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Abstract In this paper, we propose a new type of queries to retrieve the top-
k most influential locations from a candidate set C given sets of customers
M and existing facilities F . The influence models the popularity of a facility.
Such queries have wide applications in decision support systems. A naive so-
lution sequentially scans (SS) all data sets, which is expensive and hence we
investigate two branch-and-bound algorithms for the query, namely Estimate
Expanding Pruning (EEP) and Bounding Influence Pruning (BIP). Both algo-
rithms follow the best first traverse. On determining the traversal order, while
EEP leverages distance metrics between nodes, BIP relies on half plane prun-
ing which avoids the repetitive estimations in EEP. As our experiments shown,
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BIP is much faster than SS which outperforms EEP, while the worst-case com-
plexity of EEP and BIP is worse than that of SS. To improve the efficiency, we
further propose a Nearest Facility Circle Join (NFCJ) algorithm. NFCJ builds
an influence R-tree on the influence relationship between customers and ex-
isting facilities, and joins the candidate R-tree with the influence R-tree to
obtain the results. We compare all algorithms and conclude that NFCJ is the
best solution, which outperforms SS, EEP, and BIP by orders of magnitude.

Keywords Reverse Nearest Neighbor; R-tree; Efficiency; Location Selection

1 Introduction

A common problem for many business and organizations is to find a suitable
place to establish a new facility. For instance, McDonald’s may want to intro-
duce a new restaurant into a booming community to compete with other fast
food restaurants. A wireless carrier may want to construct a new base station
or hotspot for wireless Internet access to a densely populated area to improve
its service quality. A scientific organization may want to select a location for
a new environmental sensor to capture particular mobile wildlife as the mate-
rials for research. A city planner may want to find where to introduce a new
public infrastructure such as a drop-in clinic to a flourishing suburb. In most
cases, the selection of locations must be made from a given candidate set, e.g.,
rental commercial properties from a real estate company. This candidate set
may be large in some settings, e.g., trulia.com lists more than 43,100 locations
for sale in Los Angele, CA, USA [26] and Soufun.com lists more than 339,330
locations for rental in Beijing, China [22]. For business directors, one of the
most important indicators used to evaluate a candidate location is the number
of customers the newly added facility could attract. In this paper, we inves-
tigate the problem of finding the top-k candidate locations that attract the
largest number of customers, where k is a user define integer. The top-k lo-
cations are of interest because in real applications there are additional factors
such as safety and popularity of a brand in a region (for example, fast food is
relatively unpopular in suburbs with most European habitants). These may
be important factors that will affect the decision but are difficult to quantify.
Therefore, top-k results returned by the query can serve as the primary can-
didates based on which further consideration can be made. In this study, we
assume a customer is attracted by his or her nearest facility and the business
has the knowledge of customer and existing facility distributions from surveys
or past sales records.

An example corresponding to the above problem is shown in Fig. 1, where
circles and squares represent customers and facilities, respectively. To distin-
guish existing facility locations and candidate locations, we use white squares
to denote the existing facilities and black squares to denote the candidate facil-
ities. In the figure, the candidate locations are labeled as c1, c2, c3, c4, c5, c6. A
customer is connected to a candidate location with a dashed line if and only if
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Fig. 1: c1, c2, c3, c4, c5, c6 are of influence values 4, 6, 3, 5, 2, 1, respectively.

the customer will be influenced by a new facility established at that candidate
location. For each candidate location ci, the number of customers it attracts
can be computed by counting the number of customers connected to it with a
dashed line. In this example, the numbers corresponding to c1, c2, c3, c4, c5, c6
are 4, 6, 3, 5, 2, 1. If a user inputs 3 as the parameter k, then the query will
return the answer set c2, c4, c1.

Please note the number of customers an existing facility location can attract
may be reduced by a newly added facility. This follows the idea of competition
as McDonald’s may want to attract customers from other restaurants such as
Burger King. Another example is that a wireless carrier adds a new base station
to take load off existing base stations since existing ones are out of capacity or
ill-balanced. After adding the new facility, this situation can be improved. In
an extreme case, a company may even consider replacing the existing facility
with the new facility due to the maintenance cost of keeping the existing
facility. In all scenarios, our method can easily address the requirements.

The proposed facility location selection query aims at maximizing the in-
fluence of the new facilities, where the influence is defined as the number of
customers who perceive the new facility as their nearest facility. Therefore, we
formulate the above described problem as the top-k most influential location
selection query. We also study the solutions for answering this query in this
paper and evaluate their performance with experiments and analysis.

Our main contributions are as follows.

– We formulate a new type of location selection query, namely the top-k most
influential location selection query.

– We attempt the popular approach, branch-and-bound to this location selec-
tion query and design two algorithms in this paradigm, namely Estimate
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Expanding Pruning (EEP) and Bounding Influence Pruning (BIP) algo-
rithms. Both algorithms follow a best first access order to traverse R-trees
and gradually prune the search space. While EEP leverages distance metric
between nodes to prune unnecessary computations, BIP relies on half plane
pruning, which further avoids repetitive estimation on nodes. According to
the experimental results, in terms of CPU time, while BIP outperforms
the sequential scan several times, EEP is constantly outperformed by the
sequential scan. Additionally, the worst-case complexity of both branch-
and-bound algorithms is even worse than that of the sequential scan.

– We propose a new algorithm named Nearest Facility Circle Join (NFCJ).
It first computes the influence relationship between customers and existing
facilities, indexes the relationship in an influence R-tree, and then joins the
candidate R-tree with this influence R-tree to obtain results.

– We theoretically analyze all algorithms and conduct an extensive experi-
mental study using data sets with various settings and distributions. The
results confirm our complexity analysis and verify that NFCJ is the best
solution to the top-k most influential location selection query, which out-
performs sequential scan, EEP and BIP by orders of magnitude in terms
of both CPU time and the number of I/O operations.

This article is an extension of our earlier poster paper [15]. In the previous
poster paper, we introduced the influential location selection query and present
the basic ideas of EEP and BIP algorithms. Here in this article, we make the
following additional contributions. First, we fully study EEP and BIP with
detailed description and analysis. Second, we propose a new algorithm which
pre-computes the relationships between customers and existing facilities and
indexes them with an R-tree. This R-tree is later joined with the candidate
R-tree to return the query result. With analysis of detailed steps, we show that
it achieves best O(n log n) and worst O(n2) time complexity, beating all other
known algorithms for the proposed query. Third, we conduct a comprehensive
experimental study to compare all algorithms for the query in terms of both
CPU processing time and I/O performance. The results show (i) branch-and-
bound algorithm BIP is effective in lowering CPU processing cost when data
sets are very large, and (ii) NFCJ significantly outperforms EEP and BIP in
terms of both CPU time and the number of I/O operations, which is the best
solution for the top-k most influential location selection query.

The remainder of the paper is organized as follows. Section 2 defines the
related concepts and top-k most influential location selection query. Section
3 reviews previous studies on related topics. Section 4 [4]describes sequential
scan, EEP, BIP, and NFCJ algorithms with the analysis on their complexity.
Section 5 presents the experimental results and Section 6 concludes the paper.
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Table 1: Frequently used symbols

Symbol Explanation

C,F,M Sets of candidate, existing facility and customer locations, respectively

c, f,m A candidate location, an existing facility and a customer, respectively

p A point in the data space

tC , tF , tM R-trees on C, F and M , respectively

nC , nF , nM A node in tC , tF and tM , respectively

rC , rF , rM The MBRs of nodes nC , nF , and nM , respectively

If , Ic The influence of an existing facility and a candidate facility, respectively

IuC The upper bound of influence for all c indexed by a node nC

IlC The lower bound of influence for all c indexed by a node nC

Iδ The kth greatest influence value of candidates seen so far

LC , LF , LM The priority list of nodes nC , nF , and nM , respectively

nC .SM , nF .SM The unpruned customers of nodes nC and nF , respectively

nM .SC , nM .SF The unpruned candidates and existing facilities of node nM , respectively

nC .R The influence region of a node nC

nC .SF The relevant existing facilities set of a node nC

nC .S+
F The outer relevant existing facilities set of a node nC

nC .S−
F The inner relevant existing facilities set of a node nC

2 Preliminary Concepts and Problem Formulation

In this section, we first introduce the related concepts and definition of location
influence, based on which we then propose a novel query to select the optimal
location for a new facility.

2.1 Location Influence

We present formal definition of reverse nearest neighbor and location influence
first. Table 1 lists frequently used symbols in the paper.

Definition 1 (Reverse Nearest Neighbors) The customers who perceive
a facility as their nearest facility are reverse nearest neighbors of this facility.
Let d(f,m) denote the Euclidean distance between f andm,min(m,F ) denote
the minimum distance between m and any f ∈ F , f.RNN(F,M) denote the
reverse nearest neighbors of f ∈ F , then f.RNN(F,M) = {m ∈ M |d(m, f) =
min(m,F )}.

Note this definition presents the bichromatic version of the reverse nearest
neighbors problem, where objects are divided into two categories. The reverse
nearest neighbors of an object in such scenario always come from the opposite
category [16].
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Fig. 2: If1 = 4; If2 = 2, If3 = 5

When evaluating the popularity of a facility, counting the number of its
reverse nearest neighbors would be a sensible indicator because in many sce-
narios such as marketing and city planning, specific individuals are of less
interest than the overall number of customers. We have:

Definition 2 (Location Influence) The influence of a location is the num-
ber of its reverse nearest neighbors. Let If be the influence of facility f , then
If (F,M) = |f.RNN(F,M)|.

Fig. 2 demonstrates an example of facility influence, where circles denote
customers and squares denote facilities. In the figure, the dash lines are per-
pendicular bisectors between each pair of facilities. Easily, If1 = 4, If2 = 2,
If3 = 5.

Here we assume each customer location contributes the same 1 unit influ-
ence. Yet, our problem setting can be generalized to take variable units into
consideration. For the sake of brevity, we follow the 1 unit setting for the rest
of this paper.

