

This is a pre-print of an article published in Knowledge and Information Systems.

The final authenticated version is available online at: https://doi.org/10.1007/s10115-015-0858-z

Process Monitoring Using Maximum Sequence Divergence

Yihuang Kang．Vladimir Zadorozhny

Abstract Process Monitoring involves tracking a system’s behaviors, evaluating the current state of

the system, and discovering interesting events that require immediate actions. In this paper, we consider

monitoring temporal system state sequences to help detect the changes of dynamic systems, check the

divergence of the system development, and evaluate the significance of the deviation. We begin with

discussions of data reduction, symbolic data representation, and the anomaly detection in temporal

discrete sequences. Time-series representation methods are also discussed and used in this paper to

discretize raw data into sequences of system states. Markov Chains and stationary state distributions are

continuously generated from temporal sequences to represent snapshots of the system dynamics in

different time frames. We use generalized Jensen-Shannon Divergence as the measure to monitor changes

of the stationary symbol probability distributions and evaluate the significance of system deviations. We

prove that the proposed approach is able to detect deviations of the systems we monitor and assess the

deviation significance in probabilistic manner.

Keywords Process Monitoring． Anomaly Detection．Sequence Data Mining．Process Mining．

Information Theory

———————————————

Yihuang Kang ()

Department of Information Management, National Sun Yat-sen University

70 Lienhai Rd., Kaohsiung 80424, Taiwan

E-mail: ykang@mis.nsysu.edu.tw

Vladimir Zadorozhny

School of Information Sciences, University of Pittsburgh

Pittsburgh, PA 15260, U.S.A.

E-mail: vladimir@sis.pitt.edu

https://doi.org/10.1007/s10115-015-0858-z
mailto:ykang@mis.nsysu.edu.tw
mailto:vladimir@sis.pitt.edu

1 Introduction

Various on-line information systems continuously create event logs that represent conditions of dynamic

systems in different times. For example, Electrocardiography logs activity of the heart over a period of

time; a disease outbreak detection system records the number of outpatient visits for some particular

diseases; and a credit card fraud detection system monitors suspicious credit activities. These event logs

from the information systems contain patterns of interest that can be identified by domain experts, dis-

covered by pattern classification methods, or simply represented in meaningful symbols. By monitoring

these dynamics of patterns across the times, we can understand the changes of a system and take required

actions if necessary, which motivates us to develop Process Monitoring techniques.

We define the process as a series of activities or state transitions of a dynamic system that produce

some specific, either deterministic or probabilistic, outcomes. Process monitoring refers to tracking de-

velopment of system and evaluating the conformance of the development with expected or existing one.

Many approaches related to the process monitoring are proposed in different fields of studies, such as

anomaly detection [1], change-point detection [2]–[6] and statistical process control [7]. Anomaly detec-

tion focuses on finding “the patterns in data that do not conform to a well-defined notion of normal be-

havior” [1]; Change-point detection emphasizes the discovery of abrupt changes by comparing data in

two adjacent time frames; and the statistical process control concerns the control of the processes by

identifying the source of process/product variations. Here, however, we assume we monitor a dynamic

system that keeps yielding the data that represents its states in different times. The sequences of these

states indicate the development of the system and we are interested in finding the deviation of the system

development from the discrete temporal sequences.

Due to the fact that the majority of the data generated by information systems are often numeric time-

series, many existing approaches aim to directly cope with these series data streams. For example, the

Shewhart Control Chart[3], Cumulative SUM (CUSUM)[3], and the Generalized Likelihood Ratio[2]

focus on detecting shifting means, outliers, and high likelihood ratios to previous learned models. These

approaches and their extensions have been actively discussed in data mining communities for years and

are widely used in many real-world applications. However, the explosion of the data dimensions and

numerosities in the recent years impedes the performance of these approaches, because the processing of

high dimensionality/numerosities data requires more computational power as the amount of data grows.

Many researchers have started considering the data dimensionality and numerosity reductions using pat-

tern classification methods [8] and time series representation techniques. The goal of these methods is to

discretize the continuous features, keep the signatures (e.g. distance measure) of original data in the trans-

formed space, and adapt the data into patterns of interest denoted by meaningful symbols [9]. These

adapted symbolic data streams (discrete temporal sequences) can be regarded as the development of the

system we monitor. Consider a simple temperature classification. We discretize temperature in degree

centigrade C, (15 < 𝐶, 15 ≤ 𝐶 < 25 , 25 ≤ 𝐶) into (Cold, Warm, and Hot). Two sequences like

(C,C,W,C,W,W,H,H) and (C,C,W,W,W,W,H,H) reflect the transitions of the weather condition in

terms of the feeling of the temperature during different monitoring periods. We consider these sequences

of symbols as the states of the system and use these sequences to assess the deviation of the system

development.

The similarities among these sequences in different monitoring periods provide us the information

about the deviation of a system. The most intuitive way of measuring the differences among these se-

quences is to calculate the number of (mis)matched symbols in terms of symbol positions between two

sequences. For example, the longest common subsequence [10] measures the similarity between se-

quences by finding the common subsequence, and the edit distance [11] evaluates the difference between

sequences by counting the required operations to match two sequences. On the other hand, those distri-

bution-based approaches, such as Kullback-Leibler Divergence (DKL) [12], Bhattacharyya distance[13],

and Jensen-Shannon Divergence (DJS)[14], which measure the differences among the sequences by com-

paring discrete symbol probability distributions, can also be used as distance measures. However, some

properties of these measures, such as boundlessness and asymmetry, make them inappropriate to be the

criteria that help determine the system deviations. To track and assess the deviations, we suggest using a

measure that is: 1) Bounded, which provides certain limits of the deviation that simplify the magnitude

evaluation when the measure is used in numerical applications; 2) Symmetric, which ensures the identity

of the deviation for the same set of probability distributions (i.e. different permutations of the same set of

distributions have identical deviation); 3) Generalizable, which allows for the comparisons of multiple

distributions/sequences in different times; 4) Weightable, which enables itself to assign different weights

to different distributions for various applications (e.g. recent symbol probability distributions weight

higher if we believe they are more important). In this paper, we use generalized Jensen-Shannon Diver-

gence (DGJS) [14] as the deviation measure used in the process monitoring, as DGJS possesses all the

aforementioned properties.

To estimate the symbol probability distributions for the divergence/distance measures, the simplest

way is to create a relative frequency vector (FV) by counting the frequencies of these symbols. However,

a major downside of this approach is that it ignores the patterns of symbol transitions that may indicate

the abnormalities of the system we monitor. Instead, we propose using stationary symbol probability

distributions, which describe the probabilities of being at states (symbols) after the system have operated

for a sufficient long period, from Markov Chains [15] generated by the discrete sequences. Google’s

PageRank [16] algorithm is here used to obtain a unique stationary probability distribution for each

sequence of symbols. These stationary symbol distributions capture the symbol transitions and represent

the snapshots of the system dynamics, which also can maximize the aforementioned divergence measures

used to assess the deviation of the system development.

The assessment of deviation significance is also crucial to the measures used in a monitoring system.

The “assessment” here is simply the magnitude guideline of the measure we choose. It is to provide a

critical threshold of when we should take the required actions (e.g. to give an alarm or make a decision).

Many proposed approaches do not address this issue clearly. Some of them lack the threshold, set a pre-

determined threshold, provide a score function that computes a distance-like measure without the afore-

mentioned properties, or suggest to choose a value that balances the quick detection and the false alarm

rate [3], [5], [6]. In the worst case, the thresholds of these approaches need to be changed when these

approaches are applied to different datasets, which hinders them from being applied to real-world appli-

cations. The reason we choose DGJS is that the approximation of its significant threshold can be obtained

[17]. No matter what the symbolic data stream is, we can derive the statistically significant threshold for

DGJS given a number of different symbols we have in the sequences, the number of symbol probability

distributions we compare, and a significant level α (usually 0.05 or 0.01) we set. The significant level can

also be interpreted as “the probability that the deviation (DGJS) of the system development is higher than

the threshold”, which is valuable as a reference to decision makers. By monitoring the DGJS, we can not

only track the deviation but also assess the significance of the deviation of a dynamic system in probabil-

istic manner.

The contributions of this paper are summarized as follows:

— We introduce a novel approach used in process monitoring that helps detect the anomalies of a

dynamic system from the point of views of both system change-point and long-term evolutionary

deviation identified in discrete temporal sequences.

— We show that comparing stationary symbol probability distributions generated by Google’s Pag-

eRank algorithm instead of the discrete symbol probability distributions from the frequency of

symbols can maximize the information divergences.

— We present that generalized Jensen-Shannon Divergence outperforms other measures in terms of

the accuracy of system change-point/deviation detections.

— We demonstrate that the significant threshold of the generalized Jensen-Shannon Divergence can

be used as a criterion to determine the anomalies in sequences.

In addition, we also discuss the roles of four important properties (i.e. Boundedness, Symmetry, Gener-

alizability, and Weightability) of a similarity/distance measure used in the assessment of system deviation.

The rest of this paper is organized as follows. In Section 2, we briefly review the backgrounds of

existing approaches related to the process monitoring. The data reduction methods and the role of Markov

Chain with the stationary symbol/state probability distribution are also discussed. In Section 3, we con-

sider the proposed approach. In Section 4, we discuss the applicability and limitation of our approach by

using synthetic and real-world datasets. We introduce other applicable distance measures commonly used

in sequence anomaly detection and DNA/Protein sequence evolutions. In the end, we conclude with a

brief summary of the advantages of using proposed approach.

