
Noname manuscript No.
(will be inserted by the editor)

CloFAST: Closed Sequential Pattern Mining using
Sparse and Vertical Id-Lists

Fabio Fumarola · Pasqua Fabiana Lanotte ·
Michelangelo Ceci · Donato Malerba

Received: date / Accepted: date

Abstract Sequential pattern mining is a computationally challenging task since
algorithms have to generate and/or test a combinatorially explosive number of
intermediate subsequences. In order to reduce complexity, some researchers focus
on the task of mining closed sequential patterns. This not only results in increased
efficiency, but also provides a way to compact results, while preserving the same
expressive power of patterns extracted by means of traditional (non-closed) se-
quential pattern mining algorithms. In this paper, we present CloFAST, a novel
algorithm for mining closed frequent sequences of itemsets. It combines a new data
representation of the dataset, based on sparse id-lists and vertical id-lists, whose
theoretical properties are studied in order to fast count the support of sequential
patterns, with a novel one-step technique to both check sequence closure and to
prune the search space. Contrary to almost all the existing algorithms, which it-
eratively alternate itemset extension and sequence extension, CloFAST proceeds
in two steps. Initially, all closed frequent itemsets are mined in order to obtain an
initial set of sequences of size 1. Then, new sequences are generated by directly
working on the sequences, without mining additional frequent itemsets. A thor-
ough performance study with both real-world and artificially generated datasets
empirically proves that CloFAST outperforms the state-of-the-art algorithms, both
in time and memory consumption, especially when mining long closed sequences.

Keywords Sequential Pattern Mining · Closed Sequences · Data mining · Itemset

F. Fumarola
Department of Computer Science, University of Bari “A. Moro” Via Orabona 4, I-70125 Bari,
Italy E-mail: fabio.fumarola@uniba.it

P.F. Lanotte
Department of Computer Science, University of Bari “A. Moro” Via Orabona 4, I-70125 Bari,
Italy E-mail: pasquafabiana.lanotte@uniba.it

M. Ceci
Department of Computer Science, University of Bari “A. Moro” Via Orabona 4, I-70125 Bari,
Italy E-mail: michelangelo.ceci@uniba.it

D. Malerba
Department of Computer Science, University of Bari “A. Moro” Via Orabona 4, I-70125 Bari,
Italy E-mail: donato.malerba@uniba.it

michelangelo
Typewriter
DOI: https://doi.org/10.1007/s10115-015-0884-x



2 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

1 Introduction

Since its introduction [1], sequential pattern mining has become a fundamental
data mining task with a large spectrum of applications, including web mining [15],
classification [9], finding copy-paste bugs in large-scale software code [16] and
mining motifs from biological sequences [21].

In sequential pattern mining, input data is a set of sequences, called data-
sequences. Each data-sequence is an ordered list of transactions, where each trans-
action is a set of literals, called itemset. Typically, the order of transactions in the
list is based on the time-stamp associated with each transaction, although other
non time-related orderings are possible. The output of sequential pattern mining
is sequential patterns, each of which consists of a list of items. The problem is to
find all sequential patterns with a user-specified minimum support (or frequency),
which is defined as the percentage of data-sequences that contain the pattern.

If compared with the more common problem of frequent pattern mining, se-
quential pattern mining is computationally challenging because, when solving this
problem, a combinatorially explosive number of intermediate subsequences has to
be generated and/or tested [13]. In fact, although algorithms presented in the lit-
erature are relatively efficient [18,2,25,20,24], when they are used to mine long
sequences, time and space scalability becomes increasingly critical. This is espe-
cially true for low values of the support threshold.

To alleviate this problem, research in sequential pattern mining has made
progress in two directions: i) efficient methods for mining only the set of closed
sequential patterns and ii) efficient methods for pruning the search space and
exploiting specifically designed data structures.

As for i), many studies pinpoint the idea that for mining frequent sequential
patterns, one should not mine all the frequent sequences [23,22,17,11]. In particu-
lar, they propose mining the closed sequential patterns, where a sequential pattern
α is closed if it has no proper supersequence β with the same support. Intuitively,
since all the subsequences of a frequent sequence are also frequent, mining the set
of closed sequential patterns may help avoid the generation of unnecessary subse-
quences, thus leading to more compact results and saving computational time and
space costs.

As for ii), many algorithms avoid maintaining the set of already generated
closed sequences during the mining process [23]. Pruning of the search space and
closure checking typically exploit multiple pseudo-projected databases [22] (i.e.
databases of sequences generated from a single sequence prefix), which are designed
to be efficiently queried. However, pseudo-projected databases require significant
time and space to be created and queried, thus limiting not only the capability
of the algorithms to mine large datasets with long data-sequences, but also the
capability of the algorithm to process dense data-sequences (i.e. data-sequences
whose itemsets contain many items).

Several approaches (e.g. ClaSP [12] and SPADE [25]) attempt to overcome
the limits of pseudo-projected databases by exploiting a vertical representation
formalism. However, they all start with 1-itemset sequences and extend them by
iteratively alternating sequence extension, i.e. appending an itemset to a sequence,
and itemset extension, i.e. adding an item to an itemset in the sequence. In this way,
a frequent itemset mining step is required at each iteration, with a computational
cost that does not scale well with the size of frequent sequences.



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 3

In this paper we propose CloFAST (Closed FAST sequence mining algorithm
based on sparse id-lists), a novel algorithm to mine closed sequences from large
databases of long sequences. It extends and revises the algorithm FAST [19]
that extracts only frequent sequences. In particular, CloFAST, similarly to FAST,
combines a new data representation of the dataset (sparse id-list and vertical id-
list [19]) to fast count the support of sequential patterns. However, differently from
FAST, it exploits the properties of sparse id-lists and of vertical id-lists, in order
to define a novel one-step technique for sequence closure checking and search space
pruning. Similarly to BIDE [22], CloFAST, during the mining process, does not
need to maintain the set of already mined closed sequences [23] to prune the search
space and to check if newly discovered frequent sequential patterns are closed.

CloFAST does not build pseudo-projected databases and does not need to
scan them. The initial dataset of sequences of transactions is read once for all
to create both sparse id-lists and vertical id-lists, which are two distinct indexes
loaded in the main memory. Sparse id-lists store the position of the transactions
which contain a given itemset, while vertical id-lists store the position of a given
sequential pattern in the input sequences.

CloFAST uses sparse id-lists to mine closed frequent itemsets and to enumerate
the search space, while it uses vertical id-lists to generate the closed sequence
patterns. The support of itemsets and sequences is efficiently computed from the
sparse id-lists and the vertical id-lists, without requiring additional database scans.
Moreover, in order to check the (non-)closure of a considered sequential pattern
α and to consequently prune the search space, we propose a novel technique,
called backward closure checking, which checks whether a new sequence pattern
β, obtained by adding a new item/itemset at any position (not necessarily at the
end) in α, has the same support as α. In this case, α cannot be considered closed.

Finally, CloFAST mines closed frequent itemsets only at the beginning of the
mining process, in order to obtain an initial set of sequences. New sequences are
then generated by directly working on the sequences, without generating frequent
itemsets.

The contributions of this paper are the following:

1. We propose a two-step process that performs (i) closed itemset mining, and
(ii) closed sequential pattern discovery. The two steps only work on sparse
id-lists and vertical id-lists, thus gaining efficiency both in time and space.

2. We study formal properties of sparse id-lists and vertical id-lists, which can be
used for closed sequential pattern mining.

3. We propose an efficient backward closure checking which works on sparse id-
lists and vertical id-lists.

4. We present a new pruning method, performed during the backward closure
checking, which removes non-promising enumerations during the generation of
closed sequential patterns.

5. We theoretically prove the correctness and completeness of closed sequential
patterns generated by both CloFAST with the backward closure checking tech-
nique and CloFAST with pruning.

6. We present empirical evidence that CloFAST outperforms competing algo-
rithms on several real-world and artificially generated sequence datasets.

The rest of the paper is organized as follows. In Section 2 the problem of
closed frequent sequence mining is defined. Related work is introduced in Section



4 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

3. Sections 4 and 5 focus on the data structures used to enumerate the search
space and for efficient support counting. The CloFAST algorithm and the vertical
id-list pruning method are described in Section 6. Experimental results and their
related discussion are reported in Section 7. Finally, conclusions are drawn and
future work is outlined.

2 Problem Definition and Background

Let us consider a sequence database SDB of customer transactions. In particular, a
sequence represents the (ordered) list of transactions associated to a customer and
each transaction consists of a set of items purchased. Each sequence is uniquely
identified by a sequence identifier (sequence-id or SID), while each transaction
in the sequence is uniquely identified by a transaction identifier (transaction-id
or TID). The size of SDB (|SDB|) corresponds to the number of sequences (i.e.
the number of customers) in the sequence database. In Table 1, we report an
example of SDB with three sequences (i.e. |SDB| = 3): the first sequence contains
five transactions, the second sequence contains two transactions, while the third
sequence contains three transactions.

More formally, let I = {i1, i2, . . . , in} be a set of distinct items, which can
be sorted according to some lexicographic ordering ≤l (e.g. alphabetic ordering).
A customer sequence S is a list of transactions, S = 〈t1, t2, . . . , tm〉, where each
tj ⊆ I denotes the set of items bought in the j-th transaction. The size |α| of a
sequence α is the number of itemsets (transactions) in the sequence. A sequence
α = 〈a1, a2, . . . , am〉 is a subsequence of a sequence β = 〈b1, b2, . . . , bn〉, if and
only if integers i1, i2, . . . , im exist, such that 1 ≤ i1 < i2 < . . . < im ≤ n and
a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , am ⊆ bim . We say that β is a supersequence of α or that
β contains α.

