
Noname manuscript No.
(will be inserted by the editor)

Greedy Column Subset Selection for Large-scale
Data Sets

Ahmed K. Farahat · Ahmed Elgohary ·
Ali Ghodsi · Mohamed S. Kamel

Received: date / Accepted: date

Abstract In today’s information systems, the availability of massive amounts
of data necessitates the development of fast and accurate algorithms to summa-
rize these data and represent them in a succinct format. One crucial problem
in big data analytics is the selection of representative instances from large and
massively-distributed data, which is formally known as the Column Subset
Selection (CSS) problem. The solution to this problem enables data analysts
to understand the insights of the data and explore its hidden structure. The
selected instances can also be used for data preprocessing tasks such as learn-
ing a low-dimensional embedding of the data points or computing a low-rank

Ahmed K. Farahat
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
Tel.: +1 519-888-4567
E-mail: afarahat@uwaterloo.ca

Ahmed Elgohary
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
Tel.: +1 519-888-4567
E-mail: aelgohary@uwaterloo.ca

Ali Ghodsi
Department of Statistics and Actuarial Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
Tel.: +1 519-888-4567 x37316
E-mail: aghodsib@uwaterloo.ca

Mohamed S. Kamel
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
Tel.: +1 519-888-4567 x35761
E-mail: mkamel@uwaterloo.ca

ar
X

iv
:1

31
2.

68
38

v1
 [

cs
.D

S]
 2

4
D

ec
 2

01
3

2 Ahmed K. Farahat et al.

approximation of the corresponding matrix. This paper presents a fast and
accurate greedy algorithm for large-scale column subset selection. The algo-
rithm minimizes an objective function which measures the reconstruction error
of the data matrix based on the subset of selected columns. The paper first
presents a centralized greedy algorithm for column subset selection which de-
pends on a novel recursive formula for calculating the reconstruction error of
the data matrix. The paper then presents a MapReduce algorithm which se-
lects a few representative columns from a matrix whose columns are massively
distributed across several commodity machines. The algorithm first learns a
concise representation of all columns using random projection, and it then
solves a generalized column subset selection problem at each machine in which
a subset of columns are selected from the sub-matrix on that machine such
that the reconstruction error of the concise representation is minimized. The
paper demonstrates the effectiveness and efficiency of the proposed algorithm
through an empirical evaluation on benchmark data sets.1

Keywords Column Subset Selection; Greedy Algorithms; Distributed
Computing; Big Data; MapReduce;

1 Introduction

Recent years have witnessed the rise of the big data era in computing and
storage systems. With the great advances in information and communication
technology, hundreds of petabytes of data are generated, transferred, processed
and stored every day. The availability of this overwhelming amount of struc-
tured and unstructured data creates an acute need to develop fast and accurate
algorithms to discover useful information that is hidden in the big data. One
of the crucial problems in the big data era is the ability to represent the data
and its underlying information in a succinct format.

Although different algorithms for clustering and dimension reduction can
be used to summarize big data, these algorithms tend to learn representa-
tives whose meanings are difficult to interpret. For instance, the traditional
clustering algorithms such as k-means [32] tend to produce centroids which
encode information about thousands of data instances. The meanings of these
centroids are hard to interpret. Even clustering methods that use data in-
stances as prototypes, such as k-medoid [36], learn only one representative
for each cluster, which is usually not enough to capture the insights of the
data instances in that cluster. In addition, using medoids as representatives
implicitly assumes that the data points are distributed as clusters and that
the number of those clusters are known ahead of time. This assumption is not
true for many data sets. On the other hand, traditional dimension reduction
algorithms such as Latent Semantic Analysis (LSA) [13] tend to learn a few
latent concepts in the feature space. Each of these concepts is represented by a
dense vector which combines thousands of features with positive and negative

1 A preliminary version of this paper appeared as [23]

Greedy Column Subset Selection for Large-scale Data Sets 3

weights. This makes it difficult for the data analyst to understand the mean-
ing of these concepts. Even if the goal of representative selection is to learn
a low-dimensional embedding of data instances, learning dimensions whose
meanings are easy to interpret allows the understanding of the results of the
data mining algorithms, such as understanding the meanings of data clusters
in the low-dimensional space.

The acute need to summarize big data to a format that appeals to data
analysts motivates the development of different algorithms to directly select a
few representative data instances and/or features. This problem can be gen-
erally formulated as the selection of a subset of columns from a data matrix,
which is formally known as the Column Subset Selection (CSS) problem [26],
[19] [6] [5] [3]. Although many algorithms have been proposed for tackling the
CSS problem, most of these algorithms focus on randomly selecting a subset of
columns with the goal of using these columns to obtain a low-rank approxima-
tion of the data matrix. In this case, these algorithms tend to select a relatively
large number of columns. When the goal is to select a very few columns to be
directly presented to a data analyst or indirectly used to interpret the results
of other algorithms, the randomized CSS methods are not going to produce a
meaningful subset of columns. One the other hand, deterministic algorithms
for CSS, although more accurate, do not scale to work on big matrices with
massively distributed columns.

This paper addresses the aforementioned problem by first presenting a fast
and accurate greedy algorithm for column subset selection. The algorithm
minimizes an objective function which measures the reconstruction error of
the data matrix based on the subset of selected columns. The paper presents
a novel recursive formula for calculating the reconstruction error of the data
matrix, and then proposes a fast and accurate algorithm which selects the
most representative columns in a greedy manner. The paper then presents a
distributed column subset selection algorithm for selecting a very few columns
from a big data matrix with massively distributed columns. The algorithm
starts by learning a concise representation of the data matrix using random
projection. Each machine then independently solves a generalized column sub-
set selection problem in which a subset of columns is selected from the current
sub-matrix such that the reconstruction error of the concise representation is
minimized. A further selection step is then applied to the columns selected
at different machines to select the required number of columns. The proposed
algorithm is designed to be executed efficiently over massive amounts of data
stored on a cluster of several commodity nodes. In such settings of infrastruc-
ture, ensuring the scalability and the fault tolerance of data processing jobs is
not a trivial task. In order to alleviate these problems, MapReduce [12] was in-
troduced to simplify large-scale data analytics over a distributed environment
of commodity machines. Currently, MapReduce (and its open source imple-
mentation Hadoop [47]) is considered the most successful and widely-used
framework for managing big data processing jobs. The approach proposed in
this paper considers the different aspects of developing MapReduce-efficient
algorithms.

4 Ahmed K. Farahat et al.

The contributions of the paper can be summarized as follows:

– The paper first presents a fast and accurate algorithm for Column Subset
Selection (CSS) which selects the most representative columns from a data
matrix in a greedy manner. The algorithm minimizes an objective function
which measures the reconstruction error of the data matrix based on the
subset of selected columns.

– The paper presents a novel recursive formula for calculating the reconstruc-
tion error of the data matrix based on the subset of selected columns, and
then uses this formula to develop a fast and accurate algorithm for greedy
CSS.

– The paper proposes an algorithm for distributed CSS which first learns a
concise representation of the data matrix and then selects columns from
distributed sub-matrices that approximate this concise representation.

– To facilitate CSS from different sub-matrices, a fast and accurate algorithm
for generalized CSS is proposed. This algorithm greedily selects a subset of
columns from a source matrix which approximates the columns of a target
matrix.

– A MapReduce-efficient algorithm is proposed for learning a concise repre-
sentation using random projection. The paper also presents a MapReduce
algorithm for distributed CSS which only requires two passes over the data
with a very low communication overhead.

– Medium and large-scale experiments have been conducted on benchmark
data sets in which different methods for CSS are compared.

The rest of the paper is organized as follows. Section 2 describes the nota-
tions used throughout the paper. Section 3 gives a brief background on the CSS
problem and the MapReduce framework. Section 4 describes the centralized
greedy algorithm for CSS. The proposed MapReduce algorithm for distributed
CSS is described in details in Section 5. Section 6 reviews the state-of-the-art
CSS methods and their applicability to distributed data. In Section 7, an
empirical evaluation of the proposed method is described. Finally, Section 8
concludes the paper.

2 Notations

The following notations are used throughout the paper unless otherwise in-
dicated. Scalars are denoted by small letters (e.g., m, n), sets are denoted in
script letters (e.g., S, R), vectors are denoted by small bold italic letters (e.g.,
f , g), and matrices are denoted by capital letters (e.g., A, B). The subscript
(i) indicates that the variable corresponds to the i-th block of data in the
distributed environment. In addition, the following notations are used:
For a set S:

|S| the cardinality of the set.
For a vector x ∈ Rm:

xi i-th element of x.
‖x‖ the Euclidean norm (`2-norm) of x.

Greedy Column Subset Selection for Large-scale Data Sets 5

For a matrix A ∈ Rm×n:
Aij (i, j)-th entry of A.
Ai: i-th row of A.
A:j j-th column of A.
A:S the sub-matrix of A which consists of the set S of columns.
AT the transpose of A.

‖A‖F the Frobenius norm of A: ‖A‖F =
√
Σi,jA2

ij .

Ã a low rank approximation of A.

ÃS a rank-l approximation of A based on the set S of columns,
where |S| = l.

3 Background

This section reviews the necessary background on the Column Subset Selection
(CSS) problem and the MapReduce paradigm used to develop the large-scale
CSS algorithm presented in this paper.

3.1 Column Subset Selection (CSS)

The Column Subset Selection (CSS) problem can be generally defined as the
selection of the most representative columns of a data matrix [6] [5] [3]. The
CSS problem generalizes the problem of selecting representative data instances
as well as the unsupervised feature selection problem. Both are crucial tasks,
that can be directly used for data analysis or as pre-processing steps for de-
veloping fast and accurate algorithms in data mining and machine learning.