Instead of focusing on the specific reverse nearest neighbors, Definition 2
can be used as the criteria for ranking facilities based on their attractiveness
for various applications. The influence based location problem has wide appli-
cations in fields like commercial marketing and community planning. Selecting
an optimum location is of great interest when different locations offer diverse
potential profits. In addition, the influence location selection problem gener-
ally faces massive data sets in the real world where there can be numerous
facilities and customers. This calls for an efficient solution to make the query
viable for integration into decision making systems.

2.2 Influence Maximization for A New Facility from Candidate Set

When selecting the location for a new facility, we aim to find the one with
highest potential to be popular among all existing facilities. Using location
influence as an indicator, it is possible to select the optimum location for a
to-be built facility. Specifically, we can evaluate the potential popularity of a
location by adding a new facility on it, and then computing the influence of
that new facility. The influence of the new facility turns out to be an indicator
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Fig. 3: C = {c1, c2, c3}; Ic1 = 2, Ic2 = 4, Ic3 = 3; Top-2 influential candidates
are c2, c3
of desirability of the location. Obviously, the more customers the new facility
can influence, the better the location. This leads to the following definitions:

Definition 3 (Potential Influence) Let C denote a candidate set of avail-
able locations for a to-be built facility. The potential influence I ′c of a candidate
location c ∈ C is the influence it earns when it is added into the existing facility
location set, i.e. I ′c = Ic(F

⋃
{c},M).

In the remainder of the paper, when there is no ambiguity, we use If to denote
If (F,M) and Ic to denote Ic(F

⋃
{c},M) for brevity.

Definition 4 (Top-k Most Influential Locations) Given a set C of can-
didate locations for the new facility, the top-k most influential locations are k
locations in C with the largest potential influence.

If multiple candidate locations have the same potential influence value,
there might be ties when selecting the top-k candidates. To resolve this, we
arbitrarily choose some of them as the answer. For example, when more than
k candidates are of same largest potential value, we simply pick k of them as
the answer.

Fig. 3 gives an example for this potential influence. In the figure, the circles
denote customers, the white squares denote existing facilities, black squares
denote potential new facilities. As illustrated, if c1 is added into existing fa-
cilities, it can influence two customers from f1 and f3 ( customers with white
arrows pointing to c1 ); if c2 is added, it can influence four customers from
f1, f2, and f3; if c3 is added, it can influence three customers from f2 and f3
. Therefore, the potential influence of c1, c2, and c3 are 2, 4, 3, respectively.
According to definition 4, the top-2 most influential locations among C are c2
and c3.

3 Related Work

3.1 Reverse Nearest Neighbor

Korn and Muthukrishnan [16] first proposed the reverse nearest neighbor
(RNN) query and define the RNNs of an object o to be the objects whose
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respective nearest neighbor is o. In the same paper [16], Korn and Muthukr-
ishnan propose an RNN-tree based solution to the RNN query, where the
RNN-tree is an R-tree [14] variant that indexes nearest neighbor (NN) circles
of the data objects rather than the data objects themselves. Here, the NN
circle of an object is defined to be a circle that centers at o with its radius
being the distance between o and o’s nearest neighbor. Based on the NN cir-
cles, to find the RNN of an object o only requires checking which objects’ NN
circles enclose o. Applying this idea to our top-k most influential query gives
the Nearest Facility Circle (NFC) algorithm. However, the RNN-tree based
solution has two major drawbacks. One is that it requires the extra main-
tenance of an RNN-tree. The other is that it requires precomputing the NN
circles. Therefore, this solution can not handle objects with frequent updates.
To solve the first problem, Yang and Lin [33] propose to integrate the NN
circle information into an R-tree, so that the resultant R-tree can be used to
process RNN queries as well as other common types of queries, thus avoiding
the maintenance of an extra RNN-tree. To solve the second problem, Stanoi
et al. [23] propose an approximation-refinement framework to compute the
RNNs on the fly, so that no precomputation is needed. While these methods
work well for processing a single RNN query, they are not designed to compute
RNNs for a large number of objects at the same time, which is one of the key
difficulties in many facility location problems. Thus, the RNN problem can be
viewed as a sub problem of the facility location problems. Recent progress on
improving the efficiency of answering RkNN query can be found in [25], [30],
and [1]. Techniques proposed for similarity (nearest neighbor) search such as
bulk loading index construction [3] and pre-computing key function values for
similarity search [9] can also be helpful in RNN search.

3.2 Location Distance Minimization

Min-dist facility location problems aim to minimize the average distance be-
tween customers and their respective nearest facilities. Zhang et al. [34] propose
to find an optimal location c in a given region Q such that if a new facility
is built on c, the average distance between the customers and their respective
nearest facilities is minimized. Mouratidis et al. [17] study the k medoid query
and the k median query, which aim at finding a set C ′ (C ′ ⊂ C) of k locations
from a set C to minimize the average distance between locations in C ′ and
locations in C. Similar to our problem settings, given client set and existing
facility set, Qi et al. [19] propose a new min-dist location selection query which
aims to pick the best location from a candidate set to minimize the average
distance between a client and its nearest facility. Besides also introducing the
NFC algorithm to solve the problem, they propose a novel method to answer
the query without the need to construct a spatial index in advance. The perfor-
mance of this method is verified to be close to the best algorithm via extensive
experiments. All these studies are distance based optimization problems and
are different from our influence based optimization problem because they focus
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Fig. 4: Example of the MAXCOV problem

on optimizing the overall performance of all the facilities while our problem
focuses on optimizing the performance of one particular facility. Hence, their
solutions are not applicable.

3.3 Location Influence Maximization

Max-inf facility location problems aim at maximizing the influence values of
the locations, where the influence of a location c is defined by the number
of customers c attracts. Cabello et al. [5] propose a facility location problem
based on the MAXCOV optimization criterion, which is to find regions in the
data space that maximize the numbers of RNNs for the points in these regions.
Fig. 4 gives an example, where the gray region is the optimal region. Points
in this region have three RNNs, while any point outside of this region has at
most two RNNs. They introduce the concept of nearest location circle (NFC)
to solve the problem, where the NFC of a customer m is a circle centered
at m with its radius being the distance between m and m’s existing nearest
facility. To find the solution for the MAXCOV criterion based problem is
to find the regions that are enclosed by the largest number of NFCs, which
requires complex computations. The study give a theoretical analysis, but no
efficient algorithm is presented.

Xia et al. [31] propose the top-tmost influential sites problem and a branch-
and-bound algorithm to solve it. This problem finds the top-t most influential
existing sites within a given region Q. It does not consider any candidate loca-
tions for a new facility. That is to say, in their work, the influence computation
is based on all existing facilities, and the influence comparison is between all
existing facilities. In our work, the influence computation is based on the
set obtained by adding each candidate location into the existing facility set,
and the influence comparison is between all candidate locations. The only
possible way to reuse their solution is to first add each candidate into the
existing set to compute the top-t influential locations in this new set and then
rank all candidate locations by their influences to return the top-k locations.
Yet because the added candidate location is not necessarily among the top-t
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answer of its corresponding new set, the adapted solution cannot guarantee
the correct answer unless we set t to the size of the new set, i.e., |F |+1. Hence,
there is no straightforward way to adapt their solution to solve our problem.

One highly related problem is also studied in [29]. Yet the expected an-
swer for their most influential location query is a region where the new facility
being added could earn the same maximum influence values. To achieve an effi-
cient solution, they take advantage of region-to-point transformation to tighten
the search space dramatically. The proposed method is further extended in [28]
to handle similar problem in any `p−norm space of two and three dimension-
ality. However, their problem selects the optimal region while our problem
selects top-k influential locations from a candidate set. There may be no
candidate in the optimal region returned by their solutions. Therefore, their
solutions do not apply to our problem.

Another similar study is [32], where assumption that customers will only
visit their nearest facilities is relaxed such that all facilities within the dis-
tance of (1 + α)d from the customer might be visited, where d is the distance
between a customer and her nearest neighbor and α is a user input parame-
ter indicating how much further a user would like to travel for a non-nearest
facility. Furthermore, the study also gives a greedy solution for finding the k
locations for adding k new facilities simultaneously to gain the overall maxi-
mum influence. A grid-based technique is used to divide the space and return
the grid with highest potential influence as the answer. Again, since the prob-
lem setting does not consider the candidate set, applying their method to our
problem will not give direct solutions since we would need to return multiple
grids until k candidates are found enclosed in these returned grids.

Du et al. [11] propose to find a point from a continuous candidate region
that can maximize the influence value. They use `1 distance and have a strong
assumption that all the roads are either horizontal or vertical. We consider
`2 distance, which is a more general problem setting. More importantly, we
consider a candidate location set instead of a candidate region. This is
a more practical problem setting because in many real applications, we can
only choose from some candidate locations (e.g. a McDonald’s restaurant can
only be opened at a place for lease or sale, rather than anywhere in a re-
gion). Cheema et al. [7] propose to find an influence zone for a query location
c, where the customers inside this zone form exactly the reverse k nearest
neighbor (RkNN) query result of c. Here, a RkNN query retrieves all the data
points that have c as one of their k nearest neighbors. They use a method to
compute Voronoi cells on the fly for the query location to obtain its RkNNs.
The proposed method is further rigorously analyzed in [8], and shown to be
available when the dimensionality is more than two and there is data update.
Compared to this problem, our problem focuses on the number of RNNs
of the candidate locations instead of specific locations of the RNNs. Re-
cently, a similar influential location selection problem with capacity limit is
studied [24]. The major difference between this study and the study presented
in this paper is twofolds: first, the capacity of facility is out of consideration
in the study here, therefore the optimization goal is for the new facility only



Analysis and Evaluation of the Top-k Most Influential Location Selection Query 11

Table 2: Existing studies on location influence maximization problem and our
problem

Study Input Output Influence Definition Space Solution

[5] M Regions Number of RNNs `2 NFC

[31] M , F Top-k f ∈ F Number of RNNs `2 Branch-and-bound

[29,28] M , F Regions for Number of RNNs `p Region-to-point

a new facility transformation

[32] M , F Regions for Number of m ∈M within `2 Greedy and grid

a new facility distance of their (1 + α)NN partitioning

[7,8] M , F Index structure Number of RkNN `2 Voronoi cell

[24] M , F Regions for Number of RNN `2 NFC and

new facilities constrained by capacity heuristic pruning

[13] M , F Network segments Number of RNNs Spatial Branch-and-bound

for new facilities network

[21] M , F Top-k f ∈ F Number of RNNs Path Branch-and-bound

trajectory

[36] probabilistic M , F Top-k f ∈ F Expectation of RNNs `2 Branch-and-bound

[11] M , F , Top c ∈ C Number of RNNs `1 Branch-and-bound

C as one region

[12] M , Q, d Top f 6∈ Q Number of m ∈M `2 Branch-and-bound

within distance of d

This paper C, F , M Top-k c ∈ C Number of RNNs `2 Branch-and-bound, NFCJ

instead of for all facilities to achieve maximum influence; only facilities in the
candidate set is considered here, while the study in [24] attempts to find all lo-
cations in the data space that would achieve the optimization. This difference
makes the solution there inapplicable to our problem.