Example 1 The sequence β = 〈{a, b}, {c}, {d, e}〉 is a supersequence of α = 〈{a}, {d}〉
because {a} is a subset of {a, b} and {d} is a subset of {d, e}. On the contrary, β
is not a supersequence of λ = 〈{c, d}〉, since the itemset {c, d} is not contained in
any itemset of β.

Given a sequence β, its absolute support in SDB is the number of sequences
in SDB which contain β, while its relative support is the absolute support
divided by |SDB|. Henceforth, β : s will denote the sequence β and its absolute
support s, and the term support will refer to the absolute support, unless otherwise
specified.

Given two sequences β and α, if β is a supersequence of α and their absolute
(or relative) support in SDB is the same, we say that β absorbs α. A sequential
pattern α is closed if no proper sequence β that absorbs α exists.

The problem of closed sequence mining is formulated as follows:
Given a sequence database SDB and a minimum support threshold min sup, find
all the closed sequential patterns in SDB, such that their support in SDB is at
leastmin sup. Generated patterns are called closed frequent sequential patterns.

Example 2 Table 1 shows an example of a sequence database. If min sup = 2, the
complete set of closed frequent sequences consists of only four sequences:
〈{a, b, f}, {d}〉 : 2, 〈{a, b, f}, {e}〉 : 2, 〈{e}, {a}〉 : 3, 〈{e}, {a}, {d}〉 : 2,
while the total number of frequent sequences is 26.



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 5

SID Sequence
1 〈{a, b, f}, {d}, {e}, {a}, {d}〉
2 〈{e}, {a}〉
3 〈{e}, {a, b, f}, {b, d, e}〉

Table 1 An example of a sequence database (SDB)

The algorithm proposed in this work uses two data structures, called sparse
id-list (SIL) and vertical id-list (VIL), recently introduced in [19] for frequent
sequence mining. They are an optimized representation of the database, since
their size is bound by the size of the input dataset. The concept of id-list was first
introduced by SPADE [2], where an id-list of a sequence α was defined as the list
of all input customer-id and transaction-id pairs containing α in the database. In
the following, we formally introduce them.

Let SDB be a sequence database of size n (i.e. |SDB| = n) and Sj ∈ SDB
the j-th customer sequence (j ∈ {1, 2, . . . , n}).

Definition 1 Sparse id-list: Given an itemset t ⊆ 2I , its sparse id-list, denoted
as SILt, is a vector of size n, such that for each j = 1, . . . , n

SILt[j] =

{
the list of the ordered transaction-ids of t in Sj if Sj contains t
null otherwise

Example 3 Fig. 1(a) shows the SILa and SILa,b of the itemsets {a} and {a, b} re-
spectively. The values represent the position of the relative itemset in the database
in Table 1. Other examples of SILs for the same database are reported in Fig. 2(a)
and (b).

Definition 2 Vertical id-list: Given a sequence α, whose last itemset is i, its
vertical id-list, denoted as V ILα, is a vector of size n, such that for each j =
1, . . . , n

V ILα[j] =

{
the transaction-id of i in the first occurrence of α in Sj if Sj contains α
null otherwise

Example 4 Fig. 2(c), (d) and (e) show some VILs. In particular Fig. 2(e) shows
the V ILα of the sequence α = 〈{a}, {e}〉. Values in V ILα represent the ending
position of the first occurrence of the sequence α in the sequences Sj of Table 1. In
particular, the first element (value 3) represents the position of the first occurrence
of {e}, after {a} ({e} is the last itemset in α), in the first sequence. The second
element is null since α is not present in the second sequence. The third element
(value 3) represents the position of the first occurrence of {e} (after {a}) in the
third sequence.

3 Related Work

To the best of our knowledge, CloSpan [23], BIDE [22], ClaSP [12] and COBRA [14]
represent the state of the art in closed sequential pattern mining. CloSpan is based



6 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

Fig. 1 From left to right: (a) the sparse id-lists for itemset {b}, (b) the sparse id-lists for
itemset {a, b}, (c) the database of sequences.

Fig. 2 (a) sparse id-list for the itemset {a}; (b) sparse id-list for the itemset {e}; (c) vertical
id-list for the sequence 〈{a}〉; (d) vertical id-list for the sequence 〈{e}〉; (e) vertical id-list for
the sequence 〈{a}, {e}〉.

on the candidate maintenance and test approach, which generates a candidate set
for closed sequential patterns, enumerates the search space and then performs
post-pruning. It uses the equivalence of projected databases to stop the search and
prune the search space. The basic idea is that if a sequence β is a supersequence of
a discovered sequence α and the number of items in the corresponding projected
databases is the same, then the projected databases are equal and it is possible to
stop the search of any descendant of α, since both α and β have the same support.

Wang et al. [22] proposed BIDE as an alternative solution which has the ad-
vantage of avoiding candidate maintenance. They presented the BI-Directional
Extension schema to generate closed sequences and BackScan to prune the search
space. The BI-Directional Extension schema is based on the idea that a sequence
α = 〈a1, a2, . . . , am〉 is not closed if an item/itemset a′ exists such that it can be
used to extend α to a new sequence β, having the same support as α. In particu-
lar, β can be obtained from α through either a forward-extension (adding a new
item/itemset after am) or a backward-extension (adding a new item/itemset before
aj , with 1 ≤ j ≤ m). If no such item/itemset exists, then α is closed. BIDE does
not keep track of any candidate closed sequential patterns for sequence closure
checking. This means that it needs multiple scans of the projected databases for
both the bi-directional closure checking and the BackScan pruning.

Both CloSpan and BIDE adopt the PrefixSpan [18] approach in the mining
phase. PrefixSpan is a pattern-growth divide-and-conquer algorithm that grows
sequences by itemset extension and sequence extension. In particular, PrefixS-
pan grows a prefix pattern to obtain longer sequential patterns by building and
scanning its projected database. Although frequent sequences in the projected



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 7

databases are enumerated to reduce computational complexity, its time complex-
ity is strictly related to the size of the projected databases. For databases with
long sequences and large transactions, discovering the local frequent itemsets for
each projected database could become an expensive process.

These limitations have been overcome by both SPADE [25] and SPAM [2],
which work on more efficient data structures. Improvements are obtained by using
a vertical database/bitmap representation (id-lists) of the database for both item-
sets and sequences. In this way, both itemset extension and sequence extension
steps are executed by joining/ANDing operations between vertical/bitmap repre-
sentation of sequence candidates. Experimental results presented in [2,12] show
that both SPAM and SPADE outperform PrefixSpan on large datasets, because
they avoid the Prefixspan cost for local frequent itemset mining.

The approach used by SPADE has been recently extended in ClaSP [12] for
closed sequential pattern mining. In particular, ClaSP exploits the concept of a
vertical database format to obtain closed sequences without making several scans
of the input database. According to the authors, this significantly improves perfor-
mances over existing algorithms such as CloSpan. Drawing inspiration from this
observation, we decided to exploit both sparse and vertical id-lists (SILs and VILs)
to fast count the support of sequential patterns in CloFAST. Contrary to SPADE
and ClaSP, where the large size of the id-lists negatively affects the computational
time of the joins, in CloFAST both the itemset extension and the sequence exten-
sion are based on SILs and VILs, which can be efficiently used in support counting,
sequence closure checking, and search space pruning (see Section 6) without per-
forming temporal joins.

Note that all previously referenced algorithms follow the same enumeration
strategy: patterns are generated on the basis of the lexicographic ordering and this
ordering is then used both in item extension and in sequence extension. However,
in general, this pattern-growth strategy may present two drawbacks: redundant
itemset extension and expensive “matching cost” in the generation of projected
databases.

To explain the first drawback (redundant itemset extension) we report a simple
example. Consider a database of two sequences:

SDB = [ 〈 {a, b}, {a, b, c}, {a, b} 〉, 〈 {a, b, c}, {a, b}, {a, b}〉].
In this case, finding the closed sequence 〈 {a, b}, {a, b}, {a, b}〉 generally requires
three item extensions of {a} with {b} and three sequence extensions which add
{a} to the sequence. Graphically, the following steps are typically necessary:

7→ 〈 {a} 〉 → 〈 {a, b} 〉 7→ 〈 {a, b}, {a} 〉 → 〈 {a, b}, {a, b} 〉 7→ 〈 {a, b}, {a, b}, {a} 〉
→ 〈 {a, b}, {a, b}, {a, b} 〉
where → indicates the itemset extension and 7→ indicates the sequence extension.
However, if we discover that item {a} is not closed (since {a, b} absorbs {a}), then
we can directly perform sequence extensions of {a, b}, instead of generating item
extensions of {a}. This means that only the following operations are necessary:

7→ 〈 {a, b} 〉 7→ 〈 {a, b}, {a, b} 〉 7→ 〈 {a, b}, {a, b}, {a, b} 〉
Obviously, this requires a preliminary closed frequent itemset mining step.

The second drawback (expensive matching cost) is due to queries on (previously
generated) projected databases, in order to obtain, after pattern-growth, new pro-
jected databases. This process in not trivial since we are working on databases of
sequences and a query means a complete scan of the previously generated projected



8 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

database. Moreover, it is noteworthy that both itemset extension and sequence ex-
tension require the generation of a new projected database.

COBRA attempts to overcome these two drawbacks. Instead of extending a
pattern by iteratively alternating i) itemset extension and ii) sequence extension,
it separates the two phases and generates closed frequent itemsets before mining
closed sequential patterns. Sequences are extended by only performing sequence
extension. Therefore, the closed sequence mining is composed of three consecutive
phases: i) search for all closed frequent itemsets; ii) transformation of the original
dataset into a horizontal format (similar to projected databases); iii) enumeration
of closed sequential patterns.