Although different criteria for column subset selection can be defined,
a common criterion that has been used in much recent work measures the
discrepancy between the original matrix and the approximate matrix recon-
structed from the subset of selected columns [26] [17] [18] [19] [15] [6] [5] [3] [8].
Most of the recent work either develops CSS algorithms that directly optimize
this criterion or uses this criterion to assess the quality of the proposed CSS
algorithms. In the present work, the CSS problem is formally defined as

Problem 1 (Column Subset Selection) Given an m×n matrix A and an
integer l, find a subset of columns L such that |L| = l and

L = arg min
S

‖A− P (S)A‖2F ,

where P (S) is an m ×m projection matrix which projects the columns of A
onto the span of the candidate columns A:S .

The criterion F (S) = ‖A− P (S)A‖2F represents the sum of squared errors
between the original data matrix A and its rank-l column-based approximation
(where l = |S|),

ÃS = P (S)A . (1)

6 Ahmed K. Farahat et al.

In other words, the criterion F (S) calculates the Frobenius norm of the
residual matrix E = A− ÃS . Other types of matrix norms can also be used to
quantify the reconstruction error. Some of the recent work on the CSS prob-
lem [6] [5] [3] derives theoretical bounds for both the Frobenius and spectral
norms of the residual matrix. The present work, however, focuses on developing
algorithms that minimize the Frobenius norm of the residual matrix.

The projection matrix P (S) can be calculated as

P (S) = A:S
(
AT

:SA:S
)−1

AT
:S , (2)

where A:S is the sub-matrix of A which consists of the columns corresponding
to S.

It should be noted that if the subset of columns S is known, the projection
matrix P (S) can be derived as follows. The columns of the data matrix A can
be approximated as linear combinations of the subset of columns S:

ÃS = A:ST ,

where T is an l × n matrix of coefficients which can be found by solving the
following optimization problem.

T ∗ = arg min
T

‖A−A:ST‖2F .

This is a least-squares problem whose closed-form solution is T ∗ =
(
AT

:SA:S
)−1

AT
:SA.

Substituting with T ∗ in ÃS gives

ÃS = A:ST = A:S
(
AT

:SA:S
)−1

AT
:SA = P (S)A .

The set of selected columns (i.e., data instances or features) can be directly
presented to a data analyst to learn about the insights of the data, or they can
be used to preprocess the data for further analysis. For instance, the selected
columns can be used to obtain a low-dimensional representation of all columns
into the subspace of selected ones. This representation can be calculated as
follows.

1. Calculate an orthonormal basis Q for the selected columns,

Q = orth (A:S) ,

where orth (.) is a function that orthogonalizes the columns of its input
matrix and Q is an m× l orthogonal matrix whose columns span the range
of A:S . The matrix Q can be obtained by applying an orthogonalization
algorithm such as the Gram-Schmidt algorithm to the columns of A:S , or
by calculating the Singular Value Decomposition (SVD) or the QR decom-
position of A:S [27].

2. Embed all columns of A into the subspace of Q,

W = QTA , (3)

where W is an l × n matrix whose columns represent an embedding of all
columns into the subspace of selected ones.

Greedy Column Subset Selection for Large-scale Data Sets 7

The selected columns can also be used to calculate a column-based low-
rank approximation of A [19]. Given a subset S of columns with |S| = l, a
rank-l approximation of the data matrix A can be calculated as:

ÃS = P (S)A = A:S
(
AT

:SA:S
)−1

AT
:SA . (4)

In order to calculate a rank-k approximation of the data matrix A where
k ≤ l, the following procedure suggested by Boutsidis et al. [3] can be used.

1. Calculate an orthonormal basis Q for the columns of A:S and embed all
columns of A into the subspace of Q:

Q = orth (A:S) ,

W = QTA ,

where Q is an m × l orthogonal matrix whose columns span the range of
A:S and W is an l × n matrix whose columns represent an embedding of
all columns into the subspace of selected ones.

2. Calculate the best rank-k approximation of the embedded columns using
Singular Value Decomposition (SVD):

W̃k = U
(W)
k Σ

(W)
k V

(W)T
k ,

where U
(W)
k and V

(W)
k are l×k and n×k matrices whose columns represent

the leading k left and right singular vectors of W respectively, Σ
(W)
k is a

k × k matrix whose diagonal elements are the leading k singular values of
W , and W̃k is the best rank-k approximation of W .

3. Calculate the column-based rank-k approximation of A as:

ÃS,k = QW̃k ,

where ÃS,k is a rank-k approximation of A based on the set S of columns.

This procedure results in a rank-k approximation of A within the column space
of A:S that achieves the minimum reconstruction error in terms of Frobenius
norm [3]:

T ∗ = arg min
T, rank(T)=k

‖A−A:ST‖2F .

Moreover, the leading singular values and vectors of the low-dimensional
embedding W can be used to approximate those of the data matrix as follows:

Ũ
(A)
k = QU

(W)
k , Σ̃

(A)
k = Σ

(W)
k , Ṽ

(A)
k = V

(W)
k (5)

where Ũ
(A)
k and Ṽ

(A)
k are l×k and n×k matrices whose columns approximate

the leading k left and right singular vectors of A respectively, and Σ̃
(A)
k is

a k × k matrix whose diagonal elements approximate the leading k singular
values of A.

8 Ahmed K. Farahat et al.

3.2 MapReduce Paradigm

MapReduce [12] was presented as a programming model to simplify large-scale
data analytics over a distributed environment of commodity machines. The ra-
tionale behind MapReduce is to impose a set of constraints on data access at
each individual machine and communication between different machines to en-
sure both the scalability and fault-tolerance of the analytical tasks. Currently,
MapReduce has been successfully used for scaling various data analysis tasks
such as regression [42], feature selection [45], graph mining [33,48], and most
recently kernel k-means clustering [20].

A MapReduce job is executed in two phases of user-defined data transfor-
mation functions, namely, map and reduce phases. The input data is split into
physical blocks distributed among the nodes. Each block is viewed as a list
of key-value pairs. In the first phase, the key-value pairs of each input block
b are processed by a single map function running independently on the node
where the block b is stored. The key-value pairs are provided one-by-one to
the map function. The output of the map function is another set of intermedi-
ate key-value pairs. The values associated with the same key across all nodes
are grouped together and provided as an input to the reduce function in the
second phase. Different groups of values are processed in parallel on different
machines. The output of each reduce function is a third set of key-value pairs
and collectively considered the output of the job. It is important to note that
the set of the intermediate key-value pairs is moved across the network be-
tween the nodes which incurs significant additional execution time when much
data are to be moved. For complex analytical tasks, multiple jobs are typically
chained together [21] and/or many rounds of the same job are executed on the
input data set [22].

In addition to the programming model constraints, Karloff et al. [34] de-
fined a set of computational constraints that ensure the scalability and the effi-
ciency of MapReduce-based analytical tasks. These computational constraints
limit the used memory size at each machine, the output size of both the map
and reduce functions and the number of rounds used to complete a certain
tasks.

The MapReduce algorithms presented in this paper adhere to both the pro-
gramming model constraints and the computational constraints. The proposed
algorithm aims also at minimizing the overall running time of the distributed
column subset selection task to facilitate interactive data analytics.

4 Greedy Column Subset Selection

The column subset selection criterion presented in Section 3.1 measures the
reconstruction error of a data matrix based on the subset of selected columns.
The minimization of this criterion is a combinatorial optimization problem
whose optimal solution can be obtained inO

(
nlmnl

)
[5]. This section describes

a deterministic greedy algorithm for optimizing this criterion, which extends

Greedy Column Subset Selection for Large-scale Data Sets 9

the greedy method for unsupervised feature selection recently proposed by
Farahat et al. [24] [25]. First, a recursive formula for the CSS criterion is
presented and then the greedy CSS algorithm is described in details.

4.1 Recursive Selection Criterion

The recursive formula of the CSS criterion is based on a recursive formula for
the projection matrix P (S) which can be derived as follows.

Lemma 1 Given a set of columns S. For any P ⊂ S,

P (S) = P (P) +R(R) ,

where R(R) is a projection matrix which projects the columns of E = A−P (P)A
onto the span of the subset R = S \ P of columns,

R(R) = E:R
(
ET

:RE:R
)−1

ET
:R .

Proof Define a matrix B = AT
:SA:S which represents the inner-product over

the columns of the sub-matrix A:S . The projection matrix P (S) can be written
as:

P (S) = A:SB
−1AT

:S . (6)

Without loss of generality, the columns and rows of A:S and B in Equation
(6) can be rearranged such that the first sets of rows and columns correspond
to P:

A:S =
[
A:P A:R

]
, B =

[
BPP BPR
BT
PR BRR

]
,

where BPP = AT
:PA:P , BPR = AT

:PA:R and BRR = AT
:RA:R.

Let S = BRR − BT
PRB

−1
PPBPR be the Schur complement [41] of BPP in

B. Using the block-wise inversion formula [41], B−1 can be calculated as:

B−1 =

[
B−1PP +B−1PPBPRS

−1BT
PRB

−1
PP −B

−1
PPBPRS

−1

−S−1BT
PRB

−1
PP S−1

]
Substitute with A:S and B−1 in Equation (6):

P (S) =
[
A:P A:R

] [B−1PP +B−1PPBPRS
−1BT

PRB
−1
PP −B

−1
PPBPRS

−1

−S−1BT
PRB

−1
PP S−1

]AT
:P

AT
:R

=A:PB

−1
PPA

T
:P +A:PB

−1
PPBPRS

−1BT
PRB

−1
PPA

T
:P −A:PB

−1
PPBPRS

−1AT
:R

−A:RS
−1BT

PRB
−1
PPA

T
:P +A:RS

−1AT
:R .

Take out A:PB
−1
PPBPRS

−1 as a common factor from the 2nd and 3rd terms,
and A:RS

−1 from the 4th and 5th terms:

P (S) =A:PB
−1
PPA

T
:P −A:PB

−1
PPBPRS

−1 (AT
:R −BT

PRB
−1
PPA

T
:P
)

+A:RS
−1 (AT

:R −BT
PRB

−1
PPA

T
:P
)
.

