ∅ then 
16:   Ω ← Ω ∪ {M} 
17:   C ← C ∩ {l : Horn-app(ϕ, M) ⇒ l} 
18:  else C′ ← C′ ∪ {l} 
19:  endif 
20: endwhile 
21: return C′ 
end function Get-Imps-CNF

 
(2) Employing high-performance SAT solver 
We know that we need to employ SAT solver on Lines 1, 5, 6 and 11 in Build. Despite that Build-inf can 

avoid many times of such employment, efficiency of SAT solver still significantly affect the efficiency of Build-inf 
(we can see it in Section 6). Fortunately, there exist many efficient complete SAT solvers so far, such as MiniSAT 
[22], PrecoSAT [23], CryptoMiniSat [24] and so on. All these modern complete SAT solvers are based on the 
classic DPLL procedure [25], which employs a systematic search to find a model of the inputting CNF formula. In 
fact, it has been showed that DPLL procedure is closely related to knowledge compilation. For example, [26] 
proposed an algorithm to exploit DPLL search to generate Horn GLB; [20] proposed a new method to map 
different versions of exhaustive DPLL search to different compilation languages as ROBDD, FBDD, and d-DNNF, 
[12] extended this idea to map another version of systematic search to EPCCL theory. 

Research in recent years has greatly improved the efficiency and scalability of systematic search methods. 
Techniques contributing to this improvement include two-literal watch scheme for fast BCP, clause learning by 
conflict analysis, dependency directed backtracking, new variable ordering heuristics, timely restarts, and so on 
[20, 22-24]. We emphasize that that clause learning by conflict analysis is very useful here as we always perform 
DPLL search on the same CNF formula (i.e. knowledge base) only under different initial partial assignments1, 
which leads to that learnt clauses can be inherited by other DPLL searches. 

(3) CNF caching 
In order to save the compiling time, the function Build-inf-sub will be trying to not compiling the same CNF 

formula twice, we exploit the CNF caching scheme introduced in [27] to do this. Assume the knowledge base 
needed to be compiled is ϕ0 = C1 ∧ … ∧ Cn. We know that each input ϕ of Build-inf-sub comes from conditioning 
ϕ0 on a partial assignment A. Given any two inputs ϕ = ϕ0 | A and ϕ′ = ϕ0 | A′, ϕ ⇔ ϕ′ if the following conditions 
hold: the variables appearing in A and A′ are the same; let bv be a vector with n bit, bv(i) = 1 if Ci shares some 
literal with A, otherwise bv(i) = 0, bv′ is generated from A′ in the same way, bv equals to bv′. For example, let ϕ = 
(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (x3 ∨ ¬x4), we know that ϕ | x1 ∧ x2 is equivalent to ϕ | ¬x1 ∧ ¬x2 by this scheme. 

5.3 Transforming ROBDD-∞ into ROBDD 

As pointed out previously, the algorithm Build can be turned into Algorithm 5 in [20] when the input is in 
CNF. However, the experimental results in [20] show that the efficiency of Algorithm 5 is needed to be further 
improved. In this subsection, we present an alternative ⎯ we show that any ROBDD-∞ can be transformed into 
the equivalent ROBDD using the algorithm Inf2ROBDD in Figure 13. And we will see that this approach 
outperforms Algorithm 5 in [20] in the next section. Note that on Line 10, we just need to displace the node 〈∅〉 in 
the ROBDD whose root is u2 with u1 to get the conjunct since any variable in VARS(u2) is less than the one in 
VARS(u1). 

Proposition 12. Given any ROBDD-∞ with the root v, Inf2ROBDD(v) can terminate in finite time and its 
output is the corresponding ROBDD. 

