
Under consideration for publication in Knowledge and Information
Systems

Discovering Compressing Serial Episodes
from Event Sequences

Ibrahim A1, Shivakumar Sastry2, P.S. Sastry1

1Department of Electrical Engineering, Indian Insitute of Science, Bangalore
2Department of Electrical and Computer Engineering Unversity of Akron

Abstract. Most pattern mining methods yield a large number of frequent patterns and
isolating a small, relevant subset of patterns is a challenging problem of current interest.
In this paper we address this problem in the context of discovering frequent episodes
from symbolic time series data. Motivated by the Minimum Description Length princi-
ple, we formulate the problem of selecting relevant subset of patterns as one of searching
for a subset of patterns that achieves best data compression. We present algorithms
for discovering small sets of relevant non-redundant episodes that achieve good data
compression. The algorithms employ a novel encoding scheme and use serial episodes
with inter-event constraints as the patterns. We present extensive simulation studies
with both synthetic and real data, comparing our method with the existing schemes
such as GoKrimp and SQS. We also demonstrate the effectiveness of these algorithms
on event sequences from a composable conveyor system; this system represents a new
application area where use of frequent patterns for compressing the event sequence is
likely to be important for decision-support and control.

Keywords: Frequent Episodes, Serial Episodes, Mining Event Sequences, Discovering
Compressing Patterns, MDL, Inter-Event-Time constraints.

1. Introduction

Frequent pattern mining is an important problem in the area of data mining that
has diverse applications in a variety of domains [11]. Even though many algo-
rithms have been proposed for frequent pattern mining, most of these methods
produce a large number of frequent patterns. In addition, the patterns found are
often redundant in the sense that many patterns are very similar. The redun-
dancy and the large volume of the patterns discovered makes it difficult to use
the mined patterns to gain useful insights into the data or to use them to ex-
tract rules which are effective for prediction, classification etc., in the application
domain. Thus, finding a small set of non-redundant, relevant and informative pat-

ar
X

iv
:1

40
1.

10
43

v2
 [

cs
.D

B
]

 1
1

O
ct

 2
01

4

2 Ibrahim. A et al

terns that succinctly characterize the data, is an important problem of current
interest.

There are many methods that are proposed for reducing the number of
extracted frequent patterns. Many such methods concentrate on eliminating
patterns that are deemed to be non-informative given the other frequent pat-
terns. For example, in the context of transaction datasets, concepts such as
closed [19, 26], non-derivable [5] and maximal [4, 15] itemsets were suggested
to reduce the number of frequent itemsets extracted. Similarly, closed sequen-
tial patterns were proposed for sequence datasets [6, 25, 30]. Even though such
methods result in some reduction in the number of patterns returned by the al-
gorithm, the number of patterns still remains substantial. Also, the redundancy
in the final set of patterns is, often, still large.

Recently, there have been other efforts for finding a small set of informative
patterns that best describes the data. For example, [7] proposes a method for
summarization of transaction datasets based on some ideas from information
theory. They propose a method of selecting a subset of frequent itemsets to
achieve a good lossy summarization of the database. Here each transaction is
summarized by one itemset with as little loss of information as possible. In [27],
which also proposes a lossy summarization, each transaction is covered, partially,
by the largest frequent itemset. In contrast to these methods, [22, 24] propose
lossless summarization of transaction datasets using the Minimum Description
Length (MDL) principle. A related approach called Tiling was used by [9, 29],
again for a lossless summarization of the data.

In this paper, we address the problem of discovering a set of patterns that can
achieve succinct lossless representation of temporal sequence data. We present
algorithms that discover a small set of relevant patterns (which are special forms
of serial episodes) which summarize the data well. We use the MDL principle [10]
to define what we mean by summarizing the data well. The basic idea is that a
set of patterns characterizes or summarizes the data sequence well, if the set of
patterns can be used as a model to encode the data to achieve good compression.

As mentioned above, the MDL principle has been used earlier to obtain rele-
vant and non-redundant subsets of frequent patterns. The idea was first explored
by the Krimp algorithm [24] in the context of transaction data. This algorithm
selects a subset of frequent itemsets which, when used for encoding the database,
achieves good compression. Each selected itemset is assigned a code with shorter
code lengths assigned to higher frequency itemsets. The algorithm tries to encode
each transaction with the codes of itemsets which have minimal code lengths and
which cover maximum number of items.

Similar strategies have been proposed for sequence data also [12, 13, 23].
For sequential data, unlike in the case of transaction data, the temporal or-
dering is important and this presents additional complications while encoding
the data. For example, consider a single transaction, t = ABCD from a trans-
action database and two itemsets AC and BD. The codewords for AC and BD
can encode the transaction t (since the transaction is just a set of items). Now
consider a sequence s = ABCD and two serial episodes A → C and B → D.
Even though the occurrences of A→ C and B → D would cover the sequence s,
this information alone is insufficient for encoding the sequence. Since the order
of events is important in sequential data, in order to get back the exact sequence,
one needs to specify where exactly the occurrences of the episodes happen in the
sequence. For example, we need to know that the A and C in the occurrence of
A→ C are not contiguous and that there is a B in the gap between them. One

Discovering Compressing Serial Episodes from Event Sequences 3

needs to have some way of taking care of such gaps while encoding the data with
the occurrences of some frequent episodes. In general, the events in a sequence
constituting an episode occurrence need not be contiguous, and different occur-
rences can have arbitrary temporal overlaps. An encoding scheme should be able
to properly take care of this.

The previous approaches for using the MDL principle to summarize sequence
data [12,13,23], explicitly record such gaps while encoding data, thus significantly
increasing the encoding length. While the methods presented in [13,23] consider
only sequential data without time stamps, the method in [12] does encode event
sequences with time stamps also; but the encoding scheme needs to individually
encode each event time stamp. In some cases, the resulting encoding may become
even longer than the raw data [12]. For the problem of identifying a relevant
subset of frequent patterns, we are using the encoded length (of the data encoded
with a subset of patterns), only as a figure of merit to compare different subsets.
Hence, the fact of the encoding length becoming more than the raw data is, per
se, not disallowed. However, the underlying philosophy of MDL principle suggests
that one needs a good level of data compression to have confidence in a model.
For example, even if the sequence data is iid noise and has no temporal structure,
there would be some subset of patterns that would achieve lower encoded data
length than other subsets. However, one expects that even the best such subset
here would not achieve any appreciable level of data compression, thus suggesting
that there are no significant temporal regularities in the data. On the other
hand, for a sequence with significant temporal regularities, one expects good
compression of the data sequence, if the method is able to discover the best
temporal patterns and encode the sequence with them. In general, if we can
discover some long episodes which occur many times, then their occurrences can
encode many events in the data sequence thus giving rise to the possibility of
data compression.

In this paper, we consider summarizing event sequences (having time stamps
on events) using a pattern class consisting of serial episodes with fixed inter-
event times. We present algorithms for discovering a small subset of relevant
frequent episodes that result in good compression of the data sequence. The
novelty of our approach is that, in contrast to the existing schemes in [12,13,23],
our method does not need to explicitly encode gaps in episode occurrences and
the encoding scheme is such that we can retrieve the full data sequence with the
time stamps on events, from the encoded sequence. The encoding of the data
consists of only the start times of occurrences of various episodes; the gaps are
determined from the fixed inter-event time constraints of the episodes. We show
through simulations that our method results in better data compression. We also
show, through empirical experiments, that the episodes that result in good data
compression are also highly relevant for the dataset.

We also illustrate the benefits of our algorithm using an application, where
it is important to both find relevant patterns and achieve good data compres-
sion. We consider streams of sensor-data from a composable conveyor system
(CCS) [3, 21] that is useful for materials handling. In this system, several con-
veying units are dynamically composed to achieve the application objectives;
consequently, utilizing the data streams to diagnose or reconfigure the system is
important. The data consists of a sequence of predefined events such as, package
entered a unit, package exited a unit, package arrived at an input port, etc. Such
events occur at various units in the conveyor system during its routine operation.
On this data stream, frequent serial episodes represent the routes (sequence of

4 Ibrahim. A et al

units) over which packages were transported in the conveyor system. The inter-
event times corresponds to the various physical constraints such as time required
for a package to move through a specific unit, the time required for two adjacent
units to complete a handshake protocol to transfer packages between them etc.
Thus a small set of relevant episodes can provide a good summary of the events
in the conveyor system. We can use the discovered set of relevant episodes to
achieve a lossless compression of the original temporal event sequence to sup-
port remote monitoring, diagnostics and visualization activities. We explain the
system in more detail in Section 5.1.1. Using data obtained from a high-fidelity
discrete event simulator of such conveyor systems, we demonstrate that our al-
gorithms: (a) unearth a small set of relevant episodes that capture the essence
of the transport through the system, and (b) our scheme achieves good data
compression.

Even though our method is motivated by the above application, we show
that our method is effective with other general sequential data as well. Apart
from conveyor system data streams, we show the effectiveness of our methods
with text data as well as on a few other real data sequences. These are the
data sets that are used to illustrate the effectiveness of the algorithms presented
in [12,13,23]. We compare the performance of our algorithm with these methods
on these data sets as well as on the composable conveyor system data.