10 Ahmed K. Farahat et al.

Take out S−1
(
AT

:R −BT
PRB

−1
PPA

T
:P
)

as a common factor from the 2nd and
3rd terms:

P (S) = A:PB
−1
PPA

T
:P +

(
A:R −A:PB

−1
PPBPR

)
S−1

(
AT

:R −BT
PRB

−1
PPA

T
:P
)
.

(7)

The first term of Equation (7) is the projection matrix which projects the

columns ofA onto the span of the subset P of columns: P (P) = A:P
(
AT

:PA:P
)−1

AT
:P =

A:PB
−1
PPA

T
:P . The second term can be simplified as follows. Let E be an m×n

residual matrix which is calculated as: E = A − P (P)A. The sub-matrix E:R
can be expressed as:

E:R = A:R−P (P)A:R = A:R−A:P
(
AT

:PA:P
)−1

AT
:PA:R = A:R−A:PB

−1
PPBPR.

Since projection matrices are idempotent, then P (P)P (P) = P (P) and the
inner-product ET

:RE:R can be expressed as:

ET
:RE:R =

(
A:R − P (P)A:R

)T (
A:R − P (P)A:R

)
=AT

:RA:R −AT
:RP

(P)A:R −AT
:RP

(P)A:R +AT
:RP

(P)P (P)A:R

=AT
:RA:R −AT

:RP
(P)A:R .

Substituting with P (P) = A:P
(
AT

:PA:P
)−1

AT
:P gives

ET
:RE:R = AT

:RA:R −AT
:RA:P

(
AT

:PA:P
)−1

AT
:PA:R = BRR −BT

PRB
−1
PPBPR = S .

Substituting
(
A:PB

−1
PPA

T
:P
)
,
(
A:R −A:PB

−1
PPBPR

)
and S with P (P), E:R and

ET
:RE:R respectively, Equation (7) can be expressed as:

P (S) = P (P) + E:R
(
ET

:RE:R
)−1

ET
:R .

The second term is the projection matrix which projects the columns of E
onto the span of the subset R of columns:

R(R) = E:R
(
ET

:RE:R
)−1

ET
:R . (8)

This proves that P (S) can be written in terms of P (P) and R as: P (S) =
P (P) +R(R)

This means that projection matrix P (S) can be constructed in a recursive
manner by first calculating the projection matrix which projects the columns
of A onto the span of the subset P of columns, and then calculating the
projection matrix which projects the columns of the residual matrix onto the
span of the remaining columns. Based on this lemma, a recursive formula can
be developed for ÃS .

Corollary 1 Given a matrix A and a subset of columns S. For any P ⊂ S,

ÃS = ÃP + ẼR ,

where E = A− P (P)A, and ẼR is the low-rank approximation of E based on
the subset R = S \ P of columns.

Greedy Column Subset Selection for Large-scale Data Sets 11

Proof Using Lemma (1), and substituting with P (S) in Equation (1) gives:

ÃS = P (P)A+ E:R
(
ET

:RE:R
)−1

ET
:RA . (9)

The first term is the low-rank approximation of A based on P: ÃP = P (P)A.
The second term is equal to ẼR as ET

:RA = ET
:RE. To prove that, multiplying

ET
:R by E = A− P (P)A gives:

ET
:RE = ET

:RA− ET
:RP

(P)A .

Using E:R = A:R − P (P)A:R, the expression ET
:RP

(P) can be written as:

ET
:RP

(P) = AT
:RP

(P) −AT
:RP

(P)P (P) .

This is equal to 0 as P (P)P (P) = P (P) (an idempotent matrix). This means
that ET

:RA = ET
:RE. Substituting ET

:RA with ET
:RE in Equation (9) proves the

corollary.
This means that the column-based low-rank approximation of A based

on the subset S of columns can be calculated in a recursive manner by first
calculating the low-rank approximation of A based on the subset P ⊂ S, and
then calculating the low-rank approximation of the residual matrix E based
on the remaining columns.

Based on Corollary (1), a recursive formula for the column subset selection
criterion can be developed as follows.

Theorem 1 Given a set of columns S. For any P ⊂ S,

F (S) = F (P)− ‖ẼR‖2F ,

where E = A− P (P)A, and ẼR is the low-rank approximation of E based on
the subset R = S \ P of columns.

Proof Using Corollary (1), the CSS criterion can be expressed as:

F (S) =
∥∥∥A− ÃS∥∥∥2

F
=
∥∥∥A− ÃP − ẼR∥∥∥2

F

=
∥∥∥E − ẼR∥∥∥2

F
=
∥∥∥E −R(R)E

∥∥∥2
F
.

Using the relation between the Frobenius norm and the trace function,2 the
right-hand side can be expressed as:∥∥∥E −R(R)E

∥∥∥2
F

= trace

((
E −R(R)E

)T (
E −R(R)E

))
= trace

(
ETE − 2ETR(R)E + ETR(R)R(R)E

)
.

2 ‖A‖2F = trace
(
ATA

)

12 Ahmed K. Farahat et al.

As R(R)R(R) = R(R) (an idempotent matrix), F (S) can be expressed as:

F (S) = trace
(
ETE − ETR(R)R(R)E

)
= trace

(
ETE − ẼRẼR

)
= ‖E‖2F−‖ẼR‖2F .

Replacing ‖E‖2F with F (P) proves the theorem.
The term ‖ẼR‖2F represents the decrease in reconstruction error achieved

by adding the subset R of columns to P. In the following section, a novel
greedy heuristic is presented to optimize the column subset selection criterion
based on this recursive formula.

4.2 Greedy Selection Algorithm

This section presents an efficient greedy algorithm to optimize the column
subset selection criterion presented in Section 3.1. The algorithm selects at
each iteration one column such that the reconstruction error for the new set
of columns is minimized. This problem can be formulated as follows:

Problem 2 At iteration t, find column p such that,

p = arg min
i

F (S ∪ {i}) (10)

where S is the set of columns selected during the first t− 1 iterations.

A näıve implementation of the greedy algorithm is to calculate the recon-
struction error for each candidate column, and then select the column with the
smallest error. This implementation is, however, computationally very com-
plex, as it requires O(m2n2) floating-point operations per iteration. A more
efficient approach is to use the recursive formula for calculating the recon-
struction error. Using Theorem 3,

F (S ∪ {i}) = F (S)− ‖Ẽ{i}‖2F ,

where E = A − ÃS and Ẽ{i} is the rank-1 approximation of E based on the
candidate column i. Since F (S) is a constant for all candidate columns, an
equivalent criterion is:

p = arg max
i

‖Ẽ{i}‖2F (11)

This formulation selects the column p which achieves the maximum decrease
in reconstruction error. Using the properties that: trace (AB) = trace (BA)
and trace (aA) = a trace (A) where a is a scalar, the new objective function∥∥∥Ẽ{i}∥∥∥2

F
can be simplified as follows:∥∥∥Ẽ{i}∥∥∥2

F
= trace

(
ẼT
{i}Ẽ{i}

)
= trace

(
ETR({i})E

)
= trace

(
ETE:i

(
ET

:iE:i

)−1
ET

:iE
)

=
1

ET
:iE:i

trace
(
ETE:iE

T
:iE
)

=

∥∥ETE:i

∥∥2
ET

:iE:i
.

Greedy Column Subset Selection for Large-scale Data Sets 13

This defines the following equivalent problem.

Problem 3 (Greedy Column Subset Selection) At iteration t, find col-
umn p such that,

p = arg max
i

∥∥ETE:i

∥∥2
ET

:iE:i
(12)

where E = A− ÃS , and S is the set of columns selected during the first t− 1
iterations.

The computational complexity of this selection criterion is O
(
n2m

)
per

iteration, and it requires O (nm) memory to store the residual of the whole
matrix, E, after each iteration. In order to reduce these memory requirements,
a memory-efficient algorithm can be proposed calculate the column subset se-
lection criterion without explicitly calculating and storing the residual matrix
E at each iteration. The algorithm is based on a recursive formula for calcu-
lating the residual matrix E.

Let S(t) denote the set of columns selected during the first t− 1 iterations,
E(t) denote the residual matrix at the start of the t-th iteration (i.e., E(t) =
A− ÃS(t)), and p(t) be the column selected at iteration t. The following lemma
gives a recursive formula for residual matrix at the start of iteration t + 1,
E(t+1).

Lemma 2 E(t+1) can be calculated recursively as:

E(t+1) =

(
E −

E:pE
T
:p

ET
:pE:p

E

)(t)

. (13)

Proof Using Corollary 1, ÃS∪{p} = ÃS + Ẽ{p}. Subtracting both sides from

A, and substituting A− ÃS∪{p} and A− ÃS with E(t+1) and E(t) respectively
gives:

E(t+1) =
(
E − Ẽ{p}

)(t)
Using Equations (1) and (2), Ẽ{p} can be expressed as

(
E:p(ET

:pE:p)−1ET
:p

)
E.

Substituting Ẽ{p} with this formula in the above equation proves the lemma.

Let G be an n × n matrix which represents the inner-products over the
columns of the residual matrix E: G = ETE. The following corollary is a
direct result of Lemma 2.

Corollary 2 G(t+1) can be calculated recursively as:

G(t+1) =

(
G−

G:pG
T
:p

Gpp

)(t)

.

14 Ahmed K. Farahat et al.

Proof This corollary can be proved by substituting with E(t+1)T (Lemma 2)

in G(t+1) = E(t+1)TE(t+1), and using the fact that R({p})R({p}) = R({p}) (an
idempotent matrix).