Proof. It is trivial to prove by induction that the output of Inf2R-sub(v, T) is the ROBDD corresponding to φ(v) 
∧ T, where VARS(v) and T do not share any variable with each other. Then this proposition holds.  ■ 

                                                        
1 Both Build-inf and DPLL procedure are implemented iteratively. 



  
Figure 13. The function Get-imps-CNF 

6 Preliminary Experimental Results 

In this section, we report some experimental results about our ROBDD-L package BDDjLu. In BDDjLu, any CNF 
formula can be compiled into ROBDD-i (0 ≤ i < ∞) by the algorithm Build or ROBDD-∞ by the algorithm 
Build-inf, and all the operations supported by ROBDD-∞ in polytime are included. BDDjLu also contains the 
algorithms Inf2ROBDD and Inf2FBDD. As pointed out previously, in Build and Build-inf, SAT solver will be 
employed to decide whether a CNF formula is satisfiable or not, get the implied literals in a CNF formula, decide 
whether the variables can be omitted in CNF formula. So we also implement a DPLL-based SAT solver based on 
the one used in [13, 28], in which we exploit some techniques including two-literal watch scheme for fast BCP, 
clause learning by conflict analysis, dependency directed backtracking, variable ordering heuristics VSIDS.  

We compare BDDjLu against a d-DNNF compiler called c2d2 [26]. ROBDD-∞, FBDD and ROBDD are 
generated by Build-inf, Inf2FBDD and Inf2ROBDD, respectively. It seems that a ROBDD compiler and a FBDD 
compiler were implemented by Huang and Darwiche in [20]. But we cannot compare BDDjLu with them. The 
directives -reduce and -dt-method 4 (i.e., min-fill heuristic for constructing d-trees) are used in c2d. -reduce is 
helpful to generate a smaller d-DNNF and -dt-method 4 seems to work best on a broad set of benchmarks3. In our 
experiments, the variables are denoted by their indices (i.e. some natural numbers) and xj < xk iff j < k. All 
experiments are conducted on a computer with a 2.79 GHz CPU and 512 MB of RAM. The timeout for each 
problem is set to 1000 seconds. 

We test BDDjLu and c2d on some benchmarks from SATLIB4 and the experimental results are showed in 
Table 3, where problem types (#vars, #cls and #models indicate the number of variables, clauses and models of 
corresponding instance, respectively), compilation output sizes of d-DNNF, ROBDD-∞, FBDD and ROBDD 
(#nodes and #edges indicate the number of nodes and edges, respectively), individual compiling time5 (- indicates 
timeout or memory overflow) and the time cost of employing SAT solver in Build-inf (sat indicates it) are 
reported. 

 

                                                        
2 http://reasoning.cs.ucla.edu/c2d/  
3 Knot Pipatsrisawat, a past member in the Automated Reasoning group at UCLA, said these in the private communication between us. 
4 http://people.cs.ubc.ca/~hoos/SATLIB/benchm.html
5 For FBDD (resp. ROBDD), it is the sum of the time cost of Build-inf and Inf2FBDD (resp. Inf2ROBDD). 

procedure Inf2ROBDD(v) 
1: function Inf2R-sub(v, T) 
2:  if G6(v, T) ≠ empty then return G6(v, T) endif 
3:  if v is a True node then 
4:   Let u be the root of the ROBDD corresponding to T ∪ L(v) 
5:  else 
6:   T1 ← {l ∈ T ∪ L(v) : var(v) is less than the variable of l} 
7:   T2 ← T ∪ L(v) \ T1 
8:   u1 ← 〈var(v), Inf2R-sub(lo(v), T′) Inf2R-sub(hi(v), T′), ∅〉 
9:   Let u2 be the root of the ROBDD corresponding to T2 
10:   Let u be the root of the conjunct of u1 and u2 
11:  endif 
12:  G6(v, C) ← u 
13:  return u 
14: end function Inf2R-sub 
15: if v = ⊥ then return ⊥ 
16: return Reduce(Inf2R-sub(v, ∅))
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Table 3. Comparison between d-DNNF, ROBDD-∞, FBDD and ROBDD 

d-DNNF ROBDD-∞ FBDD ROBDD 
CNF instance #vars #cls #models

time/s #nodes #edges sat/s time/s #nodes #edges time/s #nodes #edges time/s #nodes #edges 

