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Abstract

A fundamental problem in data mining is to effectively build robust classifiers in the presence of 

skewed data distributions. Class imbalance classifiers are trained specifically for skewed 

distribution datasets. Existing methods assume an ample supply of training examples as a 

fundamental prerequisite for constructing an effective classifier. However, when sufficient data is 

not readily available, the development of a representative classification algorithm becomes even 

more difficult due to the unequal distribution between classes. We provide a unified framework 

that will potentially take advantage of auxiliary data using a transfer learning mechanism and 

simultaneously build a robust classifier to tackle this imbalance issue in the presence of few 

training samples in a particular target domain of interest. Transfer learning methods use auxiliary 

data to augment learning when training examples are not sufficient and in this paper we will 

develop a method that is optimized to simultaneously augment the training data and induce 

balance into skewed datasets. We propose a novel boosting based instance-transfer classifier with a 

label-dependent update mechanism that simultaneously compensates for class imbalance and 

incorporates samples from an auxiliary domain to improve classification. We provide theoretical 

and empirical validation of our method and apply to healthcare and text classification applications.
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 1. Introduction

One of the fundamental problems in machine learning is to effectively build robust 

classifiers in the presence of class imbalance. Imbalanced learning is a well-studied problem 

and many sampling techniques, cost-sensitive algorithms, kernel-based techniques, and 

active learning methods have been proposed in the literature [1]. Though there have been 

several attempts to solve this problem, most of the existing methods always assume an 

ample supply of training examples as a fundamental prerequisite for constructing an 

*Corresponding author: reddy@cs.wayne.edu(Chandan K. Reddy). 
5Slower or decreased convergence rate means that a weight converges to zero with higher number of boosting iterations.
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effective classifier tackling class imbalance problems. In other words, the existing 

imbalanced learning algorithms only address the problem of “Relative Imbalance” where the 

number of samples in one class is significantly higher compared to the other class and there 

is an abundant supply of training instances. However, when sufficient data for model training 

is not readily available, the development of a representative hypothesis becomes more 

difficult due to an unequal distribution between its classes.

Many datasets related to medical diagnoses, natural phenomena, or demographics are 

naturally imbalanced datasets and will typically have an inadequate supply of training 

instances. For example, datasets for cancer diagnosis in minority populations (benign or 

malignant), or seismic wave classification datasets (earthquake or nuclear detonation) are 

small and imbalanced. “Absolute Rarity” refers to a dataset where the imbalance problem is 

compounded by a supply of training instances that is not adequate for generalization. Many 

of such practical datasets have high dimensionality, small sample size and class imbalance. 

The minority class within a small and imbalanced dataset is considered to be a “Rare Class”. 
Classification with “Absolute Rarity” is not a well-studied problem because the lack of 

representative data, especially within the minority class, impedes learning.

To address this challenge, we develop an algorithm to simultaneously rectify for the skew 

within the label space and compensate for the overall lack of instances in the training set by 

borrowing from an auxiliary domain. We provide a unified framework that can potentially 

take advantage of the auxiliary data using a “knowledge transfer” mechanism and build a 

robust classifier to tackle this imbalance issue in the presence of fewer training samples in 

the target domain. Transfer learning algorithms [2, 3] use auxiliary data to augment learning 

when training examples are not sufficient. In the presence of inadequate number of samples, 

the transfer learning algorithms will improve learning on a small dataset (referred to as 

target set) by including a similar and possibly larger auxiliary dataset (referred to as the 

source set). In this work, we will develop one such method optimized to simultaneously 

augment the training data and induce balance into the skewed datasets.

This paper presents the first method for rare dataset classification within a transfer learning 

paradigm. In this work, we propose a classification algorithm to address the problem of 

“Absolute Rarity” with an instance-transfer method that incorporates the best-fit set of 

auxiliary samples that improve balanced error minimization. Our transfer learning 

framework induces balanced error optimization by simultaneously compensating for the 

class imbalance and the lack of training examples in “Absolute Rarity”. To achieve this goal, 

we utilize ensemble-learning techniques that iteratively construct a classifier that is trained 

with the weighted source and target samples that best improve balanced classification. Our 

transfer learning algorithm will include label information while performing knowledge 

transfer.

This paper effectively combines two important machine learning concepts: the concept of 

compensating for the skew within the label space (which belongs to the domain of 

“Imbalanced Learning”) and the concept of extracting knowledge from an auxiliary dataset 

to compensate for the overall lack of samples (which belongs to a family of methods known 

as “instance-based transfer learning”). We aim to construct a hypothesis and uncover the 
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separating hyperplane with only a handful of training examples with data that is complex in 

both the feature and label spaces. The complexity of the data skewness and the rarity of 

training examples prohibit hypothesis construction by human experts or standard algorithms 

and thus we present a solution that can be applied when nothing else suffices. The main 

contributions of this paper are as follows:

1. Present a complete categorization of several recent works and highlight the 

need for a new type of specialized algorithms to solve a niche but important 

problem that is not addressed in the current literature.

2. Propose a novel transfer learning algorithm, Rare-Transfer, optimized for 

transfer within the label space to effectively handle rare class problems.

3. Provide theoretical and empirical analysis of the proposed Rare-Transfer 

algorithm.

4. Demonstrate the superior performance of the proposed algorithm compared to 

several existing methods in the literature using various real-world examples.

The rest of the paper is organized as follows: In Section 2, we describe the different types of 

datasets and briefly discuss the related methods suitable for each type. Section 3 presents the 

motivation for a unified balanced optimization framework. Section 4 describes our 

algorithm, “Rare-Transfer”, which addresses the “Absolute Rarity” problem. Section 5 

presents the theoretical analysis of the proposed algorithm. For further validation, Section 6 

presents empirical analysis of our framework and is followed by experimental results on 

real-world data in Section 7. Finally, we discuss possible extensions and conclude our work.

 2. Characterization of Existing Machine Learning Domains

To describe datasets in terms of both size and imbalance, we use the “Label-Dependent” 

view in Figure 1. The sub-figures present a binary classification problem with normally 

distributed samples within each class1 (thus we describe it as label-dependent since the 

distributions are normal within each label). Figure 1 illustrates the different datasets with an 

overview of the related machine learning fields2 that can improve learning.

1. Standard dataset: Figure 1(a) depicts a standard dataset with a relatively 

equal number of samples within each class (balanced class distribution) and an 

adequate number of samples for generalization. To learn from balanced 

datasets, equal importance is assigned to all classes and thus maximizing the 

overall arithmetic accuracy is the chosen optimization objective. A variety of 

standard machine learning and data mining approaches can be applied for 

standard datasets as such methods serve as the foundation for the algorithms 

that are modified for any peculiar feature set or distribution.

2. Imbalanced dataset: The dataset in Figure 1(b) is a relatively-imbalanced 

dataset. It is relatively-imbalanced because there is a between-class imbalance 

where one class encompass the majority of the training set. The balance is 

1The terms class and label are used interchangeably in our discussion.
2Only concepts that are relevant for “Absolute Rarity” are discussed.
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relative since both minority and majority training subsets contain adequate 

training samples. For example, email spam classification is a relatively 

imbalanced problem since 97% (majority) of emails sent over the net are 

considered unwanted emails [4] and with around 200 billion messages of spam 

sent per day [5], the number of non-spam emails (minority) is also a large 

dataset. A dataset where the number samples belonging to different classes is 

highly disproportionate is considered to be an “imbalanced dataset” with the 

postulation that the imbalance is relative [1]. Because the majority class 

overwhelms the minority class, imbalanced learning models are biased to 

improve learning on the minority class (without any consideration to the 

availability of training examples).