The rest of the paper is organized as follows. In Section 2, we briefly review the
formalism of episodes, introduce the new subclass of serial episodes and formally
state the problem. Section 3 describes our encoding scheme for temporal data
using our episodes. The various algorithms for mining and subset selection are
explained in Section 4 and the experimental results are given in Section 5. We
conclude the paper in Section 6.

2. Problem Statement

2.1. Fixed Interval Serial Episodes

The data we consider is a sequence of n events denoted as D = 〈(E1, t1), (E2, t2),
. . . , (En, tn)〉, where ti ≤ ti+1, and if ti = ti+1, then Ei 6= Ei+1, where Ei ∈ Σ, is
the event-type, Σ is the alphabet and ti ∈ Z+ is the time stamp of the ith event.
Note that we can have multiple events (of different types) all occurring at the
same time instant. A k-node serial episode α is denoted as e1 → e2 → · · · → ek
where ei ∈ Σ, ∀i. An occurrence of α in D is a mapping h : {1 . . . k} → {1 . . . n},
such that ei = Eh(i), 1 ≤ i ≤ k and th(i) < th(j), for i < j. An occurrence
can be denoted by (th(1), . . . , th(k)), the event times of the events constituting
the occurrence. We call the interval [th(1), th(k)] as the occurrence window of
this occurrence. (If k = 1, then for the 1-node episode, the occurrence window is
essentially a number which is the event time of that event). Consider an example
event sequence

D1 = 〈(A, 1), (A, 2), (B, 3), (E, 4), (A, 5), (B, 6), (C, 6), (B, 7), (D, 8),

(C, 10), (E, 11)〉 (1)

In the data sequence given in (1), a few occurrences of episode A→ B → C are
(1, 3, 6), (2, 3, 6), (5, 6, 10).

A fixed interval serial episode is a serial episode with fixed inter-event gaps.

Discovering Compressing Serial Episodes from Event Sequences 5

A fixed interval serial episode is denoted as β = e1
∆1−−→ e2

∆2−−→ · · · ∆k−1−−−→ ek. We
will be considering the class of fixed interval serial episodes, where ∆i ≤ Tg,∀i,
with Tg being a user specified upper bound on allowable gap. An occurrence of
β in D is a mapping h : {1 . . . k} → {1 . . . n}, such that ei = Eh(i), 1 ≤ i ≤ k and
th(i+1)− th(i) = ∆i > 0, for 1 ≤ i < k. For example, in sequence D1 in (1), there

are two occurrences of episode A
2−→ B

3−→ C, namely (1, 3, 6) and (5, 7, 10). Note
that the time of the first event of an occurrence completely specifies the entire
occurrence. This property of the fixed interval serial episodes allows us to design
a coding scheme that results in data compression. A k-node fixed interval serial

episode α = e1
∆1−−→ e2

∆2−−→ · · · ∆k−1−−−→ ek is called injective if ei 6= ej ,∀i, j, i 6= j.
In the literature, different notions of frequency are defined for episodes de-

pending on the type of occurrences we count. (For a discussion on various fre-
quencies see [2]). An episode is said to be frequent if its frequency is above a given
threshold. In this paper, we consider the number of distinct occurrences as the
frequency. Two occurrences are distinct if none of the events of one occurrence is
among events of the other. More formally, a set of occurrences, {h1, h2, . . . , hm}
of an episode α are distinct if for any k 6= k′, hk(i) 6= hk′(j), ∀i, j. This is a
natural notion of frequency for an injective fixed interval serial episode because
any pair of its occurrences with different start times will always be distinct.

In this paper, we consider injective fixed interval serial episodes and from now
on we refer to injective fixed interval serial episodes simply as episodes whenever
there is no scope for confusion.

2.2. Selecting a Subset of Episodes Using the MDL Principle

Pattern mining algorithms often output a large number of frequent episodes.
Our goal is to isolate a small subset of them which are non-redundant and are
relevant for the data. To formalize this goal, we use the MDL principle which
views learning as data compression. The idea is that if we can discover all the
relevant regularities in the data, then an encoding based on these would result
in data compression [10]. Thus, the goal is to find a model which allows us to
encode the data in a compact fashion.

Given any model, H, let L(H) denote the length for encoding the model H
and let L(D|H) be the length of the data when encoded using the model H.
Given an encoding scheme, under the MDL principle our goal is to find a model
H that minimizes total encoded length, L(H,D) = L(H) + L(D|H).

For us, different models correspond to different subsets of the set of frequent
fixed interval serial episodes. As mentioned earlier, an occurrence of such an
episode is uniquely specified by its start time. Hence, by giving the code for
the identity of the episodes and a list of start times, we can code all the events
constituting the occurrences of this episode. (We explain our encoding scheme in
the next section). Thus, large episodes with many occurrences would account for
a large number of events in the data sequence thus decreasing L(D|H). Another
advantage of our use of the MDL principle is that it inherently takes care of
redundancy. Selecting episodes with minimal overlap among their occurrences
would help reduce the final encoded length.

Under MDL, we are looking at lossless coding and hence the occurrences
of the selected subset of episodes have to cover the entire dataset; i.e., every
event in the data sequence should be part of an occurrence of (at least) one of

6 Ibrahim. A et al

Table 1. A data sequence and its encoding
D2 = 〈(D, 1)(A, 2)(C, 3)(E, 3)(A, 4)(B, 4)(C, 5)(D, 5)

(B, 6)(C, 7)(E, 7)(C, 8)(C, 9)〉

Size of Episode No. of List of
Episode Name Occurrences Occurrences

3 A
2−→ B

1−→ C 2 〈2, 4〉
3 D

2−→ E
2−→ C 2 〈1, 5〉

1 C 2 〈3, 8〉

the selected set of episodes. We can always ensure this by adding a few 1-node
episodes, as needed. We will give details of our encoding in the next section. Our
main problem can now be stated as below

Problem 1. Given a data sequence D and a set of (frequent) fixed interval serial
episodes, C = {C1, C2, . . . , CN}, find the subset H∗ ⊆ C such that

H∗ = arg min
H⊆C

{L(H) + L(D|H)}

3. The Encoding Scheme for Data

In this section, we explain our encoding scheme and derive the expression for
encoded data length.

3.1. Encoding

Each model H is a set of some fixed interval serial episodes whose occurrences
cover the data. Given such an H, which forms the dictionary, the data is then
encoded by specifying the start times of selected occurrences of the episodes.

We explain our encoding scheme through an example. Table 1 shows a data
sequence D2 and its encoding using three arbitrarily selected episodes. Each row
in the table describes one of the episodes used and the encoding for the part of the
data, covered by the occurrences of that episode. There are four columns in the
table. Column 1 gives the size of the episode in that row and the second column
specifies the episode. The third column gives the number of occurrences of that
episode (used for encoding) and the last column gives a list of start times. Hence

the first row of Table 1 specifies: a 3-node episode, namely, A
2−→ B

1−→ C and two
of its occurrences starting at times 2 and 4. Thus, the first row of Table 1 accounts
for the events (A, 2), (B, 4), (C, 5) and (A, 4), (B, 6), (C, 7) in the data, which are

the events constituting the two occurrences of the episode A
2−→ B

1−→ C starting
at time stamps 2 and 4 respectively. We can think of the first two columns of
the table as our dictionary and the last two columns of the table as the encoding
of the data. Note that the seventh event in D2, (C, 5), is part of the occurrence

of A
2−→ B

1−→ C starting at 2 and of D
2−→ E

2−→ C starting at 1. While this is
allowed in our encoding, minimizing such overlaps would improve total encoded
length. In fact, we use injective fixed interval serial episodes in order to avoid
overlap of different occurrences of the same episode, since, as we mentioned
earlier, occurrences of injective fixed interval serial episodes starting at different

Discovering Compressing Serial Episodes from Event Sequences 7

time stamps are distinct. occurrences In Table 1, the first two episodes account
for all but two events in the data and hence we added a 1-node episode (in row
3 of the table) to ensure that we cover the full data sequence. Our final encoded
sequence would be a table like this. Each entry in the table is essentially a series of
integers and our final encoded data would consists of a series of integers obtained
by stringing together the rows in order.

3.2. Decoding

In this section we discuss how to decode the encoded data. The encoded data
consists of rows of a table, with each row specifying an episode and its occur-
rences. In each row, we read the first value, which is the size of the pattern. If
this value is k, the next 2k−1 integers correspond to the codes of the event types
(k units) followed by the inter event gaps (k − 1 units). The next value in the
encoded sequence corresponds to the number of occurrences of the episode. We
then need to read that many values to obtain all the occurrence start times of
that episode and complete reading the current row. Since we know when the row
is complete, the next integer would be the first entry of the next row and we re-
peat the same process as above. From each start time of occurrence of an episode,
we can roll out the corresponding events because we know the event types and
the inter-event gaps. Once we are done with rolling out all the occurrences of
all the episodes, we have to just sort the events based on the time stamps and
delete duplicate occurrences1 to retrieve back the original data sequence.