While most studies deal with problems in either Euclidean space or `p −
norm space, the location influence maximization problem is also studied in
spatial networks. Ghaemi et al. [13] tackle the problem where both query
objects and sites reside on the spatial network. Shang et al. [21] propose to
represent the facility locations by path trajectories. This way, the most acces-
sible locations could be selected based on the number of path trajectories that
perceive the location as their nearest facilities. When data sets contain un-
certain instances, Zheng et al. [36] formulate the most influential locations as
those with highest expected ranks. To efficiently answer the query, the authors
propose several pruning rules and a divide-and-conquer paradigm to eliminate
search space in terms of locations to be computed and the number of possi-
ble worlds needed to be checked. Clearly, none of these studies consider an
additional candidate set for the to-be added facility, making their solutions
inapplicable to our problem.

Unlike the above problems, which define the influence values based on the
cardinalities of RNN sets, Gao et al. [12] propose to find the optimal location
f outside a given region Q based on the number of customers in Q whose
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distances to f is within a given threshold d. We consider neither the specific
region Q nor the given threshold d in our study, which makes their solution
inapplicable to our problem.

To summarize, Table 2 lists existing studies and our study presented in this
paper based on their inputs, outputs, assumptions on formulation the problem
and the proposed solutions.

4 Solutions

In this section, we comprehensively study four solutions for top-k most influ-
ential location selection query. To begin with, we follow the definition of the
problem and present a rather naive solution, which is based on performing a
sequential scan (SS) on all data sets. Although this solution returns correct
answer, its efficiency is unsatisfactory since it accesses the data sets intensively
and performs repetitive computations. We further investigate two R-tree based
branch-and-bound solutions. The R-tree is a widely used index structure de-
signed specifically for spatial data[14]. Each spatial object is associated with
a Minimum Bounding Rectangle (MBR). Multiple MBRs are then grouped as
nodes in upper levels of the tree, which are again associated with bigger MBRs
bounding all MBRs in the corresponding group. To perform queries on an R-
tree, typically we traverse the tree using the MBR corresponding to a node as
the indicator to decide whether its children of that node should be accessed.
Both branch-and-bound methods index all three data sets with R-trees or its
variant, and rely on estimating the influence bounds for candidate locations to
tighten the search space. One of them, named Estimation Expanding Pruning
(EEP), uses distance metrics between MBRs to gradually refine the estima-
tion during traversing all three trees. The other algorithm, named Bounding
Influence Pruning (BIP), leverages Voronoi-cell based half plane pruning prop-
erties reduce the search space. Both EEP and BIP are of complexity O(n log n)
in the best case, which is better than the O(n2) complexity of SS. Yet, the
worst case complexities of EEP and BIP are O(n4) and O(n3), respectively,
which are far from competitive. To overcome this, we proposed a new algo-
rithm named Nearest Facility Circle Join (NFCJ). This solution indexes the
nearest facility circle instead of the location for each customer and transforms
the most influential location selection query into join query between the influ-
ence tree and the candidate tree. NFCJ algorithm achieves O(n log n) in the
best case and O(n2) in the worst case. We concluded that NFCJ is the best
solution for the top-k most influential location selection query based on the
analysis on complexity of all algorithms.

4.1 Sequential Scan

As defined in Definition 4, the problem can be solved in a straightforward
manner following the definition. To select the k most influential locations in
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the candidate set C, we first compute the exact influence of each candidate
c ∈ C then simply return the k largest. The naive implementation of this idea is
to use sequential scan to obtain the candidate influence. For each c, we obtain
its influence value by adding it to the existing facility set F and scanning the
customer set M to find reverse nearest neighbors, namely ms which have c as
their nearest facility. This requires |C||F ||M | number of scans.

Algorithm 1: Sequential Scan (SS)

Input: k, customer set M , existing facility set F , candidate location set C
Output: TopInf(k, M, F, C)

1 foreach m ∈M do
2 m.nfd← +∞
3 foreach f ∈ F do
4 if m.nfd > d(f,m) then
5 m.nfd← d(f,m)

6 foreach c ∈ C do
7 foreach m ∈M do
8 if m.nfd > d(c,m) then
9 Ic++

10 Sort C by Ic
11 TopInf(k, M, F, C) ← First k locations in C

Notice that the set M is repetitively scanned for existing facilities f ∈ F
when computing influence for each c. These repetitive scans can be avoided by
first scanning the customer set M and the existing facility F , then storing the
distance between each c and its nearest facility for further use. Let this distance
be called nearest f acility d istance (nfd). When computing the influence for
candidate c, we can scan M again to find which m ∈ M perceives c as the
nearest facility by simply checking whether the distance between c and m is
within the nfd corresponding to m. Due to the fact this method only needs
sequential scans on data sets, we name it the Sequential Scan algorithm.

The algorithm can be summarized as Algorithm 1, where m.nfd is the
nearest facility distance of m and d(a, b) is the distance between location a
and location b. As shown in the pseudo-code, it is easy to find that the sequen-
tial scan requires |F ||M | + |C||M | distance computations, leading to a time
complexity of O(n2).

The sequential scan is far from efficient of solving top-k most influential
location problems due to the fact it relies on intensive scans on all of three
data sets and computes unnecessary influence for weakly influential candidates,
which are of less interest in the problem. Also, repetitive scans on set M is
undesirable since in reality, this set tends to be the largest among all sets. In
following sections, we come up with two algorithms relying on heuristics to
prune search space and improve efficiency in terms of CPU time.
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4.2 Estimation Expanding Pruning

To prepare the pruning of the search space, we index sets C, F with R-trees
and M with an aggregate R-tree for more efficient access and heuristic oper-
ations. Let tC , tF , tM denote these R-trees. Recalling that our problem asks
for top-k most influential locations, it is desirable to estimate the influence for
candidates before computing their exact influence and to use this information
to eliminate unpromising candidates at an early stage. This way, we can avoid
exhaustive computations by taking advantage of influence value distribution
among candidates.

In this section, we propose a distance based technique to help us estimate
the influence of candidate locations. The distances between customers and
their nearest existing facilities as well as the possible number of customers
that could be influenced by the candidate facility are estimated. With these
estimations, the solution traverses tC in a best first order determined by im-
portance of that node, which depends on both estimated influences and the
number of candidates the node’s Minimum Bounding Rectangle (MBR) en-
closes, to quickly find the top-k candidates.

When an internal node of tC is accessed, each of its child nodes is evaluated
for its importance. Since this operation naturally expands the search space, we
call it the expanding operation on an index tree. tF and tM are also expanded
so that the estimations on distances and influences can be gradually refined,
which brings more effective pruning in return. As estimation and expanding
operations play the major role in the solution, it is named the Estimation
Expanding Pruning (EEP) algorithm.

Trees tC , tF , tM are traversed in a best first order by maintaining prior-
ity lists LC , LF , and LM , which contain entries corresponding to the to-be
accessed nodes. These entries also record the importance values for the nodes
and some influence relation information presented by related entries in other
lists. Initially, only the roots of trees are stored in the corresponding lists.
As the traversal proceeds, lists are accessed in LM , LF , LC order, most im-
portant entries in lists are expanded and entries corresponding to their child
nodes are re-inserted into the lists. The repetitive accesses terminate when the
top-k candidates have been found. Specifically, we maintain a sorted list for
all computed influence values in descending order. Once all upper bound IuC
of influences for nodes in the tree are smaller than the kth influence value in
that list, no more candidate location remaining in the tree could serve as the
query answer since none of them could have an influenced value greater than
the kth computed one. Hence, the algorithm could terminate at an early stage.
Algorithm 2 shows the high level algorithm of EEP.

In lines 4 to 6 of Algorithm 2, the entries with greatest importance value
are selected, the corresponding nodes are expanded, and the importance values
and influence relation information of their child nodes are computed so that
promising nodes are re-inserted into the lists as entries while unpromising
nodes are discarded directly. Details for this procedure is given in Section
4.2.3. Before taking a more detailed look, we will first give the definitions on
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Algorithm 2: Estimation Expanding Pruning (EEP)

Input: Root nodes rootM , rootF and rootC of the three trees
Output: TopInf(k, M, F, C)

1 Insert rootM , rootF and rootC into LM , LF and LC respectively
2 Initialize the influence relation information for the nodes in the three lists

3 while ∀nC ∈ LC , the kth largest computed Ic < IuC do
4 ProcessEntry( LM )
5 ProcessEntry( LF )
6 ProcessEntry( LC )

7 return TopInf(k, M, F, C)

hints used in the procedure, which are stored in the entry with corresponding
node. Specifically, influence relation information is introduced in Section 4.2.1
and importance values of nodes are defined in Section 4.2.2. The run-time
complexity of EEP is given in Section 4.2.4.

4.2.1 Influence relation information of nodes

The influence relation information of a node n ∈ t contains sets of nodes from
trees other than t which either potentially influence n if n represents customers
or potentially influenced by n if n represents facilities. These sets are named
influence relation sets. In addition, some distances between node n and nodes
in influence relation sets are also stored for efficient access and computation.
This information together helps in efficiently determining the importance of a
node, as described in Section 4.2.2, as well as pruning the search space when
processing entries, as elaborated in Section 4.2.3.

