Skip to main content
Log in

Imprecise prior knowledge incorporating into one-class classification

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

An extension of Campbell and Bennett’s novelty detection or one-class classification model incorporating prior knowledge is studied in the paper. The proposed extension relaxes the strong assumption of the empirical probability distribution over elements of a training set and deals with a set of probability distributions produced by prior knowledge about training data. The classification problem is solved by considering extreme points of the probability distribution set or by means of the conjugate duality technique. Special cases of prior knowledge are considered in detail, including the imprecise linear-vacuous mixture model and interval-valued moments of feature values. Numerical experiments show that the proposed models outperform Campbell and Bennett’s model for many real and synthetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Augustin T (2002) Expected utility within a generalized concept of probability—a comprehensive framework for decision making under ambiguity. Stat Papers 43:5–22

    Article  MATH  MathSciNet  Google Scholar 

  2. Bartkowiak A (2011) Anomaly, novelty, one-class classification: a comprehensive introduction. Int J Comput Inf Syst Ind Manag Appl 3:61–71

    Google Scholar 

  3. Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton

    MATH  Google Scholar 

  4. Berger J (1985) Statistical decision theory and Bayesian analysis. Springer, New York

    Book  MATH  Google Scholar 

  5. Bicego M, Figueiredo M (2009) Soft clustering using weighted one-class support vector machines. Pattern Recogn 42:27–32

    Article  MATH  Google Scholar 

  6. Campbell C (2002) Kernel methods: a survey of current techniques. Neurocomputing 48(1–4):63–84

    Article  MATH  Google Scholar 

  7. Campbell C, Bennett K (2001) A linear programming approach to novelty detection. In: Leen T, Dietterich T, Tresp V (eds) Advances in neural information processing systems, vol 13. MIT Press, Cambridge, pp 395–401

  8. Cantelli F (1910) Intorno ad un teorema fondamentale della teoria del rischio. Boll. Assoc. Attuar. Ital. (Milan) 1–23

  9. Chandola V, Banerjee A, Kumar V (2007) Anomaly detection: a survey. Tech. Rep. TR 07–017. University of Minnesota, Minneapolis MN USA

  10. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41:1–58

    Article  Google Scholar 

  11. Chapelle O, Scholkopf B (2001) Incorporating invariances in non-linear support vector machines. In: Dietterich T, Becker S, Ghahraman Z (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 609–616

    Google Scholar 

  12. Cherkassky V, Mulier F (2007) Learning from data: concepts, theory, and methods. Wiley-IEEE Press, UK

    Book  Google Scholar 

  13. Dayanik A, Lewis D, Madigan D, Menkov V, Genkin A (2006) Constructing informative prior distributions from domain knowledge in text classification. In: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, New York, NY, USA, pp 493–500

  14. Decoste D, Schölkopf B (2002) Training invariant support vector machines. Mach Learn 46(1–3):161–190

    Article  MATH  Google Scholar 

  15. Frank A, Asuncion A (2010) UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

  16. Fung G, Mangasarian O, Shavlik J (2002) Knowledge-based support vector machine classifiers. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 521–528

    Google Scholar 

  17. Gao Y, Gao F (2010) Edited adaboost by weighted knn. Neurocomputing 73(16–18):3079–3088

    Article  Google Scholar 

  18. Gilboa I, Schmeidler D (1989) Maxmin expected utility with non-unique prior. J Math Econ 18(2):141–153

    Article  MATH  MathSciNet  Google Scholar 

  19. Haasdonk B, Vossen A, Burkhardt H (2005) Invariance in kernel methods by haar-integration kernels. In: Kalviainen H, Parkkinen J, Kaarna A (eds) Image analysis, Lecture Notes in Computer Science, vol 3540. Springer, Berlin Heidelberg, pp 841–851

  20. Hodge V, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2):85–126

    Article  MATH  Google Scholar 

  21. Huber P (1981) Robust statistics. Wiley, New York

    Book  MATH  Google Scholar 

  22. Joachims T (2002) Learning to classify text using support vector machines: methods, theory and algorithms. Kluwer, Norwell