It is noteworthy that this approach is not equivalent to mining all closed fre-
quent itemsets, then encoding different itemsets as different symbols and finally
applying any (non-closed) sequence pattern mining algorithm (à la AprioriAll [1],
for sequential pattern mining). Indeed, the notions of supersequence/subsequence
used to identify closed sequences are based on the notions of superset/subset of
itemsets, which cannot be evaluated after encoding. Consequently, the enumera-
tion of closed sequential patterns cannot be based only on input closed itemsets,
but it requires additional information extracted during the phase of mining closed
itemsets.

CloFAST follows the same approach as COBRA. The difference is that CO-
BRA generates all the sequences of the same length and then performs an ex-
pensive post-pruning (called ExtPruning) to discard non-closed sequences, while
CloFAST applies an on-line (i.e. during the sequence generation phase) pruning
strategy which operates on vertical id-lists. Moreover, the computation of the pat-
tern support in COBRA requires the identification of the first occurrence of the
itemset in each sequence, while in CloFAST it is performed by simply counting the
non-null elements in the vertical id-list of the pattern. This means that COBRA
has to analyze sequences, whereas CloFAST does not.

4 The Closed Itemset Enumeration Tree and the Closed Sequence
Enumeration Tree

In this section we present the two main data structures used in CloFAST, that
is, the Closed Itemset Enumeration Tree (CIET) and the Closed Sequence Enu-
meration Tree (CSET). The former is used to store closed frequent itemsets, while
the latter is used to store the closed frequent sequential patterns. Similar to the
Lexicographic Sequence Tree introduced in CloSpan [23], we assume that a lexico-
graphic ordering ≤l exists in the set of items I. This ordering, as explained in [23],
can be extended for sequences composed of itemsets, by exploiting the concepts
of sub/superset and sub/supersequence (see Section 2). For the sake of simplicity,
we will use the same notation ≤l for this extension of the ordering.

4.1 Closed Itemset Enumeration Tree (CIET).

Similar to a Set Enumeration Tree [26], the CIET is an in-memory data structure
that allows us to enumerate the complete set of closed frequent itemsets. It is
characterized by the following properties: 1) each node in the tree corresponds to



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 9

an itemset and the root is the empty itemset (∅); 2) if a node corresponds to an
itemset i, its children are obtained by itemset extensions from i; 3) the left sibling
of a node precedes the right sibling in the lexicographic order (see Figure 3 for an
example).

Formally, this tree structure is defined as follows:

– the root node of the tree is labeled with ∅;
– the first level enumerates the frequent 1-item itemsets (i.e. itemsets with a

single item in I) according to the ordering ≤l;
– for other levels, nodes represent frequent k-item itemsets, with k > 1. Each

node is constructed by merging the itemset of its parent node with the itemset
of a sibling of its parent node.

Only nodes for (candidate) closed itemsets are added to the CIET. Inspired by
the classification of the nodes in Moment [8], we label each node in the CIET as:

– intermediate: the node represents a subset of a closed itemset represented in
one of its descendant nodes;

– unpromising : the node represents a subset of a closed itemset represented in
other branches of the tree;

– closed : a node is labeled as closed if it represents a closed itemset.

Figure 3 shows an example of a CIET for the database in Table 1, when
min sup = 2. Each node contains a frequent itemset and its corresponding sup-
port. CloFAST traverses the CIET in a depth-first search order. Only the de-
scendants of the nodes labeled as closed or intermediate are explored. Indeed,
descendants of an unpromising node can be pruned since they cannot represent
additional closed itemsets. To check whether or not a certain node corresponding
to an itemset i should be labeled as unpromising, CloFAST needs to know whether
there is a frequent itemset j, such that j absorbs i but does not descend from i.
For this purpose, a hashmap (i.e. a structure that maps keys to values) is used to
store the set of the closed frequent itemsets associated to a support value, which
represents the key of the hashmap. It is noteworthy that nodes labeled as closed
can be changed to intermediate during the tree construction.

4.2 Closed Sequence Enumeration Tree (CSET).

The mined set of closed itemsets is used in the construction of the CSET, which
enumerates the complete search space of closed sequences, similarly to the sequence
tree described in [19]. For the CSET it is possible to define the following properties:
1) each node in the tree corresponds to a sequence and the root corresponds to
the null sequence (Λ); 2) if a node corresponds to a sequence s, its children are
obtained by a sequence extension of s.

This tree has the following structure:

– the root node of the tree is labeled with Λ;
– nodes at the first level represent candidate closed sequences of size 1, whose

unique element is either i) a closed frequent itemset corresponding to a node
labeled as closed in the CIET or ii) an itemset labeled as intermediate in the
CIET for which its SIL is different from the SIL of its closed descendant node;



10 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

Fig. 3 The CIET for our running example. Nodes with thick borders represent closed item-
sets. Nodes with dashed borders represent unpromising nodes. The remaining nodes represent
intermediate nodes.

– nodes at higher first levels represent sequences of size greater than 1. Each
node can be constructed in two ways: i) by adding to the sequence of its parent
node u the last itemset of the sequence in a sibling of u; ii) by adding to the
sequence of its parent node u the last itemset of the sequence in u itself. The
latter guarantees that sequences containing multiple repeated occurrences of
the same item/itemset are not discarded (e.g. 〈{a, b, f}, {a, b, f}〉 in Example
5). In any case, only nodes for frequent and (candidate) closed sequences are
added to the tree.

According to the previous definition, two sibling nodes of a CSET correspond
to two distinct sequences of itemsets, α = 〈a1, a2, . . . , am〉 and β = 〈b1, b2, . . . , bm〉,
such that am 6= bm and ∀i = 1, . . . ,m− 1 : ai = bi.

Each node in the closed sequence enumeration tree can be labeled as: (i) closed,
(ii) non-closed and (iii) pruned.

Figure 4 shows an example of CSET for the database in Table 1 withmin sup =
2. Each node in the figure contains a frequent sequence and its corresponding
support. Different borders (thick, dashed or plain) are used for different labeled
nodes.

CloFAST builds the CSET in a depth-first search order. Each node in the
CSET is considered for sequence-extension. In order to exemplify how nodes at
the second and at subsequent levels are constructed, we report a simple example:

Example 5 Consider the sequence extension of node 2 in Figure 4. In this case,
the candidate sequences are: 〈 {a, b, f}, {d} 〉, 〈 {a, b, f}, {a} 〉, 〈 {a, b, f}, {e} 〉,
〈 {a, b, f}, {a, b, f} 〉. Obviously, not all of them are frequent sequences and are
added to the CSET.



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 11

Fig. 4 The CSET for our example. Nodes with thick borders represent (candidate) closed
sequences. Nodes with dashed borders represent pruned nodes. Remaining nodes represent
non-closed sequences.

5 Properties of SILs and VILs for efficient mining of closed sequential
patterns

In this section we present several properties of VIL and SIL data structures which
can be profitably exploited by the sequential pattern mining algorithm.

Proposition 1 Let α = 〈a1, . . . , am〉, such that V ILα[j] 6= null. Then, for each
i=1, . . ., m− 1, V IL〈a1,...,ai〉[j] < V IL〈a1,...,ai,ai+1〉[j].

Proof It follows from VIL definition.

Proposition 2 Let α = 〈a1, . . . , ai〉, ε = 〈ai+1, . . . , am〉, V ILαε[j] 6= null. Then,
V ILα[j] 6= null.

Proof It follows from the VIL definition.

These two propositions express two necessary conditions on the VIL structure,
when the j-th sequence in SDB contains α or the composed sequence αε.

Proposition 3 Let α = 〈a1, . . . , ai〉, ε = 〈ai+1, . . . , am〉, V ILαε[j] 6= null, γ any
sequence. If V ILγ [j] = V ILα[j], then V ILγε[j] 6= null.

Proof Let p = V ILγ [j] = V ILα[j], 〈b1, . . . , bp, bp+1, . . . , br〉, r ≥ m, be the j-th
subsequence in SDB. From the VIL definition, it follows that the subsequence
〈b1, . . . , bp〉 contains both α and γ. Moreover, the subsequence 〈bp+1, . . . , br〉 con-
tains ε. Therefore, the j-th sequence in SDB also contains γε, i.e. V ILγε[j] 6= null.

This proposition expresses an important property related to the containment
of composed sequences. If the j-th sequence in SDB contains α, αε and γ, and
the position of the last itemset in α coincides with the position of the last itemset
in γ, then the j-th sequence also contains γε.

Proposition 4 Let α = 〈a1, . . . , ai〉, V ILα[j] 6= null, γ = 〈a1, . . . , ai−1, b〉,
V ILγ [j] 6= null, β = 〈a1, . . . , ai−1, b, ai〉. If V ILγ [j] < V ILα[j], then V ILβ [j] =
V ILα[j].



12 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

Proof It is obvious from the VIL definition and construction of β.

Proposition 4 states that if the j-th sequence of the SDB contains two se-
quences of size i, say α and γ, which differ only in the last itemset, then V ILγ [j] <
V ILα[j] is a sufficient condition to prove that the j-th sequence also contains the
extended sequence β of size i+ 1, obtained by juxtaposing ai to γ.

Proposition 5 Let α = 〈a1, . . . , ai〉, ε = 〈ai+1, . . . , am〉, γ = 〈a1, . . . , ai−1, b〉,
V ILγ [j] 6= null, β = 〈a1, . . . , ai−1, b, ai, ai+1, . . . , am〉. If V ILαε[j] 6= null and
V ILγ [j] < V ILα[j], then V ILβ [j] 6= null.