Specifically, for nC , in order to estimate the influence for candidates en-
closed in its rC , a set named nC .SM is maintained as the set of nodes nM

which might be influenced by any c enclosed by rC . For nF , similar to that
for nC , a set nF .SM is maintained for estimating the influence of facility loca-
tion represented by nF . For nM , two sets nM .SF and nM .SC are maintained.
Set nM .SF contains nF such that facility f enclosed by rF may influence any
customer m enclosed by rM . Similarly, set nM .SC contains nodes nC such
that candidate facility c enclosed by rC may influence any customer m en-
closed by rM . The method to determine these sets are elaborated in the later
part of this section. Fig. 5 shows an example, where LC = {nC1, nC2, nC3},
LF = {nF1, nF2, nF3}, LM = {nM1, nM2, nM3}. As demonstrated in the fig-
ure, nC1.SM = {nM1, nM2}, nC2.SM = {nM1}, nC3.SM = {nM3}; nF1.SM =
{nM1, nM2}, nF2.SM = {nM3}, nF3.SM = {nM3}; nM1.SC = {nC1, nC2},
nM1.SF = {nF1}, nM2.SC = {nC1}, nM2.SF = {nF1}, nM3.SC = {nC3},
nM3.SF = {nF2, nF3}.

In order to compute the influence relation sets for a given node efficiently,
we introduce three distance metrics between nodes. Given two nodes, which are
represented by their MBRs r1 and r2, theMinDist(r1, r2), and theMaxDist(r1, r2)
are respectively the minimum distance and the maximum distance between
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Fig. 5: An example for influence relation sets on list LC , LF , LM

any pair of points, one enclosed by r1 and the other in r2. The distance metric
MinExistDistr2(r1), which is introduced in [31], is defined as the minimum
upper bound of the distance for a point in r1 to its nearest point in r2. In
other words, it is possible to find the nearest point in r2 for any point in
r1 within distance MinExistDistr2(r1). The influence relation sets nC .SM ,
nF .SM , nM .SC , and nM .SF can be determined with the following two theo-
rems,

Theorem 1 Given nC ∈ LC , if ∃nF ∈ {nF |nM ∈ nC .SM , nF ∈ nM .SF },

MinDist(rM , rC) ≥ MinExistDistrF (rM ),

then for m enclosed by rM , m is not influenced by any c enclosed by rC .

Proof We prove by contradiction. Suppose there is an m enclosed by rM who
is influenced by a specific c enclosed by rC , then according to Definition 2,
d(c,m) < MinExistDistrF (rM ); but since d(c,m) ≥ MinDist(rM , rC) by
the definition of MinDist, this contracts with
MinDist(rM , rC) ≥ MinExistDistrF (rM ). ut

Theorem 2 Given nC ∈ LC , if ∀nF ∈ {nF |nM ∈ nC .SM , nF ∈ nM .SF },

MaxDist(rM , rC) < MinDist(rM , rF ),

then for m enclosed by rM , for c enclosed by rC , m is influenced by c.

Proof Since MaxDist(rM , rC) < MinDist(rM , rF ), for any m, c, f enclosed
by nM , nC , and nF , respectively, d(m, c) < d(m, f). According to Definition
2, f enclosed by nF cannot influence m enclosed by nM due to the existence
of nC . Also, since nM .SF contains all nF s those could influence nM with the
absence of nC , m enclosed by nM can only be influenced by some c enclosed
by nC when c is added. ut
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Theorem 1 states that if node nC is so far away from node nM that there
are other nF s much nearer to nM , then customerms represented by nM are not
influenced by any candidate location c represented by nC due to the existence
of nF . To complete this intuition, Theorem 2 states that if node nC is so close
to node nM that no other nF s can be closer, then customers represented by
nM shall be influenced by some candidate location c in nC .

While Theorems 1 and 2 help determine the influence relations between
node pairs, we need to compute and store further distance thresholds for node
nM ∈ LM to improve efficiency in determining influence relation sets for nodes
in lists. Specifically, one of these thresholds, denoted as nM .dlow, stores the
lower bound for the distance between rM and its nearest rF , while the other,
denoted as nM .dupp, stores the upper bound for the distance between rM and
its nearest rF . Formally, we have

nM .dlow = min({MinDist(rM , rF )|∀nF ∈ nM .SF })

and

nM .dupp = min({MinExistDistrF (rM )|∀nF ∈ nM .SF }).

With the theorems and stored distances introduced above, three rules are
available for pruning and determining the influence relation set for child nodes
nM ′ of a given node nM . The rules are as follows:

1. Given nC , if ∃nM ∈ nC .SM , nM .dlow > MaxDist(rC , rM ), then according
to Theorem 2, ∀m enclosed by rM and ∀c enclosed by rC , m is influenced
by c. Since we can ensure this customer in rM will be influenced, node nM

should be removed from nC .SM and nC should be removed from nM .SC

as well. In the meantime, for c enclosed by rC , I
l
C should be increased by

|OM |.
2. Given nC , if ∃nM ∈ nC .SM ,MinDist(rM , rC) ≥ nM .dupp, according to

Theorem 1, ∀m enclosed by rM and ∀c enclosed by rC , m is not influenced
by rC . Hence, nM and nC should be removed from nC .SM and nM .SC ,
respectively.

3. Similar to rule 2, given nF , if ∃nM ∈ nF .SM ,MinDist(rM , rF ) ≥ nM .dupp,
then ∀m enclosed by rM and ∀f enclosed by rF , m is not influenced by f .
Thus, nM and nF should be removed from nF .SM and nM .SF , respectively.

Fig. 6 shows an example of these pruning rules on influence relation sets. In
this example, nM .dupp = MinExistDist(rM , rF2), nM .dlow = MinDist(rM , rF1).
According to rule 2, nC2 is not in nM .SC since MinDist(rC2 , rM ) ≥ nM .dupp;
according to rule 3, nF1 is not in nM .SF since MinDist(rF1 , rM ) ≥ nM .dupp;
according to rule 1, any c enclosed by rC1 should influence all m enclosed by
rM , since MaxDist(rM , rC1) < nM .dlow.

Intuitively, the influence relation sets are initialized as the roots of corre-
sponding trees, namely, nrootC .SM = {rootM}, nrootF .SM = {rootM}, nrootM .SC =
{rootF }, and nrootM .SF = {rootF }. As mentioned in algorithm 2, roots are
stored in the lists with the influence relation information as entries. Each time
an entry is processed, its child nodes are re-inserted into the corresponding lists
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Fig. 6: nF1 can be pruned from nM .SF , nC2 can be pruned from nM .SC

with their influence relation information computed. Before giving the details
on how the entries are processed in Section 4.2.3, we will first introduce the
criteria for determining the order of processing the entries in the next section.

4.2.2 Importance of nodes

We use the importance values of nodes to determine the access order for their
corresponding entries in the lists. In EEP, different trees have different uses in
pruning the search space: the candidate R-tree is traversed for the goal of com-
puting influence value for candidates while the existing facility R-tree and the
customer R-tree are traversed for the goal to prune unnecessary computations
during computing the influence. Therefore, we have defined “importance” dif-
ferently for different trees to guide the tree traversals towards different goals.
To simplify the narration, we denote area(n) and |n| as the area of MBR and
the number of locations enclosed in the MBR corresponding to node n; |n.S|
as the number of nodes in n’s influence relation set; n.imp is the importance
value of node n.

– nC .imp. Since only the most influential candidates are desired in our prob-
lem, we want to always access the most promising candidates first. Re-
calling from Section 4.2.1, each entry in LC holds I lC for node nC in it,
we define the importance of a candidate node as the maximum number of
customers it can influence estimated by influence relation information in
that entry, i.e. nC .imp = I lC +

∑
nM∈nC .SM

|nM |.
– nF .imp. If the corresponding MBR of a facility node has a larger area, it

may affect the estimation of the influence of more candidates. Also, a larger
influence relation set on M suggests a facility node being more relevant for
costumers. Hence, nF .imp is defined as area(nF ) · |nF .SM |.
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– nM .imp. Larger area(oM ) and larger |oM | suggest a greater possibility
for a customer node affecting the influence relation information of nodes
in other lists, therefore the customer node is more useful for pruning the
search space. With this rationale, nM .imp is defined as area(nM ) · |nM | ·
|nM .SF | · |nM .SC |.

4.2.3 Processing entries

As described in lines 4 to 6 in Algorithm 2 and the above sections, each time an
entry with the greatest importance value on a list is retrieved, its child nodes
are evaluated. If the node in the retrieved entry is a leaf node in tC , denoted
as nC , then for c in nC we compute their exact influence values by checking
I lC , nC .SM and nM .SF for all nM ∈ nC .SM . The computation is similar to the
solution given in Section 4.1, however, here sets M and F are smaller thanks to
stored influence relation information in the entry. If the node in the retrieved
entry is an internal node, then we compute the influence relation information
by inheriting it from the parent node and prune it using rules described in
Section 4.2.1. Please note we can always inherit the information instead of
computing it from scratch because the following property holds.

Property 1 For any child node nM ′ of nM , nM ′ .SF ⊂ nM .SF , and nM ′ .SC ⊂
nM .SF ; for any child node nC′ of nC , nC′ .SM ⊂ nC .SM ; for any child node
nF ′ of nF , nF ′ .SM ⊂ nF .SM .

After obtaining the influence relation information for child node n′, we
should update the stored information in other lists related to the parent n.
Again, we use the three rules based on distances between MBRs to prune
unpromising nodes in the influence relation sets. If child node n′ is still related
to other nodes in the lists, then its importance value is computed and the node
shall be re-inserted to the corresponding list. If the node retrieved is a leaf node
in tF or tM , we update its influence relation set, assign an importance value
of −1 to it and re-insert it into list LF or LM , respectively.