    Book  Google Scholar 

  23. Kunapuli G, Bennett K, Shabbeer A, Maclin R, Shavlik J (2010) Online knowledge-based support vector machines. In: Machine learning and knowledge discovery in databases, Lecture Notes in Computer Science, vol 6322. Springer, Berlin/Heidelberg, pp 145–161

  24. Kwok J, Tsang IH, Zurada J (2007) A class of single-class minimax probability machines for novelty detection. IEEE Trans Neural Netw 18(3):778–785

    Article  Google Scholar 

  25. Lauer F, Bloch G (2008) Incorporating prior knowledge in support vector machines for classification: a review. Neurocomputing 71(7–9):1578–1594

    Article  Google Scholar 

  26. Lauer F, Bloch G (2008) Incorporating prior knowledge in support vector regression. Mach Learn 70(1):89–118

    Article  Google Scholar 

  27. Lee YJ, Mangasarian O, Wolberg W (2003) Survival-time classification of breast cancer patients. Comput Optim Appl 25(1–3):151–166

    Article  MATH  MathSciNet  Google Scholar 

  28. Li G, Jeyakumar V, Lee G (2011) Robust conjugate duality for convex optimization under uncertainty with application to data classification. Nonlinear Anal Theory Methods Appl 74(6):2327–2341

    Article  MATH  MathSciNet  Google Scholar 

  29. Li Y, de Ridder D, Duin R, Reinders M (2008) Integration of prior knowledge of measurement noise in kernel density classification. Pattern Recogn 41:320–330

    Article  MATH  Google Scholar 

  30. Lu B, Wang X, Utiyama M (2009) Incorporating prior knowledge into learning by dividing training data. Front Comput Sci China 3(1):109–122

    Article  Google Scholar 

  31. Mangasarian O (2005) Knowledge-based linear programming. SIAM J Optim 15(2):375–382

    Article  MathSciNet  Google Scholar 

  32. Markou M, Singh S (2003) Novelty detection: a review—part 1: statistical approaches. Signal Process 83(12):2481–2497

    Article  MATH  Google Scholar 

  33. Pavlidis P, Weston J, Cai J, Grundy WN (2001) Gene functional classification from heterogeneous data. In: Proceedings of the fifth annual international conference on Computational biology. ACM, New York, NY, USA, pp 249–255

  34. Robert C (1994) The Bayesian choice. Springer, New York

    Book  MATH  Google Scholar 

  35. Scholkopf B, Platt J, Shawe-Taylor J, Smola A, Williamson R (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13(7):1443–1471

    Article  Google Scholar 

  36. Scholkopf B, Simard P, Smola A, Vapnik V (1998) Prior knowledge in support vector kernels. In: Advances in neural information processing systems. Proceedings of the 1997 conference, vol 10. MIT Press, Cambridge, pp 640–646

  37. Scholkopf B, Smola A (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. The MIT Press, Cambridge

    Google Scholar 

  38. Scholkopf B, Williamson R, Smola A, Shawe-Taylor J, Platt J (2000) Support vector method for novelty detection. In: Advances in neural information processing systems, pp 526–532

  39. Small K, Wallace B, Brodley C, Trikalinos T (2011) The constrained weight space svm: learning with ranked features. In: Proc. of the 28th International Conference on Machine Learning (ICML). Omnipress, Bellevue, WA, USA, pp 865–872

  40. Smola A, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  MathSciNet  Google Scholar 

  41. Steinwart I, Hush D, Scovel C (2005) A classification framework for anomaly detection. J Mach Learn Res 6:211–232

    MATH  MathSciNet  Google Scholar 

  42. Sun Q, Wang LL, Lim S, DeJong G (2007) Robustness through prior knowledge: using explanation-based learning to distinguish handwritten Chinese characters. Int J Document Anal Recogn 10(3–4), 175–186. doi:10.1007/s10032-007-0053-1

  43. Sun Z, Zhang ZK, Wang HG (2008) Incorporating prior knowledge into kernel based regression. Acta Automatica Sinica 34(12):1515–1521

    Article  MathSciNet  Google Scholar 

  44. Tai F, Pan W (2007) Incorporating prior knowledge of predictors into penalized classifiers with multiple penalty terms. Bioinformatics 23(14):1775–1782