3.3. Length of the Encoding

We have seen that once the dictionary is fixed, the data encoding is just a
series of integers denoting the start times of occurrences of the patterns in the
dictionary. Even though, we could use bit level integer encoding schemes like
Elias codes [13, 28] and Universal codes [20, 23] for encoding integers (and have
the size of encoding dependent on the value of the integer), we use the notion
of fixed memory units instead. The reason being that, the MDL principle looks
at utilizing the regularity in data to compress the data and hence the level of
compression should not depend on the magnitude of data item. For example, the
value of a time stamp, per se, does not have any regularity and the compression
achieved by the encoding scheme, hence, should not be dependent on the values
of time stamps. Therefore, for calculating the total encoded lengths we consider
event types and times to be integers and assume that each such integer accounts
for one unit in the encoded length. Since our aim is to compare different models,
keeping all lengths in terms of one unit per integer is sufficient for us. (Here we are
assuming that, in describing episodes in the dictionary, all event-types take the
same amount of memory. We could, of course, use codes such as Hamming codes,
to reduce expected length of representation of episodes. We do not consider such
extra compression here). Later on, while comparing our method with the various

1 Note that while events of different types can occur with the same time stamp, events with
same event-type cannot co-occur at the same time instant; hence we can easily spot duplicates
while decoding.

8 Ibrahim. A et al

other methods, we use bit level encoding for calculating lengths of integers so
that we can easily compare with the results of other algorithms.

Let model H contain the episodes {F1, F2, . . . , FK}, with |Fi| denoting the
size of episode Fi. Each episode needs one integer to represent its size, |Fi|
integers for representing the event types and (|Fi| − 1) integers for inter-event

gaps. Hence the first two columns of the table need
∑K
i=1(1 + |Fi|+ |Fi| − 1) =∑K

i=1 2|Fi| integers. This is L(H).
Let fi be the number of occurrences of Fi listed in the column 4 of our table.

Then, columns 3 and 4 together need
∑K
i=1(fi + 1) integers. This is L(D|H).

Thus for the model H, the total encoded length is

L(H,D) = L(H) + L(D|H) =
K∑
i=1

2|Fi|+
K∑
i=1

(fi + 1) (2)

For the encoding given by Table 1, the length for the first row is 1+(3+2)+1+2 =
9 and it is easy to see that the total encoded length is 9 + 9 + 5 = 23.

The length of raw data can be taken to be 2|D| where |D| is the number
of events in the data. However, taking this as the length of uncompressed data
may result in higher value for the compression achieved by an algorithm. This
is because, even without finding any patterns, we can represent the raw data
more compactly by simply using only 1-node episodes in our encoding. If we
have M event types then we use M 1-node episodes for encoding. The total
encoded length, using Equation (2), and taking K = M would be 2M+ |D|+M .

(Note that
∑M
i=i fi = |D|, because all occurrences of the M 1-node episodes,

together would exactly cover the data; also no event in the data would be part
of occurrences of two different 1-node episodes). We call such an encoding trivial
encoding. For the data sequence D2, the length for trivial encoding would be
5 × 2 + 13 + 5 = 28. Even though in this example the length of the trivial
encoding is more than 2|D|, for real datasets we would have |D| � M and
hence total encoded length of trivial encoding would be less than 2|D|. Hence
in calculating data compression with our method, we compare the length of the
trivial encoding with the length of the encoding using selected episodes.

4. Algorithms

In this section, we consider algorithms for discovering a subset of episodes which
achieves good compression. Finding the optimal subset of episodes to minimize
total encoded length is known to be NP-Hard [12, 23]. Hence the methods we
present here are approximation algorithms to Problem 1. We begin by presenting
algorithm CSC-1 (CSC is for Constrained Serial episode Coding), which is a
two phase method. This consists of discovering all frequent episodes through a
depth-first search algorithm followed by a greedy method of selecting a subset
based on maximum coverage and minimum overlap. We then present algorithm
CSC-2, which directly mines for relevant fixed interval serial episodes from the
data without first discovering all frequent episodes.

Discovering Compressing Serial Episodes from Event Sequences 9

Algorithm 1 MineEpisodes(D, Tg, fth)

Input: Sequence data D, the maximum inter-event gap Tg and frequency thresh-
old, fth
Output: The set of frequent episodes, C

1: A ← Set of all frequent 1-node episodes in D, along with occurrence lists.
2: for all A ∈ A do
3: ExploreDFS(A,A, Tg, fth) . All the frequent episodes

. are added to the global list C
4: end for

Algorithm 2 ExploreDFS(α,A,Tg, fth)

Input: Episode α with its occurrence list; A: the set of frequent one node
episodes with its occurrence lists; Tg: Maximum inter-event gap; fth: frequency
threshold
Output: The set of frequent episodes C.

1: for all A ∈ A\{set of event-types in α} do
2: occurrlist-for-delta← find-lists(α,A, Tg)
3: for j = 1→ Tg do
4: if |occurrlist-for-delta(j)| ≥ fth × |D| then

5: β ← (α
j−→ A)

6: β.occurrencelist← occurrlist-for-delta(j)
7: C ← C ∪ β
8: ExploreDFS(β,A, Tg)
9: end if

10: end for
11: end for

4.1. First Algorithm: CSC-1

We first explain our depth-first mining algorithm and the basis for the greedy
strategy for subset selection before describing the full CSC-1 algorithm (which
is listed as Algorithm 4).

4.1.1. Mining

To obtain all frequent injective fixed interval serial episodes, we use a depth-first
(also known as pattern-growth) strategy using occurrence windows. See [1, 17]
for more details on depth-first strategies using occurrence windows. The basic
idea is as follows. First we find all 1-node frequent episodes (which are event-
types that occur often enough) and for each frequent 1-node episode, keep its
occurrence list which is a list of event times where the 1-node episode occurs in
the data. Let α be an episode and suppose we are given a list of all its occurrence
windows (also called occurrence list). Recall that the occurrence window of an
episode α is an interval [ts, te], where ts and te are the times of the first and
last events of α in this occurrence. If we know all occurrence windows of 1-node
episode A, then we can easily check whether [ts, te + j] is an occurrence window

of α
j−→ A. Thus we can easily calculate the occurrence windows of episodes such

as α
j−→ A, for all allowed (A, j), and hence find frequent episodes of next size.

10 Ibrahim. A et al

Algorithm 3 find-lists(α,A, Tg)

Input: Episode α and one node episode A with their occurrence lists.
Output: The array, occurrlist-for-delta storing the occurrence lists with different
gaps.

1: for all [tαs , t
α
e] ∈ α.occurrencelist do

2: Let tA be the first occurrence of A after tαe . NULL if no such
occurrence

3: while tA 6= NULL and tA − tαe ≤ Tg do
4: j ← tA − tαe ;

5: Add [tαs , t
A] to occurrlist-for-delta(j) . Corresponding to α

j−→ A
6: tA ← next occurrence of A . NULL if there is no next occurrence
7: end while
8: end for
9: return occurrlist-for-delta

By doing this recursively, we find all frequent episodes. The implementation of
this idea is described in Algorithms 1 to 3.

The main function is MineEpisodes, listed as Algorithm 1. This is a wrapper
function, which finds, for each event-type A ∈ A, where A is the set of frequent
1-node episodes, all the frequent fixed interval serial episodes with A as the prefix,
using the ExploreDFS function (in line 3). The frequency threshold value, fth is
user specified, and is given as a fraction of the data length (see line 4).

The procedure ExploreDFS, listed as Algorithm 2, is a recursive function.
Given an input episode α, it finds all the frequent right extensions of α, i.e., all
the frequent episodes with α as prefix. For each A, the procedure initially finds

the occurrence windows for the episodes α
j−→ A, 1 ≤ j ≤ Tg, where Tg is the

maximum allowed inter-event gap (line 2, Algorithm 2), by calling the procedure
find-lists, which is explained below. The function then recursively goes deeper

for each frequent episode, α
j−→ A (line 8).

The find-lists procedure (listed as Algorithm 3), takes as input, episode α
and event type A (which is also a 1-node episode), and finds the occurrence

windows for all the episodes α
j−→ A, j ≤ Tg. For each occurrence window [tαs , t

α
e]

of α, it looks for all the occurrences tA of A such that the new occurrence window
satisfies the maximum inter-event gap constraint Tg (the condition for while loop
in line 3). An occurrence window satisfying the constrain is then added to the

occurrence list corresponding to the episode α
j−→ A, where j = tA − tαe (line 5).

Using these algorithms, we get all injective frequent fixed interval serial
episodes. We then go on to select the best representative subset.

4.1.2. Selection Strategy

Given a data sequence D, let α be an N -node fixed interval serial episode with
frequency fαD. We define the score of α in D as

score(α,D) = fαDN − (2N + fαD + 1) (3)

Recall that 2N + fαD + 1 is the total encoded length for encoding all the events
that constitute the fαD occurrences of α. (Recall from Section 3.3 that 2N is

Discovering Compressing Serial Episodes from Event Sequences 11

the length for encoding α and fαD + 1 is the total length for encoding all fαD
occurrences of α.). It is easy to see that fαDN is a lower bound on the encoded
data length for trivially encoding all the events in the fαD occurrences of (the
N -node episode) α with 1-node episodes2.

