Skip to main content
Log in

Maritime abnormality detection using Gaussian processes

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Novelty, or abnormality, detection aims to identify patterns within data streams that do not conform to expected behaviour. This paper introduces novelty detection techniques using a combination of Gaussian processes, extreme value theory and divergence measurement to identify anomalous behaviour in both streaming and batch data. The approach is tested on both synthetic and real data, showing itself to be effective in our primary application of maritime vessel track analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Basseville M (1989) Distance measures for signal processing and pattern recognition. Signal Process 18(4):349–369

    Article  MathSciNet  Google Scholar 

  2. Budzynski R, Kondracki W, Krolak A (2008) Applications of distance between probability distributions to gravitational wave data analysis. Class Quantum Gravity 25(1):015005

    Article  MathSciNet  Google Scholar 

  3. Coles S (2001) An introduction to statistical modelling of extreme values. Springer, UK

    Book  Google Scholar 

  4. George J, Crassidis J, Singh T et al (2011) Anomaly detection using content-aided target tracking. J Adv Inf Fusion 6(1):39–56

    Google Scholar 

  5. Grubbs F (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21

    Article  Google Scholar 

  6. Hartikainen J, Särkkä S (2010) Kalman filtering and smoothing solutions to temporal Gaussian process regression models. In: Proceedings of IEEE international workshop on machine learning for signal processing (MLSP). Kittilä, Finland, pp 379–384

  7. Lane R, Nevell D, Hayward S et al (2010) Maritime anomaly detection and threat assessment. In: Proceedings of 13th conference on information fusion (FUSION). Edinburgh, UK, pp 1–8

  8. Laws K, Vesecky J and Paduan J (2011) Monitoring coastal vessels for environmental applications: application of Kalman filtering. In: Proceedings of 10th current, waves and turbulence measurements (CWTM). Monterey, CA, USA, pp 39–46

  9. Laxhammar R (2008) Anomaly detection for sea surveillance. In: Proceedings of 11th international conference on information fusion. Cologne, Germany, pp 1–8

  10. Laxhammar R, Falkman G, Sviestins E (2009) Anomaly detection in sea traffic—a comparison of the Gaussian mixture model and the Kernel density estimator. In: Proceedings of 12th international conference on information fusion. Seattle, WA, USA, pp 756–763

  11. Lee H, Roberts S (2008) On-line novelty detection using the Kalman filter and extreme value theory. In: Proceedings of 19th international conference on pattern recognition. Tampa, Florida, USA, pp 1–4

  12. Li X, Han J, Kim S (2006) Motion-alert: automatic anomaly detection in massive moving objects. In: Proceedings of IEEE intelligence and security informatics. San Diego, CA, USA, pp 166–177

  13. Markou M, Singh S (2003) Novelty detection: a review—Part 1: statistical approaches. Signal Process 83(12):2481–2497

    Article  MATH  Google Scholar 

  14. Mascaro S, Nicholson A, Korb K (2011) Anomaly detection in vessel tracks using Bayesian networks. In: Proceedings of eighth UAI Bayesian modeling applications workshop. Barcelona, Spain, pp 99–107

  15. Miller S, Miller W, McWhorter P (1992) Extremal dynamics: a unifying physical explanation of fractals, 1/f noise, and activated processes. J Appl Phys 73(6):2617–2628

    Article  Google Scholar 

  16. Osborne M (2010) Bayesian Gaussian processes for sequential prediction, optimisation and quadrature. University of Oxford, UK, pp 49–54, pp 79–90

  17. Pinheiro J, Bates D (1996) Unconstrained parameterizations for variance-covariance matrices. Stat Comput 6(3):289–296

    Article  Google Scholar 

  18. Porter M, Onnela J, Mucha P (2009) Communities in networks. Notices Am Math Soc 56(9):1082–1097

    MATH  MathSciNet  Google Scholar 

  19. Psorakis I, Roberts S, Ebden M et al (2011) Overlapping community detection using Bayesian non-negative matrix factorization. Phys Rev E 83(6):066114

    Article  Google Scholar 

  20. Psorakis I, Rezek I, Roberts S et al (2012) Inferring social network structure in ecological systems from spatio-temporal data streams. J R Soc Interface 9(76):3055–3066

    Article  Google Scholar 

  21. Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, USA

    MATH  Google Scholar 

  22. Reece S, Roberts S (2010) The near constant acceleration Gaussian process kernel for tracking. IEEE Signal Process Lett 17(8):707–710