Proof From proposition 2 and V ILαε[j] 6= null it follows that V ILα[j] 6= null.
Since conditions for proposition 4 hold, it follows that V IL〈a1,...,ai−1,b,ai〉[j] =
V ILα[j]. From proposition 3 it follows that V ILβ [j] 6= null.

Proposition 6 Let α = 〈a1, . . . , ai〉, ε = 〈ai+1, . . . , am〉, γ = 〈a1, . . . , ai−1, b〉,
ai ⊂ b, β = 〈a1, . . . , ai−1, b, ai+1, . . . , am〉. If V ILαε[j] 6= null and V ILγ [j] =
V ILα[j], then V ILβ [j] 6= null.

Proof It follows straightforwardly from proposition 3.

For the sake of computational efficiency, our implementation of the VIL does
not maintain the transaction-ids, but the pointers to the related SILs. In particular,
V ILα[j] points to SILi[j] if the transaction-id i belongs to V ILα.

Before building the CSET, the SILs of all frequent itemsets are incrementally
computed. SILs for itemsets of size 1 are built during the first database scan. Then
SILs of itemsets of size greater than 1 are built during the itemset-extension step
(see Section 5.1).

In contrast, VILs are associated to frequent sequences and are built during
the sequence-extension step (see Section 5.2). Initially, for each sequence α of size
1, V ILα is straightforwardly computed from SILt, where t is the only closed
itemset in α. In particular, for each j ∈ {1 . . . n}, V ILα[j] is the first value of the
list SILt[j].

Example 6 Fig. 2(c) shows the V ILα of the 1-itemset sequence α = 〈{a}〉. The
value V ILα[j] corresponds to the transaction-id of the first occurrence of the
itemset {a} in the sequence Sj , which is actually stored in SIL{a}[1] (see Fig. 2(a)).
Therefore, V ILα = [1, 2, 2].

The computation of the VILs for sequences of size greater than 1 is explained
in Section 5.2.

5.1 I-Step: using SILs

The itemset extension step (I-Step) is executed during the construction of the
CIET. Suppose we have two sparse id-lists SILi1 (for the itemset i1) and SILi2
(for the itemset i2) and we want to extend the itemset i1 with items in i2. The SIL
of i1 ∪ i2 (SILi1∪i2) can be obtained by simultaneously scanning all the rows of
SILi1 and SILi2 . In particular, for each row j, only the transaction-ids which are



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 13

found in both SILi1 [j] and SILi2 [j] are inserted in SILi1∪i2 [j]. Thus, SILi1∪i2
represents the occurrences of the itemset i1 ∪ i2 in the database.

For each itemset i, its support can be efficiently computed by counting the
non-null vector elements in the SILi. This can be done during the construction
of the SILi at no additional cost.

Example 7 Consider the running example in Figure 1(c). Figures 2(a) and 1(a)
show the sparse id-lists for itemsets {a} and {b}. Figure 1(b) displays the sparse
id-list for the itemset {a, b}. It contains for the first list (in row 1) only the element
with value 1, for the second list the value null, and for the list in row 3 only the
element with value 2. The support of itemset {a, b} is 2, that is, the number of
rows whose values are different from null.

5.2 S-Step: using VILs

Consider two sibling nodes in the CSET and their corresponding sequences α =
〈a1, a2, . . . , am〉 and β = 〈b1, b2, . . . , bm〉. By constructing the CSET, we have that
am 6= bm and ∀i = 1, . . . ,m− 1 : ai = bi. The sequence extension step (S-step) of
α using β aims at both constructing a new sequence γ = 〈a1, a2, . . . , am, bm〉 by
appending bm to α, and computing V ILγ from V ILα and V ILβ .

The computation of V ILγ proceeds as follows. If either V ILα[j] or V ILβ [j]
are null, i.e. α and β do not occur together in the j-th sequence in SDB, then
V ILγ [j] is set to null, since γ cannot occur in the sequence itself. If both V ILα[j]
and V ILβ [j] are non-null, we have to check that an occurrence of am that pre-
cedes an occurrence of bm in the j-th sequence exists. Procedurally, this is per-
formed as follows. While V ILβ [j] 6= null &&1 V ILα[j] ≥ V ILβ [j], the reference
to SIL{bm}[j] stored in V ILβ [j] is used to right-shift to the next transaction-id
in SIL{bm}[j]. At the end, if V ILα[j] < V ILβ [j], the transaction-id found (possi-
bly after some right-shifts) in SIL{bm}[j] is stored in V ILγ [j] (check succeeded),
otherwise V ILγ [j] is set to null (check failed).

During the S-Step, only closed itemsets are considered in the sequences. This
guarantees a significant reduction of the search space.

Example 8 Consider the database in Figure 1(c). Let Figures 2(c) and 2(d) be the
VILs for the sequences α = 〈{a}〉 and β = 〈{e}〉, respectively. Figure 2(e) shows
the VIL of sequence γ = 〈{a}, {e}〉 resulting from an S-step on α using β.

– The initial values of V ILα[1] and V ILβ [1] are 1 and 3, respectively. Since
V ILα[1] < V ILβ [1], V ILγ [1] = 3.

– The initial values of V ILα[2] and V ILβ [2] are 2 and 1, respectively. Since
V ILα[2] ≥ V ILβ [2], the reference to SIL{e}[2] stored in V ILβ [2] is used to
identify the next transaction-id of {e} (Figure 2(b)). Since this value does not
exist, V ILγ [2] = null.

– The initial values of V ILα[3] and V ILβ [3] are 2 and 1, respectively. Since
V ILα[3] ≥ V ILβ [3], the reference to SIL{e}[3] stored in V ILβ [3] is used to
identify the next transaction-id of {e}, i.e. 3. This means that V ILγ [3] = 3.

In the next section, the importance of both the I-step and the S-step for the
CloFAST algorithm is explained.

1 Here && denotes the shot-cut AND predicate.



14 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

Algorithm 1 CloFAST(SDB, min sup)

Input: Sequence database SDB, int min sup
Output: Complete set of closed freq. sequences CFS;
Data: CSET T=new Tree(), Frequent Items FI, Closed Frequent Itemset CFI, Node n;

1: // Identify frequent 1-itemsets and build their SILs;
2: FI = loadFrequentSILs(SDB, min sup);
3: // Identify closed frequent itemsets and their SILs
4: CFI= mineClosedFItemset(FI, min sup);
5: for each cfi ∈ CFI do
6: // Create V ILcfi from SILcfi
7: vil=createVil(cfi);
8: // Create CSET node associated to cfi
9: n= createNode(cfi,vil);

10: labelNodeAs(n,“closed”);
11: addChildNode(T,root(T),n);
12: end for
13: for each child ∈ children(T,root(T)) do
14: // start the depth first search
15: sequenceExtension(T,child,min sup);
16: end for
17: return closedSequentialPatterns(T);

6 CloFAST: The algorithm

In this section we describe the CloFAST algorithm (see Algorithm 1) and the
one-step technique used to simultaneously check for both sequence closure and
sequence pruning.

With the first database scan, CloFAST finds the frequent 1-itemsets and builds
their sparse id-lists (line 2). Then it simultaneously discovers the closed frequent
itemsets and builds their sparse id-lists (line 4). This is achieved by building a
CIET, based on a modified version of the algorithm FAST [19], which integrates
the marking and pruning technique proposed in Moment [8].

The first level of the CSET is initialized in lines 5-12. Each node in the first level
represents a (candidate) closed sequence of size 1, whose unique element is a closed
frequent itemset. The VILs of the nodes at the first level are straightforwardly
computed from the SILs of the closed frequent itemsets. Starting from the first
level, the nodes in the CSET are considered for sequence extension (lines 13-16)
according to a depth-first search strategy.

During the mining process the current set of closed sequential patterns is stored
in the CSET. At the end, CloFAST returns the complete set of closed sequential
patterns in the CSET.

Algorithm 2 describes the sequence extension step for an input node n. It first
tests if n is closed and/or can be pruned (line 1). This is achieved by means of the
checkClosureAndPrune method detailed in the next subsections. If n is not pruned
(line 2), for each of its siblings including itself, the S-step is executed, in order to
generate its children sequences (lines 6-20). Only the new frequent sequences are
stored in the CSET, together with their corresponding VILs (denoted as v3 in the
algorithm). If a generated sequence has the same support as that represented in
n, then n is labeled as non-closed (lines 11-13), otherwise it is labeled as closed
by default (it is indeed a candidate closed frequent sequence). In lines 21-23 the
sequence extension step is recursively applied to each child of n.



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 15

Algorithm 2 SequenceExtension(T, n, min sup)

Input: CSET T, Node n, int min sup;
Data: Node u, newNode, child; VIL v1,v2,v3; Sequence newSequence; int supp
1: checkClosureAndPrune(n, T);
2: if pruned(n); then
3: return
4: end if
5: v1 = Vil(n);
6: for each u ∈ siblings(T,n) do
7: v2 = Vil(u);
8: (v3,supp) = S-Step(v1,v2); // create the new vertical id-list and compute its support
9: if supp ≥ min sup then

10: if supp = support(v1); then
11: labelNodeAs(n,“nonClosed”);
12: end if
13: // create new CSET node
14: newSequence =extend(sequence(n), sequence(u));
15: newNode = createNode(newSequence, v3);
16: labelNodeAs(newNode,“closed”);
17: addChildNode(T, n, newNode);
18: end if
19: end for
20: for each child ∈ children(T, n); do
21: sequenceExtension(T, child, min sup);
22: end for

6.1 Backward Closure Checking

Inspired by BIDE [22], we aim at pruning the search space by exploiting a closure
checking schema which, besides the forward construction of the CSET, operates
in a backward fashion. Closure checking is important since it is useless to further
explore a node if this node, and its descendants, could be absorbed by nodes
present in other paths of the tree.