CBS_k3_n100_m403_b10_0 100 403 214200 0.23 509 2636 0.08 0.09 421 786 0.11 1288 2452 0.12 12876 25748 

CBS_k3_n100_m403_b50_1 100 403 11408 0.16 258 1072 0.03 0.05 191 324 0.07 689 1374 0.08 3580 7156 

CBS_k3_n100_m403_b90_2 100 403 144 0.19 113 281 0.05 0.06 10 16 0.06 102 200 0.06 416 828 

flat200-1 600 2237 5.38e11 34.78 60343 262467 - - - - - - - - - - 

flat200-2 600 2237 1.37e10 107.42 2061 16370 12.60 13.91 11765 23522 13.94 31716 63428 20.35 873516 1747028 

flat200-3 600 2237 1.52e10 87.50 3124 14364 8.92 13.34 43921 87834 13.43 111593 223182 22.7 944373 1888742 

hole8 72 397 0 3.27 1 0 0.08 0.08 1 0 0.08 1 0 0.08 1 0 

hole9 90 415 0 82.17 1 0 0.95 0.97 1 0 0.97 1 0 0.97 1 0 

hole10 110 561 0 - - - 10.06 10.08 1 0 10.08 1 0 10.08 1 0 

par8-2-c 68 270 1 0.09 69 68 0.00 0.00 1 0 0.02 70 136 0.03 70 136 

par16-2-c 349 1392 1 3.75 350 349 3.63 3.67 1 0 3.72 351 698 3.76 351 698 

par32-2-c 1303 5206 - - - - - - - - - -  - -  

uf200-01 200 860 112896 148.72 245 739 5.61 5.66 19 28 5.71 211 418 5.8 1833 3662 

uf200-02 200 860 1555776 32.41 299 396 4.84 4.92 176 338 4.95 460 916 5.05 16441 32878 

uf200-03 200 860 8.04e8 132.56 22941 72249 50.80 61.70 46695 92778 61.83 134814 269624 124.51 2649680 5299356 

sat-grid-pbl-0015 110 191 3.01e54 0.36 3368 6791 4.56 4.78 538 1072 4.8 672 1340 4.8 604 1204 

sat-grid-pbl-0020 420 781 5.06e95 286.81 640132 1445683 - - - - - - - - - - 

sat-grid-pbl-0025 650 1226 - - - - - - - - - - - - - - 



The results in Table 3 show that the compilation quality of BDDjLu for ROBDD-∞ is higher than c2d for 
CBS_k3_n100_m403_*, par8-2-c, par15-2-c, uf200-01, uf200-02 and sat-grid-pbl-0015. And c2d is more 
high-quality for flat200-2, flat200-3 and uf200-03. c2d cannot compile hole10, while BDDjLu cannot compile 
flat200-1 and sat-grid-pbl-0020 6 . Neither c2d nor BDDjLu can compile par32-2-c and sat-grid-pbl-0025. 
Compared with the experimental results in [20], the FBDD generated by Inf2FBDD is obviously smaller for 
flat200-* and uf200-*. For all instances that can be compiled into ROBDD-∞, the size of ROBDD-∞ is obviously 
small than FBDD, while the size of FBDD is obviously smaller than ROBDD except sat-grid-pbl-0015. These 
validate the assertion in Section 3. Turning to running time, BDDjLu for ROBDD-∞ is faster than c2d except 
flat200-1 and sat-grid-pbl-*7. flat200-2, flat200-3 and uf200-* can be compiled by transforming the corresponding 
ROBDD-∞ into ROBDD now, while the ROBDD compiler reported in [20] cannot compile them in 900s with a 
2.4 GHz CPU and 4 GB RAM. 