The algorithm terminates when there are at least k computed candidate
location cs’ influence values and all nodes remaining in LC have maximum
influence values smaller than the kth largest influence values of candidates
computed. The maximum influence values of nC in LC could be computed
as IuC = I lC + |nC .SM |. Also, when all entries on LM or LF have importance
values smaller than 0, Line 4 or Line 5 is omitted in Algorithm 2. Algorithm
3 gives the pseudo-code for the procedure in lines 4 to 6 of Algorithm 2. Note
that in line 8 whether n′ is related can be determined by checking the three
rules introduced in Section 4.2.1.

4.2.4 Complexity of EEP

The construction of the R-tree indexes incurs O(n log n) cost. With the con-
structed R-tree, the major cost of EEP lies in the processing entry procedure,
which computes the importance and influence relation information for children
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Algorithm 3: ProcessEntry(L)

Input: List L

1 Pick n with the largest n.imp from L
2 if n is an internal node then
3 Expand n
4 foreach child object n′ ∈ n do
5 Compute the influence relation information of n′

6 Update the influence relation information of nodes related to n′

7 Prune unpromising objects with updated influence relation information
8 if n′ is related then
9 Insert n′ into L

10 if n is a leaf node then
11 if n ∈ LC then
12 Iu = Il + |n.SM |
13 if Iu > kth largest Ic computed so far then
14 foreach c ∈ n do
15 Compute Ic

nodes of a node in the entry. Let r denote the average size of the influence
relation sets. As described in Algorithm 3, the cost of processing an entry
is contributed by computing the influence relation information and updating
influence relation information for other related nodes. Though in practical set-
tings,M tends to be much larger than both F and C, we first denote their sizes
as O(n) for simplicity. For each entry, computing influence relation information
costs O(r) since a traversal on its parent’s influence relation set is adequate.
Updating influence relation information for related nodes is more complicated.
For each entry on LM , we need to check nC ∈ nM .SC and nF ∈ nM .SF to
see whether they can be pruned, for nC updated, we also check nM ∈ nC .SM

for further updates, resulting in O(r2) cost. For each entry on LC , we need
to check nM ∈ nC .SM to see whether nM can be pruned, also leading to an
O(r) cost. For each entry on LF , we need to first check nM ∈ nF .SM , for nM

not pruned in this procedure, nM .dlow and nM .dupp are updated. Additionally,
we must evaluate nC ∈ nM .SC and nF ∈ nM .SF to see whether they can be
pruned with the new distances. For nC updated, we check nM ∈ nC .SM to
further compute the influence upper bound for it. This procedure leads to a
cost of O(r3).

In the best case, only O(k) candidates with greatest influence values are
accessed, therefore O(k · log n) node nCs are accessed. The while loop of line 3
in Algorithm 2 only executes O(logn) times. Since influence relation sets are
pruned smoothly, the relevant set size O(r) = O(1). The overall cost of EEP
in the best case is O(n log n) + O(logn) · (O(1) + O(12) + O(1) + O(13)) =
O(n log n).

In the worst case, all candidates are accessed so the tM is actually also
fully traversed. The while loop therefore executes O(n) times. Here, the tech-
niques eliminate few nodes from influence relation sets, thus O(r) = O(n). To
summarize, the overall cost of EEP in the worst case is O(n log n) + O(n) ·
(O(n) +O(n2) +O(n) +O(n3)) = O(n4).



Analysis and Evaluation of the Top-k Most Influential Location Selection Query 21

Clearly, the major factor determining the efficiency of EEP is the average
size r of the influence relation sets. In Section 5 we will see that in both
synthetic and real-world data sets, EEP is outperformed by SS in terms of
both CPU time and the number of I/O operations, indicating r is close to
O(n). As previously mentioned, |M | can be larger than |F | and |C| in reality.
Thus if |M | dominate the scale of the problem, the complexity of EEP can be
represented by O(|M | log |M |) in the best case and O(|M |3) in the worst case.

4.3 Bounding Influence Pruning

EEP needs to maintain additional lists storing information of relation sets
for not only nodes in the candidate tree tC , but also for the customer tree
tM and the existing facility tree tF . This can consume a large amount of
memory space when the data sets are huge. Also, as a result of maintaining
influence relation lists for all data sets, its complexity in the worst case is
at an undesired O(n4). Since we ultimately care only about most influential
candidates in answering queries of the form defined in Definition 4, it is desired
to focus on the candidate tree tC rather than extensively studying all three
trees.

In this section, we introduce another strategy to estimate and refine influ-
ence values for candidate locations without storing redundant information for
customer locations and existing facility locations. Similar to EEP, we again
index C and F with R-trees and M with an aggregate R-tree.

Specifically, the method traverses tC in a best first order, using a max-heap
to order currently available nodes by their influence upper bounds computed
before their insertions. For each node on the heap, we store an influence region
nC .R , locating where all customers can only be influenced by the candidates
in that node, a set nC .SF of relevant F node and a set nC .SM of relevant
M node. A node nF is called relevant to nC if its existence potentially helps
refining the influence regions for child node nC′ of nC . A node nM is called
relevant to nC if its MBR rM intersects the influence region nC .R, namely, m
in rM might be influenced by c in rC .

Each time, the top node on the max-heap is retrieved. When the retrieved
node is an internal one, the algorithm relies on geometric properties together
with stored information in the retrieved node to refine its children nodes’
influence regions and relevant sets. With this computed information, the in-
fluence upper bounds of child nodes can be retrieved by performing point
enclosure queries on tM . Next, each child node is evaluated with a global in-
fluence threshold, which is maintained globally as the kth greatest influence
value of candidates computed so far. If it cannot be pruned, it is inserted
into the max-heap for further consideration. When the retrieved node is a leaf
node, the method uses further techniques to tighten the search space and per-
forms exact influence computation for each location enclosed by the leaf node.
Because the method focuses on bounding candidates and uses influence upper
bounds to prune unpromising candidates, it’s named the Bounding Influence
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Pruning (BIP) algorithm. Algorithm 4 lists the pseudo-code for BIP, where Iδ
maintains the kth maximum influence values seen so far.

Algorithm 4: Bounding Influence Pruning (BIP) Algorithm

Input: Root nodes rootM , rootF and rootC of the three trees
Output: TopInf(k,M,F,C)

1 rootC .SF ← {rootF }, rootC .SM ← {rootM}, HC .insert(rootC)
2 while HC 6= ∅ do
3 nC = HC .pop()
4 if nC is leaf then
5 foreach c enclosed by nC do
6 Compute exact influence value Ic
7 if Ic > Iδ then
8 Update TopInf(k,M,F,C) and Iδ
9 else

10 foreach child node nC′ of nC do
11 Construct nC′ .R, nC′ .SF , nC′ .SM ;
12 Compute the influence value upper bound Iu

c′

13 if Iu
c′ > Iδ then

14 HC .insert(nC′ )

15 return TopInf(k, M, F, C)

We will first introduce the methods for computing influence region and
relevant sets (lines 11 to 12) in Section 4.3.1, and then elaborate on the tech-
niques involved in computing exact influence values for candidates (line 6) in
Section 4.3.2. The section ends with an analysis of the complexity of BIP in
Section 4.3.3.

4.3.1 Constructing influence region and relevant sets

In this section, we describe the details for computing the influence region and
relevant sets for a given internal node nC . As described in Algorithm 4, the
root nodes of tM and tF are inserted into the relevant sets rootC .SM and
rootC .SF , respectively. Then, rootC is inserted into the max-heap HC .

Each time we pick the top node nC from HC , which has the maximum IuC
among the nodes on the heap. To compute the influence region for a given
node nC , we first expand every nF ∈ nC .SF that has rF intersecting with rC .
Obviously, after a series of expanding operations, some rF will lie outside rC
while other rF s will lie inside rC . We call those rF s lying inside rC as inner
relevant F nodes, denoted as rC .S

−
F . Since we only need to compute influence

upper bound for nC , we will only use nC .SF \ rC .S−
F to compute the influence

region. For those customers locations laying inside rC , we assume they are
influenced by candidates in nC as we will ignore nC .S

−
F when computing the

influence region. Fig. 7 shows an example of expanding nF . In the figure, gray
rectangles represent nF with rF intersecting with rC , and black rectangles
represent nF ∈ nC .S

−
F .
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Fig. 7: Expanding nF ∈ nC .SF until no nF has rF intersecting with rC

We use the following idea to compute the influence region for a given node
nC . On plane P, given two points, their perpendicular bisector divides P into
two regions, each of which contains one point. If another point q is influenced
by point p1 rather than p2, it must lie inside the half plane containing p1
rather than that containing p2. [6] generalizes this idea from points to rect-
angles. Given two rectangles r1 and r2, the generalized theorem uses multiple
normalized perpendicular bisectors to divide the plane P into two regions, one
of which contains all the points that might be influenced by points in r1.

Formally, we introduce this idea using concepts antipodal corners, normal-
ized perpendicular bisectors and Theorem 3.

Definition 5 (Antipodal Corners) Let a rectangle r’s lower left, lower
right, upper left, and upper right corners be r.ll, r.lr, r.ul, r.ur, respectively.
Given two rectangle r1 and r2, the antipodal corners of r1 and r2 are four pairs
of corner points (r1.ll, r2.ur), (r1.lr, r2.ul), (r1.ul, r2.lr), and (r1.ur, r2.ll).

Definition 6 (Normalized Perpendicular Bisectors) Given two rectan-
gles r1 and r2 and a pair of antipodal corners of r1 and r2, (ac1, ac2), the
normalized perpendicular bisector of ac1, ac2, denoted as NBac1,ac2 , is ob-
tained through moving their perpendicular bisector, denoted as Bac1,ac2 , to
intersect a point pac1,ac2 , where

pac1,ac2 .x =

{
r1.ur.x+r2.ur.x

2 , if ac1.x < ac2.x,
r1.ul.x+r2.ul.x

2 , if ac1.x ≥ ac2.x.

pac1,ac2 .y =

{
r1.ul.y+r2.ul.y

2 , if ac1.y < ac2.y
r1.ll.y+r2.ll.y

2 , if ac1.y ≥ ac2.y.