2 Background and Related Work

The most intuitive related approach of process monitoring is to monitor one or more continuous

random variables and see whether they deviate from the target/expected values. The Shewhart Control

Chart and CUSUM are the typical methods [3]. The Control Chart is a method that keeps sampling the

system and checking whether the sample means exceed a certain number of standard errors from the

means. The CUSUM is similar to the Control Chart but it keeps calculating the cumulative sum of the

differences to the target value until the sum exceeds a certain threshold. These distance-to-target ap-

proaches are easy to implement, but are unable to discover the lurking presumable patterns that may result

in the significant variances before the system deviations actually occur. The likelihood ratio-based ap-

proaches [2], [6] are proposed to eliminate these shortcomings. These approaches provide the ratio sta-

tistics by comparing the fits of the models in different times. Then, the statistical tests on these ratios are

performed or a scoring function is used to identify the significance of the deviations.

As discussed in Section 1, those approaches that directly handle the real-valued time series data are

subject to the Curse of Dimensionality [8], [18] as the amount of data and the data dimensions have grown

dramatically in recent years. Many data reduction methods are proposed to solve the problem. For exam-

ple, Principal Component Analysis[19] (PCA), Discrete Fourier Transform [20], Singular Value Decom-

position [21], Piecewise Aggregate Approximation (PAA) [22], Shape Definition Language(SDL) [23],

and Symbolic Aggregate approXimation(SAX) [24] are proposed to reduce the data dimensionality and

numerosity. Here we focus on those techniques that symbolize the raw data into sequences of symbols,

as the benefits of analyzing the symbolic data stream are both the dimensionality /numerosity reduction

and the measurement noise-insensitivity [9]. Also, numerous sophisticated sequence analysis methods,

such as Permutation, Bernoulli, and Markov models [25], can be used to efficiently manipulate and per-

form the analysis on the symbolic data stream [26]. To preserve the essential information in the original

data, the data reduction method we choose must also be able to keep the signatures (e.g. the distance

measure) of the original data in transformed data space as discussed in Section 1. That is, if two series

data are found similar in the original space, they should also be found similar in the transformed space.

This property of a discretization method is known lower bounding [27]. In this paper, we demonstrate

our approach by assuming that we deal with a dynamic system that generates continuous time-series data

stream. We choose simple cut-points and the SAX as examples to perform the data discretizations.

SAX is a method that discretizes a univarate real-valued time series and produces symbols with ap-

proximately equal probabilities. The time-series data is divided into i segments of equal length. Given a

normalized time series data, the distribution is divided into k equal-probable areas that are assigned k

possible symbols. Each equal-length segment in the data is replaced with a symbol based on which area

the average value of the segment is in. Figure 1 shows an example of how SAX works.

In Figure 1, the series is divided into 8 segments of equal length. The distribution of the series is divided

into 3 equal-probable areas that are represented by 3 letters (a, b, c). Each segment is assigned a let-

ter/symbol (a, b, or c) based on where its average is located. The series data in Figure 1 is then mapped

into aaabbccb. One of important applications of SAX is to discover the time series discords [24], which

is to find the unusual patterns/subsequences within a time series. We use SAX in our experiments because

it has the abovementioned advantages—numerosity reduction and lower bounding [24], [28]. Unlike this

particular application of SAX to find discords, our approach uses the sequence of symbols generated by

SAX to detect the significant changes and long-term deviation of the symbol probability distributions.

That is, we are interested in finding the deviation of a dynamic system, not the specific abnormal pat-

terns/sequences.

We consider building probabilistic process models and estimating the probability distributions for the

symbolic data streams generated from the data reduction/discretization methods. Similar to the notion of

Conformance Checking in Process Mining [29], our approach also keeps constructing process models

and finding the discrepancies between modeled behaviors and the newly observed ones. However, the

naïve approach of Conformance Checking, Token Replay [29], focuses on the fitness of the models, which

is the degree of whether the observed models can “replay” the deterministic process flows of the expected

models. Instead, our approach aims at evaluating the significance of the system deviation in probabilistic

Figure 1: Data discretization by SAX

manner by comparing the discrete symbol/state probability distributions in different times. Various exist-

ing probabilistic models can be used to build the process models and estimate the distributions. For ex-

ample, the Dynamic Bayesian Network and the Markov Networks of the Probabilistic Graphical Models

[30] construct the models based on the conditional dependent or independent structures among random

variables. As we only tackle a discrete pattern/symbolic data stream, a discrete random variable that rep-

resents the states of a dynamic system, we consider a simple probabilistic model—the first-order Markov

Chain.

The first-order Markov Chain we refer to is a discrete-time random process with the Markov property,

which assumes that the next state of the system only depends on the current state [31]. The Markov Chain

is a probabilistic model used to represent a discrete state-space dynamic system and is applied to various

fields of studies. Here, we suggest creating Markov Chains from the symbolic data stream and estimating

the symbol distributions by obtaining the stationary distributions. Different from some literatures doing

the sequence analysis that estimates the symbol and symbol transition distributions by counting symbols’

frequencies [17], [32], we use the stationary symbol distributions instead and assume the distributions

can represent the snapshots of a system dynamics in different times. The benefit of doing this is that the

abnormal system transitions can be captured and the evolutionary deviation of the system development

can be discovered regardless of the actual number of occurrences of symbols and transitions. However,

as some state/symbol transitions may not occur in any given time frame/sequence, which means not all

the Markov Chain we created are ergodic, we may not be able to obtain a unique stationary symbol dis-

tribution for each chain [31]. To solve this problem, we convert all the stochastic state transition matrices

of the Markov Chains into Google Matrices [16], which are fully connected ergodic stochastic matrices

and guaranteed to obtain the stationary distributions. The Google Matrix was originally used by Google’s

PageRank [33] algorithm to deal with very large sparse matrices that represent the links among web pages.

We use the PageRank vectors as the stationary symbol distributions, since we are only interested in the

symbol distributions, not the ranking of the symbol probabilities.

The generalized version of Jensen-Shannon Divergence (DGJS) is used in our approach because of its

valuable properties as discussed in Section 1. In recent decades, the DGJS is getting more popular and is

extensively used as a divergence measure to the sequence analysis in many fields, such as the comparison

of DNA sequence segments [32] in Bioinformatics and the distinguishability in quantum entanglement in

Physics [34], [35]. Many extensions have also been developed to enhance the applications of DGJS. For

example, a Markovian form of the DGJS (MJSD) is proposed to deal with the sequences generated by

Markov sources of arbitrary orders [32]. That is, the MJSD take the nth-order of symbol transitions (nth-

order Markov Chain) into consideration, which is useful when higher order symbol transitions matter.

Unlike these applications of DGJS, the proposed use of DGJS focuses on detecting any system transitions

that may result in significant deviation in any given periods of system developments.

3 Proposed approach—Maximum Sequence Divergence

In this section, we consider proposed approach by beginning with the problem definition and discussion

of symbol probability estimation. We assume that the monitoring system keeps receiving a numeric data

stream from a dynamic system and symbolizing the data into sequences of symbols using data discreti-

zation methods.

3.1 Problem Definition and Symbol Probability Estimation

Consider, for example, that we have a symbolic data stream from a stock market index consisting of two

possible symbols of changes (k = 2), U and D as the index goes “Up” and “Down” for simplicity. We

divide them into 5 equally-sized sequences of symbols as shown in Figure 2. These two symbols, U and

D, are equal-probable in terms of relative frequencies in each sequence. At the very beginning (S1), we

can see that the index keeps iteratively up and down through the observation cycle. Then, the index be-

comes more stable. Our goal is to detect the changes in discrete (symbol) temporal sequences—the devi-

ation of a system development. To obtain the stationary symbol probability distributions, we first build

the first-order discrete-time Markov Chain with a symbol transition probability matrix (denoted by Hm)

for each sequence by counting the relative frequencies of symbol transitions. We assume the development

of this system is a random process of Markov property.

For each stochastic matrix of a Markov Chain, we can obtain a unique stationary probability distri-

bution, also called Steady-State Vector (SV), if the matrix is ergodic [31]. That is, any state (symbol) can

return to itself in one step and also can be reached from any other states in the stochastic matrix. In this

case, the Markov chain we created is fully connected and all transitions have a non-zero probability.

UDUDUDUDUDUDUDUD UUDDUUDDUUDDUUDD UUUUDDDDUUUUDDDD UUUUUUDDDDDDUUDD UUUUUUUUDDDDDDDD

U D
U
D

0.000 1.000

1.000 0.000

U D
U
D

0.500 0.500

0.429 0.571

U D
U
D

0.750 0.250

0.143 0.857

U D
U
D

0.750 0.250

0.143 0.857

U D

U
D

0.875 0.125

0.000 1.000

Time

Figure 2: Sequences and symbol transition probability matrices

Evidently, there is no guarantee that we can create such matrices from all the sequences, as some state

transitions may never occur within a time frame (sequence). To solve this problem, we propose construct-

ing the stochastic matrix for each sequence and then converting these matrices into Google Matrices [16].

The Google Matrix is an ergodic and stochastic matrix originally used by Google’s PageRank algorithm

to deal with very large sparse matrices that represent the links between web pages. The Google Matrix G

can be computed as:

𝑮 = 𝑑 + (𝑑𝒂 + (1 − 𝑑)𝒆)
1

𝑘
𝒆𝑇 (1)

where H is the original stochastic (symbol transition) matrix created from a sequence. The a, e, and k

denote the binary dangling node vector, the rank-one teleportation vector, and the number of possible

states/symbols respectively, and d is the damping factor that is between 0 and 1. Note that we use d instead

of α found in most literature in order to be distinguished from the statistical significant level α used in the

following sections. As the G is dense and fully connected, we can then obtain a unique SV, also called

the PageRank vector [16]. Instead of being used to rank the pages, the generated PageRank vectors are

considered the symbol probability distributions in our approach.

The SVs contain fixed probability of each state (symbol) when a Markov chain operates for a suffi-

ciently long period [31]. Here, the continuously-created stochastic matrices and the SVs can be consid-

ered snapshots of the system transitions and evolutions for long run. One advantage of considering the

changes of the symbol probability distributions in SVs instead of those from the frequency of symbols in

the sequences is that the SVs also take the orders of symbols (transitions) into consideration, which is

valuable when SVs are used in the detection of abnormal transitions. In Figure 3, we show how to create

the SVs from these 5 sequences (S1, S2, S3, S4, S5) shown in Figure 2. We convert H into G with damping

factor d = 0.99. For each G, we can obtain a unique SV. These 5 sequences are then transformed into a

series of 5 SVs.