Overall, the ROBDD-∞ is obviously smaller than the ROBDD for each instance. The algorithm Build-inf in 
BDDjLu is more high-quality than c2d for the benchmark corresponding to small ROBDD-∞, and it is faster for 
most of problems when c2d uses min-fill heuristic to construct d-trees. Compared with the compilers reported in 
[20], it seems that Inf2FBDD and Inf2ROBDD are two good alternatives to compile CNF formulas into FBDDs 
and ROBDDs, respectively. As the time cost of employing SAT solver in Build-inf plays a very important role in 
the total running time of generating ROBDD-∞, we shall straight embed some highly efficient modern SAT solver 
into BDDjLu. In addition, we shall design good variables order rather than current simple order in BDDjLu to 
generate more space-efficient compilation results in future. 

Finally, we note that, in comparison with d-DNNF, FBDD and ROBDD, we need a little additional processing 
on the implied literals of ROBDD-∞ in the querying. Fortunately, on the one hand, some operations (e.g., model 
counting, computing the minimum cardinality) only need some fragment information about implied literals, 
therefore, we can visit any node of ROBDD-∞ in constant time; on the other hand, we can reduce the number of 
processing for other operations with the use of implied literals table. 

7 Conclusions 

In this paper, we introduce a new compilation approach ROBDD-L by associating some implied literals in each 
node of ROBDD. Then an interesting kind of subsets of ROBDD-L is discussed: given a number i, we call the 
corresponding subset ROBDD-i, which requires that all of its nodes should be precisely associated by i implied 
literals. In particular, the ROBDD-0 whose nodes have no implied literal is isomorphic to ROBDD; the ROBDD-∞ 
requires that every node should be associated by the implied literals as many as possible. Given a number i and a 
Boolean formula, we show that there is exactly one ROBDD-i representing it over a specific variables order.  

Furthermore, we show that every sentence of OBDD-L can be transformed into an equivalent sentence of 
ROBDD-∞ in polytime. This means that ROBDD-∞ is the most succinct subset of OBDD-L. Particularly, 
ROBDD-∞ is strictly more succinct than ROBDD. Compared with FBDD and d-DNNF, ROBDD-∞ is strictly less 
succinct. And we propose the algorithm Inf2FBDD which can transform any ROBDD-∞ into FBDD. In order to 
evaluate the inferential power of this interesting subset, we compare it with ROBDD, FBDD and d-DNNF by the 
operations that can be supported in polytime with respect to the knowledge compilation map. For the queries, 
ROBDD satisfies SE which ROBDD-∞ does not satisfy, while ROBDD-∞ satisfies EQ which FBDD and 
d-DNNF does not satisfy. For the transformations, ROBDD satisfies CD, SFO, ∧BC, ∨BC and ¬C, both 
ROBDD-∞ and d-DNNF only satisfy CD, and FBDD satisfies CD and ¬C. 

Finally, we propose the compilation algorithm Build which can compile any Boolean formula into a 
ROBDD-i for any i. Based on it, we propose the ROBDD-∞ compilation algorithm Build-inf and discuss three 
optimization techniques. In addition, we show that every ROBDD-∞ can be transformed into ROBDD by 
proposing the algorithm Inf2ROBDD. Combining Build, Build-inf, Inf2FBDD, Inf2ROBDD and all the operations 
supported by ROBDD-L in polytime, we devise the ROBDD-L package BDDjLu and test it on some benchmarks 
from SATLIB. Preliminary experimental results show that: for the same instance, ROBDD-∞ is obviously smaller 
than ROBDD; Build-inf in BDDjLu is more high-quality than c2d for the benchmarks corresponding to small 
compilation results, and it is faster for most of problems when c2d uses min-fill heuristic to construct d-trees; it 
seems that it is better to transform the ROBDD-∞ into FBDD and ROBDD using Inf2FBDD and Inf2ROBDD. 
And both efficiency and compilation quality of BDDjLu have potential to be improved by embedding a modern 
SAT solver and devising a better variables order. 
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