If score(α,D) > 0, then α is called a useful candidate since selecting it can
improve encoding length by at least the value of score(α,D), in comparison to
trivial encoding. From Equation (3), we can easily see that score(α,D) > 0,
if fαD > 2N+1

N−1 . Thus the episode α will be a useful candidate if fαD > 5 for

|α| = 2 and fαD > 3 for |α| ≥ 3. But selecting any useful candidates would not
lead to efficient encoding. For any pair of selected episodes, we also want their
occurrences to have least number of events in common. Our subset selection
procedure for encoding the data is based on greedy selection of episodes whose
occurrences cover large number of events in the data and have low level of overlap
with the occurrences of other selected episodes.

Let Fs = {β1, β2, . . . , βS} be a set of episodes of size greater than one. Given
any such Fs, let Let L(Fs,D) denote the total encoded length of D, when we
encode all the events which are part of the occurrences of episodes in Fs, by using
episodes in Fs as per our encoding scheme and encode the remaining events in
data, if any, by episodes of size one.

Given any two episodes α, β, let OM(α, β) denote the number of events in the
data that are covered by occurrences of both α and β. We call OM the Overlap
Matrix.

We define, for α /∈ Fs

overlap-score(α,D,Fs) = fαDN −
∑
βi∈Fs

OM(α, βi)− (2N + fαD + 1) (4)

Note that overlap-score(α,D,Fs) = score(α,D) −
∑
βi∈Fs

OM(α, βi) and is
another measure for the gain in encoding length, when we add α to Fs. The
measure has an interesting property as explained below.

Proposition 1. If overlap-score(α,D,Fs) > 0, then L(Fs,D) > L(Fs∪{α},D)

Proof. First, note that the difference in encoding will only be in the section of
the data, where the encodings using Fs and Fs ∪ {α} differ. As is easy to see,∑
βi∈Fs

OM(α, βi) is an upper bound on the number of events of the occurrences
of α, that are shared with the occurrences of episodes in Fs. Hence, fαDN −∑
βi∈Fs

OM(α, βi) is a lower bound on the number of events not covered by
anyone in Fs and which are covered by the occurrences of α. Hence if we use Fs,
it takes at least fαDN −

∑
βi∈Fs

OM(α, βi) units for encoding these events using
size-1 episodes. In contrast, by adding α to the Fs, it takes 2N + fαD + 1 units
to encode those occurrences, independent of the number of events α shares with
other episodes. Thus the reduction in encoding length between the two is at least
fαDN −

∑
βi∈Fs

OM(α, βi)− (2N +fαD+1), which is the overlap-score(α,D,Fs).
Hence the result.

2 We note that this is a lower bound because α is an injective episode. When α is an injective
episode, no two occurrences of α can share an event and hence fαD occurrences would contain
fαDN events in the data sequence. If the episodes were non-injective, then there is a possibility
of events being shared by different occurrences of the same episode and hence fαDN would not
be the lower bound.

12 Ibrahim. A et al

Proposition 1 says that, with respect to an already selected set of episodes Fs,
adding an episode α with overlap-score(α,D,Fs) > 0 to the set Fs, would
only reduce the total length of encoded data. Our greedy heuristic is to se-
lect the episode with the maximum overlap-score. (Note that, by definition,
overlap-score(α,D,Fs) = score(α,D), if Fs = ∅).

4.1.3. CSC-1

The CSC-1 algorithm selects a best subset of the frequent episodes based on
minimizing encoding length. The algorithm takes as input, K, the maximum
number of episodes (of size greater than 1) in the final selected subset. Thus, it
can be used a method to select the ‘best-K’ episodes or to select the best subset
to achieve maximum compression (by choosing a very large value of K).

The CSC-1 algorithm for selecting a good subset of (maximum K) episodes
is listed as Algorithm 4. The algorithm runs in iterations of mining frequent
fixed interval serial episodes from the data sequence, then selecting, one by one,
a set of good encoding episodes from the mined set and finally deleting the
occurrences of the selected episodes from the sequence. The process is repeated
until we found K good episodes or we cannot find any episode that can give any
gain in encoding.

In each iteration of the while loop (lines 3-18), we first mine the set of frequent
fixed interval serial episodes, C, using the MineEpisodes procedure, explained
in Section 4.1.1 (line 5). We next calculate the OM matrix (line 6) and then
calculate the overlap-score. Each iteration of the repeat loop (lines 7-15) looks
for an episode in the current candidates set, C, which has the highest positive
overlap-score. If such an episode is found, it is added to the set Fs. This greedy
strategy is justified by Proposition 1. The set Fs, thus contains all the episodes
selected in the repeat loop. The repeat loop is broken, when no episode with
positive overlap-score exists in the current candidate set or we have selected K
episodes(line 15). Then all the events in the occurrences of the episodes in Fs are
deleted from the data (line 16). We then once again repeat the process of finding
frequent episodes from this modified data and selecting a subset of episodes from
this episode set.

The while loop runs as long as the selected set size is less than K and it
finds at least one episode that increases encoding efficiency. This condition is
checked in lines 12-13. When we cannot find any more episodes with positive
overlap-score, we encode the remaining events in the data with 1-node episodes
(lines 19-20).

The only remaining part in the CSC-1 algorithm is the calculation of the
matrix OM (line 6), which we explain now. The procedure FindOverlapMatrix,
listed as Algorithm 5, utilizes the occurrence lists for all the frequent episodes
(obtained from Algorithms 2 and 3), to calculate OM matrix by one more pass
over data using the standard Finite State Automata(FSA) based method for
tracking episode occurrences [2, 14, 16]. FSAs in [2, 14, 16] are used to track
occurrences of episodes. Algorithm 5 uses FSAs for a different purpose since we
already have the occurrences of the episodes. Here, the FSAs associated with
episodes, and hence some times called episode automata, are used to find, for
each event (Ei, ti) in the sequence, the set of episodes for which this event is part
of one of their occurrences. For all such pairs of episodes in that set, the OM
matrix is incremented by 1.

In Algorithm 5, each state of an episode automaton specifies the state of a

Discovering Compressing Serial Episodes from Event Sequences 13

Algorithm 4 CSC-1(D, Tg, fth,K)

Input: Data sequence D; maximum inter-event gap Tg; threshold fth; maximum
number of selected episodes K.
Output: The set of selected frequent episodes F

1: F ← ∅
2: coveringexists← true
3: while coveringexists and |F| < K do
4: Fs ← ∅
5: C ← MineEpisodes(D, Tg, fth)
6: OM ← FindOverlapMatrix(D, C)
7: repeat
8: α← arg maxγ∈C overlap-score(γ,D,Fs)
9: if overlap-score(α,D,Fs) > 0 then

10: Fs ← Fs ∪ {α}
11: C ← C\α
12: else if overlap-score(α,D,Fs) ≤ 0 and Fs = ∅ then
13: coveringexists← false
14: end if
15: until overlap-score(α,D,Fs) ≤ 0 or |F ∪ Fs| = K
16: D ← D\(occurrences of Fs)
17: F ← F ∪ Fs
18: end while
19: A ← Size-1 episodes in remaining D
20: F ← F ∪A
21: return F

current occurrence and is denoted by (α, j, ts), where α is the episode, j is the
state of the automaton to which it is expecting to transit (this means that for
the current occurrence of the episode, it has seen events for α[1] to α[j − 1]
satisfying the inter-event constraints and is waiting for the event to occur with
event-type α[j]3), and ts denotes the start time of the current occurrence. An
episode automaton corresponding to a N sized episode has (N + 1) states. An
automaton for episode α is in state j = 1 while it is waiting for the event with
event-type α[1] and is in state j = |α|+ 1 at the end of its occurrence.

Each event-type, E, is associated with a data structure called waits. waits(E)
contains the list of automaton waiting for the event with event-type E to occur.
Whenever an automaton corresponding to an episode α transits to a state j, in
wait for an event-type E, that corresponding automaton state (α, j, ts) is added
to waits(E) (lines 10 and 16, Algorithm 5).

For each episode, α, as we go along the sequence, the start of one of its occur-
rences (which we know apriori) initiates an automaton for the episode α. As we
parse through the events in D (for loop in line 4), each automaton corresponding
to occurrences of the episodes will be waiting for a specific event to come up. On
seeing the event (Ei, ti), those episodes (automaton) that were waiting for the
event type, Ei, (which is obtained from waits(Ei) (the inner for loop)) compares
the start times with ti to see whether the event is part of the current occurrence
(line 8 and line 13, Algorithm 5). If the constraints are satisfied, then the episode

3 α[i] denotes the ith episode event of α.

14 Ibrahim. A et al

Algorithm 5 FindOverlapMatrix(D, C)
Input: D, the sequence dataset; C, the set of frequent multiple node episodes in
D.
Output: OverlapMatrix, the |C| × |C| matrix denoting the number of shared
events.