Fig. 8 shows an example of the normalized half planes described above.
The concepts defined above help us to find influence regions for a given

node nC . Specifically, perpendicular bisectors ac1 and ac2 divide the plane
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NBrC .ul,rF .lr
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⋂
i∈[1,4] NPrF .i
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Fig. 8: Normalized half planes are divided by
NBrC .1,rF .3, NBrC .2,rF .4, NBrC .3,rF .1, NBrC .4,rF .2; the gray region⋂

i∈[1,4] NPrF .i contains customers who won’t be influenced by candidates
enclosed by rC according to Theorem 3

P into two half planes, denoted as Pac1 and Pac2 , respectively. The normal-
ized perpendicular bisectors of ac1 and ac2 also divide the plane into two
planes. Let NPac1 be the normalized perpendicular bisector corresponding to
the half plane Pac1 and NPac2 be the one corresponding to the half plane
Pac2 . Remember that two rectangles have four pairs of antipodal corners, each
pair of nodes contribute to a pair of normalized half planes. For brevity, let
ri.lr = ri.1, ri.ur = ri.2, ri.ul = ri.3, ri.ll = ri.4, where i = {1, 2}. Hence, the
four pairs of half planes can be denoted as (NPr1.1, NPr2.3), (NPr1.2, NPr2.4),
(NPr1.3, NPr2.1), and (NPr1.4, NPr2.2). Given a node nC and a node nF , and
the theorem below proved by [6], any customer m lying in

⋂
i∈[1,4] NPr2.i is

not influenced by any candidate enclosed by rC .

Theorem 3 Given two rectangles r1 and r2, let p be a point in
⋂

i∈[1,4] NPr2.i,
where NPr2.i denotes a normalized half plane corresponding to r2. Then the
minimum distance between p and any point in r1 must be larger than the
maximum distance between p and any point in r2.

The gray region in Fig. 8 is the described region of Theorem 3 of the given
example. Since this region contains customers, it cannot be influenced by nC ,
so we call it a pruning region on nC defined by nF , denoted as nC .PRnF . The
union of pruning regions defined by each nF in F \nC .S

−
F is a region contain-

ing customers not influenced. In other words, P \
⋂

nF∈F\nC .S−
F
(nC .PRnF ) is

a region containing customers potentially influenced by candidates enclosed
by rC for a given nC . We define this region as the influence region for nC , i.e.,
nC .R. However, according to its definition, computing this region would re-
quire extensive accesses on F \nC .S

−
F . To avoid this tremendous cost, we select

the nearest nF s in 8 directions, denoted as Western(W), Southwestern(SW),
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Southern(S), Southeastern(SE), Eastern(E), Northeastern(NE), Northern(N),
Northwestern(NW), of node nC . Again, the distance indicator used is the max-
imum distance between two rectangles rC and rF . Let nC .NNnF

denote the
set for these eight nearest nF s, nC .Rapp denote P\

⋂
nC .NN(nF ) nC .PRnF , then

since nC .NNnF
⊂ F \ nC .S

−
F , nC .R ⊂ nC .Rapp. Region nC .Rapp is only an

approximate influence region of nC , but as it contains the desired nC .R, it can
be used as a substitute for computing the influence upper bound and relevant
sets. In in the remainder of this paper, we use nC .R to denote the approximate
influence region if there is no ambiguity.

Fig. 9 demonstrates an example of computing nC .R for a given nC , where
its nearest 8 nF s are in different directions. In the figure, the nearest nF s are
tagged by their corresponding direction to nC . The inner polygon is nC .R is
computed from rC and rF s using Theorem 3.

Due to the fact customers are indexed by an aggregate R-tree tMH, we
further bound the polygon nC .R with several rectangles to enable efficient
point enclosure queries on tM . The gray region in Fig. 9 corresponds to these
regions. In the implementation of the algorithm, it is these bounding rectangles
rather than the exact nC .R that is used to compute IuC . Also, according to
the definition of relevant M set, only nM with rm lying inside nC .R can have
customers being influenced by nC . For those intersecting rM , we expand the
corresponding nM just like expanding nF in the aforementioned description,
until there is no intersection. Thus, nC .SM = {nM ⊂ nC .R}.

Besides obtaining the relevant M set, we also need to compute the relevant
HF set with help from nC .R. Recall that the operations in Theorem 3 divide
the plane into 2 regions, one of which contains points not influenced by any
point in r1. We would like to use this to evaluate whether a node nF F \
nC .S

−
F is relevant to nC . Specifically, we apply Theorem 3 treating nF as the

rectangle r1, leading to a region nF .PRnC
=

⋂
i∈[1,4] NPrC .i This nF .PRnC

contains customers that cannot be influenced by any existing facility locations
f enclosed by rF . Obviously, if nC .R ⊂ nF .PRnC

, then for any customer m
potentially influenced by c in nC , any f enclosed by rF won’t influence it.
Namely, if a given node nF meets nC .R ⊂ nF .PRnC

, it can be eliminated
from nC .SF since it is not relevant to the influence value of nC . Of all nodes
nF those are not eliminated by this evaluation form the outer relevant F set
of nC , denoted as nF .S

+
F . Then, we have nC .SF = nC .S

+
F + nC .S

−
F . In Fig. 9,

f1 meets nf1 .PRnC
⊂ nC .R thus it will be eliminated from nC .SF , while f2

has nf2 .PRnC 6⊂ nC .R, thus f2 ∈ nC .SF .

As described above, in order to compute nC .S
+
F , we need to evaluate all

nF F \ nC .S
−
F . This can be rather time-consuming when F is massive. To

overcome this, the following property is introduced,

Property 2 For child node nC′ of node nC ,

nC′ .R ⊂ nC .R, nC′ .SF ⊂ nC .SF , nC′ .SM ⊂ nC .SM .
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Fig. 9: Example of Influence Region

Property 2 enables us to tighten the search space for evaluating nC .SF .
Let nC′ be a child node of nC , when computing nC′ .S+

F , instead of checking
every nF ∈ F \ nC′ .S−

F , it is adequate to check only nF ∈ nC .SF \ nC′ .S−
F .

This trick reduces unnecessary computation.

4.3.2 Computing exact influence for candidates

When the top node on max-heap HC is a leaf node, we need to compute the
exact influence values for all candidate locations under it. Let’s denote the
retrieved leaf node as nC . According to Property 2, we can compute influence
regions and relevant sets for candidate location from nC ’s relevant sets rather
than from scratch. In other words, from the definition of relevant sets, nC .SF

and nC .SM are the only customers and existing facilities that need to be
considered in computing the influence value of c ∈ nC , i.e. c.SF ⊂ nC .SF ,
c.SM ⊂ nC .SM .

Naively, we could perform the sequential scan on relevant sets to obtain the
exact influence value for c. However, thanks to the MBRs we stored in relevant
sets, it is possible to further tighten the scan space with simple geometric
checks. Again, the primary idea is that very distant customers are not likely
to be influenced due to the existence of existing facilities near them. Also, very
distant existing facilities cannot affect the influence value of a candidate since
the customers can only be influenced by either nearby existing facilities or the
candidate facility.

Formally, given candidate location c under leaf node nC , we first find 4
nearest F nodes in the relevant F set of nC .SF . Here, the distance criterion
used is the maximum distance between any point in rF and c, denoted as
MaxDist(c, rF ). We use the furthest node to c in each nearest rF to draw
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Fig. 10: nF1−4 are 4 nearest nF ∈ nC .SF , nM can be pruned from c.SM since
it lies outside c.R, nF5 can be pruned from c.SF since it lies outside c.R′

a perpendicular bisector so together we have a Voronoi cell for c. Similar to
the technique in [23], the Voronoi cell is bounded by a minimum rectangle
denoted as c.R. According to the property of Voronoi cells, only customers
located in this c.R can be influenced by c. To prune relevant F sets, we extend
c.R by doubling the distances between rectangle vertices and c, obtaining a
new rectangle denoted as c.R′. According to the conclusion in [23], all existing
facilities outside this c.R′ can be pruned when computing the influence of
c. Using this properties, we have c.SF = {nF ∈ nC .SF , rF

⋂
c.R′ 6= ∅} and

c.SM = {nM ∈ nC .SM , rM
⋂
c.R 6= ∅}.

Fig. 10 gives an example of the technique described above, where nF1−5 are
5 F nodes in nC .SF , nM is a M node in nC .SM . According to the property of
bounding rectangles on Voronoi cells and the conclusion in [23], nF5 and nM

can be pruned out from c.SF and c.SM , respectively.

After c.SF and c.SM are refined, we can then employ sequential scan on
them to obtain the exact influence value for c. However, since we still have
R-tree nodes in the relevant sets, it is possible to take further advantage of
the property of MBRs before diving into distance computations between loca-
tions. Our basic idea is to avoid executing redundant distance computations
for existing facility locations which simply give no helpful information. Specif-
ically, given c and a customer location m, we want to prune nF from c.SF .
To achieve this, we use a distance metric named MinMaxDist(m, rF ), which
was originally introduced in [20]. The MinMaxDist between a point m and
an MBR rF is defined as the minimum distance from m, within which at least
one point enclosed in rF can be found. Note that according to the R-tree def-
inition, there is at least one point on each edge of a given MBR. Therefore,
we follow [31] to define the MinMaxDist as the 2nd smallest distance among
d(m, f1−4) where f1−4 represent the four vertexes of rF .

Together with the distance metric MinDist(m, rF ), we can obtain the
following pruning rules. Given m and c,
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Fig. 11: nF1 can be discarded; nF4 suggests c won’t influence m; nF2 and nF3

should be further expanded to help determining whether c influences m

1. If for nF ∈ c.SF , MinDist(m, rF ) ≥ d(c,m), then nF can be pruned from
c.SF ; This is because if MinDist(m, rF ) ≥ d(c,m), ∀f ∈ rF , d(f,m) ≥
d(c,m), i.e., whether c influences m is irrelevant to rF ;

2. If for nF ∈ c.SF , MinMaxDist(m, rF ) < d(c,m), c cannot influence m;
This is because according to definition of MinMaxDist, ∃f ∈ rF that
d(f,m) < d(c,m);

3. If for nF ∈ c.SF , MinDist(m, rF ) < d(c,m) and MinMaxDist(m, rF ) ≥
d(c,m), nF should be preserved in c.SF for further computation; Since we
are not sure whether there is a f ∈ rF that MinDist(m, rF ) < d(f,m) <
MinMaxDist(m, rF ), we are not sure whether c can influence m given rf .