Note that the damping factor (d = 0.99) plays an important role here. It is originally used to control

the rate that the random page surfers follow the hyperlink structures or jump to a random new page [16].

Here, we consider the damping factor the rate that adds/pads the probabilities of those lower-probable or

zero-probable (absent) symbols transitions. The original damping factor used in the PageRank algorithm

is 0.85, which balances the efficiency and the effectiveness of performing the power method to obtain the

SV [16]. However, the choice of damping factor in our approach depends on how well the sequences we

analyze reflect the actual dynamics of a system in different monitoring periods. That is, we use a lower

damping factor if we believe those low- or zero- probable cells of a stochastic matrix should be higher,

because the sequence we use may not represent the actual transitions of the system conditions. In most

cases, we suggest using a high damping factor instead to avoid padding too high probabilities into these

low- or zero-probable cells of a stochastic matrix so that we can maximize the differences/divergences

among these SVs generated from different sequences, as a higher damping factor increases the sensitivity

of the resulting vectors that are able to detect the smaller changes of the system[16]. In this paper, we use

d = 0.99 for all the experiments. Also, as the size of the stochastic matrix in our approach is determined

by the number of possible states/symbols and is usually much smaller than the page link matrix (e.g. a 2

by 2 stochastic matrix in Figure 3), the high damping factor with small matrix does not requires significant

computation time to obtain the steady-state vectors.

From Figure 3, we can see that the SVs change in terms of the probabilities of symbols (U and D)

and show a trend that the market index is likely to go down at the end of the monitoring period. The

UDUDUDUDUDUDUDUD UUDDUUDDUUDDUUDD UUUUDDDDUUUUDDDD UUUUUUDDDDDDUUDD UUUUUUUUDDDDDDDD

U D
U
D

0.500

0.500
U
D

0.000 1.000

1.000 0.000

U D
U
D

0.462

0.538
U
D

0.500 0.500

0.429 0.571

U D
U
D

0.367

0.633
U
D

0.750 0.250

0.143 0.857

U D
U
D

0.367

0.633
U
D

0.750 0.250

0.143 0.857

U D
U
D

0.005 0.995

0.995 0.005

U D
U
D

0.500 0.500

0.429 0.571

U D
U
D

0.748 0.252

0.146 0.854

U D
U
D

0.748 0.252

0.146 0.854

𝑮 𝑮
𝑮 𝑮

U D

U
D

0.038

0.962
U
D

0.875 0.125

0.000 1.000

U D

U
D

0.871 0.129

0.005 0.995

𝑮

0.5

0.5

U
D

0.5

0.5

U
D

0.5

0.5

U
D

0.5

0.5

U
D

0.5

0.5

U
D

Time

Figure 3: Conversion from sequences to steady-state vectors

approach to use the PageRank vectors, instead of relative frequency vectors (FV), captures possible dif-

ferent long-term symbol transitions and maximizes the deviation of system development in different time

frames. Figure 3 also shows that there is not only a gradual deviation, but also a noticeable change be-

tween SV4 and SV5 (in dashed circle). The goal of the process monitoring is to detect both of them.

3.2 Measure Selection and Generalized Jensen-Shannon Divergence

By monitoring Information Divergence among the discrete probability distributions of these SVs, we are

able to assess the deviation of the system. The “Information Divergence” here is the notion of distance

that indicates the difference among two or more probability distributions. Most divergence measures do

not satisfy the strict conditions as a true distance metric in mathematics, i.e. the symmetry and triangle

inequality, which means these divergences should not be used as a regular distance metric to compare

arithmetically. To select an appropriate measure, we define the first two requirements of a distance/diver-

gence D(Px,Py) we need:

𝐷(𝑃𝑥 , 𝑃𝑦) ≥ 0 (2)

𝐷(𝑃𝑥 , 𝑃𝑦) = 0, iif 𝑃𝑥 = 𝑃𝑦 (3)

where P is a discrete probability distribution (i.e. the SV in our approach). P = [p1, p2,…, pk] and ∑ k pk =

1. At first glance, we can just use a divergence that meets the Eq. 2 and Eq. 3 in our monitoring system.

However, as discussed, there are some popular divergences widely used in various fields, but not all of

them are appropriate deviation measures we need. Take the Kullback-Leibler Divergence (DKL), also

known as relative entropy, as an example. The divergence is defined as:

𝐷𝐾𝐿(𝑃𝑥 , 𝑃𝑦) = ∑𝑃𝑥(i) logk

𝑃𝑥(i)

𝑃𝑦(i)

𝑘

i=1

(4)

where the base k is the number of discrete probabilities (the number of components in an SV). If we have

two SVs, P1=[0.5 0.5] and P2=[0.9 0.1], for example, the DKL(P1, P2) = 0.737. It seems like DKL is the

measure we need, but an asymmetric divergence like DKL cannot provide a common metric to evaluate

the same set but different permutation of SVs. DKL is proved to be asymmetric and semi-bounded[14],

which means:

𝐷𝐾𝐿(𝑃𝑥 , 𝑃𝑦) ≠ 𝐷𝐾𝐿(𝑃𝑦 , 𝑃𝑥) (5)

0 ≤ 𝐷𝐾𝐿(𝑃𝑥 , 𝑃𝑦) ≤ +∞ (6)

For the previous example with two SVs, the DKL(P1, P2) is 0.737, but DKL(P2, P1) is 0.531. Also, there is

no maximum limit of DKL for any given two probability distributions. These two properties (i.e. Eq.5 and

Eq. 6) make DKL an inappropriate measure. Again, our goal is to assess the significance of divergence/de-

viation for a system by monitoring a measure from these continuously-created SVs. Here, we restate the

two required properties of the divergence. A divergence D(Px, Py) we need must be Bounded and Sym-

metric, which means it must not only satisfy Eq. 2 but also Eq. 7 and Eq. 8 as follows.

0 ≤ 𝐷(𝑃𝑥 , 𝑃𝑦) ≤ 𝑎, 𝑎 ∈ 𝑄+ (7)

𝐷(𝑃𝑥 , 𝑃𝑦) = 𝐷(𝑃𝑦 , 𝑃𝑥) (8)

A bounded divergence provides certain limits of the deviation that simplify the magnitude evaluation

when it is used in numerical applications, whereas a symmetric divergence ensures the identity of the

deviation for the same set of symbol probability distributions, which means different permutations of the

same set of probability distributions must have an identical deviation value—a generalized definition of

the symmetry property. Note that the measure we need must also be able to cope with a set of probability

distributions, as it is used in an online monitoring system to track the evolutionary deviation of a dynamic

system. This requirement calls for the need of the other two important properties of a divergence—Gen-

eralizability and Weightability [36] as discussed below.

Consider another example, such as we have a real-time process monitoring system that keeps con-

verting a symbolic data stream into m SVs (SV1, SV2,…. SVm) with 3 different states/symbols (k = 3) as

shown in Figure 4. We need a measure that can assess the deviation of the system by continuously calcu-

lating the divergences from the changes of discrete probability distributions for a set of SVs. That is, the

divergence measure must be able to be generalized to compare multiple discrete probability distributions

in different times—the generalizability property of a measure. In Figure 4 , for example, the divergence

should allow for the comparisons of D(SV1, SV2), D(SV1, SV2, SV3), D(SV1, SV2,…. SVm), i.e. any combi-

nation of the SVs. Also, a practical application of online monitoring systems is that only part of (usually

the most recent) developments/activities of a system is important. That is, more recent activities of a

system weigh higher. We suggest that a divergence measure should also be able to assign a weight value

πm for each distribution we compare—the weightability property of a measure. For example, if we believe

that monitoring the divergences that compare the latest 4 SVs in Figure 4 is enough to evaluate the system

deviation, we can only assign the weights (π) to these 4 SVs and keep the weights of the rest SVs as 0.

We chose generalized Jensen-Shannon Divergence (DGJS) [14] as the measure used in our process

monitoring approach, because the DGJS possesses all of the four properties mentioned above. DGJS is a

symmetric measure that ranges between 0 and 1 [14], [35]. The DGJS is defined:

𝐷𝐺𝐽𝑆(𝑃1 , 𝑃2, … , 𝑃𝑚) = 𝐻 (∑𝜋𝑖

𝑚

𝑖=1

𝑃𝑖) − ∑𝜋𝑖

𝑚

i=1

𝐻(𝑃𝑖)

(9)

where πi is the weight and ∑πi = 1. The Pm are the discrete symbol probability distributions we compare.

In our approach, Pm are the SVs from sequences in different time frames. H(x) is the k-ary Shannon

Entropy that is defined as:

𝐻(𝑥) = −∑ 𝑃(𝑥𝑖)

𝑘

𝑖=1

log𝑘 𝑃(𝑥𝑖) (10)

The DGJS can compare any finite number of the SVs. All the SVs can also be weighted. Take the five SVs

in Figure 3 as an example, if we want to track gradual changes of the market ups and downs, we will take

all the SVs into consideration. That is, we compute DGJS(SV1, …, SV5) with the equally-weighted π = 0.2

for all SVs. In this case, the DGJS is 0.1061. On the other hand, if we want to capture the recent abrupt

changes of the market and believe that only the last two SVs (i.e. SV4 and SV5) are important, we compute

DGJS(SV4, SV5) = 0.1362 with π4 = π5 =0.5. It is obviously that one can assign arbitrary weights to the SVs

and then calculate DGJS from any combinations of SVs with different weights. However, literatures have

indicated that the natural choice of the weights πi = (ni / N), where ni is the length of the sequence used

to estimate 𝑃𝑖 and N is the length of total sequences used to compute DGJS, may produce an optimal esti-

mator of DGJS [14], [17]. Therefore, we suggest calculating selected SVs from equal-length sequences

and assigning equal weights π1 = π2 =…= πm = (1 / m) = (ni / N) to avoid the bias when estimating DGJS.