The intuition behind the backward solution is that it would lead to first check
sequences in the tree which are more “similar” to the sequence α to be evaluated
(same head, same length, closer in the tree). This means that, if a sequence which
absorbs α exists, the backward closure checking is faster than a classical top-down
solution. If there is no such sequence, the two approaches are equivalent.

Methods for pruning frequent closed itemsets have already been presented in
the literature [8]. However, search-space pruning in closed frequent sequence min-
ing is trickier than in closed frequent itemset mining. Indeed, while a depth-first-
search-based closed itemset mining algorithm can safely stop growing a prefix
itemset as soon as it finds that this itemset can be absorbed by another closed
itemset already generated, a closed sequence mining algorithm needs additional
checks. This is due to both the possible presence of multiple instances of the same
itemset in a sequence and to the ordering among the itemsets in the sequence.

Pruning is rather complex in BIDE, since it is based on pseudo-projected
databases. On the contrary, CloFAST takes advantage of the VIL data structures,
which convey essential information for pruning. Indeed, it is useless to expand a
node n if, in other branches of the tree a node exists that has the same VIL as n
and represents a sequence which is a supersequence of that represented in n.



16 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

This is described in Algorithm 3. Given a CSET node n representing a sequence
α = 〈a1, a2, . . . , am〉, checkClosureAndPrune first checks whether α is closed. If
not, it checks whether n can be safely pruned. As defined in Section 2, α is non-
closed if any supersequence β of α exists that absorbs α. This definition can be
used for backward closure.

Algorithm 3 checkClosureAndPrune(n, T)

Input: Node n, CSET T;
Data: Node u; List siblings ; VIL vilU, vilP;
1: i = level(n);
2: n′= parent(T,n);
3: repeat
4: vilP = Vil(n′);
5: children = children(T, n′);
6: for each u ∈ children do
7: vilU = Vil(u);
8: // check if last itemset of u contains the i-th itemset of n
9: if contains(lastItemset(u), itemset(n,i)) then

10: if itemsetClosure(vilU, path(n′, n)) then
11: labelNodeAs(n,“nonClosed”);
12: if earlyTermination(vilU,vilP) then
13: labelNodeAs(n,“pruned”);
14: end if
15: return;
16: end if
17: end if
18: if sequenceClosure(vilU, path(n′, n)) then
19: labelNodeAs(n,“nonClosed”);
20: if earlyTermination(vilU,vilP) then
21: labelNodeAs(n,“pruned”);
22: end if
23: return;
24: end if
25: end for
26: i= i-1;
27: n′ = parent(T,n′);
28: until n′ 6= root(T);

Definition 3 Backward Closure.
Let α = 〈a1, a2, . . . , am〉 be a frequent sequence of size m. Then α is non-closed

in backward closure if for some i ∈ {1 . . .m} an itemset b exists, such that one of
the following two conditions holds:

1. ai ⊂ b and 〈a1, . . . , ai−1, b, ai+1, . . . , am〉 has the same support as α (itemset
closure);

2. 〈a1, . . . , ai−1, b, ai, . . . , am〉 has the same support as α (sequence closure).

Given the sequence α represented in the node n, Algorithm 3 identifies an
itemset b which allows us to check whether α is non-closed in backward closure
or not. The search can be safely restricted to the last itemset of the sequences
represented in the siblings of either n or its ancestors. This is done by using only
the CSET, which is climbed level-by-level, starting from the direct parent n′ of
n (line 2) and considering each child u of n′ (line 6). The algorithm identifies



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 17

Fig. 5 A partial view of the CSET for the dataset in Figure 1(c).

Fig. 6 A partial view of the CSET for the dataset in Figure 1(c).

candidate sequences in the form of γ = 〈a1, . . . , ai−1, b〉, represented in u. Such
candidate sequences are then used in order to evaluate the support of either β =
〈a1, . . . , ai−1, b, ai+1, . . . , am〉, if ai ⊂ b, or β = 〈a1, . . . , ai−1, b, ai, . . . , am〉, in any
case. It is noteworthy that, during the identification of candidate sequences in
the form of γ, neither is the CSET modified nor are new sequences evaluated.
Moreover, the computation of the support of the sequences β only exploits VILs,
as we will explain later.

Examples 9 and 10 clarify these aspects for the two cases in Definition 3.

Example 9 (Itemset closure).
Consider the dataset in Figure 1(c) and the sequence α = 〈{a}, {d}〉 repre-

sented in node 7 of Figure 5. CloFAST examines at the first step (level i = 2) the
sequence γ = 〈{a}, {e}〉 represented in node 8 (sibling of 7). The last itemset of γ
(i.e. {e}) does not contain the last itemset of α (i.e. {d}), so the itemset closure
cannot be checked. CloFAST moves at the previous level (i = 1) and checks the
itemset closure of α over the itemset {a} using the children of the CSET’s root
(nodes 2, 5, 6, 9). Given γ = 〈{a, b, f}〉 (node 2), since the last itemset of γ contains
the last but one itemset of α (i.e. {a}), CloFAST checks whether the supersequence
β = 〈{a, b, f}, {d}〉 can absorb α. In that case, α is labeled as non-closed.

Example 10 (Sequence closure).
Consider the dataset in Figure 1(c) and the sequence α = 〈{e}, {d}〉 (see node

12 in Figure 6). CloFAST examines at the first step (level i=2) the children of
the parent of α, i.e. the sequence γ = 〈{e}, {a}〉 (node 10). By inserting {a}, the



18 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

last itemset of sequence γ, between the itemsets {e} and {d} of α, we obtain the
sequence β = 〈{e}, {a}, {d}〉 (node 11), which absorbs α. Thus, α is labeled as
non-closed.

As previously mentioned, backward closure is verified by only working on the
CSET and VILs. Algorithmically, the predicate contains (line 9) checks whether
the i-th itemset of α is a proper subset of the last itemset in γ. In this case,
the predicate itemsetClosure is executed to check whether β absorbs α. If the
itemsetClosure is false, CloFAST checks the sequenceClosure predicate (line
18).

In order to explain how backward closure is verified in CloFAST, we define two
predicates, namely shiftSC (shift Sequence-Closure) and shiftIC (shift Itemset-
Closure). The former (latter) works on the VILs and SILs to check whether when-
ever the j-th sequence in SDB contains α it also contains the supersequence β
constructed as in Definition 3 - case 2 (case 1). Obviously, the opposite is always
true, i.e. whenever the j-th sequence in SDB contains the supersequence β it also
contains the subsequence α. Therefore, if either shiftSC or shiftIC hold for each
j, then α and β have the same support, i.e. β absorbs α (or α is non-closed).

Definition 4 (shiftSC). Let α = 〈a1, . . . , ai−1, ai, . . . am〉 be the frequent se-
quence for which we intend to verify sequenceClosure (at the i-th level), δ =
〈a1, . . . , ai−1, ai〉 be the (m − i)-th ancestor of α and γ = 〈a1, . . . , ai−1, b〉 be a
sibling of δ. Let the j-th sequence in SDB contain α, i.e. V ILα[j] 6= null. Then,
the predicate ShiftSC, which takes as input both V ILγ [j] and the list of the VILs
stored in the path from δ to α,2 is recursively defined as follows:

shiftSC(V ILγ [j], [V ILδ[j], V IL〈a1,...,ai+1〉[j], V IL〈a1,...,ai+2〉[j], . . . , V ILα[j]]) =


true if

V ILγ [j] < V ILδ[j]
∨ ∃tai ∈ SILai [j], tai 6= null such that(

V ILγ [j] < tai ∧ shiftSC(tai , [V IL〈a1,...,ai+1〉[j], . . . , V ILα[j]])
)


false otherwise

Thus, shiftSC checks whether V ILγ [j] < V ILδ[j], i.e. b, the last itemset of
γ, can precede ai, the last itemset of δ in the j-th sequence. If so, from proposition 5
the j-th sequence in SDB contains the supersequence β = 〈a1, . . . , ai−1, b, ai, . . . am〉.
If not, the check is repeated on a virtual shift to the next transaction-id in the list
SILai [j]. This amounts to determining an alternative value, if any, for V ILδ[j],
such that V ILβ [j] 6= null, i.e. the sequence 〈ai+1, . . . am〉 can be juxtaposed to
〈a1, . . . , ai−1, b, ai〉 by preserving the containment relationship for the j-th se-
quence.

If the conditions stated in Definition 4 are satisfied for all non-null values of
V ILα, then α is labeled as non-closed.

2 In order to simplify the notation, we will use the term sequence to identify the CSET node
that contains the sequence itself.



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 19

Fig. 7 An example of itemset closure for sequence α = 〈{a}, {d}〉. On the left of each node
the corresponding VIL is shown.

Definition 5 (shiftIC). Let α = 〈a1, . . . , ai−1, ai, . . . am〉 be the frequent se-
quence for which we intend to verify the itemsetClosure (at the i-th level),
δ = 〈a1, . . . , ai−1, ai〉 be the (m − i)-th ancestor of α and γ = 〈a1, . . . , ai−1, b〉
be a sibling of δ, such that ai ⊂ b. Then, the predicate ShiftIC, which takes as
input V ILγ [j] and the list of the VILs stored in the path from δ to α, is defined
as follows:

shiftIC(V ILγ [j], [V ILδ[j], V IL〈a1,...,ai+1〉[j], V IL〈a1,...,ai+2〉[j], . . . , V ILα[j]]) =


true if

V ILγ [j] = V ILδ[j]
∨ ∃tai ∈ SILai [j], tai 6= null such that(

tai = V ILγ [j] ∧ shiftSC(tai , [V IL〈a1,...,ai+1〉[j], . . . , V ILα[j]])
)


false otherwise

Thus, shiftIC checks whether V ILγ [j] = V ILδ[j], i.e. the last itemset of δ can
be replaced by the last itemset of γ. If so, from proposition 6 the j-th sequence
in SDB contains the supersequence β = 〈a1, . . . , ai−1, b, ai+1, . . . am〉. If not, the
check is repeated on a virtual shift to the next transaction-id in the list SILai [j],
which amounts to determining an alternative value, if any, for V ILδ[j] such that
V ILβ [j] 6= null.