3. Small dataset: The dataset in Figure 1(c) is a balanced dataset with a training 

sample size that is inadequate for generalization. One method to determine the 

number of samples required for training is to rely on the “Probably 

Approximately Correct (PAC)” learning theory [6]. PAC is applied to 

determine if the ratio of the dimensions of the data to the number of training 

samples is too high where the hypothesis space would thus be exceedingly 

large. If that ratio is too high, learning becomes difficult and prone to model 

over-fitting. PAC gives a theoretic relationship between the number of samples 

needed in terms of the size of hypothesis space and the number of dimensions. 

The simplest example is a binary dataset with binary classes and d dimensions 

with hypothesis space of size 22d
, requiring O (2n) samples [7].

4. Rare Dataset (Dataset with “Absolute Rarity”): The dataset in Figure 1(d) is 

imbalanced as well as small and thus its imbalance is termed as “Absolute 

Rarity”. Weiss [8] presents a good overview of the problems encountered when 

analyzing and evaluating such datasets. Different solutions are outlined for 

handling “Absolute Rarity” with a discussion of solutions for segmentation, 

bias and noise associated with these datasets. In [9], an end-to-end 

investigation of rare categories in imbalanced datasets in both the supervised 

and unsupervised settings is presented.

 3. Learning with “Absolute Rarity”

A “Rare Dataset”3 is a label-skewed and small dataset and presents a set of challenges that 

are not studied in existing literature. This section examines the parameters that are relevant 

for the study of “Rare Datasets”.

 3.1. Effect of Data Size on Learning

 3.1.1. In a Balanced Dataset—The first impediment to learning with “Absolute 

Rarity” is the fact that the small size of the training set, regardless of imbalance, impedes 

learning. When the number of training examples is not adequate to generalize to instances 

not present in the training data, it is not theoretically possible to use a learning model as the 

3In this paper, a “Rare Dataset” refers to a dataset with “Absolute Rarity”
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model will only overfit the training set. The term “adequate” is a broad term as many factors 

including data complexity, number of dimensions, data duplication, and overlap complexity 

have to be considered [1]. Computational learning theory [7] provide a general outline to 

estimate the difficulty of learning a model, the required number of training examples, the 

expected learning and generalization error and the risk of failing to learn or generalize.

A study in [10] found that the size of training set is the factor with the most significant 

impact on classification performance. Figure 2 depicts 4 different algorithms that are trained 

at different training set sizes and demonstrates that increasing the training sets’ size 

improves the classification performance of all the algorithms. To assert that increasing the 

number of training examples, combined with an error minimizing classifier, yields results 

where the training and the generalization errors are similar is an intuitive and crucial finding 

as it demonstrates that the choice of a classification model is less important than the overall 

size of the training set.

 3.1.2. In an Imbalanced Dataset—The second impediment to learning with 

“Absolute Rarity” is the between-class imbalance where a majority of samples belong to an 

overrepresented class and a minority of samples belong to an underrepresented class [1]. The 

imbalanced classification study in [11] found that the most significant effect on a classifier’s 

performance in an imbalanced classification problem is not the ratio of imbalance but it is 

the number of samples in the training set. This is an important finding as it demonstrates that 

the lack of data in “Absolute Rarity” intensifies the label imbalance problem. As the number 

of the training examples increased, the error rate caused by imbalance decreased [12] and 

thus increasing the number of training samples makes the classifiers less sensitive to the 

between-class imbalance [11].

Figure 3 demonstrates how the lack of training examples degrades learning in an imbalanced 

dataset [11]. The ROC curve illustrates the performance of a binary classifier where the x-

axis represents the False Positive Rate (1-Specificity) and the y-axis represents the True 

Positive Rate and is an accepted metric in imbalanced learning problems. Figure 3 presents 

the Area Under the ROC curve (AUC) [13] results in [11] where a classifier was trained for 

two imbalanced datasets [14] with different subsets of training sets (with a total of n 
samples). AUC is a simple summary of the ROC performance and can be calculated by 

using the trapezoidal areas created between ROC points and is thus equivalent to the 

Wilcoxon-Mann-Whitney statistic [15]. The results demonstrate that increasing the size of 

the training set directly improves learning for imbalanced datasets.

 4. The Proposed Rare-Transfer Algorithm

 4.1. Notations

Consider a domain (D) comprised of instances (X ∈ ℝd) with d features. We can specify a 

mapping function, F, to map the feature space to the label space as “X → Y” where Y ∈ 

{−1, 1}. If no source or target instances are defined, then n will simply refer to the number 

of instances in a dataset; otherwise, we will denote the domain with n auxiliary instances as 

the source domain (Dsrc) and define (Dtar) as the target domain with m ≪ n instances. 

Instances that belong to the majority class will be defined as Xmajority and those that belong 
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to the minority class will be defined as Xminority. nl is the number of source samples that 

belong to label l while εl is the error rate for label l and denotes the misclassification rate for 

samples with true label l. N defines the total number of boosting iterations, w is a weight 

vector. A weak classifier at a given boosting iteration (t) will be defined as f̈t and its 

classification error is denoted by εt. 1I is an indicator function and is defined as:

(1)

 4.2. Boosting-based Transfer Learning

Boosting-based transfer learning algorithms apply ensemble methods to both source and 

target instances with an update mechanism that incorporates only the source instances that 

are useful for target instance classification. These methods perform this form of mapping by 

giving more weight to source instances that improve target training and decreasing the 

weights for instances that induce negative transfer.

TrAdaBoost [16] is the first and most popular transfer learning method that uses boosting as 

a best-fit inductive transfer learner. TrAdaBoost trains a base classifier on the weighted 

source and target set in an iterative manner. After every boosting iteration, the weights of 

misclassified target instances are increased and the weights of correctly classified target 

instances are decreased. This target update mechanism is based solely on the training error 

calculated on the normalized weights of the target set and uses a strategy adapted from the 

classical AdaBoost [17] algorithm. The Weighted Majority Algorithm (WMA) [18] is used 

to adjust the weights of the source set by iteratively decreasing the weight of misclassified 

source instances by a constant factor and preserving the current weights of correctly 

classified source instances. The basic idea is that the weight of source instances that are not 

correctly classified on a consistent basis would converge and would not be used in the final 

classifier’s output since that classifier only uses boosting iterations  for convergence 

[16].

TrAdaBoost has been extended to many transfer learning problems. A multi-source learning 

[19] approach was proposed to import knowledge from many sources. Having multiple 

sources increases the probability of integrating source instances that are better fit to improve 

target learning and thus this method can reduce negative transfer. A model-based transfer in 

“TaskTrAd-aBoost” [20] extends this algorithm to transferring knowledge from multiple 

source tasks to learn a specific target task. Since closely related tasks share some common 

parameters, suitable parameters that induce positive transfer are integrated from multiple 

source tasks. Some of the prominent applications of TrAdaBoost include multi-view 

surveillance [20], imbalanced classification [21], head-pose estimation [22], visual tracking 

[23], text classification [16] and several other problems [2].