1: for all α ∈ C do
2: Add automate state (α, 1, ∅) to waits(α[1])
3: end for
4: for all event (Ei, ti) ∈ D do
5: overlaplist← ∅
6: for all automata (α, j, ts) ∈ waits(Ei) do
7: if j = 1 then
8: if ∃ occurrence of α starting at ti then
9: Add α to overlaplist

10: Add automata state (α, j + 1, ti) to waits(α[2])
11: end if
12: else
13: if (ti − ts) = α.∆[j − 1] then
14: Add α to overlaplist
15: if j 6= |α| then . If j = |α|, we just retire the automaton
16: Add(α, j + 1, ts) to waits(α[j + 1])
17: end if
18: Remove (α, j, ts) from waits(Ei)
19: end if
20: end if
21: end for
22: Increment OverlapMatrix[α][β] by 1, ∀α, β ∈ overlaplist, α 6= β
23: end for

is noted as having accepted that event (in line 9 and line 14, Algorithm 5) and
moves to the next state. Finally for those episodes that have accepted the current
event, the corresponding OM counts are incremented (in line 22).

4.1.4. Complexity of the Algorithm

There are three main steps in each iteration of Algorithm 4: the mining step
(call to MineEpisodes in line 5), the calculation of the OM matrix (line 6) and
the selection step (the repeat loop). The mining step involves the generation of
occurrence start times of the selected episodes. For each episode α, this is done
by a single pass over the occurrences of its prefix subepisode of size (|α|−1) and
1-node suffix subepisode. The number of occurrences is of the order of |D| and
hence for C selected episodes, the mining step takes O(|C||D|).

The OM matrix calculation depends on the number of episodes accepting
each event in D. Let Ki denote the number of episodes in C containing event-
type Ai. Let Pi denote the fraction of the events of type Ai in D. Then each
event-type Ai occurs Pi|D| times and each of its occurrence is associated with
O(K2

i) updates of the OM matrix. Hence, the runtime for the calculation of the
OM matrix is O((ΣMi=1PiK

2
i)|D|) = O(|C|2|D|), since Ki < |C|.

The repeat loop involves calculating the overlap-score(γ,D,Fs),∀γ ∈ C,
which takes O(|C||Fs|) and hence for |Fs| iterations takes O(|C||Fs|2). Since

Discovering Compressing Serial Episodes from Event Sequences 15

Algorithm 6 BestExtensions(D,Tg)

Input: Data sequence D; maximum inter-event gap Tg.
Output: Selected set of relevant candidate episodes C.

1: A ← Set of all 1-node episodes in D
2: for all A ∈ A do
3: patt← A
4: newpatt← patt
5: while (patt← Extensions(patt,A, Tg))) 6= NULL do
6: newpatt← patt
7: end while
8: if score(newpatt,D) > 0 then
9: C ← C ∪ {newpatt}

10: end if
11: end for
12: return C

|Fs| < |C| the total computation for each iteration of our method is O(|C|2|D|+
|C|3). Hence the total execution is critically dependent on |C|, the number of
frequent episodes mined from the data.

4.2. An improved algorithm: CSC-2

The runtime of the CSC-1 method as shown in the previous section is O(|C|2|D|+
|C|3) and hence depends directly on the size of the mined candidate set of
episodes, |C|. Thus an increase in the size of C would increase the runtime by
a cubic order. CSC-2 addresses exactly this problem. CSC-2 proceeds exactly
as CSC-1 except that the set C (line 5, Algorithm 4) that it considers at each
iteration is a small set rather than the full set of frequent fixed interval serial
episodes. Earlier, in the MineEpisodes function, we have mined for all frequent
episodes in a depth-first manner and gave that as the set C. Now, instead of
that, we obtain a set of episodes, each one of which is a best possible episode in
one of the paths in the depth-first search tree. Here, the best episode is decided
in a greedy fashion based on its contribution to coding efficiency. Note that the
CSC-2 algorithm does not need any frequency threshold to be specified by the
user because we do not mine for ‘frequent’ episodes.

The algorithm CSC-2 is same as Algorithm 4 except that the call to MineEp-
isodes (line 5, Algorithm 4) is replaced by a call to a new procedure BestEx-
tensions. The rest of Algorithm 4 remains the same for both CSC-1 and CSC-2.
Hence, we do not provide separate pseudo code for CSC-2. The procedure BestEx-
tensions , which selects a set of candidate episodes, C, is listed as Algorithm 6.

For each event-type A, Algorithm 6 extends the 1-node episode A with an

event-type B and gap i to form the episode A
i−→ B such that

< B, i >= arg max
<C,j>,

C 6=A,j≤Tg

score(A
j−→ C,D)

The episodes are grown by right extension until none of the immediate extensions

16 Ibrahim. A et al

Algorithm 7 Extensions(α,A, Tg)
Input: Episode α with its occurrence list; A: the set of frequent one node
episodes with its occurrence lists; Tg: Maximum inter-event gap.
Output: Episode extension with the highest frequency and minimum inter event
gap.

1: maxfreq ← 2∗(|α|+1)+1
|α| . Min frequency for which coding efficiency is

. achieved
2: mingap← Tg
3: maxpatt← NULL
4: for all A ∈ A\{set of event-types in α} do
5: occurrlist-for-delta← find-lists(α,A, Tg) . find-lists in Algorithm 3
6: bestgap← arg maxj≤Tg

|occurrlist-for-delta(j)|
7: if |occurrlist-for-delta(bestgap)| ≥ maxfreq then
8: if |occurrlist-for-delta(bestgap)| > maxfreq OR bestgap < mingap

then

9: β ← (α
bestgap−−−−−→ A)

10: β.occurrlist← occurrlist-for-delta(bestgap)
11: β.freq ← |occurrlist-for-delta(bestgap)|
12: maxpatt← β
13: maxfreq ← β.freq
14: mingap← bestgap
15: end if
16: end if
17: end for
18: return maxpatt

has a better score than the current episode. At this point we add the episode to
the list of candidate episodes C.

The extension algorithm is given in Algorithm 7. Among the immediate ex-
tensions, Algorithm 7 selects the one with the maximum frequency. If multiple
extensions have the same frequency, then the one with the minimum gap is se-
lected (lines 7 and 8, Algorithm 7).

The number of candidates generated using this procedure is at most M , the
size of the alphabet. In general, this is much smaller than the size of C in CSC-1.
However, for large alphabet (i.e., large number of event types), even this could
be costly. Then we can modify CSC-2 to keep only the ‘best few’ episodes in C.

5. Experiments

In this section, we present the experimental results for our method and compare
its performance with that of SQS [23] and GoKrimp [13]. Since we observed that
algorithm CSC-2 gives similar patterns as CSC-1, but is much more efficient
time-wise, we present simulation results with CSC-2 only.

We consider three different types of data. The first type of data is the conveyor
system data, since this application was the motivation for us to come up with
the new subclass of fixed interval serial episodes and our novel encoding scheme.
The set of data sequences that we consider are generated by a detailed simulator
of composable conveyor systems. As we mentioned earlier, this is an application

Discovering Compressing Serial Episodes from Event Sequences 17

Table 2. Summary of Datasets.

Datasets Events Sequences Classes Alphabet Size, M

jmlr 75646 787 NA 3846
aslbu 36500 441 7 190
aslgt 178494 3493 40 47

auslan2 1800 200 10 16
context 25832 240 5 56
pioneer 9766 160 3 92

area where compression achieved may be useful on its own. We explain more
about the problem and the data in Section 5.1.1.

The second type of data that we consider is text data. We consider JMLR
data set which contains 787 abstracts from the Journal of Machine Learning
Research. This is a sequential symbolic data, but the time stamps, so to say, are
just the serial number of the word in the sequence. This dataset is used to see
how the various algorithms perform in unearthing relevant phrases (patterns)
related to machine learning research. We show the top 20 patterns found by
different methods on this dataset.

The final collection of data that we consider consists of five real-world data
sets introduced in [18]. Each of these is a database of symbolic interval sequences
with class labels; i.e., events in these databases are denoted by a symbol and an
interval of its occurrence. As in [13], we consider the start and end of the interval
to be two different events with different event-types. For example, the event in-
terval (e, t1, t2), where e is the symbol and [t1, t2] is the interval of its occurrence,
would be considered as two events (e−, t1) and (e+, t2). Table 2 gives some rel-
evant details regarding these data sets. The reason for using these datasets is
that these are the only real world data sets on which results of performance by
SQS and GoKrimp are reported. On all these data sets we compare the data
compression and the classification accuracy of our method with that achieved by
SQS and GoKrimp.

Our algorithms are implemented in C++ and the experiments were executed
single threaded on an Intel i7 4-core processor with 16 GB of memory running
over a linux OS. The source code for our algorithms will be made available on
request. The implementations of SQS and GoKrimp were obtained from the
respective authors. For the GoKrimp algorithm, there is a significance level pa-
rameter (for a test called sign test), which is set to the default value of 0.01 and
the minimum number of pairs needed to perform a sign test is set to the their
default value of 25. For our algorithm, the maximum inter-event gap was set to
5 for all the datasets. The K value in the CSC-2 algorithm, denoting the maxi-
mum number of patterns to be selected is set to infinity (which means maximum
possible selection of episodes) unless otherwise stated.