It is noteworthy that the definition of shiftIC depends on shiftSC, since we
need to check that the rest of the sequence 〈ai+1, . . . am〉 can be juxtaposed to
〈a1, . . . , ai−1, b〉 by preserving the containment relationship for the j-th sequence.
If the conditions stated in Definition 5 are satisfied for all non-null values of V ILα,
then α is labeled as non-closed.

Since shiftSC and shiftIC coincide, apart from the test on the VILs (< for
shiftSC and = for shiftIC), we show an example only for the shiftIC predicate.

Example 11 Consider the following database SDB:

1. 〈{a}, {d}, {a, b, f}, {d}〉,
2. 〈{a}, {c}〉,
3. 〈{a}, {d}, {a, b, f}, {d}〉,



20 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

and the sequence α = 〈{a}, {d}〉. A partial view of the corresponding CSET is
reported in Figure 7. According to the definition of itemsetClosure, α is non-
closed if, for each j ∈ [1, . . . , n], such that V ILα[j] 6= null, the predicate shiftIC
is true. Since at level 2 (last level) there is no child whose last itemset can replace
the last itemset of α, CloFAST moves up to the previous level and analyzes the
children of the root. At this level, CloFAST checks whether the first itemset of
α, i.e. {a}, can be replaced by the last itemset of the sequence γ, i.e. {a, b, f}.
Consider the first sequence, i.e. j = 1. Since V ILδ[1] = 1 differs from V ILγ [1] = 3,
CloFAST checks whether it is possible to shift to the next transaction-id in the
list SIL{a}[1]. This leads to a virtual “shifting” of transaction-ids of V ILδ[j]
until V ILδ[1] = V ILγ [1] is satisfied. This is true since SIL{a}[1] = [1, 3]. As a
second step, CloFAST checks that the “new” value of V ILδ[1], i.e. 3, is less than
V ILα[1], i.e. 2. Since this check fails, CloFAST performs a virtual “shifting” of
V ILα[1] using SILd[1] = [2, 4] and obtains a “new” value of V ILα[1], namely 4,
such that V ILδ[1] < V ILα[1] (3 < 4). Since for each j such that V ILα[j] 6= null,
i.e. j=1,3, the predicate shiftIC holds, α is labeled as non-closed.

The theoretical motivation for itemset closure checking originates from the fol-
lowing theorem.

Theorem 1 itemsetClosure

Let

– SDB be a sequence database,
– α = 〈a1, . . . , ai−1, ai, . . . am〉 be the frequent sequence in SDB to be checked

for itemset closure on the i-th itemset ai,
– δ = 〈a1, . . . , ai−1, ai〉 be the (m− i)-th ancestor of α in the CSET,
– γ = 〈a1, . . . , ai−1, b〉 be a sibling of δ such that ai ⊂ b, and
– β = 〈a1, . . . , ai−1, b, ai+1, . . . am〉 be a supersequence of α.

If:

∀j = 1, . . . , n : (V ILα[j] 6= null⇒ shiftIC(V ILγ [j], [V ILδ[j], . . . , V ILα[j]]))
(1)

then β absorbs α.

Proof By definition of shiftIC, if V ILα[j] 6= null and shiftIC(V ILγ [j], [V ILδ[j], . . . , V ILα[j]])) =
true, then V ILβ [j] 6= null. Thus, sequences that contain α also contain β. Vice
versa, since β is a supersequence of α, sequences that contain β also contain α.
This means that the support of α is the same as the support of β, i.e. β absorbs α.

Theorem 2 provides sufficient conditions for sequence closure checking.

Theorem 2 sequenceClosure

Let

– SDB be a sequence database,
– α = 〈a1, . . . , ai−1, ai, . . . am〉 be the frequent sequence in SDB to be checked

for sequence closure on the i-th itemset ai,
– δ = 〈a1, . . . , ai〉 be the (m− i)-th ancestor of α,
– γ = 〈a1, . . . , ai−1, b〉 be a sibling of δ and



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 21

– β = 〈a1, . . . , ai−1, b, ai, . . . am〉 be a supersequence of α.

If:

∀j = 1, . . . , n : (V ILα[j] 6= null⇒ shiftSC(V ILγ [j], [V ILδ[j], . . . , V ILα[j]]))
(2)

then β absorbs α.

Proof The proof is analogous to that of Theorem 1.

6.2 Pruning

If a node n is labeled as non-closed, then it is evaluated for pruning (Algorithm 3,
lines 12-13 and 21-22). Indeed, it is possible that a non-closed sequence can still
be profitably used for generating closed sequences. As described in Example 11,
the sequence α = 〈{a}, {d}〉 is non-closed because β = 〈{a, b, f}, {d}〉 absorbs α.
However, it can be used to generate, in sequence extension, the closed sequence
〈{a}, {d}, {a, b, f}〉, which cannot be generated if the subtree rooted in the node
associated to the sequence α is pruned.

On the other hand, there are cases in which non-closed sequences cannot lead
to the generation of closed sequences. In these cases, their corresponding nodes
should be labelled as pruned, in order to prevent CloFAST from generating further
unpromising patterns. The following proposition provides the theoretical basis for
pruning.

Proposition 7 Let α = 〈a1, a2, . . . , am〉 be a frequent sequence, β = 〈b1, b2, . . . , bp〉
a supersequence of α and N the number of the elements in the V ILα which differ
from the corresponding transaction-ids in the V ILβ. If N = 0, i.e. V ILα = V ILβ,
then for the two sequence extensions γ = 〈a1, a2, . . . , am, c1, c2, . . . , cq〉 and δ =
〈b1, b2, . . . , bp, c1, c2, . . . , cq〉, V ILγ = V ILδ.

Proof By induction on q.

– Base case: q = 0. Trivial.
– Induction step: q > 0. Consider the two sequences α′ = 〈a1, a2, . . . , am, c1, c2, . . . , cq−1〉

and β′ = 〈b1, b2, . . . , bp, c1, c2, . . . , cq−1〉. By construction, β′ is a supersequence
of α′. If N = 0, by inductive hypothesis, V ILα′ = V ILβ′ . If we juxtapose the
same itemset cq to both sequences, the VILs of the two extended sequences
γ = 〈a1, a2, . . . , am, c1, c2, . . . , cq〉 and δ = 〈b1, b2, . . . , bp, c1, c2, . . . , cq〉, will
still be the same, i.e. V ILγ=V ILδ.

It is noteworthy that γ and δ have the same support. Since δ is a supersequence
of γ, then δ absorbs γ. Therefore, it is useless to generate the extensions of α,
since they will be absorbed by the sequences generated from β (early termination
condition).

In CloFAST this early termination condition is efficiently checked during both
the itemset closure and sequence closure phases (lines 12, 20) at no additional
cost. In particular, if for each j such that V ILα[j] 6= null, the predicates shiftIC
or shiftSC are satisfied without applying the virtual “shifting”, then the node
representing α can be labeled as pruned.



22 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

Example 12 Consider the itemset closure described in Example 9 and depicted
in Figure 5. At the first level (i=1), CloFAST applies the ShiftIC predicate hav-
ing as arguments the VIL of node 2 (γ = 〈{a, b, f}〉) and the VILs of the path
between nodes 6 (δ = 〈{a}〉) and 8 (α = 〈{a}, {d}〉). Since, for each j such
that V ILα[j] 6= null (i.e. j = 1 and j = 3), V ILγ [j] = V ILδ[j] (in particu-
lar, V ILγ = V ILδ = [1, 2, 2]), then the sequence β = 〈{a, b, f}, d〉 exists that has
the same VIL as α and will generate the same supersequences as α. For this reason
node 2, which represents the sequence α, can be labeled as pruned.

Recalling that the backward closure is verified by only working on VILs, the
time complexity of Algorithm 3 is O(d · |SDB|), where d is the depth of the
tree. Therefore, the backward closure can be efficiently checked in practical cases
characterized by relatively small values of d.

7 Experiments

In order to empirically evaluate CloFAST, in this section we report the experimen-
tal results on both real world and synthetic datasets. We implemented CloFAST
in Java and compared it with BIDE, ClaSP and CloSpan provided by the Java
framework SPMF [10]3. The experimental setting is inspired by [22] and aims at
evaluating:

– Efficiency: Efficiency is evaluated both in terms of running time (seconds)
and memory consumption (Gb) on sparse and dense datasets. Following [12],
we define the density as the ratio between the average number of items in
an itemset and the number of different items. When this value is small, the
generated dataset is considered sparse, whereas, when this ratio is high the
dataset is considered dense. We compare CloFAST efficiency both on synthetic
and real datasets.

– Scalability: CloFAST is compared with the above cited algorithms by linearly
increasing the number of input sequences. We report the results in terms of
running time (seconds) and memory consumption (MB). Scalability is only
evaluated on artificially generated datasets.

– Effectiveness of the CloFAST optimization technique: CloFAST is com-
pared with FAST which does not implement the backward closure checking
and pruning techniques. We report results in term of running time (seconds),
memory consumption (GB) and number of mined frequent patterns. This com-
parison is performed on real datasets.