Besides, it is certain that higher DGJS indicates higher deviation. However, we also need a magnitude

guideline (i.e. how high DGJS is too high) for DGJS to assess the significance of the deviation so that we

can make a decision based on it.

Figure 4: A series of steady-state vectors with weights

…………….

Time

SV1 SV2 SV3 SV4 SVm-3 SVm-2 SVm-1 SVm

π1 π2 π3 π4 πm-3 πm-2 πm-1 πm

3.3 Deviation Significant Threshold and Assessment

There is no fixed value of DGJS as a threshold that indicates the divergence is “high enough” to take

action. From the definition of DGJS, we can see that the DGJS varies dramatically based on 3 factors—(i)

the number of components in an SV k (the number of different symbols); (ii) the number of distribu-

tions/SVs m we compare; (iii) the weights for all the distributions/SV π. That is, even for the same sym-

bolic data, the number of different symbols/states k we choose when we symbolize the raw data, the

number of sequences/SV m we compare, and the weights of SVs π we assign, can noticeably increase or

decrease the DGJS. Here, we first illustrate how the number of states k affects the DGJS by an example.

Suppose we have two SVs, SV1 and SV2. Both of them have k probabilities (for k states/symbols) and a

dominant state with the probability of 1.0. But, the dominant state in SV1 is the first state, whereas the

dominate state in SV2 is the second state. The probabilities for the rest of the states for SV1 and SV2 are all

zero. These two SVs are equally-weighted, i.e. π1 = π2 = 0.5. Figure 5 shows the DGJS decreases as k

increases when we compare these two distributions.

Apparently, we can explain the negative association by the change of the data granularity. When applying

a data discretization method to symbolize the data, a higher number of different symbols (the number of

states in an SV) will increase the granularity and proportionally diminish the differences among the sym-

bol probability distributions we compare. We can also explain it by the definitions of the k-ary Shannon

Entropy (Eq. 10). As the base k increases, the entropy decreases. Correspondingly, the DGJS decreases as

k increases.

The number of SVs m and the weights for these SVs π also have a great impact on the DGJS. From the

definition of DGJS , we can see DGJS allows multiple weighted SVs (distributions). Consider a simple ex-

ample that we have a monitoring system continuously comparing equally-weighted (i.e. π1 = π2 = …= πm

= 1/m) m SVs created from a symbolic data stream. Figure 6 shows the example with the distributions of

the last SV different from all previous SVs with k = 3. Note that the probability in second cell is always

k = 2, DGJS(,) = 1

k = 3, DGJS(,) = 0.6309

k = 4, DGJS(,) = 0.5

k = 50, DGJS(,) = 0.1771

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

1

0

.......

.....

.....

Figure 5: DGJS vs. number of different states (k)

1 instead of 0 in the last SV for different m up to 50.

We expect the monitoring system should report that the DGJS is “significantly high” for m SVs when it

compares the last SV with all previous ones, because the probability distribution of the last SV is notice-

ably different from previous SVs. However, it is clear the threshold to define the “significance” should

also depend on m and π. Again, we can explain this by the definitions, i.e. Eq. 9 and Eq. 10. In the example,

the weights π for all m SVs are equal. If the number of SVs m increases, the influence of each SV reduces

so that the DGJS decreases. On the other hand, if we assign a very high weight to the last SV, the DGJS will

increase dramatically as the influence of the last SV increases. Therefore, the number of the SVs m and

the choice of the weight π also play an important role when we determine the significant threshold of the

DGJS.

The significant threshold of the DGJS is a certain value of DGJS that answers the question—“what is

the probability that the DGJS is higher than the threshold?”. The probability here is the critical p-value

(significant level α) commonly used in Statistics. Here, we use DGJS|k,m to denote the threshold. Obviously,

DGJS|k,m is essential for practical uses of DGJS as a deviation measure. Before introducing DGJS|k,m, we first

state our settings and assumptions again. The monitoring system continuously receives a symbolic data

stream and divides it into sequences Sm of total N symbols with k different possible symbols denoted by

A = (a1, a2 ,…, ak). The sequences Sm are equally-sized (S1, S2,…, Sm) (i.e. the length of each sequence n1

= n2 =…= nm). We can then create m first-order Markov Chains and the transition probability matrices

from these sequences. These transition probability matrices are transformed into the Google Matrices Gm.

As Gm are ergodic and small, m unique SVs can be easily obtained by the Power Iteration [16]. Then, we

assign a weight π for each SV depending on different applications as shown in Figure 4 to create a k cells

by m SVs table (k = 3 in Figure 4). These SVs are the snapshots of the system we monitor and are of

probabilities of these states (symbols). Consider this k by m table, we would like to know how much

m=2, DGJS(,) = 0.6309

m=3, DGJS(, ,) = 0.5794

m=4, DGJS(, , ,) = 0.5119

m=50, DGJS(, , ,…, ,) = 0.0892

1

0

0

0

1

0

0

1

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

1

0

1

0

0

1

0

0

1

0

0

1

0

0

0

1

0

.......

Figure 6: DGJS vs. number of discrete probability distributions (m)

Information that k symbols and m sequences/SVs share from this table—Mutual Information (I). In [17],

the task of obtaining the DGJS is interpreted as the task of obtaining the Mutual Information in a symbol

ak about an sequence Sm. That is, provided we know the probability distributions (SVs) of these k symbols

and what symbol ak we have drawn from these sequences, how much I about which sequences Sm we

draw. In our approach, the Mutual Information I is defined:

𝐼 ≡ 𝐷𝐺𝐽𝑆(𝑃1 , 𝑃2, … , 𝑃𝑚) ≡ ∑∑ 𝑃(𝑥𝑖𝑗) log𝑘

𝑃(𝑥𝑖𝑗)

𝜋𝑗𝑃(𝑥𝑖)

𝑚

𝑗=1

𝑘

𝑖=1

= ∑ ∑𝜋𝑗𝑃(𝑥𝑖|𝑆𝑗) log𝑘

𝜋𝑗𝑃(𝑥𝑖|𝑆𝑗)

𝜋𝑗𝑃(𝑥𝑖)

𝑚

𝑗=1

𝑘

𝑖=1

(11)

where P(xi | Sj) is the conditional probability of finding a symbol ai given a sequence Sj. We expect high

variance of P(xi | Sj) if the system we monitor is deviated. On the other hand, if the system we monitor is

stable, we expect that the probabilities of each symbol ak in different SVs are very close, and therefore

both the I and DGJS are close to zero.

Also described in [17], the DGJS in Eq. 11 can be analytically approximated by using the Taylor ex-

pansion as

𝐷𝐺𝐽𝑆 ≡ ∑∑𝜋𝑗𝑃(𝑥𝑖|𝑆𝑗) log𝑘

𝜋𝑗𝑃(𝑥𝑖|𝑆𝑗)

𝜋𝑗𝑃(𝑥𝑖)

𝑚

𝑗=1

𝑘

𝑖=1

≃ ∑∑
(𝜋𝑗𝑃(𝑥𝑖|𝑆𝑗) − 𝜋𝑗𝑃(𝑥𝑖))

2

𝜋𝑗𝑃(𝑥𝑖)(2 ln 𝑘)

𝑚

𝑗=1

𝑘

𝑖=1

(12)

Let’s take a close look at Eq. 12 with Figure 4.The m SVs with k states/symbols (k = 3 in Figure 4) can

be considered an k by m contingency table if we multiply each SV by its weight and N (the total number

of symbols in m sequences). Then, the Eq. 12 can be expressed by the Chi-square statistic χ2 [17], [37] as

defined in Eq. 13:

𝜒2 ≡ 𝑁 ∑∑
(𝜋𝑗𝑃(𝑥𝑖|𝑆𝑗) − 𝜋𝑗𝑃(𝑥𝑖))

2

𝜋𝑗𝑃(𝑥𝑖)
≃

𝑚

𝑗=1

𝑘

𝑖=1

2𝑁(ln 𝑘)𝐷𝐺𝐽𝑆

(13)

We can then rewrite Eq. 13 to obtain the expected DGJS as shown in Eq. 14:

𝐷𝐺𝐽𝑆 ≃
𝜒2

2𝑁(ln 𝑘)
 (14)

Therefore, given a certain significant level α, the number of SVs m, and the number of states k, we can

derive an asymptotical approximate threshold for the DGJS, the DGJS|k,m , as:

𝑃(𝐷𝐺𝐽𝑆 ≤ 𝐷𝐺𝐽𝑆|𝑘,𝑚) ≃ 𝐹(2𝑁(ln 𝑘)𝐷𝐺𝐽𝑆|𝑘,𝑚, 𝑑𝑓) ⇒ 𝐷𝐺𝐽𝑆|𝑘,𝑚 ≃
𝜒𝑑𝑓,1−𝛼

2

2𝑁(ln 𝑘)
 (15)

where F is the Chi-square cumulative distribution function given the degree of freedom df = (k - 1)(m -

1). P(DGJS ≤ DGJS|k,m) denotes the probability of the DGJS less or equal to the threshold DGJS|k,m. The DGJS|k,m

in Eq. 15 is used as the criterion to determine whether the system deviation is significant. In Figure 7, we

provide an example that shows how the DGJS|k,m works as the thresholds in our proposed monitoring ap-

proach, given that we have series of SVs shown in Figure 3.