To simplify the derivation of the memory-efficient algorithm, at iteration
t, define δ = G:p and ω = G:p/

√
Gpp = δ/

√
δp. This means that G(t+1) can

be calculated in terms of G(t) and ω(t) as follows:

G(t+1) =
(
G− ωωT

)(t)
, (14)

or in terms of A and previous ω’s as:

G(t+1) = ATA−
t∑

r=1

(
ωωT

)(r)
. (15)

δ(t) and ω(t) can be calculated in terms of A and previous ω’s as follows:

δ(t) = ATA:p −
t−1∑
r=1

ω(r)
p ω(r),

ω(t) = δ(t)/
√
δ(t)p .

(16)

The column subset selection criterion can be expressed in terms of G as:

p = arg max
i

‖G:i‖2

Gii

The following theorem gives recursive formulas for calculating the column
subset selection criterion without explicitly calculating E or G.

Theorem 2 Let f i = ‖G:i‖2 and gi = Gii be the numerator and denominator
of the criterion function for column i respectively, f = [f i]i=1..n, and g =
[gi]i=1..n. Then,

f (t) =
(
f − 2

(
ω ◦

(
ATAω −Σt−2

r=1

(
ω(r)Tω

)
ω

(r)
))

+ ‖ω‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
.

where ◦ represents the Hadamard product operator.

Proof Based on Equation (14), f
(t)
i can be calculated as:

f
(t)
i =

(
‖G:i‖2

)(t)
=
(
‖G:i − ωiω‖2

)(t−1)
=
(
(G:i − ωiω)T (G:i − ωiω)

)(t−1)
=
(
GT

:iG:i − 2ωiG
T
:iω + ω2

i ‖ω‖2
)(t−1)

=
(
f i − 2ωiG

T
:iω + ω2

i ‖ω‖2
)(t−1)

.

(17)

Greedy Column Subset Selection for Large-scale Data Sets 15

Algorithm 1 Greedy Column Subset Selection
Input: Data matrix A, Number of columns l
Output: Selected subset of columns S
1: Initialize S = { }
2: Initialize f

(0)
i = ‖ATA:i‖2, g

(0)
i = AT

:iA:i for i = 1 ... n
3: Repeat t = 1→ l:

4: p = arg max
i

f
(t)
i /g

(t)
i , S = S ∪ {p}

5: δ(t) = ATA:p −
∑t−1

r=1 ω
(r)
p ω(r)

6: ω(t) = δ(t)/

√
δ

(t)
p

7: Update f i’s, gi’s (Theorem 2)

Similarly, g
(t)
i can be calculated as:

g
(t)
i = G

(t)
ii =

(
Gii − ω2

i

)(t−1)
=
(
gi − ω2

i

)(t−1)
.

(18)

Let f = [f i]i=1..nand g = [gi]i=1..n, f (t) and g(t) can be expressed as:

f (t) =
(
f − 2 (ω ◦Gω) + ‖ω‖2 (ω ◦ ω)

)(t−1)
,

g(t) = (g − (ω ◦ ω))
(t−1)

,
(19)

where ◦ represents the Hadamard product operator, and ‖.‖ is the `2 norm.
Based on the recursive formula of G (Eq. 15), the term Gω at iteration

(t− 1) can be expressed as:

Gω =
(
ATA−Σt−2

r=1

(
ωωT

)(r))
ω

= ATAω −Σt−2
r=1

(
ω(r)Tω

)
ω

(r)
(20)

Substituting with Gω in Equation (19) gives the update formulas for f
and g.

This means that the greedy criterion can be memory-efficient by only main-
taining two score variables for each column, f i and gi, and updating them at
each iteration based on their previous values and the columns selected so far.

Algorithm 1 shows the complete greedy CSS algorithm.

5 Distributed Column Subset Selection on MapReduce

This section describes a MapReduce algorithm for the distributed column sub-
set selection problem. Given a big data matrix A whose columns are distributed
across different machines, the goal is to select a subset of columns S from A
such that the CSS criterion F (S) is minimized.

One näıve approach to perform distributed column subset selection is to
select different subsets of columns from the sub-matrices stored on different

16 Ahmed K. Farahat et al.

machines. The selected subsets are then sent to a centralized machine where
an additional selection step is optionally performed to filter out irrelevant or
redundant columns. Let A(i) be the sub-matrix stored at machine i, the näıve
approach optimizes the following function.

c∑
i=1

∥∥∥A(i) − P (L(i))A(i)

∥∥∥2
F
, (21)

where L(i) is the set of columns selected from A(i) and c is the number of
physical blocks of data. The resulting set of columns is the union of the sets
selected from different sub-matrices: L = ∪ci=1L(i). The set L can further be
reduced by invoking another selection process in which a smaller subset of
columns is selected from A:L.

The näıve approach, however simple, is prone to missing relevant columns.
This is because the selection at each machine is based on approximating a local
sub-matrix, and accordingly there is no way to determine whether the selected
columns are globally relevant or not. For instance, suppose the extreme case
where all the truly representative columns happen to be loaded on a single
machine. In this case, the algorithm will select a less-than-required number of
columns from that machine and many irrelevant columns from other machines.

In order to alleviate this problem, the different machines have to select
columns that best approximate a common representation of the data matrix.
To achieve that, the proposed algorithm first learns a concise representation of
the span of the big data matrix. This concise representation is relatively small
and it can be sent over to all machines. After that each machine can select
columns from its sub-matrix that approximate this concise representation. The
proposed algorithm uses random projection to learn this concise representa-
tion, and proposes a generalized Column Subset Selection (CSS) method to
select columns from different machines. The details of the proposed methods
are explained in the rest of this section.

5.1 Random Projection

The first step of the proposed algorithm is to learn a concise representation B
for a distributed data matrixA. In the proposed approach, a random projection
method is employed. Random projection [11] [1] [40] is a well-known technique
for dealing with the curse-of-the-dimensionality problem. Let Ω be a random
projection matrix of size n × r, and given a data matrix X of size m × n,
the random projection can be calculated as Y = XΩ. It has been shown that
applying random projection Ω to X preserves the pairwise distances between
vectors in the row space of X with a high probability [11]:

(1− ε) ‖Xi: −Xj:‖ ≤ ‖Xi:Ω −Xj:Ω‖
≤ (1 + ε) ‖Xi: −Xj:‖ ,

(22)

where ε is an arbitrarily small factor.

Greedy Column Subset Selection for Large-scale Data Sets 17

Since the CSS criterion F (S) measures the reconstruction error between
the big data matrix A and its low-rank approximation P (S)A, it essentially
measures the sum of the distances between the original rows and their approx-
imations. This means that when applying random projection to both A and
P (S)A, the reconstruction error of the original data matrix A will be approx-
imately equal to that of AΩ when both are approximated using the subset of
selected columns:

‖A− P (S)A‖2F ≈ ‖AΩ − P (S)AΩ‖2F . (23)

So, instead of optimizing ‖A − P (S)A‖2F , the distributed CSS can approxi-
mately optimize ‖AΩ − P (S)AΩ‖2F .

Let B = AΩ, the distributed column subset selection problem can be
formally defined as

Problem 4 (Distributed Column Subset Selection) Given an m × n(i)
sub-matrix A(i) which is stored at node i and an integer l(i), find a subset of
columns L(i) such that |L(i)| = l(i) and

L(i) = arg min
S
‖B − P (S)B‖2F ,

where B = AΩ, Ω is an n × r random projection matrix, S is the set of
the indices of the candidate columns and L(i) is the set of the indices of the
selected columns from A(i).

A key observation here is that random projection matrices whose entries are
sampled i.i.d from some univariate distribution Ψ can be exploited to compute
random projection on MapReduce in a very efficient manner. Examples of
such matrices are Gaussian random matrices [11], uniform random sign (±1)
matrices [1], and sparse random sign matrices [40].

In order to implement random projection on MapReduce, the data matrix
A is distributed in a column-wise fashion and viewed as pairs of 〈i, A:i〉 where
A:i is the i-th column of A. Recall that B = AΩ can be rewritten as

B =

n∑
i=1

A:iΩi: (24)

and since the map function is provided one columns of A at a time, one does
not need to worry about pre-computing the full matrix Ω. In fact, for each
input column A:i, a new vector Ωi: needs to be sampled from Ψ . So, each
input column generates a matrix of size m× r which means that O(nmr) data
should be moved across the network to sum the generated n matrices at m
independent reducers each summing a row Bj: to obtain B. To minimize that
network cost, an in-memory summation can be carried out over the generated
m×r matrices at each mapper. This can be done incrementally after processing
each column of A. That optimization reduces the network cost to O(cmr),

18 Ahmed K. Farahat et al.

Algorithm 2 Fast Random Projection on MapReduce
Input: Data matrix A, Univariate distribution Ψ , Number of dimensions r
Output: Concise representation B = AΩ, Ωij ∼ Ψ ∀i, j
1: map:

2: B̄ = [0]m×r

3: foreach 〈i, A:i〉
4: Generate v = [v1,v2, ...vr], vj ∼ Ψ
5: B̄ = B̄ +A:iv
6: for j = 1 to m
7: emit 〈j, B̄j:〉

8: reduce:

9: foreach 〈j,
[
[B̄(1)]j:, [B̄(2)]j:, ..., [B̄(c)]j:

]
〉

10: Bj: =
∑c

i=1[B̄(i)]j:

11: emit 〈j, Bj:〉

where c is the number of physical blocks of the matrix3. Algorithm 2 outlines
the proposed random projection algorithm. The term emit is used to refer to
outputting new 〈key, value〉 pairs from a mapper or a reducer.

5.2 Generalized Column Subset Selection

This section presents the generalized column subset selection algorithm which
will be used to perform the selection of columns at different machines. While
Problem 1 is concerned with the selection of a subset of columns from a data
matrix which best represent other columns of the same matrix, Problem 4
selects a subset of columns from a source matrix which best represent the
columns of a different target matrix. The objective function of Problem 4
represents the reconstruction error of the target matrix B based on the selected

columns from the source matrix. and the term P (S) = A:S
(
AT

:SA:S
)−1

AT
:S is

the projection matrix which projects the columns of B onto the subspace of
the columns selected from A.