TransferBoost [24] is an AdaBoost based method for boosting when multiple source tasks 

are available. It boosts all source weights for instances that belong to tasks exhibiting 

positive transferability to the target task. TransferBoost calculates an aggregate transfer term 
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for every source task as the difference in error between the target only task and the target 

plus each additional source task. AdaBoost was extended in [25] for concept drift as a fixed 

cost is pre-calculated using Euclidean distance (as one of two options) as a measure of 

relevance between source and target distributions. This relevance ratio thus gives more 

weights to data that is near in the feature space and share a similar label. This ratio is finally 

incorporated to the update mechanism via AdaCost [26].

Many problems have been noted when using TrAdaBooost. The authors in [27] reported that 

there was a weight mismatch when the size of source instances is much larger than that of 

target instances. This required many iterations for the total weight of the target instances to 

approach that of the source instances. In [28], it was noted that TrAdaBoost yielded a final 

classifier that always predicted one label for all instances as it substantially unbalanced the 

weights between the different classes. Even the original implementation of TrAdaBoost in 

[16] re-sampled the data at each step to balance the classes. Finally, various researchers 

observed that beneficial source instances that are representative of the target concept tend to 

have a quick and stochastic weight convergence. This quick convergence was examined by 

Eaton and desJardins [24] as they observed that in TrAdaBoost’s reweighing scheme, the 

difference between the weights of the source and target instances only increased and that 

there was no mechanism in place to recover the weight of source instances in later boosting 

iterations when they become beneficial. TrAdaBoost was improved in [29] where dynamic 

reweighing separated the two update mechanisms of AdaBoost and WMA for better 

classification performance.

 4.3. The Proposed Rare-Transfer Algorithm

To overcome the limitations in boosting-based transfer learning and simultaneously address 

imbalance in “Absolute Rarity”, we present the “Rare-Transfer” algorithm (shown in 

algorithm 1). The algorithm exploits transfer learning concepts to improve classification by 

incorporating auxiliary knowledge from a source domain to a target domain. Simultaneously, 

balanced classification is improved as the algorithm allocates higher weights to the subset of 

auxiliary instances that improve and balance the final classifier. The framework effectively 

combines the power of two boosting algorithms with AdaBoost [17] updating the target 

instances’ weights and the Weighted Majority Algorithm (WMA) [18], modified for 

balanced transfer, updating the source instances’ weights to incorporate auxiliary knowledge 

and skew for balanced classification via transfer from the source domain.

Algorithm 1

Rare-Transfer Algorithm

Require:

  • Source domain instances Dsrc = {(xsrci, ysrci)}

  • Target domain instances Dtar = {(xtari, ytari)}

  • Maximum number of iterations : N

  • Base learner : f̈

Ensure: Target Classifier Output : {ḟ : X → Y}
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f
.

= sign ∏
t = N

2

N βtar
t − f̈ t

− ∏
t = N

2

N βtar
t − 1

2

Procedure:

1: Initialize the weights w for all instances D = {Dsrc ∪ Dtar}, where: wsrc = {wsrc1, …, wsrcn}, wtar = {wtar1, …, 
wtarm}, w = {wsrc ∪ wtar}

2:

Set 

3: for t = 1 to N do

4:

 Normalize Weights: 

5:  Find the candidate weak learner f̈t : X → Y that minimizes error for D weighted according to w

6:

 Calculate the error of f̈t on Dsrc: 

7:

 Calculate the error of f̈t on Dtar: 

8:

 Set 

9:

 Set 

10:

  where i ∈ Dsrc

11:

  where j ∈ Dtar

12: end for

The two algorithms operate separately and are only linked in:

1. Line 4 (Normalization): Both algorithms require normalization. The combined 

normalization causes an anomaly that we will address in subsequent analysis.

2. Line 5: Infusing source with target for training is how transfer learning is 

induced from the auxiliary dataset.

The target instances are updated in lines 7,9, and 11 as outlined by AdaBoost [17]. The weak 

learner in line 5 finds the separating hyperplane that forms the classification boundary and is 
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used to calculate the target’s error rate ( ) in line 7. This error is used in line 9 to 

calculate (βtar > 1) which will then be used to update the target weights in line 11 as:

(2)

Similar to AdaBoost, a misclassified target instance’s weight increases after normalization 

and would thus gain more influence in the next iteration. Once boosting is completed, (t = 

N), the weak classifiers (f̈t) weighted by βtar are combined to construct a committee capable 

of non-linear approximation. The source instances are updated in lines 2 and 10 as done by 

the Weighted Majority Algorithm [18]. The static WMA update rate (βsrc < 1) is calculated 

on line 2 and updates the source weights as:

(3)

Contrary to AdaBoost, WMA decreases the influence of an instance that is misclassified and 

gives it a lower relative weight in the subsequent iterations. This property is beneficial for 

transfer learning since the source instance’s contribution to the weak classifiers is dependent 

on its classification consistency. A consistently misclassified instance’s weight converges4 

and its influence diminishes in subsequent iterations. In Algorithm 1, the WMA update 

mechanism in Equation (3) is actually modified in line 10 to incorporate the cost Cl for 

label-dependent transfer. This dynamic cost is calculated in line 8 and it promotes balanced 

transfer learning. Starting with equal initial weights and using standard weak classifiers that 

optimize for accuracy, these classifiers achieve low error rates for the majority and high error 

rate for the minority as they are overwhelmed with the majority label. The label dependent 

cost, Cl, controls the rate of convergence of the source instances and hence the weights 

converge slower5 for labels with high initial error rates (minority classes). As minority labels 

get higher normalized weights with each successive boosting iteration, the weak classifiers 

would subsequently construct more balanced separating hyperplanes. The  weak 

classifiers are used for the final output with the expectation that the most consistent and 
balanced mix of source instances would be used for learning the final classifier.

 5. Theoretical Analysis of the Rare-Transfer Algorithm

We will refer to the cost Cl on line 9 as the “Correction Factor” and prove in section 5.1 that 

it prevents the source instances’ weights from early convergence. This improves transfer 

learning and addresses the lack of training data in a rare dataset. In section 5.2, we provide 

the motivation for balanced optimization and modify this “Correction Factor” to incorporate 

balanced optimization to simultaneously compensate for the lack of sufficient data and the 

class-imbalance within a rare dataset.

4All mentions of “convergence” refer to a sequence (weight) that converges to zero.
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 5.1. Correction for Transfer Learning

 Definition 1: Given k instances at iteration t with normalized weight w and update rate β, 

the sum of the weights after one boosting iteration with error rate (εt) is calculated as:

(4)

We will now explain this in more detail with the help of an example. Given k = 10 instances 

at iteration t with normalized weights w = 0.1, assume that weak learner f̈ correctly classifies 

6 instances (εt = 0.4). Sum of correctly classified instances at boosting iteration t + 1 is 

calculated as:

(5)

On the other hand, the sum of misclassified instances at boosting iteration t + 1 is:

(6)

Thus, the sum of weights at boosting iteration “t+1” is calculated as:

(7)

 Proposition 1: All source instances are correctly classified by the weak learner:

(8)

Equation (8) is analogous to:
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(9)

This proposition is held true in subsequent analysis to theoretically demonstrate that even 

under ideal conditions with perfect auxiliary instances that consistently fit the classifiers, 

knowledge from these source instances is lost as their weights converge. A “Correction 

Factor” is calculated to conserve such instances and it will be later demonstrated that this 

correction is inversely proportional to classifier’s error and approaches unity (no correction 

needed) as error increases and the analysis deviates from this proposition.