Note that we consider all the SVs in Figure 7 are equally-weighted, which means, at the time when

the system generates m SVs, the π1 = π2 =…= πm= 1/ m. That is, for example, the weights for 3 SVs are

all 1/3. Each SV is created from a sequence of 16 symbols as shown in Figure 3. The total length of all

the sequences, N, increases as the system keeps converting the symbolic data stream into SVs. Note that

N must be sufficiently large to avoid obtaining the Chi-square statistic in Eq. 15 that may commit a Type

II error. To calculate the DGJS|k,m when we have 2, 3, 4, and 5 SVs in Figure 7, for example, the N is 2 *

16 = 32, 3 * 16 = 48, 4 * 16 = 64, 5 * 16 = 80, respectively. Thus the DGJS|k,m for 2, 3, 4, and 5 SVs in

Figure 7 with α = 0.01 are
𝜒(2−1)(2−1),(1−0.01)

2

2∗(2∗16)∗(ln 2)
 = 0.1496,

𝜒(2−1)(3−1),(1−0.01)
2

2∗(3∗16)∗(ln 2)
 = 0.1384,

𝜒(2−1)(4−1),(1−0.01)
2

2∗(4∗16)∗(ln 2)
 = 0.1279,

and
𝜒(2−1)(5−1),(1−0.01)

2

2∗(5∗16)∗(ln 2)
 = 0.1197. In Figure 7 we provide 3 threshold lines for 3 different significant levels, α

= 0.01, 0.05, and 0.1. These 3 lines can also be interpreted as the probabilities of the DGJS higher than

these lines, which are 0.01, 0.05, and 0.1. The lower the significant level α, the higher the threshold

DGJS|k,m. Also in Figure 7, we can see the actual DGJS (dashed line), which compares (SV1, SV2), (SV1, SV2,

SV3), and (SV1, SV2, SV3, SV4), are all lower than the threshold DGJS|k,m. However, as expected, the DGJS at

the time when we compare (SV1 , … , SV5) is much higher than previous ones, as the SV5 is significantly

different from previous SVs. Given α = 0.05 or α = 0.1, the process monitoring system will give an alert

to indicate that the system we monitor may deviate.

0.500

0.500

U
D

0.462

0.538

U
D

0.367

0.633

U
D

0.367

0.633

U
D

𝑆 1 𝑆 2 𝑆 3 𝑆 4

0.038

0.962

U
D

𝑆 5

Figure 7: A series of steady-state vectors with the significant thresholds

By modifying the aforementioned parameters of DGJS, the proposed monitoring approach can not only

be used in short-term change-point detections, but also gradual deviation monitoring. Figure 8 shows

brief steps to use proposed process monitoring approach.

We first choose appropriate data discretization/reduction methods and the data granularity (the k number

of possible symbols that represent k patterns of interest). The data stream is then symbolized into se-

quences. The next step is to calculate the stationary symbol probability distributions (SVs) in different

times. We keep dividing all the symbols into m equally-sized sequences of n symbols. The length of each

sequence depends on whether the sequence can well represent the wanted dynamics of the system we

monitor in a period (e.g. a day/week/cycle). Then, m by k SVs are generated. In step 3, we compute the

actual DGJS from SVs, and the significant thresholds of the DGJS given k and m, with an appropriate sig-

nificant level α (i.e. 0.1, 0.05, or 0.01). When the actual DGJS is higher than the threshold, the monitoring

system gives an alert that indicates the system deviation is critically high and the deviation very unlikely

occurs by chance. That is, the probability that the actual DGJS is higher than the threshold is the α we

choose.

Again, note that the data discretization methods in Step 1 and the way to estimate the symbol proba-

bility distributions in Step 2 can be replaced by other approaches. In the beginning of Section 2, we briefly

introduce the SAX, as we used it as an example in later experiments. However, many existing pattern

classification methods and time-series representation techniques can be used in Step 1. We suggest using

a data discretization method that can symbolize the data stream without losing too much information of

interest. Also, the most intuitive way to estimate the symbol probability distribution is to count the num-

bers of occurrences of the symbols, the relative frequency vector (FV). However, we propose using SV

instead here as it may capture unusual transitions of the system we monitor. In next section, we demon-

strate the advantages of using proposed approach by comparing it to other measures.

abcbdbfabac..
a
b ………

DGJS

Step 1:
Discretize data stream into
sequences of symbols

Step 2:
Generate SVs

Step 3:
Evaluate the

deviation with DGJS

.....

.....

…...

.....

.....

Figure 8: Steps of sequence deviation assessment using DGJS

4 Experiments

We investigate the applicability, limitation, and performance of the proposed approach by applying it to

two different applications and comparing it to other existing sequence similarity/distance measures com-

monly used in the studies of sequence anomaly detections and the DNA/Protein sequence evolutions.

Here, we first define two applications—the change-point and the long-term deviation detection for se-

quence data. The major differences between these two applications are the number of discrete sequences

we compare and the types of changes we are interested in learning about. The change-point detection is

about finding the significant high pairwise sequence distance, whereas the deviation detection is about

evaluating the distance among multiple (more than two) sequences. We consider the change-point detec-

tion as the discovery of abrupt changes—difference of a system between two adjacent temporal sequences.

On the other hand, the deviation detection is the notion of finding non-obvious evolutionary distance/re-

lationships among multiple sequences—the gradual deviation of a system development. The experiments

in this section include two aforementioned applications to both real-world and synthetic datasets. All

experiments are implemented in R version 3.1.1 [38]. The datasets and source codes of distance/diver-

gence measures used in the later experiments are available in [39] for readers to easily reproduce the

experimental results.

4.1 Comparative Evaluation and Similarity Measures

To perform the comparative evaluation, we enumerate applicable distance measures from the literature

about the sequence similarity analysis in different fields. Due to the fact that most of these measures are

proposed to obtain the distance between two sequences, we consider the sum of the pairwise distance for

each of them in comparison with DGJS that can calculate evolutionary distance among multiple sequences.

The sum of pairwise distances is defined as:

𝐷(𝑆1, 𝑆2, … , 𝑆𝑚) = ∑ 𝐷(𝑆𝑖 , 𝑆𝑖+1)

𝑚−1

𝑖=1

 (16)

where m is the number of sequences we use to compute the distance. Also, a sliding window is used to

keep generating the pairwise sequence distances, D(Sx,Sy), of each paired sequences. As the actual

changes/anomalies may occur anywhere in sequences, we use another fixed length monitoring window,

denoted by ∆[i,j], to label whether anomalies occur within the period. Figure 9 shows the sliding window

W keeps shifting among sequences. The D(Sx,Sy) denotes a calculated distance measure after we collect

symbol data from sequences Sx and Sy.

Note that each ∆ ranges beyond the boundaries of sequences. That is, we also consider a case of early

warning that the anomalies may not only exist in the two sequences used to compute D(Sx,Sy) but also

may happen in the beginning of the next sequence. For example, D(S1,S2) is computed after we have S1

and S2. However, the first ∆ is across the boundaries between S2 and S3, as we believe that the anomalies

could occur somewhere in the end of S2. Besides, consider the application of deviation detection that takes

more than two sequences into account to find the gradual changes, we use the sum of pairwise distances

for each distance measure instead. Figure 10 shows an example that computes the gradual distance by

comparing 3 sequences (m = 3).

Note that, for example, the first distance D(S1,S2,S3) is the sum of two pairwise distances, i.e. D(S1,S2) +

D(S2,S3). Again, if there is any anomaly within a ∆, the target/outcome label of the corresponding distance

measure will be positive (anomaly). These distances and labels are then used in the performance evalua-

tion in the following subsections to create the ROC curves and compute the Area Under the ROC Curves

(AUC).

|abc......|.........|.........|.........|.........|.........|....abc

 (,)

Time

 (,)

 (,)

 (,)

W1

W2

W5

 (,)

W3

 (,)

W4

Figure 9: Pairwise sequence distances

|abc......|.........|.........|......... |.........|.........|....abc

 (, ,)

Time

 (, ,)

 (, ,)

 (, ,)

 (,)

W1

W2

W3

W4

Figure 10: Sum of pairwise sequence distances (given m = 3)

As proposed approach is related to sequence similarity analysis found in various fields, in Table 1,

we list the aforementioned divergences and five applicable distance measures with their notations used

in later experiments. We choose these measures based on whether they can be applied to the comparison

of the sequences with absent symbols. That is, those measures should allow for the comparison of two

sequences in which a symbol that represents a system state may never occur. For example, consider two

sequence S1 (a,b,c,a,b,c) and S2 (a,b,a,b,a,b). The symbol c is absent in S2. The measure we use must be

able to compute the distance/similarity that reflects the absentness of the symbol c. Therefore, some of

the measures, such as Paralinear distance [40] used in the calculation of distance of DNA/Protein se-

quences, are not applicable to our evaluation.

In Table 1, we define the normalized length of Levenshtein distance (nLevD) as Eq. 17, which is a

measure that computes the ratio of edit distance (the number of insertions/deletions/substitutions opera-

tions needed to convert a sequence into another) between two sequences. LevD(S1,S2) denotes the amount

of edit distances between two sequences, whereas |S1| and |S2| are the length of sequences. We consider

nLevD the degree of mismatch of two sequences and use it as a distance measure to detect the changes of

a system. Similar to nLevD, normalized length of the Longest Common Subsequence (nLCS) [41] is a

measure derived from the algorithm to find the Longest Common Subsequence (LCS). The LCS is a com-

mon but not necessarily consecutive subsequence among two or more sequences. It can be used to assess

the similarity of sequences. In Eq. 18, |LCS(S1,S2)| denotes the length of the longest common subsequence.

The nLCS ranges from 0 to 1. The higher nLCS indicates higher similarity between sequences. In later

experiments, we use 1 – nLCS as a distance measure and only consider the case of comparing two se-

quences, as finding the LCS for more than two sequences is an NP-hard problem [42] and thus impractical.

Eq. 19 defines Cosine Distance as 1 - Cosine Similarity. The Cosine Similarity is a common measure

used to find the similarity between two documents in the field of text mining [43]. Instead, we use it to

measure the similarity between two probability vectors, i.e. the discrete symbol probability distributions

from the relative frequency vectors (FV) and the steady state vector (SV). In Eq. 19, V(S) and ||V(S) ||

denote the symbol probability vector generated from a sequence and the norm of the vector respectively.