In order to optimize this new criterion, a greedy algorithm can be in-

troduced. Let F̄ (S) =
∥∥B − P (S)B

∥∥2
F

be the distributed CSS criterion, the

following theorem derives a recursive formula for F̄ (S).

Theorem 3 Given a set of columns S. For any P ⊂ S,

F̄ (S) = F̄ (P)−
∥∥∥F̃R∥∥∥2

F
,

where F = B − P (P)B, and F̃R is the low-rank approximation of F based on
the subset R = S \ P of columns of E = A− P (P)A.

3 The in-memory summation can also be replaced by a MapReduce combiner [12].

Greedy Column Subset Selection for Large-scale Data Sets 19

Proof Using the recursive formula for the low-rank approximation of A: ÃS =
ÃP + ẼR, and multiplying both sides with Ω gives

ÃSΩ = ÃPΩ + ẼRΩ .

Low-rank approximations can be written in terms of projection matrices as

P (S)AΩ = P (P)AΩ +R(R)EΩ .

Using B = AΩ,
P (S)B = P (P)B +R(R)EΩ .

Let F = EΩ. The matrix F is the residual after approximating B using the
set P of columns

F = EΩ =
(
A− P (P)A

)
Ω = AΩ − P (P)AΩ = B − P (P)B .

This means that
P (S)B = P (P)B +R(R)F

Substituting in F̄ (S) =
∥∥B − P (S)B

∥∥2
F

gives

F̄ (S) =
∥∥∥B − P (P)B −R(R)F

∥∥∥2
F

Using F = B − P (P)B gives

F̄ (S) =
∥∥∥F −R(R)F

∥∥∥2
F

Using the relation between Frobenius norm and trace,

F̄ (S) = trace

((
F −R(R)F

)T (
F −R(R)F

))
= trace

(
FTF − 2FTR(R)F + FTR(R)R(R)F

)
= trace

(
FTF − FTR(R)F

)
= ‖F‖2F −

∥∥∥R(R)F
∥∥∥2
F

Using F̄ (P) = ‖F‖2F and F̃R = R(R)F proves the theorem.
Using the recursive formula for F̄ (S ∪ {i}) allows the development of a

greedy algorithm which at iteration t optimizes

p = arg min
i

F̄ (S ∪ {i}) = arg max
i

∥∥∥F̃{i}∥∥∥2
F

(25)

Let G = ETE and H = FTE, the objective function of this optimization
problem can be simplified as follows.∥∥∥F̃{i}∥∥∥2

F
=
∥∥∥E:i

(
ET

:iE:i

)−1
ET

:iF
∥∥∥2
F

= trace
(
FTE:i

(
ET

:iE:i

)−1
ET

:iF
)

=

∥∥FTE:i

∥∥2
ET

:iE:i
=
‖H:i‖2

Gii
.

(26)

This allows the definition of the following generalized CSS problem.

20 Ahmed K. Farahat et al.

Algorithm 3 Greedy Generalized Column Subset Selection
Input: Source matrix A, Target matrix B, Number of columns l
Output: Selected subset of columns S
1: Initialize f

(0)
i = ‖BTA:i‖2, g

(0)
i = AT

:iA:i for i = 1 ... n
2: Repeat t = 1→ l:

3: p = arg max
i

f
(t)
i /g

(t)
i , S = S ∪ {p}

4: δ(t) = ATA:p −
∑t−1

r=1 ω
(r)
p ω(r)

5: γ(t) = BTA:p −
∑t−1

r=1 ω
(r)
p υ(r)

6: ω(t) = δ(t)/

√
δ

(t)
p , υ(t) = γ(t)/

√
δ

(t)
p

7: Update f i’s, gi’s (Theorem 4)

Problem 5 (Greedy Generalized CSS) At iteration t, find column p such
that

p = arg max
i

‖H:i‖2

Gii

where H = FTE, G = ETE, F = B − P (S)B, E = A − P (S)A and S is the
set of columns selected during the first t− 1 iterations.

For iteration t, define γ = H:p and υ = H:p/
√
Gpp = γ/

√
δp . The

vector γ(t) can be calculated in terms of A, B and previous ω’s and υ’s as

γ(t) = BTA:p −
∑t−1

r=1 ω
(r)
p υ(r) .

Similarly, the numerator and denominator of the selection criterion at each
iteration can be calculated in an efficient manner using the following theorem.

Theorem 4 Let f i = ‖H:i‖2 and gi = Gii be the numerator and denominator
of the greedy criterion function for column i respectively, f = [f i]i=1..n, and
g = [gi]i=1..n. Then,

f (t) =
(
f − 2

(
ω ◦

(
ATBυ −Σt−2

r=1

(
υ(r)Tυ

)
ω

(r)
))

+ ‖υ‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
,

where ◦ represents the Hadamard product operator.

As outlined in Section 5.1, the algorithm’s distribution strategy is based
on sharing the concise representation of the data B among all mappers. Then,
independent l(b) columns from each mapper are selected using the generalized
CSS algorithm. A second phase of selection is run over the

∑c
b=1 l(b) (where c

is the number of input blocks) columns to find the best l columns to represent
B. Different ways can be used to set l(b) for each input block b. In the context
of this paper, the set of l(b) is assigned uniform values for all blocks (i.e.
l(b) = bl/cc∀b ∈ 1, 2, ..c). Algorithm 4 sketches the MapReduce implementation
of the distributed CSS algorithm. It should be emphasized that the proposed
MapReduce algorithm requires only two passes over the data set and its moves
a very few amount of the data across the network.

Greedy Column Subset Selection for Large-scale Data Sets 21

Algorithm 4 Distributed CSS on MapReduce
Input: Matrix A of size m× n, Concise representation B, Number of columns l
Output: Selected columns C

1: map:

2: A(b) = []
3: foreach 〈i, A:i〉
4: A(b) = [A(b) A:i]

5: S̄ = GeneralizedCSS(A(b), B, l(b))

6: foreach j in S̄
7: emit 〈0, [A(b)]:j〉

8: reduce:

9: For all values {[A(1)]:S̄(1) , [A(2)]:S̄(2) ,, [A(c)]:S̄(c)}

10: A(0) =
[
[A(1)]:S̄(1) , [A(2)]:S̄(2) ,, [A(c)]:S̄(c)

]
11: S = GeneralizedCSS (A(0), B, l)
12: foreach j in S
13: emit 〈0, [A(0)]:j〉

6 Related Work

Different approaches have been proposed for selecting a subset of representa-
tive columns from a data matrix. This section focuses on briefly describing
these approaches and their applicability to massively distributed data matri-
ces. The Column Subset Selection (CSS) methods can be generally categorized
into randomized, deterministic and hybrid.

6.1 Randomized Methods

The randomized methods sample a subset of columns from the original matrix
using carefully chosen sampling probabilities. The main focus of this category
of methods is to develop fast algorithms for column subset selection and then
derive a bound for the reconstruction error of the data matrix based on the
selected columns relative to the best possible reconstruction error obtained
using Singular Value Decomposition (SVD).

Frieze et al. [26] was the first to suggest the idea of randomly sampling l
columns from a matrix and using these columns to calculate a rank-k approx-
imation of the matrix (where l ≥ k). The authors derived an additive bound
for the reconstruction error of the data matrix. This work of Frieze et al. was
followed by different papers [17] [18] that enhanced the algorithm by propos-
ing different sampling probabilities and deriving better error bounds for the
reconstruction error. Drineas et al. [19] proposed a subspace sampling method
which samples columns using probabilities proportional to the norms of the
rows of the top k right singular vectors of A. The subspace sampling method
allows the development of a relative-error bound (i.e., a multiplicative error
bound relative to the best rank-k approximation). However, the subspace sam-

22 Ahmed K. Farahat et al.

pling depends on calculating the leading singular vectors of a matrix which is
computationally very complex for large matrices.

Deshpande et al. [16] [15] proposed an adaptive sampling method which
updates the sampling probabilities based on the columns selected so far. This
method is computationally very complex, as it depends on calculating the
residual of the data matrix after each iteration. In the same paper, Deshpande
et al. also proved the existence of a volume sampling algorithm (i.e., sampling
a subset of columns based on the volume enclosed by their vectors) which
achieves a multiplicative (l+ 1)-approximation. However, the authors did not
present a polynomial time algorithm for this volume sampling algorithm.

Column subset selection with uniform sampling can be easily implemented
on MapReduce. For non-uniform sampling, the efficiency of implementing the
selection on MapReduce is determined by how easy are the calculations of the
sampling probabilities. The calculations of probabilities that depend on calcu-
lating the leading singular values and vectors are time-consuming on MapRe-
duce. On the other hand, adaptive sampling methods are computationally very
complex as they depend on calculating the residual of the whole data matrix
after each iteration.

6.2 Deterministic Methods

The second category of methods employs a deterministic algorithm for select-
ing columns such that some criterion function is minimized. This criterion
function usually quantifies the reconstruction error of the data matrix based
on the subset of selected columns. The deterministic methods are slower, but
more accurate, than the randomized ones.

In the area of numerical linear algebra, the column pivoting method ex-
ploited by the QR decomposition [27] permutes the columns of the matrix
based on their norms to enhance the numerical stability of the QR decompo-
sition algorithm. The first l columns of the permuted matrix can be directly
selected as representative columns. The Rank-Revealing QR (RRQR) decom-
position [9] [28] [2] [43] is a category of QR decomposition methods which
permute columns of the data matrix while imposing additional constraints on
the singular values of the two sub-matrices of the upper-triangular matrix R
corresponding to the selected and non-selected columns. It has been shown
that the constrains on the singular values can be used to derive an theoreti-
cal guarantee for the column-based reconstruction error according to spectral
norm [6].