Theorem 1 will examine the effect of the combined (source + target) normalization in line 4 

of Algorithm 1.

 Theorem 1: If no correction is included in Algorithm 1, source weights will improperly 

converge even when all instances are correctly classified.

 Proof: In the Weighted Majority Algorithm, the weights are updated as:

(10)

Equation (10) demonstrates that the weights for source instances that are correctly classified 

should not change after normalization as:

(11)

Without correction, the normalized source weights in Algorithm 1 are updated as:

(12)

Equation (12) shows that, without correction, correctly classified source weights would still 

converge as:
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(13)

Since all source weights persistently converge, all target weights would inversely increase 

since . This will be referred to as “Weight Drift” since weight entropy 

drifts from source to target instances. “Weight Drift” negates transfer since the final 

classifier is comprised of the cascade of weak learners constructed in boosting iterations 

 (where the source instances’ weights could have already converged). With 

converged source weights, Algorithm 1 becomes analogous to the standard AdaBoost 

algorithm with target instances and no transfer learning.

Theorem 1 examined the cause of “Weight Drift” and Theorem 2 will outline the factors that 

control it.

 Theorem 2: For n source instances, the number of target training samples (m) affects the 

convergence rate and thus the “Weight Drift”. “Weight Drift” is also stochastic since the rate 

of convergence at iteration t (without correction) is determined by that iteration’s target error 

rate ( ).

 Proof: The fastest rate6 of convergence is achieved by minimizing the weight for each 

subsequent boosting iteration ( ) as:

(14)

Equation (14) shows that two factors can slow down the rate of convergence of correctly-

classified source instances:

1. Maximizing the weak learner’s target error rate with (choosing an 

extremely weak learner or one that is only slightly better than random). Since 

the weak learner is weighted differently for each iteration, its error cannot be 

controlled and this factor will induce a stochastic effect.

2. Decreasing the number of target samples m, since rate of convergence 

accelerates when m/n → ∞. Attempting to slow the improper rate of 

convergence by reducing the number of target instances is counterproductive as 

the knowledge from the removed instances would be lost.

6Faster or increased convergence rate means that a weight converges to zero with lower number of boosting iterations.
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Theorem 2 demonstrated that a fixed cost cannot control the rate of convergence since the 

cumulative effect of m, n, and  is stochastic. A dynamic term has to be calculated to 

compensate for “Weight Drift” at every iteration. The calculation of a dynamic term is 

outlined in Theorem 3.

 Theorem 3: A correction factor of  can be applied to the source weights to 

prevent their “Weight Drift” and make the weights converge at a rate similar to that of the 

Weighted Majority Algorithm.

 Proof: Un-wrapping the WMA source update mechanism of Equation (14), yields:

(15)

Where A and B are defined as:

A = Sum of correctly classified target weights at boosting iteration“t + 1”

(16)

B = Sum of misclassified target weights at boosting iteration“t + 1”

(17)

Substituting for A and B, the source update is:

(18)

We will introduce and solve for a correction factor Ct to equate ( ) for correctly 

classified instances (as per the WMA).

(19)

Solving for Ct:
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(20)

Adding this correction factor to line 10 of Algorithm 1 equates its normalized update 

mechanism to the Weighted Majority Algorithm and subsequently prevents “Weight Drift”. 

Theorem 4 examines the effect this factor has on the update mechanism of the target 

weights.

 Theorem 4: Applying a correction factor of  to the source weights prevents 

“Weight Drift” and subsequently equates the target instances’ weight update mechanism in 

Algorithm 1 to that of AdaBoost.

 Proof: In AdaBoost, without any source instances (n = 0), target weights for correctly 

classified instances would be updated as:

(21)

Applying the “Correction Factor” to the source instances’ weight update prevents “Weight 

Drift” and subsequently equates the target instances’ weight update mechanism outlined in 

Algorithm 1 to that of AdaBoost since

(22)

It was proven that a dynamic cost can be incorporated into Algorithm 1 to correct for weight 

drifting from source to target instances. This factor would ultimately separate the source 

instance updates which rely on the WMA and βsrc, from the target instance updates which 

rely on AdaBoost and . With these two algorithms separated, they can be joined for 

transfer learning by infusing “best-fit” source instances to each successive weak classifier.

The “Correction Factor” introduced in this section allows for strict control of the source 

weights’ rate of convergence and this property will be exploited to induce balance to 

“Absolute Rarity”. Balanced classifiers will be dynamically promoted by accelerating the 

rate of weight convergence of the majority label and slowing it for the minority label.
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 5.2. Correction for Learning with “Absolute Rarity”

 —Instance-transfer methods improve classification on a small dataset, but they also 

exacerbate the imbalance problem by constructing imbalanced classifiers. This outcome was 

even observed in generally balanced instance-transfer methods. It was noted by [28] that 

boosting for transfer learning sometimes yielded a final classifier that always predicted a 

single label. Dai et al. [16] re-sampled the data at each step to balance the class weight since 

they observed similar behavior. In this section, we examine the cause of this induced 

imbalance.

 Proposition 2: For a class-imbalance problem, a standard classifier yields lower error rate 

for the majority label as compared to that of the minority since it optimizes:

(23)

In a class-imbalanced problem, where (nl=majority ≫ nl=minority), a traditional classifier 

optimizing Equation (23) can achieve high accuracy if it classifies all instances as majority 

instances. This proposition serves as a foundation for all imbalanced learning methods [30, 

1, 31].

 Theorem 5: In an imbalanced problem, the weighted majority algorithm, WMA, 

constructs a classifier where the minority instances’ weights decrease exponentially with 

every boosting iteration.

 Proof: A misclassified source instance at boosting iteration t is updated via the WMA 

update mechanism and its t + 1 weight is adjusted to: . The source update 

mechanism is set by βsrc which is set to:

(24)

Since βsrc < 1, a misclassified source instance’s weight would converge after normalization. 

Since weak classifiers at initial boosting iterations, with equally initialized weights, yield 

high error rates for minority labels (Proposition 2), the minority label’s weights would 

subsequently have less influence on the t + 1 classifier and would accelerate the rate of 

convergence as

(25)

Al-Stouhi and Reddy Page 15

Knowl Inf Syst. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ignoring normalization, the minority label’s weights decrease exponentially as:

(26)

Since the final classifier in Algorithm 1 is computed from the cascade of learners 

constructed in iterations , where the minority source weights could have already 

converged, the final output would be extremely imbalanced as it will have added only 

majority weights.