5.1. Results on Composable Conveyor System data sequences

Before giving the results, we first give a brief explanation about composable
conveyor systems [3, 21].

18 Ibrahim. A et al

Fig. 1. A two-input, two-output conveyor system. Packages enter via one of the
inputs I1 or I2 and leave the system via one of the outputs as illustrated. The
system is composed using instances of Segments and Turns [3, 21].

5.1.1. Conveyor System

Material handling conveyor systems move packages or material units from one
or more inputs to specified outputs along predetermined paths. Such systems
are used extensively in manufacturing, packaging, packet sorting etc. A typical
conveyor system with two inputs and two outputs is shown in Fig. 1. This sys-
tem is composed using instances of Segment and Turn units that each operate
autonomously. A Segment moves a package over a predetermined length over its
belt. A Turn is a unit that can serve as a merger or splitter for package flow.
Each segment and turn unit has a predetermined maximum speed of operation
and each unit has local sensors and actuators that are used to autonomously
control its local behavior. The simulator we used produces a detailed event-trace
of every change of state (event) in the sensors and actuators of each unit as
packages move through the system.

The movement of the packages in the conveyor system is transformed to a
temporal sequence as follows. We label the exit points of each input, output,
turn and segment. We consider the transfer of a package from one conveyor unit
to another as an event. The unit represents the type of the event and the time
at which each event occurs is recorded as the event time. Hence, when a package
moves along a path, an ordered sequence of events is recorded. All the events
corresponding to one package may not be contiguous because during the same
time other packages may be moving along other paths.

We consider three conveyor system datasets coming from three different
topologies. Each topology can be identified by the various paths from the in-
puts to the outputs and the package input rates. We consider the package input
arrival rates to be Poisson. The details of the three datasets is given in Table 3
and the structure of the topologies are given in Figures 1, 2 and 3.

For the conveyor system data, there is only one data sequence corresponding
to each topology. The GoKrimp algorithm works using a statistical dependency
test called SignTest, which does not work on single sequence datasets. The
implementation of GoKrimp asks such sequences to be broken into a number
smaller sequences. Hence, the datasets were broken into sequences of size 25,
50 and 100 respectively for the 2I-2O, 3I-3O and the Package Sorter Topologies
(creating longer sizes for sequences with longer and higher number of paths).
Also, the conveyor system datasets are time stamped datasets. The SQS and

Discovering Compressing Serial Episodes from Event Sequences 19

Fig. 2. Three-input, three-output conveyor system.

Fig. 3. Package Sorter topology.

Table 3. Various Conveyor system topologies, input rates, alphabet size M , num-
ber of events (in the final data set with the topology) and the paths in each
topology.

Topology InputRate M Events Paths
(Poisson)

2I-2O 0.6 16 7659 P1. I1 S1 T1 S4 T3 S7 T4 S8 O2
P2. I2 S6 T3 S7 T4 S5 T2 S3 O1

3I-3O 0.4 33 12497 P1. I1 S1 T1 S4 T3 S12 T7 S16 T8 S17 T9 S18 O3
P2. I2 S6 T3 S7 T4 S5 T2 S3 T5 S9 O1
P3. I3 S15 T7 S16 T8 S17 T9 S14 T6 S11 O2

Package 0.2 64 18489 P1. I1 S39 T13 S32 S33 S34 T14 S28 S25 S22 T8 S19 T9 S20 T10 S21 T11 S24 T12 S27 O2
Sorter P2. I2 S31 T13 S32 S33 S34 T14 S35 T15 S36 S37 S38 T16 S40 O3

P3. I3 S16 T6 S17 T7 S13 T3 S5 S6 S7 S8 S9 T4 S10 T5 S11 O1
P4. I4 S2 T1 S3 T2 S4 T3 S5 S6 S7 S8 S9 T4 S10 T5 S15 T11 S24 T12 S27 O2
P5. I5 S1 T1 S3 T2 S12 T6 S17 T7 S18 T8 S19 T9 S23 S26 S29 T15 S36 S37 S38 T16 S40 O3

20 Ibrahim. A et al

Table 4. Patterns discovered by various algorithm in the Conveyor System data
sets. The patterns for the CSC-2 is shown without the inter event gap. PS stands
for Package Sorter.

Method Topology Top Discovered Patterns

2I-2O [S8 T4 S4 S2 T1], [T3 I2 S3 S6], [I1 O2 S8], [S6 S4 S7 S5], [S2 T1 S1], [S8 T4 S4]

GOKRIMP 3I-3O [T5 T9], [S10 I1 S14], [S2 T1], [T3 T6 S18], [S16 S12], [S8 S6]

PS [T2 S4], [S27 O2], [S10 S12], [S17 S18], [S19 T10], [S34 S35]

2I-2O [S3 S8 T2 S7 T4 T3 S6 I2 O1 O2 T4], [O1 S8 T4], [O1 S8 T2 T4],
[S3 S8 T2 T4 T3 S6 I2 O1 O2], [T4 T3 S6][S5 S7 T4 T3]

SQS 3I-3O [T6 T9], [O2 S18], [O1 S11], [O3 S9], [T8 T7 S7], [T7 T3]

PS [T16 S24], [S15 S36], [T11 S36], [T5 S24], [T10 T15], [S21 S36], [T12 S38]

2I-2O [S6 T3 S7 T4 S5 T2 S3 O1], [S1 T1 S4 T3 S7 T4 S8 O2], [S4 T3 S7 T4 S8 O2]
[I1 I2], [T3 S7 T4], [T1 I2]

CSC-2 3I-3O [S15 T7 S16 T8 S17 T9 S14 T6 S11 O2], [S6 T3 S7 T4 S5 T2 S3 T5 S9 O1]
[S12 T7 S16 T8 S17 T9 S18 O3], [I1 S1 T1 T3 T7 S16 T8 S17 T9], [T7 S16 T8 S17 T9]

PS [T3 S5 S6 S7 S8 S9 T4 S10 T5], [S12 T6 S17 T7 T8 S19 T9 S23 S26 T15 S36 S37 S38 T16 S40 O3]
[S39 T13 S32 S33 S34 T14 S28 S25 T8 S19 T9 S20 T10 T11 S24 T12 S27 O2]
[T15 S36 S37 S38 T16 S40 O3], [T13 S32 S33 S34 T14]
[S16 T6 S17 T7 T3 S5 S6 S7 S8 S9 T4 S10 T5], [S1 T1 S3 T2 T6 S17 T7]

GoKrimp algorithms do not take time stamped data. Hence experiments for SQS
and GoKrimp on these datasets is carried out after removing the time stamps,
while retaining the temporal ordering of the symbols.

5.1.2. Interpretability of Selected Patterns on conveyor system dataset

Since the Conveyor system dataset consists of movement of packages through
specific paths, we expect the good patterns to be sub paths of these paths. The
results on the three Conveyor system data sets is given in Table 4. In all the
three data sequences, our algorithm retrieves episodes corresponding to the sub
paths of package flow (see Table 3 for the actual paths). These patterns actually
correspond to sub paths where the packages move along the segments and turns
at a fixed speed, without any congestion. The patterns returned by SQS and
GoKrimp did not have any particular significance with respect to the topologies.
Even though SQS gave some long patterns, those did not give any information
regarding the underlying system of transportation of packages.

5.1.3. Effectiveness and Efficiency of the Algorithms

In this section, we compare the effectiveness and efficiency of the methods in
terms of compression achieved, the number of patterns returned and the run
time on the conveyor system data set. Since the other methods, GoKrimp and
SQS, employ a bit level coding scheme, for comparison purpose, we also calculate
the exact bits needed for our encoding scheme, even though it doesn’t affect the
encoding efficiency as discussed earlier. The encoding scheme remains exactly
the same except for the specification of the alphabet size M in the beginning of
the encoding. Since we only deal with positive integers, we assume that all the
positive integers are encoded using the Elias codes [13]. For a positive integer,
n, the Elias Code Length for encoding n is 2blog2(n)c + 1. Each event-type is

Discovering Compressing Serial Episodes from Event Sequences 21

Table 5. Compression achieved by various algorithms on conveyor system data
sequences.

Datasets SQS GoKrimp CSC-2 CSC-2
(Bitwise)

2I-2O 1.42 1.36 4.56 4.79
3I-3O 1.13 1.11 4.63 4.89

PackageSorter 1.04 1.015 3.34 3.6

Table 6. Number of Patterns returned by various algorithms on conveyor system
data sequences.

Datasets SQS GoKrimp CSC-2

2I-2O 65 20 13
3I-3O 114 22 27

PackageSorter 140 9 77

encoded using a fixed code size of blogMc+ 1 bits. It is easy to see that this bit
level encoding scheme can also be easily decoded as discussed earlier.