Besides methods based on QR decomposition, different recent methods
have been proposed for directly selecting a subset of columns from the data
matrix. Boutsidis et al. [6] proposed a deterministic column subset selection
method which first groups columns into clusters and then selects a subset
of columns from each cluster. The authors proposed a general framework in
which different clustering and subset selection algorithms can be employed
to select a subset of representative columns. Çivril and Magdon-Ismail [7] [8]

Greedy Column Subset Selection for Large-scale Data Sets 23

presented a deterministic algorithm which greedily selects columns from the
data matrix that best represent the right leading singular values of the matrix.
This algorithm, however accurate, depends on the calculation of the leading
singular vectors of a matrix, which is computationally very complex for large
matrices.

Recently, Boutsidis et al. [3] presented a column subset selection algorithm
which first calculates the top-k right singular values of the data matrix (where
k is the target rank) and then uses deterministic sparsification methods to
select l ≥ k columns from the data matrix. The authors derived a theoreti-
cally near-optimal error bound for the rank-k column-based approximation.
Deshpande and Rademacher [14] presented a polynomial-time deterministic
algorithm for volume sampling with a theoretical guarantee for l = k. Quite
recently, Guruswami and Sinop [29] presented a deterministic algorithm for
volume sampling with theoretical guarantee for l > k. The deterministic vol-
ume sampling algorithms are, however, more complex than the algorithms
presented in this paper, and they are infeasible for large data sets.

The deterministic algorithms are more complex to implement on MapRe-
duce. For instance, it is time-consuming to calculate the leading singular values
and vectors of a massively distributed matrix or to cluster their columns using
k-means. It is also computationally complex to calculate QR decomposition
with pivoting. Moreover, the recently proposed algorithms for volume sampling
are more complex than other CSS algorithms as well as the one presented in
this paper, and they are infeasible for large data sets.

6.3 Hybrid Methods

A third category of CSS techniques is the hybrid methods which combine the
benefits of both the randomized and deterministic methods. In these methods,
a large subset of columns is randomly sampled from the columns of the data
matrix and then a deterministic step is employed to reduce the number of
selected columns to the desired rank.

For instance, Boutsidis et al. [5] proposed a two-stage hybrid algorithm for
column subset selection which runs in O

(
min

(
n2m,nm2

))
. In the first stage,

the algorithm samples c = O (l log l) columns based on probabilities calcu-
lated using the l-leading right singular vectors. In the second phase, a Rank-
revealing QR (RRQR) algorithm is employed to select exactly l columns from
the columns sampled in the first stage. The authors suggested repeating the
selection process 40 times in order to provably reduce the failure probability.
The authors proved a good theoretical guarantee for the algorithm in terms of
spectral and Frobenius term. However, the algorithm depends on calculating
the leading l right singular vectors which is computationally complex for large
data sets.

The hybrid algorithms for CSS can be easily implemented on MapReduce
if the randomized selection step is MapReduce-efficient and the deterministic

24 Ahmed K. Farahat et al.

Table 1 The properties of the medium an large data sets used to evaluate different CSS
methods.

Data set Type # Instances # Features

Reuters-21578 Documents 5,946 18,933
Reviews Documents 4,069 36,746

LA1 Documents 3,204 29,714
MNIST-4K Digit Images 4,000 784

PIE-20 Face Images 3,400 1,024
YaleB-38 Face Images 2,414 1,024

RCV1-200K Documents 193,844 47,236
TinyImages-1M Images 1 million 1,024

selection step can be implemented on a single machine. This is usually true if
the number of columns selected by the randomized step is relatively small.

6.4 Comparison to Related Work

The greedy column subset selection algorithm presented in Section 4 belongs
to the category of deterministic algorithms. In comparison to QR-based meth-
ods, the greedy CSS algorithm can be implicitly used to calculate a Q-less
incomplete QR factorization of the data matrix A:

A = QW, AΠ = QWΠ = QR

where Π is a permutation matrix which sorts the first l columns according
to their selection order. The permutation of the columns of the embedding
matrix W produces an upper triangular matrix.

The greedy CSS algorithm differs from the greedy algorithm proposed by
Çivril and Magdon-Ismail [7] [8] in that the latter depends on first calculating
the Singular Value Decomposition of the data matrix, which is computationally
complex, especially for large matrices. The proposed algorithm is also more
efficient than the recently proposed volume sampling algorithms [14] [29].

In comparison to other CSS methods, the distributed algorithm proposed
in this paper is designed to be MapReduce-efficient. In the selection step,
representative columns are selected based on a common representation. The
common representation proposed in this work is based on random projection.
This is more efficient than the work of Çivril and Magdon-Ismail [8] which
selects columns based on the leading singular vectors. In comparison to other
deterministic methods, the proposed algorithm is specifically designed to be
parallelized which makes it applicable to big data matrices whose columns are
massively distributed. On the other hand, the two-step of distributed then cen-
tralized selection is similar to that of the hybrid CSS methods. The proposed
algorithm however employs a deterministic algorithm at the distributed selec-
tion phase which is more accurate than the randomized selection employed by
hybrid methods in the first phase.

Greedy Column Subset Selection for Large-scale Data Sets 25

7 Experiments

Two sets of experiments have been conducted. The first set of experiments has
been conducted on medium-sized data sets in order to evaluate the efficiency
and effectiveness of the centralized greedy CSS algorithm in comparison to
state-of-the-art methods for CSS. The second set of experiments has been
conducted on two big data sets to evaluate the efficiency and effectiveness of
the distributed CSS algorithm on MapReduce.

Experiments have been conducted on eight benchmark data sets, whose
properties are summarized in Table 1.4 The first six data sets were used to
conduct the centralized experiments. The Reuters-21578 is the training set of
the Reuters-21578 collection [38]. The Reviews and LA1 are document data
sets from TREC collections.5 The pre-processed versions of Reviews and LA1
that are distributed with the CLUTO Toolkit [35] were used. The MNIST-4K
is a subset of the MNIST data set of handwritten digits.6 The PIE-20 and
YaleB-38 are pre-processed subsets of the CMU PIE [44] and Extended Yale
Face [37] data sets respectively. The PIE-20 and YaleB-38 data sets have
been used by He et al. [31] to evaluate different face recognition algorithms.
Besides, the distributed experiments were conducted on two data sets. The
RCV1-200K is a subset of the RCV1 data set [39] which has been prepared
and used by Chen et al. [10] to evaluate parallel spectral clustering algorithms.
The TinyImages-1M data set contains 1 million images that were sampled
from the 80 million tiny images data set [46] and converted to grayscale.

Similar to previous work on CSS, the different methods are evaluated ac-
cording to their ability to minimize the reconstruction error of the data matrix
based on the subset of selected columns. In order to quantify the reconstruc-
tion error across different data sets, a relative accuracy measure is defined
as

Relative Accuracy =
‖A− ÃU‖F − ‖A− ÃS‖F
‖A− ÃU‖F − ‖A− Ãl‖F

× 100% ,

where ÃU is the rank-l approximation of the data matrix based on a random
subset U of columns, ÃS is the rank-l approximation of the data matrix based
on the subset S of columns and Ãl is the best rank-l approximation of the
data matrix calculated using the Singular Value Decomposition (SVD). This
measure compares different methods relative to the uniform sampling as a
baseline with higher values indicating better performance.

4 The data sets Reuters-21578, MNIST-4K, PIE-20 and YaleB-38 are available in MAT
format at: http://www.cad.zju.edu.cn/home/dengcai/Data/data.html. PIE-20 is a subset
of PIE-32x32 with the images of the first 20 persons.

5 http://trec.nist.gov
6 http://yann.lecun.com/exdb/mnist

http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
http://trec.nist.gov
http://yann.lecun.com/exdb/mnist

26 Ahmed K. Farahat et al.

7.1 Evaluation of Centralized Greedy CSS

In the medium-scale experiments, the following CSS methods are compared7.

– UniNoRep: is uniform sampling of columns without replacement.
– qr: is the QR decomposition with column pivoting [27] implemented by

the MATLAB qr function.8

– SRRQR: is the strong rank-revealing QR decomposition [28]. Algorithm
4 of [28] was implemented in MATLAB. In this implementation, the MAT-
LAB qr function is first used to calculate the QR decomposition with
column pivoting and then the columns are swapped using the criterion
specified by Gu and Eisenstat [28].9

– ApproxSVD: is the sparse approximation of Singular Value Decompo-
sition (SVD) [7] [8]. The algorithm was implemented in MATLAB. The
generalized CSS algorithm is used to select columns that best approxi-
mates the leading singular vectors. The use of the generalized CSS algo-
rithm is equivalent to, but more efficient than, the algorithm proposed
by Çivril and Magdon-Ismail [7] [8]. Since the calculation of exact SVD
is computationally complex, the Stochastic SVD algorithm [30] is used to
approximate the leading singular values and vectors of the data matrix.
This significantly reduces the run time of the original algorithm proposed
by Çivril and Magdon-Ismail while achieving comparable accuracy. In this
experiment, the number of leading singular vectors is set to l.

– HybridCSS: is the hybrid column subset selection algorithm proposed
by Bousidis et al. [5]. The number of selected columns in the randomized
phase is set to l log (l). The algorithm was implemented in MATLAB. In
the randomized phase, the Stochastic SVD is first used to calculate the
leading singular vectors, and the approximated singular vectors are then
used to calculate the sampling probabilities. In the random phase, the
number of leading singular vectors is set to l. In the deterministic phase,
the MATLAB qr function is used to select columns.10

– GreedyCSS: is the greedy column subset selection method described in
Algorithm 1.

– RndGreedyCSS: is the greedy algorithm for the generalized column sub-
set selection in which the target matrix is a random subspace obtained
using random projection. Similar to ApproxSVD and HybridCSS, the di-
mension of the random projection matrix is set to l.