Conversely, updating the target instances via the AdaBoost update mechanism improves the 

performance on an imbalanced dataset particularly if the final classifier is computed using 

only the  boosting iterations. A mis-classified target instance at boosting iteration t is 

updated via the AdaBoost update mechanism and its t + 1 weight is adjusted to: 

. The target update for a misclassified instance’s weight is dependent on βtar 

where

(27)

Since βtar > 1, a misclassified target instance’s weight would increase after normalization 

and the minority label’s weights would in turn have more influence on the t + 1 classifier 

and bias the classifier to improve learning on the minority as:

(28)

Since the final classifier is computed from the cascade of learners constructed in iterations 

, where the minority label’s instances have increased weights to compensate for the 

lack of its samples, the final output would be more balanced.

 5.3. Label-Space Optimization

 —Instance-transfer can improve learning with “Absolute Rarity” as it compensates for the 

lack of training examples with a selective set of samples from an auxiliary domain. Since 

instance-transfer can also induce imbalance (as proved in the previous section), intuitive 

results will require a balanced optimization technique to address the class imbalance in 

“Absolute Rarity”. Figure 4 motivates for optimization with balanced measures to improve 

classification in imbalanced datasets. The two classifiers in Figure 4 are optimized with 

different types of accuracy measures7 where Figure 4(a) minimizes the Arithmetic error 
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while Figure 4(b) minimizes the (Geometric [32]/ Balanced [33]/Harmonic [34]) errors. This 

example shows that given a constrained classifier (linear classifier in this example), the 

algorithm in Figure 4(b) obtains more intuitive results with a degraded arithmetic accuracy 

and an improved balanced (Geometric/Balanced/Harmonic) accuracy. Theorems 6, 7, and 8 

prove that minimizing a label-dependent measure improves balanced statistical measures 

while Theorem 9 shows that a label-dependent optimization can improve the balanced 

statistics for “Absolute Rarity” in Algorithm 1.

 Theorem 6: Maximizing the Balanced Accuracy (BAC) is equivalent to minimizing the 

sum of label-dependent errors independent of the number of samples within each class:

 Proof: To prove theorem 6, we will start with a binary labeled example and extend to 

general form. With no optimization of the prediction threshold of a binary classifier 

(classifier threshold at a pre-set level), the Area under the ROC Curve (AUC) is equivalent to 

Balanced Accuracy (BAC) [35]. This Balanced Accuracy is the average accuracy of each 

class and in turn equates to the average of sensitivity and specificity. It is calculated as 

follows:

(29)

Equation (29) can be maximized as follows:

(30)

The optimization problem in Equation (30) is a constrained optimization problem which is 

minimized as follows:

(31)

7The Up/Down arrow next to each error measure signifies that an algorithm produced better/worse results in comparison to the other 
algorithm.
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 Theorem 7: Maximizing the Geometric Mean (G-Mean) is equivalent to minimizing the 

product of label-dependent errors and is independent of the number of samples within each 

class:

 Proof: Similar to Theorem 6, we start with a binary labeled example and extend to 

general form:

(32)

Maximizing the statistic in Equation (32), we have

(33)

Similar to Equation (31), the optimization problem in Equation (33) is a constrained 

optimization problem and is minimized by

(34)

Since both Equations (31) and (34) are constrained by the classifier’s error rate, modifying 

the weak learner to improve classification on one label can degrade classification on the 

other label (Figure 4).

 Theorem 8: An improved G-Mean coupled with no degradation in the BAC will improve 

the F-Measure.

 Proof: The harmonic mean of sensitivity and specificity is a particular realization of the 

F-measure [34] and is maximized as
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(35)

Equation (35) can be optimized as

(36)

Equation (36) proves a classifier that improves G-Mean (via balance) with no degradation in 

BAC (via Transfer) improves the F-measure.

 Theorem 9: In an imbalanced dataset, a label-dependent update mechanism can improve 

the G-Mean without degrading the BAC performance.

 Proof: In a balanced learning problem, all labels have an equal effect on BAC and G-

Mean but as the label space gets more imbalanced, , the contribution of the 

minority label’s error rate to the classifier’s overall accuracy can thus be approximated as:

(37)

Equation (37) demonstrates that biasing the classifier to favor the minimization of the 

minority label, in an imbalanced dataset, has minimal effect on the overall accuracy and the 

balanced arithmetic mean will not be degraded since the increased error of the majority label 

is negated by the decreased error of the minority label. On the other hand, G-Mean is the 

balanced geometric mean and is significantly improved if balance is induced.

 5.3.1. Optimization for “Absolute Rarity”—Using definition 1, the sum of source 

instances’ weight is monotonically decreasing as:
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(38)

Similarly, the target instances’ weights are monotonically increasing:

(39)

Line 4 of “Rare Transfer” normalizes the sum of all weights and thus, all source weights are 

monotonically converging. On the other hand, Theorem (5) demonstrated that the minority 

sources’ weights converge faster than the majority sources’ weights. To improve balanced 

classification, we include a “Label-Dependent Correction Factor” to dynamically slow the 

convergence of the source instances’ weights while simultaneously reducing the differential 

in the error between the minority and majority label. It is set to:

(40)

This factor dynamically slows convergence for the label with a higher error since the 

convergence rate is inversely correlated to the error. Biasing each label’s weights allows 

“Rare Transfer” to steer for the construction of a final classifier that includes a best-fit set of 

auxiliary samples and has an equal error on all labels.

 6. Empirical Analysis

In this section, we provide empirical validation of our theorems. The first experiment 

demonstrates how a “Correction Factor” fixes the problem of “Weight Drift”. The second 

experiment examines the effect of “Label-Dependent” optimization on imbalanced learning.

 6.1. “Weight Drift” and “Correction Factor”

The first experiment demonstrates the effect of “Weight Drift” on source and target weights. 

In Figure 5(a), the number of instances was constant (n = 10000, m = 200), the source error 

rate was set to zero (as per Proposition 1) and the number of boosting iterations was set to N 

= 20. According to the WMA, the weights should not change when . The ratio of the 

weights (with and without correction) to the weights of the WMA are plotted at different 

boosting iterations and with different target error rates . This experiment 

validates the following theorems:

1. With correction, source weights converge even when correctly classified.

2. Applying our “Correction Factor” equates the weight update of Algorithm 1 to 

the WMA.
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3. If correction is not applied, strong classifiers cause weights to converge at a 

faster rate than weak ones (Theorem 2).

The figure also demonstrates that for a strong learner with , if no correction is 

applied, an “un-corrected” update mechanism would not transfer knowledge from all 10,000 

source instances although they were never misclassified. The final classifier uses boosting 

iterations N/2 → N, or 10 → 20, where the weights of ideal source instances would have 

already lost over 85% of their value. Correction conserved these instances’ weights and thus 

helpful source instances would improve classification.

The second experiment validates the effect of the number of target instances, m, on the 

convergence rate (Theorem 2). The number of source instances was set (n = 1000), while the 

number of target instances was varied  and plotted for 

. The plot in Figure 5(b) shows how the source weights converge after a 

single boosting iteration and it can be observed that the rate of convergence is affected by 

m/n and the error rate εtar (which is also related to m). It can also be observed that as the 

error rate increases (ε → 0.5), less correction is required as the improper convergence rate 

approaches the correct WMA rate. This is expected since the “Correction Factor” 

( ) is inversely proportional to  and its impact reaches unity (No 

Correction) as the target error rate increases.