Fig. 11 gives an example of the above pruning rules. On determining
whether a given c influences m, nF1 should be discarded since it provides
no information for the computation; nF4 should be preserved in c.SF for fur-
ther computations; and if either nF2 or nF3 is present, then we can be sure c
cannot influence m, so we can skip checking this m.

4.3.3 Complexity of BIP

The computational cost of BIP can be divided into index construction, pruning
and exact influence computation. The R-tree indexes can be constructed in
O(n log n) cost.

In the best case, only O(k) most influential candidates are accessed. Thus
only kO(log n) nodes nC in tC is accessed. This is because if the pruning
technique works well, most of the irrelevant F andM locations are pruned after
the construction of the influence region and relevant sets in the beginning with
O(n) cost. Thanks to Property 2, subsequent computations on influence upper
bounds and relevant sets consume O(1). Also, the exact influence computation
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procedure only need to consume O(k) · O(c.SM ) · O(c.SF ) = O(k). Thus, the
overall run-time complexity of BIP in the best case is O(n log n) + O(n) +
O(k) = O(n log n).

In the worst case, all candidates are accessed, therefore all nodes in tC are
accessed. For each accessed node nC in tC , an O(n) cost is needed to compute
the influence upper bound and relevant sets. Also, an O(n) cost is again needed
for further pruning of c.SM and c.SF before computing the exact influence.
Due to ineffectiveness of pruning, a cost of O(n)·O(n)·O(n) = O(n3) is needed
when computing the exact influence values. To summarize, the overall run-time
complexity of BIP in the worst case is O(n log n) +O(n2) +O(n3) = O(n3).

That is to say, the bottleneck of BIP could be the exact influence value
computation since it simply follows a three-layer loop on all three data sets. Yet
as demonstrated in Section 5, BIP beats SS, which is of a O(n2) complexity,
in terms of CPU time. This suggests that in both synthetic and real world
data sets, BIP can offer a reasonable pruning effect, substantially eliminating
unnecessary computations during the traversal.

Similar to the analysis for EEP, when we perceive |M | as the dominating
data set in the input, the complexity of BIP can be represented byO(|M | log |M |)
in both the best case and the worst case. This is because BIP centers on can-
didate tree tC and tries to avoids repetitive access on M . Even in the worst
case, the pruning phase costs O(|M |) and exact influence computation also
only costs O(|M |), leaving the overall cost to be O(|M | log |M |).

4.4 Nearest Facility Circle Join

EEP and BIP have O(n4) and O(n3) worst-case complexity due to a large
number of traversals on tF (tM ). To achieve lower worst-case complexity, we
propose a new algorithm named Nearest Facility Circle Join (NFCJ), which
avoids repetitive accesses by pre-computing and indexing the influence rela-
tionship. Similar to the sequential scan, NFCJ involves two steps: 1) computing
influence relationship between the existing facilities and customers; 2) com-
puting influence values for candidates. The difference between NFCJ and the
sequential scan is that NFCJ leverages spatial indexes to enhance the effi-
ciency of both steps. Specifically, in the first step, the nearest facility circles
for all customers are computed using all nearest neighbor algorithms (e.g.,[27]
[35]), and are indexed in an R-tree, denoted as the influence R-tree. In the
second step, this influence R-tree is queried to find which nearest facility cir-
cles a candidate location lies in. Here, the number of nearest facility circles a
candidate lies in is essentially the influence value of that candidate location.
We further improve the efficiency of the algorithm by indexing the candidates
with an R-tree and querying the influence R-tree for candidates together. Then
the querying process effectively becomes an R-tree intersection join. This way,
repetitive traversals in EEP and BIP are avoided. We present the details of
NFCJ as follows.
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Fig. 12: c lies in 4 nearest facility circles of customers(shaded ones), therefore
Ic = 4

Algorithm 5: Nearest Facility Circle (NFC)

Input: k, customer set M , existing facility set F , candidate location set C
Output: TopInf(k, M, F, C)

1 compute m.nfd for all m ∈M on F using the all nearest neighbor algorithm
2 construct an R-tree tree indexing m.nfc
3 foreach c ∈ C do
4 use c to perform point enclosure query on tree to obtain Ic
5 Sort C by Ic
6 TopInf(k, M, F, C) ← First k locations in C

In the first step, we need to compute the nearest facility circle for each cus-
tomer location. The nearest facility circle of a customer m is a circle centered
at m, with a radius of min∀f∈F (d(f,m)). To find the nearest facility circle for
all customer locations, we can leverage all nearest neighbor search algorithms,
where the task is to find the nearest neighbors for all data points. With these
circles, a new facility would be the nearest facility of a given customer m if
and only if it located in the nearest facility circle of m. That is to say, the
potential influence of a candidate location can be computed as the number
of the nearest facility circles the candidate lies in. To easily determine which
circles a candidate location lies in, we construct an R-tree on the nearest facil-
ity circles and denote this tree as the influence R-tree. Naively, the influence
value of a candidate location can be computed by a point enclosure query
on the influence R-tree using the candidate location as the query point. For
example, in Fig. 12, the new facility c is located in four nearest facility circles
(corresponding to the four shaded customers), therefore its potential influence
is 4. This algorithm enhances only the first step,i.e., computing the nearest
facility circles for customers, and is named Nearest Facility Circle (NFC). Its
pseudo-code is shown in Algorithm 5.
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Algorithm 6: Nearest Facility Circle Join (NFCJ)

Input: k, customer set M , existing facility set F , candidate location set C
Output: TopInf(k, M, F, C)

1 compute m.nfd for all m ∈M on F using the all nearest neighbor algorithm
2 construct an R-tree tree indexing m.nfc
3 construct an R-tree tC indexing candidates C
4 InfJoin (Algorithm 7) roots of tree and tC
5 Sort C by Ic
6 TopInf(k, M, F, C) ← First k locations in C

It is easy to observe that in NFC algorithm, when computing the influence
in the second step, the candidates are considered individually, which does not
benefit from batch processing on the large candidate set. We propose to con-
struct another R-tree on the candidate set such that the influence computation
step can be done via an intersection join between this candidate R-tree and the
influence R-tree. The expected improvement brought by the additional R-tree
will be the competitive CPU time and much less I/O operations as the query
procedure is done for a group of candidates altogether. We denote this algo-
rithm as Nearest Facility Circle Join (NFCJ). Algorithm 6 shows the steps of
NFCJ, where the point enclosure query in NFC is replaced by an intersection
join procedure (line 4) over the two R-trees [4]. We describe the details of the
join procedure as follows.

The join procedure begins from the roots of two trees and recursively calls
a method (shown in Algorithm 7) to join the child nodes of two given nodes
from the candidate R-tree and the influence R-tree, respectively. Here, two
nodes should be joined together if their MBRs intersect each other. If both
two to-be joined nodes are internal nodes, a plane sweep procedure is used to
determine which child nodes should be joined (lines 1 to 2). This plane sweep
procedure first sorts the child nodes of each node by their MBR coordinates
respectively, and then checks the intersection relationship between nodes in
the two sorted queues. If either node is leaf and the other is internal, then the
child nodes of the internal node are joined with the leaf node if they intersect
the leaf node (lines 3 to 10). If both nodes are leaf nodes, the number of nearest
facility circles joined with that candidate is added to a counter corresponding
that candidate (lines 11 to 13). After all leaf nodes in the candidate R-tree
are joined with the intersecting nearest facility circles, the counter of each
candidate gives the influence value of that candidate.

We analyze the complexity of NFCJ algorithm as follows. For the first step,
algorithms such as the k-d tree based nearest neighbor search algorithm and
the Voronoi diagram algorithm can solve the all nearest neighbor problem on
the plane with cost of O(n log n) [27] [35]. Thus, the nearest facility circles can
be computed with cost of O(n log n). The construction of an R-tree index tree
takes O(n log n) as well. For the second step, the R-tree join algorithm achieves
at best O(n log n) and at worst O(n2) run-time performance. To summarize,
the run-time complexity of NFCJ algorithm is O(n log n) in the best case



32 Jian Chen et al.

Algorithm 7: InfJoin algorithm in NFCJ
Input: A node nF from the influence tree and a node nC from tC
Output: Number of joined nearest facility circles for each candidate

1 if nF is not leaf && nC is not leaf then
2 plane sweep and join child nodes of nF and nC

3 if nF is leaf && nC is not leaf then
4 foreach child node n′

C of nC do
5 if nF intersects n′

C then
6 InfJoin(nF , n′

C)

7 if nC is leaf && nF is not leaf then
8 foreach child node n′

F of nF do
9 if n′

F intersects nC then
10 InfJoin(n′

F , nC)

11 if nF is leaf && nC is leaf then
12 if nF intersects nC then
13 IC ++

and O(n2) in the worst case. In practical situations, where the customer data
set is likely to be much larger than both the facility and the candidate data
sets, the most expensive parts in NFCJ are computing the nearest facilities
for every customer and constructing an R-tree on the nearest facility circles,
both of which incur O(n log n) cost. In other words, when |M | dominates the
problem scale, the overall cost of NFCJ is O(|M | log |M |) + O(log |M |) =
O(|M | log |M |). This explains the advantages that NFCJ maintains over EEP
and BIP since NFCJ manages to achieve an O(|M | log |M |) complexity with
much less tree traversals than EEP and BIP.