    Article  Google Scholar 

  45. Tax D, Duin R (1999) Support vector domain description. Pattern Recogn Lett 20:1191–1199

    Article  Google Scholar 

  46. Tax D, Duin R (2004) Support vector data description. Mach Learn 54:45–66

    Article  MATH  Google Scholar 

  47. Troffaes M (2007) Decision making under uncertainty using imprecise probabilities. Int J Approx Reason 45(1):17–29

    Article  MATH  MathSciNet  Google Scholar 

  48. Utkin L (2002) Imprecise calculation with the qualitative information about probability distributions. In: Grzegorzewski P, Hryniewicz O, Gil M (eds) Soft methods in probability, statistics and data analysis. Phisica-Verlag, Heidelberg, pp 164–169

    Chapter  Google Scholar 

  49. Utkin L (2003) Imprecise second-order hierarchical uncertainty model. Int J Uncertain Fuzziness Knowl Based Syst 11(3):301–317

    Article  MATH  MathSciNet  Google Scholar 

  50. Utkin L (2007) Second-order uncertainty calculations by using the imprecise Dirichlet model. Intell Data Anal 11(3):225–244

    Google Scholar 

  51. Utkin L, Augustin T (2007) Decision making under incomplete data using the imprecise Dirichlet model. Int J Approx Reason 44(3):322–338

    Article  MATH  MathSciNet  Google Scholar 

  52. Vapnik V (1998) Stat Learn Theory. Wiley, New York

    Google Scholar 

  53. Veillard A, Racoceanu D, Bressan S (2011) Incorporating prior-knowledge in support vector machines by kernel adaptation. In: Proceedings of the IEEE 23rd international conference on tools with artificial intelligence. IEEE Computer Society, Washington, DC, USA, pp 591–596

  54. Walley P (1991) Statistical reasoning with imprecise probabilities. Chapman and Hall, London

    Book  MATH  Google Scholar 

  55. Wang J, Lu H, Plataniotis K, Lu J (2009) Gaussian kernel optimization for pattern classification. Pattern Recogn 42(7):1237–1247

    Article  MATH  Google Scholar 

  56. Wang L, Xue P, Chan KL (2004) Incorporating prior knowledge into SVM for image retrieval. In: Proceedings of the 17th international conference on pattern recognition (ICPR’04), vol 2. IEEE Computer Society, Los Alamitos, CA, USA, pp 981–984

  57. Wu X, Kumar V, Ross Q, Ghosh J, Yang Q, Motoda H, McLachlan G, Ng A, Liu B, Yu P, Zhou ZH, Steinbach M, Hand D, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37

    Article  Google Scholar 

  58. Wu X, Srihari R (2004) Incorporating prior knowledge with weighted margin support vector machines. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York, NY, USA, pp 326–333

  59. Xing Z, Pei J, Yu P, Wang K (2011) Extracting interpretable features for early classification on time series. In: Proceedings of the eleventh SIAM international conference on data mining. Omnipress, pp 247–258

  60. Yang X, Song Q, Wang Y (2007) A weighted support vector machine for data classification. Int J Pattern Recog Artif Intell 21(5):961–976

    Article  Google Scholar 

  61. Zadrozny B, Langford J, Abe N (2003) Cost-sensitive learning by cost proportionate example weighting. In: Proceedings of the third IEEE international conference on data mining. Melbourne, FL, pp 435–442

  62. Zhao Z, Zhong P, Zhao Y (2011) Learning svm with weighted maximum margin criterion for classification of imbalanced data. Math Comput Model 54(3–4):1093–1099

    Article  MATH  Google Scholar 

  63. Xu H, Caramanis C, Mannor S (2009) Robustness and regularization of support vector machines. J Mach Learn Res 10:1485–1510

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to express our appreciation to the anonymous referees and the editor whose very valuable comments have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev V. Utkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utkin, L.V., Zhuk, Y.A. Imprecise prior knowledge incorporating into one-class classification. Knowl Inf Syst 41, 53–76 (2014). https://doi.org/10.1007/s10115-013-0661-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-013-0661-7

Keywords

Navigation