(41)

This is an important property because “Weight Drift” is most detrimental to learning at low 

error rates (where Proposition 1 was set).

It should be noted that for both plots in Figure 5, the weight lost by the source instances is 

drifting to the target instances. The plots for the target weights would look inversely 

proportional to the plots in Figure 5 since .

 6.2. “WMA Imbalanced Drift” and “Rare Correction Factor”

This section presents an empirical validation of Theorems 5, 6, 7, 8, and 9. A binary labeled 

classification problem was simulated with 900 majority instances, 100 minority instances 

and the weak classifier error rate was set to (ε = 0.2). Since this an imbalanced dataset and 

the weak classifier is weighted, error rate (εl) was correlated with the label’s relative weight 

as follows: .

In Figure 6(a), we plot the accuracy for both labels and demonstrate that applying a label 

dependent correction factor to the weight update mechanism induces balance while the un-

corrected WMA update mechanism minimizes only the majority label’s error and causes 

imbalance. This is reflected in the statistical measures as Figure 6(b) shows that inducing 
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balance causes no change in BAC while significantly improving G-Mean in Figure 6(c). The 

improved G-Mean coupled with no degradation in BAC is reflected in the improved F-

Measure in Figure 6(d).

 7. Real-World Experimental Results

We will now provide the details on the performance of various algorithms under different 

evaluation metrics using real-world datasets.

 7.1. Dataset Description

 —A Detailed description of the datasets used in our experiments is provided in Table 1.

 (i) HealthCare Demographics: We collected Heart Failure (HF) patient data from the 

Henry Ford Health System (HFHS) in Detroit. This dataset contains records for 8913 unique 

patients who had their first hospitalization with primary HF diagnosis. The goal is to predict 

if a patient will be re-admitted within 30 days after being discharged from the hospital and to 

apply the model to rural hospitals or to demographics with less data [36]. Re-hospitalization 

for HF occurs in around one-in-five patients within 30 days of discharge and is 

disproportionately distributed across the US population with significant disparities based on 

gender, age, ethnicity, geographic area, and socioeconomic status [37]. Other non-

demographic features included length of hospital stay, ICU stay and dichotomous variables 

for whether a patient was diagnosed with diabetes, hypertension, peripheral vascular disease, 

transient ischemic attack, heart failure, chronic kidney disease, coronary artery disease, 

hemodialysis treatment, cardiac catheterization, right heart catheterization, coronary 

angiography, balloon pump, mechanical ventilation or general intervention. The average 

results with 50 minority samples (patient was re-hospitalized) is reported.

 (ii) Employment Dataset: This dataset is a subset of the 1987 National Indonesia 

Contraceptive Prevalence Survey [38]. We used the dataset [14] to predict if a non-Muslim 

woman is employed based on her demographic and socio-economic characteristics. In the 

training set, only 22 of the 1275 were not Muslim and only 7 of them were employed.

 (iii) Parkinson Dataset: This dataset [39] is composed of a range of biomedical voice 

measurements from people with early-stage Parkinson’s disease7. The goal is to predict if a 

female patient’s score on the Unified Parkinson’s Disease Rating Scale [40] is high 

(UPDRS≥10) or low (UPDRS<10). In the training set, only 125 of the 3732 participants 

were female and only 13 of them had a low UPDRS score.

 (iv) Text Dataset: 20 Newsgroups8 is a popular text collection that is partitioned across 

20 groups with 3 cross-domain tasks and a two-level hierarchy as outlined in [41]. We used 

Term FrequencyInverse Document Frequency (TF-IDF) [42] to maintain around 500 

features and imbalanced the dataset to generate a high dimensional, small and imbalanced 

dataset.

8http://people.csail.mit.edu/jrennie/20Newsgroups/
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 7.2. Experiment Setup

 —AdaBoost [17] was used as the standard baseline algorithm for comparison. We applied 

SMOTE [43], with 5 nearest neighbors (k = 5), before boosting to compare with an 

imbalanced classification method (SMOTE-AdaBoost). TrAdaBoost [16] was used as the 

baseline transfer learning algorithm. The non-transfer reference algorithms were trained with 

the target-only set and with the combined (target+source) set. Thirty boosting iterations were 

experimentally proven sufficient for training.

 Base Learner (f̈): We did not use decision stumps as weak learners since most data 

belongs to the source and it was not possible to keep the target error below 0.5 (as mandated 

by AdaBoost) for more than a few iterations. A strong classifier, full classification tree 

without pruning, is applied with a top-down approach where the tree is trimmed at the first 

level to achieve .

 Cross Validation: Small datasets are prone to over-fit and terminate boosting and thus all 

algorithms were restarted with a new cross validation fold when any algorithm terminated 

before reaching 30 iterations. Random sub-sampling cross validation [44] was applied and 

each statistic was tabulated with the macro average [45] of 30 runs. Plots with two 

imbalance ratios across a variable size of minority samples are also presented.

 7.3. Experimental Results

This section presents the classification results for the different balanced learning measures.

 7.3.1. BAC Results—The BAC results presented in Table 2 show that Rare-Transfer 

improved the Balanced Accuracy. The improved performance is consistent even when the 

addition of auxiliary data seemed to degrade the performance as evident in the 20 

Newsgroups dataset. This is proof that the “transfer learning” objective in our algorithm 

improved learning with only the best set of auxiliary instances. Figure 7 demonstrates that 

the improved performance is consistent across different datasets, imbalance ratios and 

absolute number of minority samples.

 7.3.2. G-Mean Results—The results in Table 3 confirm that Rare-Transfer significantly 
improved the Geometric Mean. The results on the 20 Newsgroups (2%) dataset demonstrate 

improved performance with severe label imbalance and an extremely high features/samples 

ratio (10 minority samples, ≈500 majority samples, 500 features). Figure 8 shows that Rare-

Transfer consistently yield superiorsresults even after the non-transfer algorithms construct 

representative hypotheses with more training samples.

 7.3.3. F-Measure Results—The F-Measure results are presented in Table 4 and 

demonstrate that Rare-Transfer constructs a more balanced classifier. The improvements are 

consistent at different imbalance ratios and sample sizes as shown in Figure 9. The figures 

also demonstrate that the classification models can construct classifiers that are more 

balanced when the overall size of the training set increases.

Al-Stouhi and Reddy Page 23

Knowl Inf Syst. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 7.4. Discussion and Possible Extensions

Traditional imbalanced modifications including SMOTEBoost [46], over or under sampling 

[47] followed by transfer [48] or cost sensitive learning [26] are a straight-forward extension 

to Algorithm 1 and can further improve classification. Improvements, even minor, from 

methods optimized specifically for “Absolute Rarity” can have significant practical impact 

within real-world domains where only human expertise are currently applicable. For 

example, rare diseases are a substantial public health burden as extremely low percentage of 

people have a rare disease at some point and currently no global registry or classification 

codes exist. Rare methods can improve learning and encourage data collection and 

warehousing. Future work will test our approach using multi-resolution methods in 

distributed environments with multiple source sets [49, 50].