For each method, the compression achieved is calculated as the ratio of size
of encoded data using singleton patterns to the size of encoded data using the
selected patterns returned by the methods. Table 5 shows the compression ratios
achieved by the three algorithms on the conveyor system data sets. Here, the
column CSC-2 lists compression ratio in terms of memory units, while the last
column CSC-2(Bitwise) gives the bit level compression ratio for CSC-2. As can be
seen, our compression ratio is better by a factor of 3. As mentioned earlier, remote
visualization and monitoring of such composable conveyor system is a potential
application area of temporal data mining where the compression achieved is
also important. Our method achieves better compression and also returns a very
relevant set of episodes.

Table 6 shows the number of patterns returned by the three methods and
Table 7 shows run times of the three methods. Ideally for datasets with some
inherent regularity in the sequence, a few significant patterns should explain the
dataset well. In such cases, a good method should return a few relevant patterns.
For the conveyor system datasets, where there is inherent regularity in the form
of packet flows, CSC-2 returns a few highly relevant patterns, which happen to
be sub paths of packet flows. GoKrimp also returns a small number of patterns,
though as seen in Table 4, they are not relevant episodes. The PackageSorter
topology is a complex topology with lots of intersecting paths. Hence CSC-2
captures more number of patterns here than from other topologies. As shown
in Table 4, the patterns corresponded to sub paths relevant to the topology.
But for the same topology, GoKrimp gives the minimum number of patterns.
However none of these patterns are relevant in the sense that they capture good
regularities in the underlying system. Hence GoKrimp algorithm fails to even see
any inherent regularity in the datasets (which is also seen by the low compression
achieved). SQS returns the highest number of patterns in all cases, which are all
but irrelevant to these topologies.

22 Ibrahim. A et al

Table 7. Run times in seconds on conveyor system data sequences.

Datasets SQS GoKrimp CSC-2

2I-2O 6 1 1
3I-3O 14 1 1

PackageSorter 20 1 2

Table 8. Patterns discovered by various algorithm in the JMLR data.

Method Top Discovered Patterns

support vector machin state art neural network well known
real world high dimension experiment result special case

GOKRIMP machin learn reproduc hilbert space sampl size solv problem
data set larg scale supervis learn signific improv
bayesian network independ compon analysi support vector object function

support vector machin larg scale featur select sampl size
machin learn nearest neighbor graphic model learn algorithm

SQS state art decis tree real world princip compon analysi
data set neural network high dimension logist regress
bayesian network cross valid mutual inform model select

support vector machin reproduc kernel hilbert space classif problem experiment result
data set real world optim problem gener error

CSC-2 learn algorithm model select loss function supervis learn
machin learn featur select state art graphic model
bayesian network high dimension larg scale propos method

5.2. Results on other data sets

We now discuss the experimental results on the datasets given in Table 2. We
first show the interpretability of the patterns output by different methods on the
JMLR data. In section 5.2.2, we compare the methods for efficiency in terms of
compression achieved, runtime and the number of patterns. In section 5.2.3, the
effectiveness of the selected patterns from different methods is analyzed using
the patterns as features for classification.

5.2.1. Interpretability of Selected Patterns

Of the six real world data sets, only the outputs from the JMLR data could
be analyzed for interpretability. For the JMLR data set, we expect key phrases
relevant to Machine Learning Research to pop up. We ran the CSC-2 algorithm
with K = 20 to find the top 20 selected patterns. For the other two algorithms
we just selected the top 20 of the outputted patterns. Table 8 gives the pat-
terns obtained on JMLR text data. As can be seen, the patterns returned by all
three of the methods are relevant and almost identical. Also we couldn’t see any
redundancy in any of the pattern sets.

5.2.2. Efficiency of the algorithms

In this section, we analyze the efficiency of the methods in terms of compression
achieved, the number of patterns returned and the run time on the data sets
listed in Table 2. Table 9 presents the comparison of compression ratio for differ-
ent methods. Again, the column named CSC-2 lists compression ratio in terms

Discovering Compressing Serial Episodes from Event Sequences 23

Table 9. Compression achieved by various algorithms.

Datasets SQS GoKrimp CSC-2 CSC-2
(Bitwise)

jmlr 1.039 1.008 1.07 1.117
aslbu 1.155 1.123 1.17 1.24
aslgt 1.308 1.156 1.98 1.99

auslan2 1.571 1.428 1.88 1.96
context 2.7 1.7 1.95 1.98
pioneer 1.3 1.17 1.58 1.74

Table 10. Number of Patterns returned by various algorithms.

Datasets SQS GoKrimp CSC-2

jmlr 580 20 765
aslbu 195 67 453
aslgt 1095 68 105

auslan2 13 4 7
context 138 33 39
pioneer 143 49 134

of memory units and the last column, CSC-2(Bitwise), gives the bit level com-
pression ratio for CSC-2. As is seen in Table 9, CSC-2 offers better compression
on almost all the datasets.

Table 10 shows the number of patterns returned by the three methods on
real data. For the JMLR data, GoKrimp extracted only 20 patterns, which as
we showed in Table 8, are all relevant. For SQS and CSC-2, the number of
selected patterns were quite large. The initial phrases were all relevant to ma-
chine learning, as seen in Table 8. Later on, for the CSC-2 algorithm, most of
the patterns returned were either relevant or slightly relevant machine learning,
optimization and mathematical phrases with a bit of redundancy between the
phrases. Never the less, we could make some sense out of most of the returned
phrases. For the rest of the data sets, the size of the selected set of CSC-2 is in
between that of the GoKrimp and SQS methods. We would like to point that the
size of the selected set as such, without considering the relevance of the selected
patterns does not have any particular significance. In Section 5.2.3, we discuss
this again in relation to classification accuracy.

Table 11 compares the run times. Except for the JMLR text data, our method
took less than 2s for all the other data sets. For the JMLR data, the number of
event types M is high (see Table 2) and hence the candidate set C for CSC-2 is
high, which results in more time for calculating the OM matrix. On the data set
aslgt, both SQS and GoKrimp take a lot of time because the number of events
in the sequence is very large. However this does not affect our method much.

5.2.3. Classification Results

Here we show the classification results on the five labeled datasets in Table 2 (The
JMLR data has no class labels). For each method, we select class specific patterns
using the respective methods and merge them along with the set of all singletons
(which are 1-node episodes) to form features/attributes for classification. Thus,
for classification, each sequence is represented by a feature vector consisting of the
number of occurrences of each of the (selected) patterns together with the counts

24 Ibrahim. A et al

Table 11. Run times in seconds.
Datasets SQS GoKrimp CSC-2

jmlr 489 2 182
aslbu 196 28 5
aslgt > 10Hrs 1440 4

auslan2 1 1 1
context 70 36 1
pioneer 10 6 1

Table 12. Percentage Classification accuracy achieved by various algorithms on
20 runs.

Datasets SQS GoKrimp CSC-2 CSC-2∗ Singletons
Accuracy Accuracy Accuracy Accuracy Accuracy

Mean σ Mean σ Mean σ Mean σ Mean σ

aslbu 70.08 0.68 68.57 0.83 70.02 0.94 71.15 0.75 69.7 1.1
aslgt 86.12 0.18 85.55 0.23 85.9 0.15 86.1 0.19 82.17 0.19

auslan2 35 1.23 32.7 1.6 35.18 1.2 34.05 1.13 32.58 1.7
context 94.02 0.94 93.83 0.61 93.7 0.89 94 0.65 94.02 0.58
pioneer 100 0 100 0 100 0 100 0 100 0

of the singletons in the sequence . We also show the results, when only singletons
are used as features. We call this method as Singletons in the tables. In [13],
GoKrimp was compared with closed mining episode method, BIDE [25], and one
of their two step (mining and then subset selection) methods, SEQKrimp [12,13].
They used different classifiers and found that the linear SVM classifier was giving
the best results for almost all datasets. And for all the datasets, they showed
that the top patterns returned by the SeqKrimp and GoKrimp were giving better
classification accuracy than the top patterns returned by the BIDE algorithm.
For our study, we thus use the linear SVM as the classifier using the libsvm
package [8]. Since SeqKrimp and GoKrimp were giving similar results, we only
use GoKrimp for this comparison study as SeqKrimp is computationally very
intensive.

The fixed interval serial episode patterns returned by CSC-2 are used as fea-
tures in two different ways. In the first method, features are the counts of the
selected fixed interval serial episodes along with the counts of the singletons. In
the second approach, we drop the fixed inter-event constraints from the episodes
and treat them as normal serial episodes (and care is taken to avoid multiple
representations of the same serial episode). The counts of these serial episodes
along with the singleton counts would be the feature representation of the se-
quences. The first method is called as CSC-2 and the second method is called
CSC-2∗ in the results table.