As all the cells/components of the probability distributions (vectors) are greater or equal to 0, the Cosine

Distance ranges between 0 and 1.

Table 1: Sequence similarity measures

Measure Notation Equation

Generalized Jensen-Shannon Divergence

on Steady-State Vectors
DGJS + SV (Eq. 9)

Generalized Jensen-Shannon Divergence

on Relative Frequency Vectors
DGJS + FV (Eq. 9)

Kullback-Leibler Divergence

on Steady-State Vectors
DKL + SV (Eq. 4)

Kullback-Leibler Divergence

on Relative Steady-State Vectors
DKL + FV (Eq. 4)

Normalized length of Levenshtein distance nLevD 𝑛𝐿𝑒𝑣𝐷(𝑆1, 𝑆2) =
𝐿𝑒𝑣𝐷(𝑆1,𝑆2)

√|𝑆1|∗|𝑆2|
 (17)

One minus Normalized length of the Long-

est Common Subsequence
1-nLCS 1 − 𝑛𝐿𝐶𝑆(𝑆1, 𝑆2) = 1 −

𝐿𝐶𝑆(𝑆1,𝑆2)

√|𝑆1|∗|𝑆2|
 (18)

Cosine Distance

on Steady-State Vectors
CosDist + SV 𝐶𝑜𝑠𝐷𝑖𝑠𝑡(𝑆1, 𝑆2) = 1 −

𝑉(𝑆1) ∙ 𝑉(𝑆2)

‖𝑉(𝑆1)‖∗ ‖𝑉(𝑆2)‖
 (19)

Cosine Distance

on Relative Frequency Vectors
CosDist +FV (Eq. 19)

p-Distance Dp 𝐷𝑝(𝑆1, 𝑆2) =
𝑑

𝑛
 (20)

Jukes-Cantor distance DJC 𝐷𝐽𝐶(𝑆1, 𝑆2) = {
−

𝑘−1

𝑘
ln (1 −

𝑘

𝑘−1
𝐷𝑝) , if 𝐷𝑝 ≤

𝑘−1

𝑘

+∞, if 𝐷𝑝 >
𝑘−1

𝑘

 (21)

As discussed in previous sections, many similarity/distance measures are proposed to help find the

evolutionary distances of DNA/Protein sequences. In later experiments, we consider two applicable

measures—the p-distance (Dp) and Jukes-Cantor distance (DJC) [44] as defined in Eq. 20 and Eq. 21. The

Dp is the proportion of locations that differ between two sequences. In Eq. 20, d is the number of one-to-

one mismatched symbols and n is the length of a sequence. Note that the lengths of two sequences must

be the same. The Dp is simple and easy to compute, but it underestimates the possible substitution of each

symbol at each location. Consider three possible symbols (a, b, c) in a sequence as an example. Each

symbol in the sequence can be replaced by two other symbols. That is, for k possible symbols in a se-

quence, each symbol in a sequence can be replaced by k -1. The p-distance does not reflect the granularity

of the sequence data that contributes to the distance of two sequences. The DJC is proposed to correct the

problem. It is originally assumed that the nucleotide symbol substitution rate (replacement rate) and sym-

bol frequency are all equal. It is also applicable in our experiments, as all symbols are assumed equal-

probable before the discretization. In Eq. 21, k is the number of possible symbols (states). Note that, by

the original definition, the Dp in Eq. 21 is expected to be smaller than (k-1)/k. Instead, we use +∞ when

the Dp is higher than (k-1)/k.

4.2 Detection of Sequence Change Points

As the accuracy of anomaly labels are difficult to verified and obtained [1], for illustration purpose, we

first created two synthetic datasets called DC (which denotes “Distribution Change”) and JM (which

denotes “Jumping Mean”), and discretized them into temporal sequences. The DC dataset is created as

follows. We randomly generate 900 uniformly-distributed data points between -3 and +3, followed by

another 300 normally-distributed random data points with the parameters (µ = 0, σ = 1). This process is

repeated 25 times and all generated data are then concatenated to form the DC dataset with 30,000 data

points. Figure 11 shows the first 3,600 data points of the DC dataset.

The changes of data distributions (anomalies) in the raw series data are obvious. They can be easily de-

tected by various detection techniques, such as likelihood ratio test. However, the goal here is to re-

duce/compress the raw data by discretization methods and see whether the methods based on aforemen-

tioned sequence similarity measures can also detect the differences among discrete symbol sequences.

We symbolize DC dataset using the SAX with different numbers of possible symbols (k). The segment

size to create a symbol in the SAX is 3 data points, i.e. there are a total of 10,000 symbols generated from

the DC dataset. The length of each sequence, n, is set to 100 symbols. Therefore, for example, there are

12 sequences (1,200 symbols) from the data points in Figure 11. Apparently, the change points are at 901,

1201, 2101, 2401, and 3301 (i.e. at the beginning of the sequence S4, S5, S8, S9, and S12). The pairwise

DGJS and other distance measures D(Sx,Sy) are then computed. As we calculate the distances after receiving

pairs of sequences, for total m sequences we can obtain (m – 1) distances. Figure 12 shows the actual

pairwise DGJS in Figure 11.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Figure 11: First 3,600 data points from DC dataset

Note that the number of possible symbols (k) in Figure 12 is 3, and 11 pairwise DGJS are computed. In our

approach, the significant threshold DGJS|k,m is used to help identify the changes. Figure 12 also shows the

thresholds with different α (0.05 and 0.01). The thresholds in different times are all the same (which are

𝜒(3−1)(2−1),(1−0.05)
2

2∗(2∗ 100)∗(ln3)
 = 0.0136 and

𝜒(3−1)(2−1),(1−0.01)
2

2∗(2∗ 100)∗(ln3)
 = 0.0210 for α = 0.05 and α = 0.01 respectively), because

we continuously compare two sequences. The number of sequences we compare (m in Eq. 9) and the total

number of symbols in two sequences (N in Eq. 9) are thus always 2 and 200. Provided that the significant

level α = 0.05, we can see the DGJS are higher than the thresholds at the times when two sequences from

different distributions are compared. The monitoring system based on our approach can thus raise the red

flags and alert us for the changes.

As all the scales of the aforementioned measures are not equal, we consider using the AUC to com-

pare our approach to other distance measures. For DC dataset, the ∆ is set to [-5, +5] at the end of each

sequence, which certainly can capture the change points and generate the positive anomaly labels used in

plotting ROC curves. Figure 13 shows the AUCs of the measures with different number of possible sym-

bols (k). It suggests that those measures based on finding the (mis)matched symbols perform poorly com-

pared to those based on computing the distances of two symbol probability distributions. One major rea-

son is that the DC dataset is randomly generated. In this case, the proportion of matches between two

sequences is usually lower. Besides, we can see that the AUCs of most of the measures (except DGJS)

decreases as the number of possible symbols (k) increases, which also indicates that the performance of

these measures declines when they are applied to high-granularity temporal sequence data. Apparently,

they should not be used as the measure in the process monitoring. On the other hand, the advantages of

using DGJS and SV are clear. Even with higher k, the AUCs of DGJS are nearly constant when DGJS is used

in the comparison of two (m = 2) sequences. Also, the DGJS + FV performs slightly better than DGJS + SV,

D(S4 , S5)

D(S7 , S8)

D(S3 , S4)

D(S8 , S9)

D(S11 , S12)

D(Si-1 , Si)

Figure 12: DGJS and the thresholds with different α

as FV is a better estimate than SV when they are both applied to measuring the symbol probabilities from

data points randomly generated from a given distribution. Another interesting result is that the AUCs of

DKL + SV is higher than the AUCs of DKL + FV, which suggest that using SV can improve the performance

of DKL when DKL is used in measuring the differences of higher-granularity sequence data.

Consider a different application to detect jumping means. The JM dataset shown in Figure 14 consists

of 30,000 data points generated by the following auto-regressive model borrowed from [5].

𝑋𝑡 = 0.6 𝑋𝑡−1 − 0.5 𝑋𝑡−2 + 𝜀𝑡

where εt is the Gaussian random variable with mean µ and standard deviation σ = 1. The change points

are inserted at time 1,000x (x = 1, 2, …, 29). The mean µ at time t is defined as:

𝜇𝑡 = 3 ⌊
𝑡

1000
⌋

Figure 13: The AUCs of distance measures for DC dataset

Figure 14: First 10,000 data points from JM dataset

Obviously, the change points in the JM dataset without any data discretization can be easily detected by

those techniques based on monitoring the shifting means (e.g. CUSUM). However, we would like to

know whether a monitoring system that uses measures in Table 1 can also detect this type of changes in

discrete sequences generated from a dataset like JM dataset after performing data discretizations. Again,

we discretize raw data by using SAX given different numbers of possible symbols (k). The segment size

to create a symbol is set to 2 data points, and the length of each sequence, n, is set to 50 symbols. Figure

15 shows the AUCs of the measures with different numbers of possible symbols (k) for JM dataset. Due

to the nature of SAX, we expect that higher k (higher granularity) for SAX will lead to higher AUCs.

Figure 15 also shows that the DGJS is a better measure. Also, with higher granularity sequence (higher k),

using DKL on SV can improve the performance of sequence anomaly detection in terms of AUC.

The third dataset we used is a real-world dataset about the detection of ozone level and is publicly

available at UCI Machine Learning Repository website [45]. As discussed in [46], high ground level

ozone is potentially harmful to human health. The dataset, “eight hour peak set” (eighthr.data) from 1998

to 2004, contains some features that might be useful to the identification of the ozone/normal days. As

most of these features may be irrelevant [46], we use the “ozone days” class labels in the dataset and only

select the wind speed variables in different times/hours (WSR0 to WSR23) for simplicity. There are some

missing values in the raw dataset, especially in the second half of the year 2002. So, we only use the data

before the second half of 2002 in the later experiment. Then, we perform principal component analysis

and consider the first principal component score for the experiment, as it accounts for most of the varia-

bility of the wind speed dynamics. Figure 16 shows the scores with the ozone day labels denoted by red

dots below.