    Article  Google Scholar 

  23. Reece S, Mann R, Rezek I et al (2011) Gaussian process segmentation of co-moving animals. In: Proceedings of AIP conference proceedings. Chamonix, France, pp 430–437

  24. Rhodes B, Bomberger N, Seibert M et al (2005) Maritime situation monitoring and awareness using learning mechanisms. In: Proceedings of military communications conference. Atlantic City, NJ, USA, pp 646–652

  25. Roberts S (2000) Extreme value statistics for novelty detection in biomedical signal processing. In: Proceedings of first international conference on advances in medical signal and information processing. University of Bristol, UK, pp 166–172

  26. Simpson E, Roberts S, Psorakis I et al (2013) Dynamic Bayesian combination of multiple imperfect classifiers. In: Guy T, Karny M, Wolpert D (eds) Decision making and imperfection. Springer, New York, pp 1–35

    Chapter  Google Scholar 

  27. Will J, Peel L, Claxton C (2011) Fast maritime anomaly detection using Kd-Tree Gaussian processes. In: Proceedings of IMA maths in defence conference. Swindon, UK

Download references

Acknowledgments

This work was funded by ISSG, Babcock Marine and Technology Division, Devonport Royal Dockyard. Ioannis Psorakis is funded from a grant via Microsoft Research, for which we are most grateful. This work was further supported by EPSRC project EP/I011587/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Smith.

Appendix

Appendix

Derivation of the Hellinger metric, Eq. 15.

The squared Hellinger distance is a measure of similarity between two probability distributions and is defined as

$$\begin{aligned} h^{2} \left( f \left( \varvec{x}\right) ,g \left( \varvec{x}\right) \right) =\frac{1}{2}\int \left( \sqrt{f \left( \varvec{x}\right) }-\sqrt{g \left( \varvec{x}\right) } \right) ^{2} \hbox {d}\varvec{x}, \end{aligned}$$
(16)

where \(f\left( \varvec{x}\right) \) and \(g\left( \varvec{x}\right) \) denote probability distributions. Equation 16 can alternatively be expressed as

$$\begin{aligned} h^{2}\left( f\left( \varvec{x}\right) ,g\left( \varvec{x}\right) \right) =1-\int \left( \sqrt{f \left( \varvec{x}\right) }\sqrt{g \left( \varvec{x}\right) } \right) \hbox {d}\varvec{x}. \end{aligned}$$

In the instance distributions \(f\left( \varvec{x}\right) \) and \(g\left( \varvec{x}\right) \) are multivariate Gaussian, the Hellinger distance would take the form

$$\begin{aligned}&h^{2} \left( f \left( \varvec{x};\varvec{\mu _{f}},\varvec{\Sigma _{f}}\right) ,g \left( \varvec{x};\varvec{\mu _{g}},\varvec{\Sigma _{g}}\right) \right) \\&\quad =1-\frac{1}{ \left( 2\pi \right) ^{\frac{n}{2}}\sqrt{|\varvec{\Sigma _{f}}|}}\frac{1}{ \left( 2\pi \right) ^{\frac{n}{2} }\sqrt{|\varvec{\Sigma _{g}}|}}\\&\qquad \times \int \sqrt{\exp \left( -\frac{1}{2} \left( \varvec{x}-\varvec{\mu _{f}}\right) ^{\top } \varvec{\Sigma _{f}}^{-1} \left( \varvec{x}-\varvec{\mu _{f}}\right) \right) }\\&\qquad \times \sqrt{\exp \left( \frac{1}{2} \left( \varvec{x}-\varvec{\mu _{g}}\right) ^{\top } \varvec{\Sigma _{g}}^{-1} \left( \varvec{x}-\varvec{\mu _{g}}\right) \right) }\hbox {d}\varvec{x}, \end{aligned}$$

The terms inside the exponents can also be combined and expressed in quadratic form, \((\varvec{x}-\varvec{\mu }^{*})^{\top }\varvec{C}^{-1}(\varvec{x}-\varvec{\mu }^{*})+\varvec{B}\), by making the following associations

$$\begin{aligned} \varvec{\mu }^{*}&= \left( \varvec{\Sigma _{f}}^{-1}+\varvec{\Sigma _{g}}^{-1}\right) ^{-1} \left( \varvec{\Sigma _{f}}^{-1}\varvec{\mu _{f}}+\varvec{\Sigma _{g}}^{-1} \varvec{\mu _{g}}\right) ,\\ \varvec{C}^{-1}&= \frac{1}{2}\varvec{\Sigma _{f}}^{-1}+\frac{1}{2}\varvec{\Sigma _{g}}^{-1},\\ \varvec{B}&= \left( \varvec{\mu _{f}}-\varvec{\mu _{g}}\right) ^{\top } \left( \varvec{\Sigma _{g}}+\varvec{\Sigma _{f}}\right) ^{-1} \frac{1}{2} \left( \varvec{\mu _{f}}-\varvec{\mu _{g}}\right) .\\ \end{aligned}$$