 8. Conclusion

Learning with “Absolute Rarity” is an important and understudied area of research which is 

investigated in this paper. We discussed the impediments and proposed the first classification 

method optimized specifically for the problem of “Absolute Rarity”. Our framework 

simultaneously compensated for the lack of data and the presence of class-imbalance using a 

transfer learning paradigm with a balanced statistics objective. We theoretically analyzed 

and empirically verified our work and demonstrated its effectiveness with several real-world 

domains. We proposed possible extensions and motivated for more research for a problem 

with significant social and financial impact.
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Figure 1. 
Label-Dependent view of different type of datasets.
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Figure 2. 
Learning Curves for Confusion Set Disambiguation [10].
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Figure 3. 
AUC for imbalanced datasets at different training sample sizes [11].
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Figure 4. 
(a) Algorithm minimizing Arithmetic Error. (b) Algorithm minimizing Geometric/Balanced/

Harmonic Error
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Figure 5. 
The weights (relative to the WMA) for ideal source instances. (a) For 20 iterations with 

different error. (b) For 1 iteration with different target instances and error. (NC: No 

correction)
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Figure 6. 
The effect of “Rare Correction” using various evaluation metrics.
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Figure 7. 
BAC values when the number of minority samples is varied.
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Figure 8. 
G-Mean values when the number of minority samples is varied.
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Figure 9. 
F-Measure values when the number of minority samples is varied.
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(10)Equation (10) demonstrates that the weights for source instances that are correctly classified should not change after normalization as: 
(11)Without correction, the normalized source weights in Algorithm 1 are updated as: 
(12)Equation (12) shows that, without correction, correctly classified source weights would still converge as: 
(13)Since all source weights persistently converge, all target weights would inversely increase since 
. This will be referred to as “Weight Drift” since weight entropy drifts from source to target instances. “Weight Drift” negates transfer since the final classifier is comprised of the cascade of weak learners constructed in boosting iterations 
 (where the source instances’ weights could have already converged). With converged source weights, Algorithm 1 becomes analogous to the standard AdaBoost algorithm with target instances and no transfer learning.Theorem 1 examined the cause of “Weight Drift” and Theorem 2 will outline the factors that control it. Theorem 2: For n source instances, the number of target training samples (m) affects the convergence rate and thus the “Weight Drift”. “Weight Drift” is also stochastic since the rate of convergence at iteration t (without correction) is determined by that iteration’s target error rate (
). Proof: The fastest rate66Faster or increased convergence rate means that a weight converges to zero with lower number of boosting iterations. of convergence is achieved by minimizing the weight for each subsequent boosting iteration (
) as: 
(14)Equation (14) shows that two factors can slow down the rate of convergence of correctly-classified source instances:1.Maximizing the weak learner’s target error rate with 
(choosing an extremely weak learner or one that is only slightly better than random). Since the weak learner is weighted differently for each iteration, its error cannot be controlled and this factor will induce a stochastic effect.2.Decreasing the number of target samples m, since rate of convergence accelerates when m/n → ∞. Attempting to slow the improper rate of convergence by reducing the number of target instances is counterproductive as the knowledge from the removed instances would be lost.Theorem 2 demonstrated that a fixed cost cannot control the rate of convergence since the cumulative effect of m, n, and 
 is stochastic. A dynamic term has to be calculated to compensate for “Weight Drift” at every iteration. The calculation of a dynamic term is outlined in Theorem 3. Theorem 3: A correction factor of 
 can be applied to the source weights to prevent their “Weight Drift” and make the weights converge at a rate similar to that of the Weighted Majority Algorithm. Proof: Un-wrapping the WMA source update mechanism of Equation (14), yields: 
(15)Where A and B are defined as:A = Sum of correctly classified target weights at boosting iteration“t + 1”
(16)B = Sum of misclassified target weights at boosting iteration“t + 1”
(17)Substituting for A and B, the source update is: 
(18)We will introduce and solve for a correction factor Ct to equate (
) for correctly classified instances (as per the WMA).(19)Solving for Ct: 
(20)Adding this correction factor to line 10 of Algorithm 1 equates its normalized update mechanism to the Weighted Majority Algorithm and subsequently prevents “Weight Drift”. Theorem 4 examines the effect this factor has on the update mechanism of the target weights. Theorem 4: Applying a correction factor of 
 to the source weights prevents “Weight Drift” and subsequently equates the target instances’ weight update mechanism in Algorithm 1 to that of AdaBoost. Proof: In AdaBoost, without any source instances (n = 0), target weights for correctly classified instances would be updated as: 
(21)Applying the “Correction Factor” to the source instances’ weight update prevents “Weight Drift” and subsequently equates the target instances’ weight update mechanism outlined in Algorithm 1 to that of AdaBoost since(22)It was proven that a dynamic cost can be incorporated into Algorithm 1 to correct for weight drifting from source to target instances. This factor would ultimately separate the source instance updates which rely on the WMA and βsrc, from the target instance updates which rely on AdaBoost and 
. With these two algorithms separated, they can be joined for transfer learning by infusing “best-fit” source instances to each successive weak classifier.The “Correction Factor” introduced in this section allows for strict control of the source weights’ rate of convergence and this property will be exploited to induce balance to “Absolute Rarity”. Balanced classifiers will be dynamically promoted by accelerating the rate of weight convergence of the majority label and slowing it for the minority label.
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	5.2. Correction for Learning with “Absolute Rarity”
	—Instance-transfer methods improve classification on a small dataset, but they also exacerbate the imbalance problem by constructing imbalanced classifiers. This outcome was even observed in generally balanced instance-transfer methods. It was noted by [28] that boosting for transfer learning sometimes yielded a final classifier that always predicted a single label. Dai et al. [16] re-sampled the data at each step to balance the class weight since they observed similar behavior. In this section, we examine the cause of this induced imbalance. Proposition 2: For a class-imbalance problem, a standard classifier yields lower error rate for the majority label as compared to that of the minority since it optimizes:(23)In a class-imbalanced problem, where (nl=majority ≫ nl=minority), a traditional classifier optimizing Equation (23) can achieve high accuracy if it classifies all instances as majority instances. This proposition serves as a foundation for all imbalanced learning methods [30, 1, 31]. Theorem 5: In an imbalanced problem, the weighted majority algorithm, WMA, constructs a classifier where the minority instances’ weights decrease exponentially with every boosting iteration. Proof: A misclassified source instance at boosting iteration t is updated via the WMA update mechanism and its t + 1 weight is adjusted to: . The source update mechanism is set by βsrc which is set to:(24)Since βsrc < 1, a misclassified source instance’s weight would converge after normalization. Since weak classifiers at initial boosting iterations, with equally initialized weights, yield high error rates for minority labels (Proposition 2), the minority label’s weights would subsequently have less influence on the t + 1 classifier and would accelerate the rate of convergence as(25)Ignoring normalization, the minority label’s weights decrease exponentially as:(26)Since the final classifier in Algorithm 1 is computed from the cascade of learners constructed in iterations , where the minority source weights could have already converged, the final output would be extremely imbalanced as it will have added only majority weights.Conversely, updating the target instances via the AdaBoost update mechanism improves the performance on an imbalanced dataset particularly if the final classifier is computed using only the  boosting iterations. A mis-classified target instance at boosting iteration t is updated via the AdaBoost update mechanism and its t + 1 weight is adjusted to: . The target update for a misclassified instance’s weight is dependent on βtar where(27)Since βtar > 1, a misclassified target instance’s weight would increase after normalization and the minority label’s weights would in turn have more influence on the t + 1 classifier and bias the classifier to improve learning on the minority as:(28)Since the final classifier is computed from the cascade of learners constructed in iterations , where the minority label’s instances have increased weights to compensate for the lack of its samples, the final output would be more balanced.