All the results reported in this section are obtained with a machine with a
4-core 2.4GHZ Intel Xeon processor, running Ubuntu 12.04 Server edition with
32GB of main memory. In order to facilitate the replication of the experiments,
the system and all the considered datasets can be downloaded at the following
hyperlink: http://www.di.uniba.it/~ceci/micFiles/systems/CloFAST/

Before presenting the results obtained, we describe the datasets used in the
experiments.

3 Unfortunately, we were not able to compare CloFAST with COBRA, which is not publicly
available. Moreover, the algorithm description provided in [14] does not provide enough details
to unambiguously re-implement the system.



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 23

Parameter Description
D Number of sequences (∗103)
C Average number of itemsets per sequence
T Average number of items per itemset
S Average length of maximal sequences
I Average size of itemsets in maximal sequences
N Number of different items (∗103)

Table 2 Parameters used in the IBM data generator. In the definition of S and I, a sequence
is considered maximal if it is not a sub-sequence of any other frequent sequence [25].

7.1 Dataset description

The synthetic datasets used for our experiments were obtained using the IBM
data generator [1]. This dataset generator has been used in most sequential pat-
tern mining studies [25,18,1,12]. Generated datasets contain random sequences of
itemsets which can be easily controlled by the user. In particular, the generator
allows the user to specify several parameters which regulate, among other aspects,
the number of sequences, the average number of transactions per sequence and the
number of different items. The detailed list of parameters used in this evaluation is
listed and explained in Table 2. The parameter values are reported in the following
subsections and depend on the specific purpose of each empirical evaluation.

We also compared the algorithms on real datasets, that is, Gazelle, Snake,
MSNBC and Pumsb. For all the datasets, except Snake, we also considered variants
which are commonly used in the literature. We indicate such variants with the
star (*) suffix. The properties of all the real datasets used in our experiments are
reported in Table 3 and described in the following:

– Gazelle (BMS-WebView-1) is a dataset used in the KDDCup-2000 competition
and, basically, it includes a set of page views done by users on the gazzelle.com
e-commerce web site. Product pages viewed in one session are considered an
itemset, and different sessions for one user define the sequence. Gazelle* rep-
resents another version of the dataset proposed in the KDDCup-2000 com-
petition and used in past studies on sequential pattern mining [22]. Both
datasets are considered sparse datasets. Gazzelle was downloaded from www.

philippe-fournier-viger.com/spmf/index.php?link=datasets.php, while Gazzelle*
was downloaded from the KDD Cup 2000 web site.

– MSNBC is a dataset of click-stream data (from the UCI repository). They
are collected from logs of msnbc.com and news-related portions of msn.com

for the entire day of September 28th, 1999. Each sequence in the dataset
corresponds to page views of a user during that twenty-four hour period.
Each transaction in the sequence corresponds to a user’s request for a page.
MSNBC was downloaded from http://archive.ics.uci.edu/ml/datasets/

MSNBC.com+Anonymous+Web+Data, while MSNBC* has been downloaded from
www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php.

– Snake is a biological dataset which contains 192 Toxin-Snake protein sequences
and 20 unique items. This Toxin-Snake dataset is about a family of eukaryotic
and viral DNA binding proteins and was used in [22]. For our experiments only
sequences containing more than 50 items were kept. This filtering is performed
in order to make the dataset more uniform (because the original Snake dataset



24 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

Dataset # seq. avg length max length # items density
Gazelle 59,601 2.51 267 497 0.002
MSNBC 989,818 4.70 14,795 17 0.06
Pumsb 49,046 50.48 63 2,088 0.0005
Gazelle* 29,369 2.98 651 1,423 0.0007
Snake* 163 6.62 61 21 0.04
MSNBC* 31,790 13.33 100 17 0.06
Pumsb* 9,230 50.49 61 1,676 0.0006

Table 3 Properties of the real datasets considered for the experiments.

contains only a few very short sequences and many long sequences). The dataset
obtained (called Snake*) contains 163 long sequences with an average of 60.62
items. This dataset is not publicly available.

– Pumsb contains census data for population and housing from PUMS (Public
Use Microdata Sample) [3]. Both Pumsb and Pumsb* was downloaded from
http://fimi.ua.ac.be/data/.

7.2 Results: Efficiency of CloFAST on synthetic datasets

As previously stated, to test the efficiency of CloFAST we adopted the schema
based on sparse and dense datasets proposed by Gomariz et al. [12]. They showed
how the performance of the sequential pattern mining algorithms largely depends
on the database density, and they introduced a definition of density based on T/N
(see Tab. 2). When T/N is small, the generated dataset is sparse, while when T/N
grows, the dataset tends to be dense.

To evaluate and compare the efficiency of the algorithms, we considered four
configurations. In the first, we fixed D = 5 (number of transactions ∗103), C=10
(the sequence length), T=10 (number of items in an itemset) and varied N (the
number of different items). We obtained the datasets D5C10T10N2.5S6I4, D5C10T10N1.6S6I4
and D5C10T10N1S6I4. In the second, we fixed D=50, C=20, N=2.5 and varied T ,
obtaining the datasets D50C20T10N2.5S6I4, D50C20T20N2.5S6I4, D50C20T30N2.5S6I4
and D50C20T40N2.5S6I4, which are denser than the datasets belonging to the first
configuration.

In Figure 8 we compare CloFAST with ClaSP, BIDE and CloSpan in terms
of the running time (in seconds) and memory consumption (in GB), according
to the first dataset configuration and varying the support threshold. In terms of
running time (graphics are reported in logarithmic scale), CloFAST generally out-
performs all the other systems, especially for low support values, when the number
of frequent sequences is higher. By increasing the density of the dataset (i.e. by
decreasing N) the advantage of CloFAST over the other three algorithms becomes
more evident. Since the higher density is directly related to the number of frequent
sequences, we can conclude that the higher the number of frequent sequences, the
more competitive (in running time) the proposed algorithm. Notably, the time
efficiency of CloFAST is not obtained at the cost of higher memory consumption,
which remains comparable to that of CloSpan. For highly dense datasets and for
small values of the support threshold, the worst performing system is BIDE. This
is probably related to the fact that, for dense datasets, the size of the projected
databases does not shrink during the mining process. The situation is more favor-



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 25

able to BIDE for very sparse datasets and for small values of the support threshold,
thus confirming the conclusions reported in [22].

In Figure 9 we show the results obtained according to the second dataset
configuration (i.e. by varying T ) and setting the support threshold to 0.4. They
confirm the discussion reported for Figure 8, particularly that CloFAST outper-
forms the algorithms BIDE, ClaSP and CloSpan when the density of the datasets
increases. It is noteworthy that ClaSP does not return results with the dataset
D50C20T40N2.5S6I4 (T/N = 16), since it consumes all the assigned memory
(fixed to 32GB).

Moreover, the efficiency of CloFAST with distinct density values is evalu-
ated by varying the number of itemsets in the sequences (C). In Figure 10 we
show the running time and memory consumption of the considered algorithms
using a third and a fourth dataset configuration. For the sparsest configuration
(T=2.5, N=10, D=20), we compare the performances obtained with four datasets
(D20C20T2.5N10S6I4, D20C40T2.5N10S6I4, D20C60T2.5N10S6I4, D20C80T2.5N10S6I4)
and 2 support thresholds. For the densest configuration (T=20, N=4, D=10), we
obtained the datasets D10C20T20N5S6I4, D10C40T20N5S6I4, D10C60T20N5S6I4,
D10C80T20N5S6I4 and showed the results only for one support threshold. We ob-
serve that for the densest configuration it was not possible to test lower support
thresholds, due to the extremely large number of frequent sequences. The results
show that, in general, by increasing the number of itemsets in the sequences (C),
CloFAST shows lower running times than other systems. This behavior is more
evident for the more complex task of mining dense datasets with a high number of
itemsets in the sequences (and a high number of frequent patterns). In this case,
CloFAST outperforms competitors by one order of magnitude (see Figure 10 (c)),
while keeping memory consumption under control (see Figure 10 (f)). Concerning
this last aspect, we observe again a good behavior of CloSpan in terms of memory
consumption. This effect is explained by the efficient way CloSpan stores internal
data structures (integer vectors), which allows it to save memory at the price of
higher running times (note that running times are expressed in logarithmic scale,
while memory consumption is expressed in linear scale).

Finally, we selected one experiment from the first, the second and the fourth
configuration (median of values of other parameters) and varied S and I, ob-
taining the datasets D5C10T20N1.6S[2..10]I[2..10], D50C20T20N2.5S[2..10]I[2..10]
and D10C60T20N5S[2..10]I[2..10]. In this way, it was possible to evaluate how the
parameters S and I affected the computation time on the selected datasets. In
Figures 11 and 15, we report the results obtained. From the twelve heatmaps, we
can conclude that CloFast has the same trend as other algorithms but, coherently
with the results reported before, it is the best performing in the case of dense
datasets. In particular, on dense datasets, CloFast outperforms competitors by a
good margin when the values of I and S are small (top-left corner of the heatmap),
i.e., when the number of frequent patterns is higher.

7.3 Results: Efficiency of CloFAST on real datasets

The results obtained on real datasets generally confirm the observations drawn
from the experiments performed on synthetic datasets. In particular, the running
times shown in Figure 12 confirm that CloFAST outperforms all the other methods



26 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

(a) D5C10T10N2.5S6I4 (d) D5C10T10N2.5S6I4

(b) D5C10T10N1.6S6I4 (e) D5C10T10N1.6S6I4

(c) D5C10T10N1S6I4 (f) D5C10T10N1S6I4

Fig. 8 Running times (in seconds) and memory consumption (in Gb) varying N = {2.5, 1.6, 1}
and min sup. Results are obtained with D = 5, C = 10 and T = 10.