For each dataset, the results were obtained by averaging 20 repetitions of
10-fold cross-validation. The results are shown in Table 12. The table gives the
mean and standard deviation (σ) of the classification accuracy. We see that, SQS
marginally outperforms the other methods for the aslgt and context datasets and
the two CSC-2 methods have higher accuracies for the aslbu and auslan2 data
sets, respectively. In all the datasets, however, the accuracies are similar for SQS
and CSC-2. In comparison, the accuracies of the GoKrimp method are slightly
lower than both the SQS and CSC-2 methods, except for the pioneer data, where
none of the methods seem to misclassify. Table 13 shows the number of patterns

Discovering Compressing Serial Episodes from Event Sequences 25

Table 13. The average number of features per data set for each method. The
number (except for the Singletons) is the number of non-singleton extracted
patterns which represent the feature set along with the singletons.

Datasets SQS GoKrimp CSC-2 Singletons

aslbu 70 17 23 263
aslgt 1154 418 923 94

auslan2 15 0 6 23
context 150 64 42 107
pioneer 132 24 121 184

selected by each method as features and we see that the number of features
selected by SQS is far higher than other methods. And we noticed that, even
though the performance of SQS was only slightly better than CSC-2, the run
time for the experiments was at least five times longer than that of CSC-2. On
the other hand, GoKrimp selects comparatively the lowest number of patterns
(except for the context data set) and also has the lowest accuracy among the three
methods. For the auslan2 dataset, GoKrimp couldn’t extract any pattern and
hence the classification accuracy is similar to Singletons (the slight difference
is due to difference in the Cross Validation splits for different runs). It is also
interesting to see that the Singletons method, which consists of only the 1-node
counts are always close to the best results. But nevertheless, the table shows that
the selected patterns from different methods have contributed to the increase in
accuracy.

5.3. Discussion

The results presented here show that CSC-2 is a good method for finding a subset
of patterns that achieve good compression. It is also seen that these patterns
that achieve good compression are also highly relevant for the problem. For the
conveyor system datasets, our method was shown to perform extremely well in
pulling out patterns representing the stable flow of items and achieving great
compression. Both the aspects are of great importance for remote monitoring of
such systems as discussed earlier. The other methods have failed in doing so. On
these datasets, the other algorithms, namely SQS and GoKrimp failed to find
patterns that capture the package flow and they also could not achieve much
data compression.

We have also tested out method on some real world data sets. The CSC-2
algorithm discovered subsets of episodes that result in better data compression
compared to the other methods and our algorithm also seems faster than other
algorithms for most of the datasets. The subset of patterns identified by CSC-2
is also seen to be very effective in classification scenarios.

Recall that the patterns used by CSC-2 are fixed interval serial episodes. Such
episodes, as we have seen, suited the conveyor system data sets, where sequential
occurrences of events follow such a fixed gap mechanism. For the other sequential
datasets used for classification, such constraints may not be really relevant. But
even on these data sets, CSC-2 identifies a subset of patterns that result in both
data compression as well as better performance in classification. This shows that
our pattern structure is not particularly restrictive and it is useful on a variety
of data sets.

26 Ibrahim. A et al

6. Conclusion

Frequent episodes discovered from sequential data are supposed to give us good
insights into the characteristics of the data source. However, in practice, most
mining algorithms output a large number of highly redundant episodes. Isolating
a small subset of episodes that succinctly characterize the data is a challenging
problem. In this paper, we presented an MDL based approach for this problem.
Using the interesting class of fixed interval serial episodes and a novel data
encoding scheme, we presented a method to discover a subset of highly relevant
episodes. In contrast to methods in [12, 13, 23], our method achieves good data
compression, while being able to work with event sequences with time stamps.

We compared our method with SQS and GoKrimp on text data and also
on a number of real world data sets which were used earlier in temporal data
mining. On all these data sets, our method is good in comparison to others,
both in terms of compression and run time. For the classification scenario, our
method was only slightly less effective than SQS but better than GoKrimp. But
we achieved it with far fewer patterns and very low run times.

In this paper, we also briefly discussed a novel application area for sequential
pattern mining. This is the composable conveyor system. We presented empirical
comparison of our method with that of others on three data sets from this prob-
lem domain to demonstrate both the effectiveness and efficiency of our method.

In this paper, we have not attempted any statistical analysis of our method
so that we can relate the data compression to some measure of statistical signif-
icance of the pattern subset isolated by our method. This is an interesting and
challenging direction to extend the work presented here. We would be exploring
this in our future work.

References

[1] A. Achar, A. Ibrahim, and P. S. Sastry. Pattern-growth based frequent serial episode
discovery. Data & Knowledge Engineering, 87:91–108, 2013.

[2] A. Achar, S. Laxman, and P. S. Sastry. A unified view of the apriori-based algorithms for
frequent episode discovery. Knowledge and information systems, 31(2):223–250, 2012.

[3] B. Archer, S. Shivakumar, A. Rowe, and R. Rajkumar. Profiling primitives of networked
embedded automation. In Automation Science and Engineering, 2009. CASE 2009. IEEE
International Conference on, pages 531–536. IEEE, 2009.

[4] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu. Mafia: A maximal frequent
itemset algorithm. Knowledge and Data Engineering, IEEE Transactions on, 17(11):1490–
1504, 2005.

[5] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In Principles of
Data Mining and Knowledge Discovery, pages 74–86. Springer, 2002.

[6] G. Casas-Garriga. Summarizing sequential data with closed partial orders. In SDM, vol-
ume 5, pages 380–391. SIAM, 2005.

[7] V. Chandola and V. Kumar. Summarization–compressing data into an informative repre-
sentation. Knowledge and Information Systems, 12(3):355–378, 2007.

[8] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[9] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In Discovery science, pages
278–289. Springer, 2004.

[10]P. D. Grünwald. The minimum description length principle. The MIT Press, 2007.
[11]J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status and future

directions. Data Mining and Knowledge Discovery, 15(1):55–86, 2007.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Discovering Compressing Serial Episodes from Event Sequences 27

[12]H. T. Lam, F. Mörchen, D. Fradkin, and T. Calders. Mining compressing sequential pat-
terns. In SDM, pages 319–330. SIAM, 2012.

[13]H. T. Lam, F. Mörchen, D. Fradkin, and T. Calders. Mining compressing sequential pat-
terns. Statistical Analysis and Data Mining, 7(1):34–52, 2014.

[14]S. Laxman, P. S. Sastry, and K. P. Unnikrishnan. A fast algorithm for finding frequent
episodes in event streams. In Proceedings of the 13th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 410–419. ACM, 2007.

[15]D.-I. Lin and Z. M. Kedem. Pincer-search: an efficient algorithm for discovering the max-
imum frequent set. Knowledge and Data Engineering, IEEE Transactions on, 14(3):553–
566, 2002.

[16]H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

[17]N. Méger and C. Rigotti. Constraint-based mining of episode rules and optimal window
sizes. Knowledge Discovery in Databases: PKDD 2004, pages 313–324, 2004.

[18]F. Moerchen and D. Fradkin. Robust mining of time intervals with semi-interval partial
order patterns. In SDM, pages 315–326. SIAM, 2010.

[19]N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for
association rules. In Database Theory—ICDT’99, pages 398–416. Springer, 1999.

[20]J. Rissanen. A universal prior for integers and estimation by minimum description length.
The Annals of statistics, pages 416–431, 1983.

[21]S. Shivakumar. Sensor-actuator systems for automation. In Work In Progress Session,
IEEE Real-time Systems Symposium. IEEE, 2006.

[22]A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In SDM, volume 6,
pages 393–404. SIAM, 2006.

[23]N. Tatti and J. Vreeken. The long and the short of it: Summarising event sequences with
serial episodes. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 462–470. ACM, 2012.

[24]J. Vreeken, M. Van Leeuwen, and A. Siebes. Krimp: mining itemsets that compress. Data
Mining and Knowledge Discovery, 23(1):169–214, 2011.

[25]J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In Data Engi-
neering, 2004. Proceedings. 20th International Conference on, pages 79–90. IEEE, 2004.

[26]J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining frequent
closed itemsets. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 236–245. ACM, 2003.

[27]J. Wang and G. Karypis. On efficiently summarizing categorical databases. Knowledge
and Information Systems, 9(1):19–37, 2006.

[28]I. H. Witten, A. Moffat, and T. C. Bell. Managing gigabytes: compressing and indexing
documents and images. Morgan Kaufmann, 1999.

[29]Y. Xiang, R. Jin, D. Fuhry, and F. F. Dragan. Succinct summarization of transactional
databases: an overlapped hyperrectangle scheme. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 758–766. ACM,
2008.

[30]X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns in large datasets.
In Proceedings of SIAM International Conference on Data Mining, pages 166–177. SIAM,
2003.

	1 Introduction
	2 Problem Statement
	2.1 Fixed Interval Serial Episodes
	2.2 Selecting a Subset of Episodes Using the MDL Principle

	3 The Encoding Scheme for Data
	3.1 Encoding
	3.2 Decoding
	3.3 Length of the Encoding

	4 Algorithms
	4.1 First Algorithm: CSC-1
	4.2 An improved algorithm: CSC-2

	5 Experiments
	5.1 Results on Composable Conveyor System data sequences
	5.2 Results on other data sets
	5.3 Discussion

	6 Conclusion
	References