7 The CSS algorithm of Boutsidis et al. [3] was not included in the comparison as its
implementation is not available.

8 Revision: 5.13.4.7
9 In the implemented code, the efficient recursive formulas in Section 4 of [28] are used to

implement the update of QR decomposition and the swapping criterion.
10 In [4] (a newer version of [5]), Boutsidis et al. suggested the use of the SRRQR algorithm

[28, Algorithm 4] for the deterministic phase. Although the SRRQR algorithm achieves the
theoretical guarantee presented in [5], the MATLAB qr function is used in the conducted
experiments as it is much faster and it achieves comparable accuracy for the experimented
data sets.

Greedy Column Subset Selection for Large-scale Data Sets 27

5 10 15 20 25
0

20

40

60

80

Reuters-21578

l/n (%)

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

5 10 15 20 25
0

10

20

30

40

50

Reviews

l/n (%)

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

5 10 15 20 25
0

10

20

30

40

LA1

l/n (%)

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

5 10 15 20 25

50

100

150

200

250

Reuters-21578

l/n (%)

R
un

 ti
m

e
(s

ec
on

ds
)

5 10 15 20 25

20

40

60

80

Reviews

l/n (%)

R
un

 ti
m

e
(s

ec
on

ds
)

5 10 15 20 25

10

20

30

40

50

LA1

l/n (%)

R
un

 ti
m

e
(s

ec
on

ds
)

UniNoRep ApproxSVD Hybrid GreedyCSS RndGreedyCSS

Fig. 1 The relative accuracy measures and run times of different column-based low-rank
approximations ÃS for the Reuters-21578, Reviews and LA1 data sets.

For all the data sets, the percentage of selected columns l/n is changed
from 1% to 25% with increments of 2% and the relative accuracies and run
times are measured.11 Experiments with randomness were repeated ten times,
and the average and standard deviation of measures were calculated.

Figures 1 and 2 show the relative accuracy measures and run times for
different CSS methods on the six benchmark data sets.12

It can be observed from the figures and tables that for all data sets,
the GreedyCSS method significantly outperforms the UniNoRep, qr, SR-

11 For the MNIST4K data set, the range of l/n values is smaller since the rank of the
matrix is very low (i.e., less than the number of pixels).
12 The qr and SRRQR methods both depend on the MATLAB qr function. For the

document data sets, the MATLAB qr function takes very long times compared to other
methods and accordingly they are not reported in the shown figures.

28 Ahmed K. Farahat et al.

2 4 6 8 10

-60

-40

-20

0

20

40

MNIST-4K

l/n (%)

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

5 10 15 20 25
0

10

20

30

40

PIE-20

l/n (%)

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

5 10 15 20 25
0

10

20

30

40

YALEB-38

l/n (%)

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

2 4 6 8 10 12

2

4

6

8

10

MNIST-4K

l/n (%)

R
un

 ti
m

e
(s

ec
on

ds
)

5 10 15 20 25

5

10

15

20

25

PIE-20

l/n (%)

R
un

 ti
m

e
(s

ec
on

ds
)

5 10 15 20 25

2

4

6

8

YALEB-38

l/n (%)

R
un

 ti
m

e
(s

ec
on

ds
)

UniNoRep qr SRRQR ApproxSVD Hybrid GreedyCSS RndGreedyCSS

Fig. 2 The relative accuracy measures and run times of different column-based low-rank
approximations ÃS for the MNIST-4K, PIE-20 and YaleB-38 data sets.

RQR, and HybridCSS methods in terms of relative accuracy, and it shows
comparable accuracy to the ApproxSVD method. In terms of run times, for
most of the data sets, the GreedyCSS scales better than the HybridCSS
and ApproxSVD methods.

On the other hand, the RndGreedyCSS outperforms the UniNoRep,
qr, and SRRQR methods in terms of relative accuracy, and shows compa-
rable accuracy to the HybridCSS method. In terms of run times, the Rnd-
GreedyCSS is much more efficient than the HybridCSS method and other
methods for all data sets. It should also be noted that the SRRQR method
achieves comparable accuracy to the qr method and both methods demon-
strate lower approximation accuracies than other deterministic and hybrid
methods.

Greedy Column Subset Selection for Large-scale Data Sets 29

7.2 Evaluation of Distributed Greedy CSS

The distributed CSS method has been compared with different state-of-the-art
methods. It should be noted that most of these methods were not designed
with the goal of applying them to massively-distributed data, and hence their
implementation on MapReduce is not straightforward. However, the designed
experiments used the best practices for implementing the different steps of
these methods on MapReduce to the best of the authors’ knowledge. In specific,
the following distributed CSS algorithms were compared.

– UniNoRep: is uniform sampling of columns without replacement. This is
usually the worst performing method in terms on approximation error and
it will be used as a baseline to evaluate methods across different data sets.

– HybirdUni, HybirdCol and HybirdSVD: are different distributed vari-
ants of the hybrid CSS algorithm which can be implemented efficiently on
MapReduce. In the randomized phase, the three methods use probabili-
ties calculated based on uniform sampling, column norms and the norms
of the leading singular vectors’ rows, respectively. The number of selected
columns in the randomized phase is set to l log (l). In the deterministic
phase, the centralized greedy CSS is employed to select exactly l columns
from the randomly sampled columns.

– DistApproxSVD: is an extension of the centralized algorithm for sparse
approximation of Singular Value Decomposition (SVD) [8]. The distributed
CSS algorithm presented in this paper (Algorithm 4) is used to select
columns that best approximate the leading singular vectors (by setting
B = UkΣk). The use of the distributed CSS algorithm extends the original
algorithm proposed by Çivril and Magdon-Ismail [8] to work on distributed
matrices. In order to allow efficient implementation on MapReduce, the
number of leading singular vectors is set of 100.

– DistGreedyCSS: is the distributed column subset selection method de-
scribed in Algorithm 4. For all experiments, the dimension of the random
projection matrix is set to 100. This makes the size of the concise repre-
sentation the same as the DistApproxSVD method. Two types of random
matrices are used for random projection: (1) a dense Gaussian random
matrix (rnd), and (2) a sparse random sign matrix (ssgn).

For the methods that require the calculations of Singular Value Decomposi-
tion (SVD), the Stochastic SVD (SSVD) algorithm [30] is used to approximate
the leading singular values and vectors of the data matrix. The use of SSVD
significantly reduces the run time of the original SVD-based algorithms while
achieving comparable accuracy. In the conducted experiments, the SSVD im-
plementation of Mahout was used.

The distributed experiments were conducted on Amazon EC213 clusters,
which consist of 10 instances for the RCV1-200K data set and 20 instances
for the TinyImages-1M data set. Each instance has a 7.5 GB of memory and
a two-cores processor. All instances are running Debian 6.0.5 and Hadoop

13 Amazon Elastic Compute Cloud (EC2): http://aws.amazon.com/ec2

http://aws.amazon.com/ec2

30 Ahmed K. Farahat et al.

version 1.0.3. The data sets were converted into a binary format in the form
of a sequence of key-value pairs. Each pair consisted of a column index as the
key and a vector of the column entries. That is the standard format used in
Mahout14 for storing distributed matrices.

Table 2 shows the run times and relative accuracies for different CSS meth-
ods. It can be observed from the table that for the RCV1-200K data set,
the DistGreedyCSS methods (with random Gaussian and sparse random sing
matrices) outperforms all other methods in terms of relative accuracies. In
addition, the run times of both of them are relatively small compared to the
DistApproxSVD method which achieves accuracies that are close to the Dist-
GreedyCSS method. Both the DistApproxSVD and DistGreedyCSS methods
achieve very good approximation accuracies compared to randomized and hy-
brid methods. It should also be noted that using a sparse random sign matrix
for random projection takes much less time than a dense Gaussian matrix,
while achieving comparable approximation accuracies. Based on this observa-
tion, the sparse random matrix has been used with the TinyImages-1M data
set.

For the TinyImages-1M data set, although the DistApproxSVD achieves
slightly higher approximation accuracies than DistGreedyCSS (with sparse
random sign matrix), the DistGreedyCSS selects columns in almost one-third
of the time. The reason why the DistApproxSVD outperforms DistGreedyCSS
for this data set is that its rank is relatively small (less than 1024). This means
that using the leading 100 singular values to represent the concise represen-
tation of the data matrix captures most of the information in the matrix and
accordingly is more accurate than random projection. The DistGreedyCSS
however still selects a very good subset of columns in a relatively small time.

8 Conclusion

This paper proposes a novel algorithm which greedily selects a subset of
columns from a data matrix such that reconstruction error of the data ma-
trix is minimized. The algorithm depends on a novel recursive formula for the
reconstruction error of the data matrix, which allows a greedy selection crite-
rion to be calculated efficiently at each iteration. This paper also presents an
accurate and efficient MapReduce algorithm for selecting a subset of columns
from a massively distributed matrix. The algorithm starts by learning a con-
cise representation of the data matrix using random projection. It then selects
columns from each sub-matrix that best approximate this concise approxima-
tion. A centralized selection step is then performed on the columns selected
from different sub-matrices. In order to facilitate the implementation of the
proposed method, a novel algorithm for greedy generalized CSS is proposed
to perform the selection from different sub-matrices. In addition, the differ-
ent steps of the algorithms are carefully designed to be MapReduce-efficient.

14 Mahout is an Apache project for implementing Machine Learning algorithms on Hadoop.
See http://mahout.apache.org/.

http://mahout.apache.org/

Greedy Column Subset Selection for Large-scale Data Sets 31

Table 2 The run times and relative accuracies of different distributed CSS methods. The
best performing method for each l is highlighted in bold, and the second best method is
underlined. Negative measures indicate methods that perform worse than uniform sampling.