Figure 15: The AUCs of distance measures for JM dataset

The goal of using the sequences generated from the series data shown in Figure 16 is to find out

whether the proposed approach applying to the wind speed pattern dynamics can help detect the change

points between ozone and normal days. Again, we discretize the data using SAX with different numbers

of possible symbols k. The segment size to create a symbol is set to 1 data point per day (i.e. no numerosity

reduction), and the length of each sequence, n, is set to 14 symbols/days. The ∆ is set to [-7, +1] at the

end of each sequence, which means we experimentally consider that the change points may occur anytime

in the last 7 days/symbols of two sequences we compare, or in 1 day before it actually happen as an early

warning. We present the AUCs of the aforementioned measures with different k in Figure 17.

Note that we consider k between 3 and 7 to avoid resulting in too many absent symbols, as the size of

each sequence, n, is 14 symbols/days. Figure 17 shows that DGJS perform relatively well, and using SV

instead of FV may improve the performance of DKL in terms of AUC. We can also see that the performance

Figure 16: Wind speed 1st PC score and ozone day label

Figure 17: The AUCs of distance measures for wind speed 1st PC score

of these measures decrease (and become useless in terms of AUC) as the k increase, partly because n we

chose is too small to characterize the symbol transitions. It is always a difficult problem to choose an

appropriate size of a sequence to accurately detect the anomalies. Longer sequence may result in the delay

of the alarm, whereas a shorter sequence may not be able to discover the symbol transition patterns.

Besides, we tried to identify change points between ozone and normal days just by monitoring the se-

quences of wind speed pattern dynamics without the ozone day class label used in learning the dis-

tances/similarities among sequences, which is different from the applications using supervised learning

algorithms originally presented in [46].

4.3 Detection of Sequence Deviation

We here consider a different application to monitor long-term deviations. The data we used is a real-world

dataset collected by power stations on the border between Croatia and Bosnia. Those stations in different

locations recorded the measurement (Megawatt Hour, MWh) of the power transmission/consumption

every 15 minutes from 2005 to 2008. We select one dataset from an active station named CAF_BIH [39],

which consists of 137,568 data points. The goal is to see how aforementioned measures can identify the

deviation of the power usage development, the sequential pattern changes (symbol transitions), to help

detect the power surges/spikes (the anomalies). As the power surges are expected to be rare, we use cut-

points to discretize the CAF_BIH data instead of using SAX. We first consider any data points greater

than 20 MWh as the power surges as shown in Figure 18. Then, the cut-points are used to discretize the

data and determine the number of possible symbols (k). In Figure 18, we provide two cut-points (the

dashed lines at 10 and 20) as an example that discretizes the CAF_BIH data into a symbolic data stream

with k = 3. That is, 137,568 data points become a long discrete sequence consisting of 3 possible symbols

(a, b, c), based on which area a data point is in.

Figure 18: CAF_BIH power consumption data

The next step is to determine the size (length) of each sequence (n) to compare. Again, a long se-

quence may result in the delay of the alarm, whereas a short sequence may not be able to discover the

symbol transition patterns (e.g. the cycle of the symbol transitions). We empirically choose 48 symbols

(n = 48), which is equal to 12 hours, as the length of for each sequence. Figure 19 shows a sample of the

settings used in our experiments on the CAF_BIH data. Note that the ∆ is set to [-48, +4] (52 symbols),

which is minus 12 hours/plus 1 hour at the point when the distance measures are computed. In this case,

the surges occurring within this range will be captured and used as the positive anomaly labels in the later

ROC analysis to calculate the AUCs. Again, the length of the ∆ could vary among different applications.

In Figure 19 and all of the experiments for the CAF_BIH data, we consider the case that we have been

monitoring the power usage development for a certain period (e.g. m = 3, sequences = 36 hours in Figure

19). We expect that the surges may occur in the last sequence (last 12 hours) or in the near future (after 1

hour) as the early warnings.

To discretize CAF_BIH data with different k, we use different numbers of cut-points to divide the data

below the surge line (MWh <= 20) into equally-sized areas marked as symbols. Those data points above

the surge line are also labeled as surges/anomalies. Figure 20 shows that the measures based on comparing

symbols probability distributions from Steady-State Vectors (SV) perform better than those based on

counting the ratio of (mis)matches of symbols do, especially when all measures are applied to the com-

parisons of multiple sequences to obtain the evolutionary distances.

|abc......|.........|..........|..........|.........|.........|..........

 ………..

 (, ,)

 (, ,)

 (, ,)

 (,)

W1

W2

W3

W4

 = − ,+
= 52 symbols

|….......| = 48 symbols

Figure 19: Sequences with sliding windows (m = 3) for

CAF_BIH

(a) k = 3 (b) k = 5

(c) k = 7 (d) k = 9

Figure 20: AUCs with different parameters for CAF_BIH data

In addition, we suggest using DGJS instead of DKL, as we observe that the generalizable and symmetric

divergences are better metrics to assess the deviation of a system development. Figure 20 shows most of

AUCs for DGJS are higher than those for DKL. Also, we can see that using SV results in higher AUCs for

DGJS, DKL, and CosDist in most cases, as SV can maximize the differences among the symbol probability

distributions we compare. On the other hand, using FV performs comparably well, especially when we

compare more sequences. It can be explained by the nature of SV and FV. As discussed, the SV can be

considered a snapshot of a system development. The comparison of fewer sequences can maximize the

system deviation within a smaller time frame (the length of the all sequences we compare). Nevertheless,

when more sequences are used in the comparison (higher m), the measures that use FVs might collect

enough information about symbol probabilities close to the real symbol probability distribution. Also, we

assume that using SV to estimate symbol probabilities is better than using FV in most cases, because SV

can also capture the unusual symbols transitions. However, in a special case that there are only a few

transitions in a long sequence, FV might be a better estimator, since FV represents the actual symbol

3 4 5 6 7 8 9 10 11 12 13 14 15

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sequences to compare/Sliding windows size (m)

A
U

C

AUC with cutpoints:(10 20), k = 3

D

GJS
 + SV

D
GJS

 + FV

D
KL

 + SV

D
KL

 + FV

nLevD
1-nLCS
CosDist + SV
CosDist + FV
D

p

D
JC

3 4 5 6 7 8 9 10 11 12 13 14 15

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sequences to compare/Sliding windows size (m)

A
U

C

AUC with cutpoints:(5 10 15 20), k = 5

D

GJS
 + SV

D
GJS

 + FV

D
KL

 + SV

D
KL

 + FV

nLevD
1-nLCS
CosDist + SV
CosDist + FV
D

p

D
JC

3 4 5 6 7 8 9 10 11 12 13 14 15

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sequences to compare/Sliding windows size (m)

A
U

C

AUC with cutpoints:(3.33 6.66 9.99 13.32 16.66 20), k = 7

D

GJS
 + SV

D
GJS

 + FV

D
KL

 + SV

D
KL

 + FV

nLevD
1-nLCS
CosDist + SV
CosDist + FV
D

p

D
JC

3 4 5 6 7 8 9 10 11 12 13 14 15

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sequences to compare/Sliding windows size (m)

A
U

C

AUC with cutpoints:(2.5 5 7.5 10 12.5 15 17.5 20), k = 9

D

GJS
 + SV

D
GJS

 + FV

D
KL

 + SV

D
KL

 + FV

nLevD
1-nLCS
CosDist + SV
CosDist + FV
D

p

D
JC

probabilities but SV from the Google Matrix estimates symbol probabilities by padding some probabili-

ties to those low- or zero- probable cells of the stochastic matrix.

Last but not least, how to choose an appropriate data discretization technique may be beyond the

discussion of this paper, but we can reasonably conclude that the data discretization methods used in

symbolizing data also has a great impact on the performance of these measures. In Section 4.2 and 4.3,

we presented the results by using SAX, the combination of PCA and SAX, and simple cut-points as the

examples. It seems that finer data granularity (higher k) would result in lower AUCs for all the measures

(except DGJS). This is not always the case. Better discretization rules identified by the domain experts or

pattern classification methods could help discover the lurking sequential pattern dynamics, which may

also result in higher AUCs regardless of the number of possible symbols (k).

The process monitoring from the point of view of sequence divergence/deviation is unique but of

similar recent challenges and limitations of discrete sequence anomaly detections [47]. Here, we summa-

rize the limitations and discuss the common challenges of proposed approach.

— The proposed approach may perform relatively poorly when it is applied to sequence data with a

few transitions, as the approach is based on evaluating the stability of the system we monitor.

— A fixed length monitoring window (∆[i,j]) is used to identify anomalies here. However, the way

to label anomalies still varies on different applications. And the anomaly labels in sequence data

are hard to obtained and might be erroneous [47], especially those identified by humans.

— The length of total discrete temporal sequences (N) used to compute the generalized Jensen-

Shannon Divergence DGJS and to estimate its significant threshold DGJS|k,m must be large enough

to avoid computing the Chi-square statistic in Eq. 15 that may commit a Type II error.

— How to define optimal length of each sequence still rely on domain experts [47]. And we sug-

gested using equally-sized sequences (equally-weighted probability distributions) to obtain opti-

mal estimate of DGJS, which might limit the applications of the proposed approach.

— How to choose an appropriate data reduction/discretization technique remain a challenging and

open question. This topic has drawn attentions of data mining communities and deserves further

research.

5 Conclusions

We proposed a novel approach of process monitoring by monitoring the dynamics of a symbolic data

stream, which are the patterns of interests identified by the domain experts, pattern classification methods,

or time-series representation techniques. We begin with a brief introduction of data discretization. Four

important properties of a measure used in monitoring systems—the Boundedness, Symmetry, Generali-

zability, and Weightability, are also discussed. We suggest using the Steady-State Vectors (SVs) to esti-

mate the discrete system state probability distributions in different times. The generalized Jensen-Shan-

non Divergence (DGJS) is used to assess the differences among discrete temporal sequences by comparing

the symbols probability distributions from the SVs. We demonstrate that the DGJS is an outstanding meas-

ure to monitor system dynamics and assess the significance of deviation in probabilistic manner. The

combination of DGJS and SV as the measure in the monitoring system is proved to outperform others.