5 Performance Study

In this section, we present a performance study conducted on the algorithms
described in Section 4. Notice that we are dealing with two dimensional space
data sets, and we use two double type variables to store a location. Hence the
biggest data set used in the experiment, namely the 4M data set of M , only
consumes 64 MB main memory, which is negligible for a modern computer.
In the remainder of this section, we still show results on both CPU time and
I/O operation number for the sake of completeness. Additionally, to follow
the tradition in the literature and to conduct a comparison of the true per-
formance, we do not use any page buffering or cache scheduling techniques in
our experiments. We incorporate the I/O operation cost into the CPU time
cost to roughly compute a running time cost (by timing a 12ms random read
latency of hard disk to the number of I/O operations) for EEP, BIP, NFC,
and NFCJ. NFC is included in all experiments to show the effectiveness of the
join procedure in NFCJ.
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(a) Melbourne data sets (b) Los Angeles data sets

Fig. 13: Real world data sets distribution

5.1 Experimental Setup

We conduct all experiments on a workstation running CentOS 6.4 with a
3.2GHz six-core CPU and 6GB RAM memory. All algorithms are implemented
in C++. Specifically, the implementation of the NFC and NFCJ algorithm
used the methods of [2] to perform all nearest neighbor queries.

Both synthetic and real world data sets are used in our experiments.
The synthetic data sets are generated to contain 20 clusters; each cluster in
the Gaussian data sets and the Zipfian data sets follows Gaussian and Zip-
fian distribution, respectively. The real world data sets contain 1,758,928 and
2,330,014 real place locations in Melbourne, VIC, Australia and Los Ange-
les, CA, United States, respectively. This data are part of OpenStreet Map
Project [18] and are pre-processed by CloudMade [10]. The distribution of
the real world data sets are shown in Fig. 13. For all data sets, we uniformly
sample specific number of data points to form separate sets C, F , and M .

The parameters and data set cardinalities are listed in Table 3, where the
default values are highlighted in bold style.

Table 3: Experiment configurations

Parameter Synthetic Data Melbourne Loa Angeles

|M | 500K, 1M, 2M, 4M 200K, 400K, 800K, 1.6M 250K, 500K, 1M, 2M

|F | 5K, 10K, 20K, 40K 2.5K, 5K, 10K, 20K 5K, 10K, 20K, 40K

|C| 25K, 50K, 100K, 200K 10K, 20K 40K, 80K 25K, 50K, 100K, 200K

k 1, 10, 100, 1000, 10000 10 1, 10, 100, 1000, 10000

Node Size 1K, 2K, 4K 2K 1K, 2K, 4K

Distribution Gaussian, Zipfian Real Real

5.2 Effect of Parameter k

As different values of parameter k are expected to affect the pruning power of
the proposed branch-and-bound algorithms BIP and EEP, we conduct experi-
ments using default configuration. Fig. 14 gives the results of the performance
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Fig. 15: Effect of fanout

of BIP and EEP when varying k from 1 to 10000 on the Zipfian data sets
with the default setting (|C|=50K). Results on other data sets are similar
thus omitted here. Though the two algorithms are designed to leverage the
parameter k to early terminate as described in Section 4.2 and Section 4.3, it
turns out that in most cases their pruning power is limited on the candidate
sets. While BIP can prune around half of the candidates when k is small,
EEP can rarely prune any in our experiments. This can be explained by two
reasons. First, during the procedure of pruning in both algorithms, all three
R-trees are involved; as each R-tree bounds the branch by aggregating the
spatial information, involving all of them renders the obtained bounds vastly
less effective. Second, both branch-and-bound algorithms aim at pruning the
existing facility and the customer set in addition to the candidate set; the
less effectiveness on the candidate sets may not reflect the pruning power of
the algorithms on the other two sets. As the result, the performance of the
algorithms in terms of CPU time is relatively insensitive towards the value of
k, which is demonstrated in Fig. 14b.

5.3 Effect of Node Size (fanout)

We vary the R-tree node size to study its effect on the performance of the
proposed algorithms. The corresponding results on the Los Angeles data sets
are shown in Fig. 15. As demonstrated in these figures, in all cases, both NFC
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and NFCJ significantly outperforms EEP and BIP in two orders of magnitude.
While the increased size of node does decrease the I/O performance of both
NFC and NFCJ gradually, it has little effect on the CPU time cost of NFC
and NFCJ. This is because for the same amount of data, bigger nodes lead
shorter trees but do not bring significant benefits on distance computation.
Both EEP and BIP are less sensitive towards the variation of node size as the
variation here is not significant, it may take a much larger variation on the tree
height to affect the performance of branch-and-bound algorithms. It can also
be observed that when the node size is 2K, the CPU time of NFCJ turns out
to be outperformed by NFC; this can be explained by that the performance of
R-tree join is highly dependent upon the (spatial) grouping arrangement of R-
tree, when the node size is set to 2K, the overlapping regions between different
branches in the candidate R-tree could be relatively large that the efficiency
earned by grouping query is overweighted by traversing multiple branches of
one tree for every node in the other tree.

5.4 Effect of Data Set Cardinality

In this section, we study the effect of the cardinality of each data set has on all
algorithms. For each case, the CPU time, the number of I/O operations and
the running time derived by summing the I/O cost (timed by 12ms latency
per operation) and the CPU time cost are shown respectively for all algorithms.

Effect of candidate cardinality |C|. It is expected that more candidates
result to higher query cost. We vary the cardinality of candidate set and list
the performance of all algorithms on four data sets in Fig. 16. Overall, the
performance of all algorithms degrades gradually as the cardinality of C grows.
NFC and NFCJ outperform all other algorithm to up two, four, and three
orders of magnitudes in terms of the CPU time, the number of I/O operations,
and the running time, respectively. EEP turns out to be less efficient than SS.
The reason for this is that EEP traverses the tree guided by the importance of
nodes; it may follow a traversal order more like breadth first search such that
it degrades to SS at the bottom of the trees but has additional overhead on
attempt of pruning. This suggests that the performance of EEP tends to have a
time complexity close to that in the worst case. BIP outperforms SS by almost
one order of magnitude in terms of CPU time. The reason behind this is that
BIP follows a best first search more like a depth-first search, i.e., computing
the exact influence values for part of the candidates first and use them as
the guide during traversal. The overall performance result fit to our theoretic
analysis that NFC and NFCJ have the lower time complexity comparing to
both BIP and EEP. Additionally, in terms of number of operations, NFCJ
constantly beats NFC by several times, justifying the intuition of grouping
point enclosure queries by using the candidate R-tree. This advantage makes
NFCJ the best performing algorithm in terms of running time cost.

Effect of facility cardinality |F |. The cardinality of the facility set only
has a linear effect on the performance when the sequential scan method is
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Fig. 16: Effect of the cardinality of the candidate set C

used. However, it may have significant effect on algorithms that utilize the
facility set to prune the computations. We vary this cardinality and show the
results of the performance of all algorithms in Fig. 17. As illustrated in the
figures, the performance of BIP and NFC is improved while that of NFCJ stays
the same when the number of existing facilities grows. For BIP, the effect on
CPU time is two-edge: the more existing facilities, the smaller the influence
region for each candidate node, yet also the more facilities to be evaluated to
see whether they are relevant. These two factors explain the first decreasing
then increasing CPU time cost in Fig. 17a and Fig. 17d, and also the slightly
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Fig. 17: Effect of the cardinality of the existing facility set F

increasing CPU time cost in Fig. 17g and Fig. 17j. However, the benefit of
more existing facilities, i.e., the greater pruning power, does gain advantage
in terms of the number of I/O operations, as depicted in Fig. 17b, Fig. 17e,
Fig. 17h, and Fig. 17k. For NFC, the more existing facilities indicate the
smaller each nearest facility circle will be, which result to the better organized
R-tree as less nearest facility circles are likely to overlap with each other. This
is why NFC enjoys the greater existing facility set F in all cases shown in the
figures. However, NFCJ is not sensitive towards the varying F as it groups
candidates and nearest facility circles together and traverse both trees level by
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Fig. 18: Effect of the cardinality of the customer set M

level; it does not matter much if many nodes are overlapped with each other as
grouping effect may diminish the disadvantage brought by overlapping nodes,
e.g., extensive traversals will be shared. Overall, NFCJ and NFC beat SS,
EEP, and BIP in orders of magnitude. NFC outperforms NFCJ in terms of
CPU time when facility set grows bigger, NFCJ is still the best among all
algorithm which achieve the lowest number of I/O operations and therefore
the smallest running time cost in all cases.

Effect of customer cardinality |M |. More customers may increase the
influence values of facilities and it is expected to consume more time as well as
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I/O operations. The results of varying the cardinality ofM are given in Fig. 18.
In all cases, the performance of all algorithms degrades as the cardinality of
M grows. The ranking of algorithms in terms of their efficiency still stays
the same, i.e., NFCJ and NFC beat other algorithms by up to two orders
of magnitude while BIP outperforms SS and SS outperforms EEP. It can
also be observed that BIP is more steady when compared to SS when the
cardinality of the customer set grows. The reason is that BIP tends to avoid
querying the customer R-tree and does not extensively traverse this customer
R-tree when pruning. Hence, the growth of customer does not directly affect
the performance of BIP. To summarize, the results here are similar to what
has been shown in previous experiments and fit to our theoretic analysis in
previous sections.

6 Conclusion

We formulated a practical location selection problem using reverse nearest
neighbor semantics and proposed a new type of location selection query named
top-k most influential location selection query. We attempted the popular ap-
proach, branch-and-bound, to process the query, namely Estimation Expand-
ing Pruning (EEP) and Bounding Influence Pruning (BIP). As observed from
both the evaluation, in terms of CPU time, BIP outperforms the sequential
scan by several times while EEP is constantly outperformed by the sequential
scan. Moreover, from analysis and evaluation, branch-and-bound algorithms
achieve neither competitive worst-case complexity to the sequential scan nor
good I/O performance. We proposed a new Nearest Facility Circle Join (NFCJ)
algorithm, which serves as the best solution for the query based on the analysis
of complexity for all algorithms. We further provided an extensive experimen-
tal study on all algorithms whose results confirm with the theoretic analysis.
We draw the conclusion that, for the top-k most influential location selec-
tion query, NFCJ is the most efficient algorithm in terms of both time and
the number of I/O operations, out performing other solutions by orders of
magnitude.
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