Methods
Run time (minutes) Relative accuracy (%)

l = 10 l = 100 l = 500 l = 10 l = 100 l = 500
RCV1 - 200K

Uniform - Baseline 0.6 0.6 0.5 0.00 0.00 0.00
Hybird (Uniform) 0.8 0.8 2.9 -2.37 -1.28 4.49

Hybird (Column Norms) 1.6 1.5 3.7 4.54 0.81 6.60
Hybird (SVD-based) 1.3 1.4 3.6 9.00 12.10 18.43

Distributed Approx. SVD 16.6 16.7 18.8 41.50 57.19 63.10
Distributed Greedy CSS (rnd) 5.8 6.2 7.9 51.76 61.92 67.75
Distributed Greedy CSS (ssgn) 2.2 2.9 5.1 40.30 62.41 67.91

Tiny Images - 1M
Uniform - Baseline 1.3 1.3 1.3 0.00 0.00 0.00
Hybird (Uniform) 1.5 1.7 8.3 19.99 6.85 6.50

Hybird (Column Norms) 3.3 3.4 9.4 17.28 3.57 7.80
Hybird (SVD-based) 52.4 52.5 59.4 3.59 8.57 10.82

Distributed Approx. SVD 71.0 70.8 75.2 70.02 31.05 24.49
Distributed Greedy CSS (ssgn) 22.1 23.6 24.2 67.58 25.18 20.74

Experiments on medium and big data sets demonstrate the effectiveness and
efficiency of the proposed algorithm in comparison to other CSS methods when
implemented on centralized and distributed data.

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with bi-
nary coins. Journal of computer and System Sciences 66(4), 671–687 (2003)

2. Bischof, C., Quintana-Ort́ı, G.: Computing rank-revealing QR factorizations of dense
matrices. ACM Transactions on Mathematical Software (TOMS) 24(2), 226–253 (1998)

3. Boutsidis, C., Drineas, P., Magdon-Ismail, M.: Near optimal column-based matrix re-
construction. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS’11), pp. 305 –314 (2011). DOI 10.1109/FOCS.2011.21

4. Boutsidis, C., Mahoney, M.W., Drineas, P.: An improved approximation algorithm for
the column subset selection problem. CoRR abs/0812.4293 (2008)

5. Boutsidis, C., Mahoney, M.W., Drineas, P.: An improved approximation algorithm for
the column subset selection problem. In: Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’09), pp. 968–977 (2009)

6. Boutsidis, C., Sun, J., Anerousis, N.: Clustered subset selection and its applications on
it service metrics. In: Proceedings of the Seventeenth ACM Conference on Information
and Knowledge Management (CIKM’08), pp. 599–608 (2008). DOI 10.1145/1458082.
1458162

7. Çivril, A., Magdon-Ismail, M.: Deterministic sparse column based matrix reconstruction
via greedy approximation of SVD. In: Proceedings of the 19th International Symposium
on Algorithms and Computation (ISAAC’08), pp. 414–423. Springer-Verlag (2008)

8. Çivril, A., Magdon-Ismail, M.: Column subset selection via sparse approximation of
SVD. Theoretical Computer Science 421(0), 1 – 14 (2012). DOI 10.1016/j.tcs.2011.11.
019

9. Chan, T.: Rank revealing QR factorizations. Linear Algebra and Its Applications 88,
67–82 (1987)

32 Ahmed K. Farahat et al.

10. Chen, W.Y., Song, Y., Bai, H., Lin, C.J., Chang, E.: Parallel spectral clustering in
distributed systems. Pattern Analysis and Machine Intelligence, IEEE Transactions on
33(3), 568 –586 (2011). DOI 10.1109/TPAMI.2010.88

11. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Linden-
strauss. Random Structures and Algorithms 22(1), 60–65 (2003)

12. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. Com-
munications of the ACM 51(1), 107–113 (2008). DOI 10.1145/1327452.1327492

13. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by la-
tent semantic analysis. Journal of the American Society for Information Science and
Technology 41(6), 391–407 (1990)

14. Deshpande, A., Rademacher, L.: Efficient volume sampling for row/column subset selec-
tion. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS’10), pp. 329 –338 (2010). DOI 10.1109/FOCS.2010.38

15. Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and
projective clustering via volume sampling. Theory of Computing 2(1), 225–247 (2006).
DOI 10.4086/toc.2006.v002a012

16. Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and
projective clustering via volume sampling. In: Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pp. 1117–1126. ACM, New
York, NY, USA (2006). DOI 10.1145/1109557.1109681

17. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via
the singular value decomposition. Machine Learning 56(1-3), 9–33 (2004)

18. Drineas, P., Kannan, R., Mahoney, M.: Fast Monte Carlo algorithms for matrices II:
Computing a low-rank approximation to a matrix. SIAM Journal on Computing 36(1),
158–183 (2007)

19. Drineas, P., Mahoney, M., Muthukrishnan, S.: Subspace sampling and relative-error
matrix approximation: Column-based methods. In: Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pp. 316–326. Springer
Berlin / Heidelberg (2006)

20. Elgohary, A., Farahat, A.K., Kamel, M.S., Karray, F.: Embed and conquer: Scalable
embeddings for kernel k-means on mapreduce. CoRR abs/1311.2334 (2013)

21. Elsayed, T., Lin, J., Oard, D.W.: Pairwise document similarity in large collections with
MapReduce. In: Proceedings of the 46th Annual Meeting of the Association for Com-
putational Linguistics on Human Language Technologies: Short Papers (HLT’08), pp.
265–268 (2008)

22. Ene, A., Im, S., Moseley, B.: Fast clustering using MapReduce. In: Proceedings of
the Seventeenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’11), pp. 681–689 (2011)

23. Farahat, A.K., Elgohary, A., Ghodsi, A., Kamel, M.S.: Distributed column subset selec-
tion on mapreduce. In: Proceedings of the Thirteenth IEEE International Conference
on Data Mining (ICDM’13) (2013). To appear

24. Farahat, A.K., Ghodsi, A., Kamel, M.S.: An efficient greedy method for unsupervised
feature selection. In: Proceedings of the Eleventh IEEE International Conference on
Data Mining (ICDM’11), pp. 161 –170 (2011). DOI 10.1109/ICDM.2011.22

25. Farahat, A.K., Ghodsi, A., Kamel, M.S.: Efficient greedy feature selection for unsuper-
vised learning. Knowledge and Information Systems 35(2), 285–310 (2013)

26. Frieze, A., Kannan, R., Vempala, S.: Fast Monte-Carlo algorithms for finding low-rank
approximations. In: Proceedings of the 39th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’98), pp. 370 –378 (1998). DOI 10.1109/SFCS.1998.743487

27. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins Univ Pr (1996)
28. Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rank-revealing QR

factorization. SIAM Journal on Scientific Computing 17(4), 848–869 (1996). DOI
10.1137/0917055

29. Guruswami, V., Sinop, A.K.: Optimal column-based low-rank matrix reconstruction.
In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’12), pp. 1207–1214 (2012)

30. Halko, N., Martinsson, P.G., Shkolnisky, Y., Tygert, M.: An algorithm for the principal
component analysis of large data sets. SIAM Journal on Scientific Computing 33(5),
2580–2594 (2011). DOI 10.1137/100804139

Greedy Column Subset Selection for Large-scale Data Sets 33

31. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using Laplacianfaces.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 27(3), 328–340 (2005)

32. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1988)

33. Kang, U., Tsourakakis, C., Appel, A., Faloutsos, C., Leskovec, J.: Hadi: Fast diameter
estimation and mining in massive graphs with hadoop. CMU-ML-08-117 (2008)

34. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In:
Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’10), pp. 938–948 (2010)

35. Karypis, G.: CLUTO - a clustering toolkit. Tech. Rep. #02-017, University of Min-
nesota, Department of Computer Science (2003)

36. Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. Tech. rep., Technische
Hogeschool, Delft (Netherlands). Department of Mathematics and Informatics (1987)

37. Lee, K., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under
variable lighting. Pattern Analysis and Machine Intelligence, IEEE Transactions on
27(5), 684–698 (2005)

38. Lewis, D.: Reuters-21578 text categorization test collection distribution 1.0 (1999)
39. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for text

categorization research. The Journal of Machine Learning Research 5, 361–397 (2004)
40. Li, P., Hastie, T.J., Church, K.W.: Very sparse random projections. In: Proceedings of

the Twelfth ACM SIGKDD international conference on Knowledge Discovery and Data
Mining (KDD’06), pp. 287–296 (2006). DOI 10.1145/1150402.1150436

41. Lütkepohl, H.: Handbook of Matrices. John Wiley & Sons Inc (1996)
42. Meng, X., Mahoney, M.: Robust regression on mapreduce. In: Proceedings of the 30th

International Conference on Machine Learning (ICML-13), pp. 888–896 (2013)
43. Pan, C.: On the existence and computation of rank-revealing LU factorizations. Linear

Algebra and its Applications 316(1), 199–222 (2000)
44. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database.

Pattern Analysis and Machine Intelligence, IEEE Transactions on 25(12), 1615–1618
(2003)

45. Singh, S., Kubica, J., Larsen, S., Sorokina, D.: Parallel large scale feature selection for
logistic regression. Proceedings of the SIAM International Conference on Data Mining
pp. 1171–1182 (2009)

46. Torralba, A., Fergus, R., Freeman, W.: 80 million tiny images: A large data set for
nonparametric object and scene recognition. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 30(11), 1958–1970 (2008)

47. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Inc. (2009)
48. Xiang, J., Guo, C., Aboulnaga, A.: Scalable maximum clique computation using mapre-

duce. In: Data Engineering (ICDE), 2013 IEEE 29th International Conference on, pp.
74–85 (2013)

	1 Introduction
	2 Notations
	3 Background
	4 Greedy Column Subset Selection
	5 Distributed Column Subset Selection on MapReduce
	6 Related Work
	7 Experiments
	8 Conclusion