Acknowledgements

We would like to thank editor and anonymous reviewers for their time and feedback that help improve this paper. We would also

like to thank Dr. Tatjana Welzer in the Institute of Informatics, University of Maribor, for her advice on data integration and

analysis.

References

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput. Surv., vol. 41, no.

3, pp. 15:1–15:58, Jul. 2009.

[2] A. Willsky and H. Jones, “A generalized likelihood ratio approach to the detection and estimation of jumps

in linear systems,” Automatic Control, IEEE Transactions on, vol. 21, no. 1, pp. 108–112, 1976.

[3] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory and application, vol. 15. Citeseer,

1993.

[4] F. Gustafsson, “The marginalized likelihood ratio test for detecting abrupt changes,” Automatic Control, IEEE

Transactions on, vol. 41, no. 1, pp. 66–78, 1996.

[5] K. Yamanishi and J. Takeuchi, “A unifying framework for detecting outliers and change points from non-

stationary time series data,” in Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, 2002, pp. 676–681.

[6] Y. Kawahara and M. Sugiyama, “Change-point detection in time-series data by direct density-ratio estima-

tion,” in Proceedings of 2009 SIAM International Conference on Data Mining (SDM2009), 2009, pp. 389–

400.

[7] D. C. Montgomery, Introduction to Statistical Quality Control, 6th ed. Wiley, 2008.

[8] I. K. Fodor, “A survey of dimension reduction techniques,” Center for Applied Scientific Computing, Law-

rence Livermore National Laboratory, 2002.

[9] C. S. Daw, C. E. A. Finney, and E. R. Tracy, “A review of symbolic analysis of experimental data,” Review

of Scientific Instruments, vol. 74, no. 2, pp. 915–930, Feb. 2003.

[10] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common subsequence algorithms,” in String

Processing and Information Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Symposium

on, 2000, pp. 39 –48.

[11] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology.

Cambridge University Press, 1997.

[12] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The Annals of Mathematical Statistics, vol.

22, no. 1, pp. 79–86, Mar. 1951.

[13] A. Bhattacharyya, “On a Measure of Divergence between Two Multinomial Populations,” Sankhyā: The In-

dian Journal of Statistics (1933-1960), vol. 7, no. 4, pp. 401–406, Jul. 1946.

[14] J. Lin, “Divergence measures based on the Shannon entropy,” IEEE TRANSACTIONS ON INFORMATION

THEORY, vol. 37, pp. 145–151, 1991.

[15] “Markov chain,” Wikipedia, the free encyclopedia, 09-Nov-2014. [Online]. Available: http://en.wikipe-

dia.org/w/index.php?title=Markov_chain&oldid=632678042.

[16] A. N. Langville and C. D. Meyer, Google page rank and beyond. Princeton Univ Pr, 2006.

[17] I. Grosse, P. Bernaola-Galván, P. Carpena, R. Román-Roldán, J. Oliver, and H. E. Stanley, “Analysis of sym-

bolic sequences using the Jensen-Shannon divergence,” Phys. Rev. E, vol. 65, no. 4, p. 041905, Mar. 2002.

[18] E. Keogh and S. Kasetty, “On the need for time series data mining benchmarks: a survey and empirical

demonstration,” 2002, p. 102.

[19] I. T. Jolliffe, Principal component analysis. New York: Springer, 2002.

[20] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence matching in time-series databases,”

SIGMOD Rec., vol. 23, no. 2, pp. 419–429, May 1994.

[21] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality Reduction for Fast Similarity Search

in Large Time Series Databases,” Knowledge and Information Systems, vol. 3, no. 3, pp. 263–286, Aug. 2001.

[22] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping for datamining applications,” in Proceed-

ings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, Boston,

Massachusetts, United States, 2000, pp. 285–289.

[23] R. Agrawal, G. Psaila and E. L. Wimmers, M. Zait, “Querying shapes of histories.”

[24] E. Keogh, J. Lin, and A. Fu, “HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence,”

in Data Mining, IEEE International Conference on, Los Alamitos, CA, USA, 2005, pp. 226–233.

[25] S. Robin, F. Rodolphe, and S. Schbath, DNA, words and models. Cambridge Univ Pr, 2005.

[26] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time series, with implications for

streaming algorithms,” in Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining

and knowledge discovery, 2003, p. 11.

[27] J. Shieh and E. Keogh, “iSAX: indexing and mining terabyte sized time series,” in Proceeding of the 14th

ACM SIGKDD international conference on Knowledge discovery and data mining, Las Vegas, Nevada, USA,

2008, pp. 623–631.

[28] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a novel symbolic representation of time series,”

Data Mining and Knowledge Discovery, vol. 15, no. 2, pp. 107–144, Oct. 2007.

[29] W. M. P. Van Der Aalst, Process Mining: Discovery, Conformance and Enhancement of Business Processes.

Springer-Verlag New York Inc, 2011.

[30] D. Koller and N. Friedman, Probabilistic graphical models. MIT press, 2009.

[31] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems, 2nd ed. Springer, 2008.

[32] A. J. Arvey, R. K. Azad, A. Raval, and J. G. Lawrence, “Detection of genomic islands via segmental genome

heterogeneity,” Nucleic Acids Res, vol. 37, no. 16, pp. 5255–5266, Sep. 2009.

[33] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search engine,” Computer networks and

ISDN systems, vol. 30, no. 1–7, pp. 107–117, 1998.

[34] A. P. Majtey, P. W. Lamberti, and D. P. Prato, “Jensen-Shannon divergence as a measure of distinguishability

between mixed quantum states,” Phys. Rev. A, vol. 72, no. 5, p. 052310, Nov. 2005.

[35] P. W. Lamberti, A. P. Majtey, A. Borras, M. Casas, and A. Plastino, “Metric character of the quantum Jensen-

Shannon divergence,” Phys. Rev. A, vol. 77, no. 5, p. 052311, May 2008.

[36] G. P. Patil, “Weighted distributions,” Encyclopedia of environmetrics, 2006.

[37] H. Herzel and I. Große, “Correlations in DNA sequences: The role of protein coding segments,” Phys. Rev.

E, vol. 55, no. 1, pp. 800–810, Jan. 1997.

[38] R Core Team, “R: A Language and Environment for Statistical Computing,” R Foundation for Statistical

Computing, Vienna, Austria, 2014. [Online]. Available: http://www.R-project.org/.

[39] Y. Kang, “Supplemental contents for ‘Process Monitoring Using Maximum Sequence Divergence.’” [Online].

Available: http://ykang.info/ProcessMon/index.html.

[40] J. A. Lake, “Reconstructing Evolutionary Trees from DNA and Protein Sequences: Paralinear Distances,”

Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 4, pp. 1455–

1459, Feb. 1994.

[41] S. Budalakoti, S. Budalakoti, A. N. Srivastava, M. E. Otey, and M. E. Otey, “Anomaly Detection and Diag-

nosis Algorithms for Discrete Symbol Sequences with Applications to Airline Safety,” Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 39, no. 1, pp. 101 –113, Jan.

2009.

[42] T. Jiang and M. Li, “On the Approximation of Shortest Common Supersequences and Longest Common Sub-

sequences,” SIAM Journal on Computing, vol. 24, no. 5, pp. 1122–1139, 1995.

[43] A. Srivastava and M. Sahami, Text mining: Classification, clustering, and applications, vol. 10. Chapman &

Hall/CRC, 2009.

[44] R. Durbin, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge

University Press, 1998.

[45] “UCI Machine Learning Repository,” Ozone Level Detection Data Set. [Online]. Available: http://ar-

chive.ics.uci.edu/ml/datasets/Ozone+Level+Detection. [Accessed: 20-Dec-2013].

[46] K. Zhang and W. Fan, “Forecasting skewed biased stochastic ozone days: analyses, solutions and beyond,”

Knowledge and Information Systems, vol. 14, no. 3, pp. 299–326, 2008.

[47] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection for Discrete Sequences: A Survey,” IEEE

Transactions on Knowledge and Data Engineering, vol. 24, no. 5, pp. 823–839, 2012.

Author Biographies

Yihuang Kang is an assistant professor in the Department of Information Man-

agement, National Sun Yat-sen University. He received his M.S. and Ph.D. in

Information Sciences from the iSchool of the University of Pittsburgh in 2007

and 2014. In 2009, He began his work as a data analyst in the University of

Pittsburgh School of Medicine. He joined National Sun Yat-sen University in

February 2015. His research interests include temporal data mining, business

process mining, complex adaptive information system, and healthcare data an-

alytics.

Vladimir I. Zadorozhny is an associate professor in the School of Information

Science, University of Pittsburgh. He received his Ph.D. in Computer Science

in 1993 from the Institute for Problems of Informatics, Russian Academy of

Sciences in Moscow. Before coming to the USA, he was a Principal Researcher

in the Institute of System Programming, Russian Academy of Sciences. In May

1998, he began his work as a Research Associate in the University of Maryland

Institute for Advanced Computer Studies at College Park. He joined the Uni-

versity of Pittsburgh in September 2001. His research interests include complex

adaptive information systems, data-intensive process monitoring, information

fusion, and scalable architectures for heterogeneous networked information

systems.

	1 Introduction
	2 Background and Related Work
	3 Proposed approach—Maximum Sequence Divergence
	3.1 Problem Definition and Symbol Probability Estimation
	3.2 Measure Selection and Generalized Jensen-Shannon Divergence
	3.3 Deviation Significant Threshold and Assessment

	4 Experiments
	4.1 Comparative Evaluation and Similarity Measures
	4.2 Detection of Sequence Change Points
	4.3 Detection of Sequence Deviation

	5 Conclusions
	Acknowledgements
	References
	Author Biographies