The integral can now be solved and the expression simplified

$$\begin{aligned}&h^{2} \left( f \left( \varvec{x}\right) ,g \left( \varvec{x}\right) \right) \\&\quad =1-\frac{|\frac{1}{2}\varvec{\Sigma _{f}}^{-1}+\frac{1}{2}\varvec{\Sigma _{g}}^{-1}|^{-\frac{1}{2}}}{|\varvec{\Sigma _{f}}|^{\frac{1}{4}}|\varvec{\Sigma _{g}}|^{\frac{1}{4}}}\\&\qquad \times \exp \left( -\frac{1}{4} \left( \varvec{\mu _{f}}-\varvec{\mu _{g}}\right) ^{\top } \left( \varvec{\Sigma _{g}}+\varvec{\Sigma _{f}}\right) ^{-1} \left( \varvec{\mu _{f}}-\varvec{\mu _{g}}\right) \right) . \end{aligned}$$

Under the assumption that both distributions have the same zero mean, \(\varvec{\mu }_f=\varvec{\mu }_g=\varvec{0}\), this can be further simplified

$$\begin{aligned}&h^{2} \left( f \left( \varvec{x};\varvec{\mu _{f}}= \varvec{0},\varvec{\Sigma _{f}}\right) ,g \left( \varvec{x};\varvec{\mu _{g}}=\varvec{0}, \varvec{\Sigma _{g}}\right) \right) \\&\quad =1-\frac{|\frac{1}{2}\varvec{\Sigma _{f}}^{-1}+\frac{1}{2} \varvec{\Sigma _{g}}^{-1}|^{-\frac{1}{2}}}{|\varvec{\Sigma _{f}}|^{\frac{1}{4}}| \varvec{\Sigma _{g}}|^{\frac{1}{4}}} \end{aligned}$$

To avoid the inverse covariances in this form, the fraction can be multiplied top and bottom by \(\left( |\varvec{\Sigma _{f}}||\varvec{\Sigma _{g}}|\right) ^{-\frac{1}{2}}\), in addition to the application of the determinant identity \(|\varvec{AB}|=|\varvec{A}||\varvec{B}|\), thus

$$\begin{aligned}&h^{2}\left( f \left( \varvec{x};\varvec{\mu _{f}}=\varvec{0},\varvec{\Sigma _{f}}\right) ,g \left( \varvec{x};\varvec{\mu _{g}}=\varvec{0},\varvec{\Sigma _{g}}\right) \right) \\&\quad =1-\frac{|\frac{1}{2}\varvec{\Sigma _{f}}+\frac{1}{2}\varvec{\Sigma _{g}}|^{-\frac{1}{2}}}{|\varvec{\Sigma _{f}}|^{-\frac{1}{4}}|\varvec{\Sigma _{g}}|^{-\frac{1}{4}}}\\&\quad =1-\sqrt{2}\frac{|\varvec{\Sigma _{f}}^{\frac{1}{4}}+\varvec{\Sigma _{g}}^{\frac{1}{4}}|}{|\varvec{\Sigma _{f}}+\varvec{\Sigma _{g}}|^{\frac{1}{2}}}\\ \end{aligned}$$

It can be noted, as a means of verifying the result, that by setting \(\varvec{\Sigma }=\sigma ^{2}\), the form is consistent with the Hellinger distance between two univariate Gaussian distributions when \(\mu _{f}=\mu _{g}=0\) namely

$$\begin{aligned} 1-\sqrt{\frac{2\sigma _{f}\sigma _{g}}{\sigma _{f}^{2}+\sigma _{g}^{2}}} \exp \left( -\frac{ \left( \mu _{f}-\mu _{g}\right) ^{2} }{4 \left( \sigma _{f}^{2}+\sigma _{g}^{2}\right) } \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M., Reece, S., Roberts, S. et al. Maritime abnormality detection using Gaussian processes. Knowl Inf Syst 38, 717–741 (2014). https://doi.org/10.1007/s10115-013-0685-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-013-0685-z

Keywords

Navigation