Skip to main content
Log in

A modified adaptive differential evolution algorithm for color image segmentation

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Image segmentation is an important low-level vision task. It is a perceptual grouping of pixels based on some similarity criteria. In this paper, a new differential evolution (DE) algorithm, modified adaptive differential evolution, is proposed for color image segmentation. The DE/current-to-pbest mutation strategy with optional external archive and opposition-based learning are used to diversify the search space and expedite the convergence process. Control parameters are automatically updated to appropriate values in order to avoid user intervention of parameters setting. To find an optimal number of clusters (the number of regions or segments), the average ratio of fuzzy overlap and fuzzy separation is used as a cluster validity index. The results demonstrate that the proposed technique outperforms state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199

    Article  Google Scholar 

  2. Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc B 48:259–302

    MATH  MathSciNet  Google Scholar 

  3. Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transformation. Math Morphol Image Process 34:433–481

    Google Scholar 

  4. Capitaine HL, Frelicot C (2011) A cluster-validity index combining an overlap measure and a separation measure based on fuzzy-aggregation operators. IEEE Trans Fuzzy Syst 19(03):580–588

    Article  Google Scholar 

  5. Chuang KS (2006) Fuzzy C-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30:9–15

    Article  Google Scholar 

  6. Cohen L (1991) On active contour models and balloons. CVGIP Image Underst 53(2):211–218

    Article  MATH  Google Scholar 

  7. Duda R, Hart P, Stork D (2001) Fast discovery of association rules. Pattern Classification (2nd ed). Wiley, Hoboken, NJ

  8. Felzenszwalb P, Huttenlocher D (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  9. Freixenet J, Munoz X, Raba D, Marti J Cufi X (2002) Yet another survey on image segmentation: region and boundary information integration. In: Proceedings of European conference on computer vision (ECCV 2002), Copenhagen, Denmark, May 2831, 2002. Lecture Notes in Computer Science 2352. Springer, Berlin, pp 408–422

  10. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  11. Klement E, Mesiar R (2005) Logical, algebraic, analytic, and probabilistic aspects of triangular norms. Elsevier, Amsterdam

    MATH  Google Scholar 

  12. Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 26(2):147–159

    Article  Google Scholar 

  13. Kov YB, Jolly M (2001) Interactive graph cuts for optimal boundary region segmentation of objects in \({N-D}\) images. In: Proceedings of eighth IEEE international conference on computer vision, 2001 (ICCV 2001), Jully 714, 2002. 1, pp 105–112

  14. Li Y, Sun J, Tang CK, Shum HY (2004) Lazy snapping. ACM Trans Graph 23(3):303–308

    Article  Google Scholar 

  15. Li BN, Chui CK, Ong SH (2011) Integrating spatial fuzzy clustering with level set for autamated medical image segmentation. Comput Biol Med 41:1–10

    Article  Google Scholar 

  16. Liu MY, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation. In: Proceedings of IEEE international conference on computer vision, (ICCV 2011), 2011, pp 2097–2104

  17. Loo PK, Tan CL (2004) Adaptive region growing color segmentation for text using Irregular pyramid. In: Proceedings of 6th international workshop international workshop on document analysis systems, Florence, Italy, 2004, September 8–10. Lecture Notes in Computer Science 3163. Springer, Berlin, pp 264–275

  18. Lucchese L, Mitra SK (2001), Color image segmentation: a state of the art survey. In: Proceedings of the Indian National Science Academy on image processing. Vis. Pattern Recognition vol 2, pp 207–221

  19. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of eighth IEEE international conference on computer vision, 2001 (ICCV 2001), Jully 714, 2001. 2, pp 416–423

  20. Mascarilla L, Berthier M, Frelicot C (2008) A k-order fuzzy or operator for pattern classification with k-order ambiguity rejection. Fuzzy Sets Systems 159(15):2011–2029

    Article  MATH  MathSciNet  Google Scholar 

  21. Meila M (2005) Comparing clusterings-An axiomatic view. In: ICML ’05 Proceedings of the 22nd international conference on Machine learning, New York, NY, USA, pp 577–584

  22. Mortensen E, Barrett W (1998) Interactive segmentation with intelligent scissors. Graph Models Image Process 60(5):349–384

    Article  MATH  Google Scholar 

  23. Ninga J, Zhanga L, Zhanga D, Wub C (2010) Interactive image segmentation by maximal similarity based region merging. Pattern Recognit 43:445–456

    Article  Google Scholar 

  24. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evolut Comput 12(2):64–79

    Article  Google Scholar 

  25. Rother C, Kolmogorov V, Blake A (2004) Opposition-based differential evolution. ACM Trans Graphs 23(3):309–314

    Article  Google Scholar 

  26. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  27. Tan KS, Isa NAM (2011) Color image segmentation using histogram thresholding fuzzy C-means hybrid approach. Pattern Recognit 44:1–15

    Article  MATH  Google Scholar 

  28. Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29(6):929–944

    Article  Google Scholar 

  29. Vincent L, Soille P (1999) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598

    Article  Google Scholar 

  30. Xu C, Prince J (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MATH  MathSciNet  Google Scholar 

  31. Yang AY, Wright J, Sastry SS, Ma Y (2008), Unsupervised segmentation of natural images via lossy data compression. Comput Vis Image Underst 13(5):212–225

    Google Scholar 

  32. Zhang J, Sanderson AC (2009) ADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958

    Article  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for their very useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arfan Jaffar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A., Jaffar, M.A. & Shao, L. A modified adaptive differential evolution algorithm for color image segmentation. Knowl Inf Syst 43, 583–597 (2015). https://doi.org/10.1007/s10115-014-0741-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-014-0741-3

Keywords

Navigation