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	5.3. Label-Space Optimization
	—Instance-transfer can improve learning with “Absolute Rarity” as it compensates for the lack of training examples with a selective set of samples from an auxiliary domain. Since instance-transfer can also induce imbalance (as proved in the previous section), intuitive results will require a balanced optimization technique to address the class imbalance in “Absolute Rarity”. Figure 4 motivates for optimization with balanced measures to improve classification in imbalanced datasets. The two classifiers in Figure 4 are optimized with different types of accuracy measures77The Up/Down arrow next to each error measure signifies that an algorithm produced better/worse results in comparison to the other algorithm. where Figure 4(a) minimizes the Arithmetic error while Figure 4(b) minimizes the (Geometric [32]/ Balanced [33]/Harmonic [34]) errors. This example shows that given a constrained classifier (linear classifier in this example), the algorithm in Figure 4(b) obtains more intuitive results with a degraded arithmetic accuracy and an improved balanced (Geometric/Balanced/Harmonic) accuracy. Theorems 6, 7, and 8 prove that minimizing a label-dependent measure improves balanced statistical measures while Theorem 9 shows that a label-dependent optimization can improve the balanced statistics for “Absolute Rarity” in Algorithm 1. Theorem 6: Maximizing the Balanced Accuracy (BAC) is equivalent to minimizing the sum of label-dependent errors independent of the number of samples within each class: Proof: To prove theorem 6, we will start with a binary labeled example and extend to general form. With no optimization of the prediction threshold of a binary classifier (classifier threshold at a pre-set level), the Area under the ROC Curve (AUC) is equivalent to Balanced Accuracy (BAC) [35]. This Balanced Accuracy is the average accuracy of each class and in turn equates to the average of sensitivity and specificity. It is calculated as follows:(29)Equation (29) can be maximized as follows:(30)The optimization problem in Equation (30) is a constrained optimization problem which is minimized as follows:(31) Theorem 7: Maximizing the Geometric Mean (G-Mean) is equivalent to minimizing the product of label-dependent errors and is independent of the number of samples within each class: Proof: Similar to Theorem 6, we start with a binary labeled example and extend to general form:(32)Maximizing the statistic in Equation (32), we have(33)Similar to Equation (31), the optimization problem in Equation (33) is a constrained optimization problem and is minimized by(34)Since both Equations (31) and (34) are constrained by the classifier’s error rate, modifying the weak learner to improve classification on one label can degrade classification on the other label (Figure 4). Theorem 8: An improved G-Mean coupled with no degradation in the BAC will improve the F-Measure. Proof: The harmonic mean of sensitivity and specificity is a particular realization of the F-measure [34] and is maximized as(35)Equation (35) can be optimized as(36)Equation (36) proves a classifier that improves G-Mean (via balance) with no degradation in BAC (via Transfer) improves the F-measure. Theorem 9: In an imbalanced dataset, a label-dependent update mechanism can improve the G-Mean without degrading the BAC performance. Proof: In a balanced learning problem, all labels have an equal effect on BAC and G-Mean but as the label space gets more imbalanced, 
, the contribution of the minority label’s error rate to the classifier’s overall accuracy can thus be approximated as: 
(37)Equation (37) demonstrates that biasing the classifier to favor the minimization of the minority label, in an imbalanced dataset, has minimal effect on the overall accuracy and the balanced arithmetic mean will not be degraded since the increased error of the majority label is negated by the decreased error of the minority label. On the other hand, G-Mean is the balanced geometric mean and is significantly improved if balance is induced.
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	6. Empirical Analysis
	6.1. “Weight Drift” and “Correction Factor”
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	7. Real-World Experimental Results
	7.1. Dataset Description
	—A Detailed description of the datasets used in our experiments is provided in Table 1. (i) HealthCare Demographics: We collected Heart Failure (HF) patient data from the Henry Ford Health System (HFHS) in Detroit. This dataset contains records for 8913 unique patients who had their first hospitalization with primary HF diagnosis. The goal is to predict if a patient will be re-admitted within 30 days after being discharged from the hospital and to apply the model to rural hospitals or to demographics with less data [36]. Re-hospitalization for HF occurs in around one-in-five patients within 30 days of discharge and is disproportionately distributed across the US population with significant disparities based on gender, age, ethnicity, geographic area, and socioeconomic status [37]. Other non-demographic features included length of hospital stay, ICU stay and dichotomous variables for whether a patient was diagnosed with diabetes, hypertension, peripheral vascular disease, transient ischemic attack, heart failure, chronic kidney disease, coronary artery disease, hemodialysis treatment, cardiac catheterization, right heart catheterization, coronary angiography, balloon pump, mechanical ventilation or general intervention. The average results with 50 minority samples (patient was re-hospitalized) is reported. (ii) Employment Dataset: This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey [38]. We used the dataset [14] to predict if a non-Muslim woman is employed based on her demographic and socio-economic characteristics. In the training set, only 22 of the 1275 were not Muslim and only 7 of them were employed. (iii) Parkinson Dataset: This dataset [39] is composed of a range of biomedical voice measurements from people with early-stage Parkinson’s disease7. The goal is to predict if a female patient’s score on the Unified Parkinson’s Disease Rating Scale [40] is high (UPDRS≥10) or low (UPDRS<10). In the training set, only 125 of the 3732 participants were female and only 13 of them had a low UPDRS score. (iv) Text Dataset: 20 Newsgroups88http://people.csail.mit.edu/jrennie/20Newsgroups/ is a popular text collection that is partitioned across 20 groups with 3 cross-domain tasks and a two-level hierarchy as outlined in [41]. We used Term FrequencyInverse Document Frequency (TF-IDF) [42] to maintain around 500 features and imbalanced the dataset to generate a high dimensional, small and imbalanced dataset.
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	7.2. Experiment Setup
	—AdaBoost [17] was used as the standard baseline algorithm for comparison. We applied SMOTE [43], with 5 nearest neighbors (k = 5), before boosting to compare with an imbalanced classification method (SMOTE-AdaBoost). TrAdaBoost [16] was used as the baseline transfer learning algorithm. The non-transfer reference algorithms were trained with the target-only set and with the combined (target+source) set. Thirty boosting iterations were experimentally proven sufficient for training. Base Learner (f̈): We did not use decision stumps as weak learners since most data belongs to the source and it was not possible to keep the target error below 0.5 (as mandated by AdaBoost) for more than a few iterations. A strong classifier, full classification tree without pruning, is applied with a top-down approach where the tree is trimmed at the first level to achieve . Cross Validation: Small datasets are prone to over-fit and terminate boosting and thus all algorithms were restarted with a new cross validation fold when any algorithm terminated before reaching 30 iterations. Random sub-sampling cross validation [44] was applied and each statistic was tabulated with the macro average [45] of 30 runs. Plots with two imbalance ratios across a variable size of minority samples are also presented.
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