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 27

Fig. 9 Running times (in seconds) and memory consumption (in Gb) varying T/N =
{4, 8, 12, 16}. Results are obtained with min sup = 0.4, D=50, C=20, N=2.5.

when the support threshold is low, i.e. the number of frequent patterns is high.
In particular, for MSNBC, MSNBC* and Snake*, which are the densest datasets
(see Table 3), CloFAST clearly shows the best performance in running time. We
note that for the datasets Pumbs and Pumbs*, it is difficult to appreciate the
difference between CloFAST, ClaSP and CloSpan, since the high running time of
BIDE flattes the other results. Nevertheless, we confirm that for these two datasets,
CloFAST is the fastest algorithm.

Concerning memory consumption, CloFAST is among the best performing
methods for almost all the datasets. Some differences between CloFAST and ClaSP
can be appreciated for two datasets with a large number of closed patterns (294, 386
for MSNBC* with min sup = 0.005, 1, 300, 529 for Snake* with min sup = 0.5).
Both algorithms use a vertical representation of the data. However, a closer look
at the results reveals that, while for MSNBC* CloFAST is at a disadvantage com-
pared to ClaSP, due to the large number of null values stored in the VILs, for
Snake* our internal representation is effective and CloFAST is the only method
which does not incur in out-of-memory errors (the limit is 32GB).

7.4 Scalability

In order to evaluate the scalability of CloFAST with respect to other compet-
itive systems we performed experiments on synthetic datasets by varying the
number of input sequences. In particular, by keeping constant other parame-
ters of the data generator (C=20, T=20 and N=2.5), we varied D, obtaining
datasets with a different number of sequences (i.e. the following configurations
were used: D50C20T20N2.5S6I4, D100C20T20N2.5S6I4, D150C20T20N2.5S6I4,
D200C20T20N2.5S6I4, D250C20T20N2.5S6I4, D300C20T20N2.5S6I4).

The results shown in Figure 14, indicate that, by increasing the number of
sequences, CloFAST significantly outperforms ClaSP and BIDE, both in terms
of running time and in terms of memory consumption. The comparison between
CloFAST and CloSpan reveals that CloFAST outperforms CloSpan (although the
difference is not impressive) in terms of running time. As concerns memory con-
sumption, CloFAST outperforms CloSpan only when the number of sequences is



28 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

(a) D20C[20-80]T2.5N10S10I1.25 min supp = 0.05 (d) D20C[20-80]T2.5N10S10I1.25 min supp = 0.05

(b) D20C[20-80]T2.5N10S10I1.25 min supp = 0.1 (e) D20C[20-80]T2.5N10S10I1.25 min supp = 0.1

(c) D10C[20-80]T20N5S6I4 min supp = 0.4 (f) D10C[20-80]T20N5S6I4 min supp = 0.4

Fig. 10 Running times (in seconds) and memory consumption (in Gb) varying C =
{20, 40, 60, 80}. Results are obtained with D = 20,min sup = 0.05, T = 2.5 (sparse);
D = 20,min sup = 0.1, T = 2.5 (sparse); D = 10,min sup = 0.4, T = 20 (dense).



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 29

Fig. 11 Running times (in seconds) varying S = {2, 4, 6, 8, 10} and I = {2, 4, 6, 8, 10}. Results
are obtained with D = 5, C = 10, T = 10, N = 1.6,min sup = 0.05 (small and sparse);
D = 10, C = 60, T = 20, N = 5,min sup = 0.7 (dense).



30 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

(a) Gazelle (b) MSNBC

(c) Pumsb (d) Gazelle*

(e) Snake* (f) MSNBC*

(g) Pumbs* (logarithmic scale)

Fig. 12 Real datasets: running times. Missing values correspond to out-of-memory errors (>
32GB).



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 31

(a) Gazelle (b) MSNBC

(c) Pumsb (d) Gazelle*

(e) Snake* (f) MSNBC*

(g) Pumbs*

Fig. 13 Real datasets: memory consumption. Missing values correspond to out-of-memory
errors (> 32GB).



32 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

Fig. 14 Running times (in seconds) and memory consumption (in Gb) varying D=50, 100,
150, 200, 250, 300. Results are obtained with C=20, T=20, N=2.5 and min sup = 0.4. Missing
values correspond to out-of-memory errors (> 32GB).

less than 150.000. This is not surprising, since the value of the density is not high
(T/N = 8), and CloFAST is more effective when the density increases (see Figure
9).

7.5 Effectiveness of closure checking and pruning

In this subsection we investigate the effectiveness of the closure checking and of
the pruning strategy implemented in CloFAST and when they come into play. To
this aim, we consider three real-world datasets (i.e. Snake*, Pumbs and Pumbs*)
and four synthetic datasets with different characteristics . We compare the results
of CloFAST with those of FAST [19], which does not perform closure checking and
pruning.

The results reported in Figure 16 confirm, as expected, that CloFAST is able
to prune a higher percentage of frequent sequences when input sequences are long
and when the number of input sequences increases (Snake* vs. Pumbs/Pumbs*).
By comparing the results obtained with Pumbs and Pumbs*, we notice that the
benefits of CloFAST are more evident when the number of input sequences in-
creases (the main difference between Pumbs and Pumbs* is in the number of
sequences). Obviously, the percentage of pruned frequent sequences directly re-
flects on the running time and on the memory consumption. In particular, when
the difference between the number of closed patterns and the number of frequent
patterns increases, CloFAST shows a proportional improvement in terms of both
running times and memory consumption. This is more evident for small values of
the support threshold.

Experiments on synthetic datasets aimed at evaluating how the closure check
and pruning performs when the number of frequent sequences in the underlying
model changes. In particular, by keeping unchanged values of D, C, T and N ,
we can compare the results obtained with different values of S and I, which reg-
ulate the average length of maximal sequences and the average size of itemsets
in maximal sequences, respectively. When S is small and I is large, the underly-
ing patterns are very similar to each other and multiple sequences covered by the



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 33

Fig. 15 Running times (in seconds) varying S = {2, 4, 6, 8, 10} and I = {2, 4, 6, 8, 10}. Results
are obtained with D = 50, C = 20, T = 20, N = 2.5,min sup = 0.4.

same pattern are likely to be generated, thus leading to better opportunities for
pruning. The results (see Figure 17) show that with a small value of S and high
value of I, CloFAST is able to prune the search space significantly, thus greatly
outperforming FAST in terms of running times, at minor additional memory costs.

8 Conclusions

In this paper we have presented CloFAST, a novel algorithm for mining closed
frequent sequences without candidate maintenance. It exploits i) sparse id-lists
and vertical id-lists for fast counting the support of sequential patterns and ii) a
novel one-step technique to check sequence closure and to prune the search space.



34 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

(a) Snake* Time (b) Snake* Patterns (c) Snake* Memory

(d) Pumbs Time (e) Pumbs Patterns (f) Pumbs Memory

(g) Pumbs* Time (h) Pumbs* Patterns (i) Pumbs* Memory

Fig. 16 Fast and CloFast comparison on real datasets

In this way, CloFAST is also able to mine long closed sequences by reducing the
effort required for space exploration, support counting and search space pruning.

A thorough experimental study with both artificial and real datasets shows that
CloFAST outperforms in running times the state-of-the-art algorithms, especially
for low support values and for dense datasets, i.e. when the number of frequent
sequences is high. Notably, the time efficiency of CloFAST is not obtained at the
cost of higher memory consumption, which remains comparable to, if not better
than, that of other systems (e.g. CloSPAN). For some critical datasets, CloFAST
is the only system that returns a result within the fixed memory size constraints. A
comparison with its predecessor FAST, which does not perform closure checking
and pruning, shows that CloFAST is more efficient both in time and memory



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 35

Fig. 17 Fast and CloFast comparison on synthetic datasets.



36 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

consumption, thus providing a way to compact results, while preserving the same
expressive power of discovered patterns.

Our work opens up some important avenues for future work. In particular,
CloFAST can be profitably used in sequence prediction, by exploiting descriptive
patterns for prediction purposes, as in associative classification [4]. This extension
would provide an alternative way to face sequence classification both in biological
domains [6] and in process mining applications [5], which are characterized by ei-
ther very long sequences dense datasets. An additional extension of CloFAST could
be in the explicit consideration of noise in data, similarly to what was suggested
in [7].

Acknowledgements We thank P. Fournier-Viger for kindly providing the Snake dataset.
We also thank Lynn Rudd for reading through the paper. We would like to acknowledge
the support of the European Commission through the project MAESTRA - Learning from
Massive, Incompletely Annotated, and Structured Data (Grant number ICT-2013-612944).
Finally, this work is in partial fulfillment of the requirements of the Italian project VINCENTE
PON02 00563 3470993 “A Virtual collective INtelligenCe ENvironment to develop sustainable
Technology Entrepreneurship ecosystems”. The authors also wish to thank Lynn Rudd for her
help in reading the manuscript.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the Eleventh
International Conference on Data Engineering, ICDE ’95, pages 3–14, Washington, DC,
USA, 1995. IEEE Computer Society.

2. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap
representation. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’02, pages 429–435, New York, NY, USA,
2002. ACM.

3. D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu. MAFIA: A maximal frequent
itemset algorithm. IEEE Transactions on Knowledge and Data Engineering, 17(11):1490–
1504, 2005.

4. M. Ceci and A. Appice. Spatial associative classification: propositional vs structural ap-
proach. J. Intell. Inf. Syst., 27(3):191–213, 2006.

5. M. Ceci, P. F. Lanotte, F. Fumarola, D. P. Cavallo, and D. Malerba. Completion time
and next activity prediction of processes using sequential pattern mining. In S. Dzeroski,
P. Panov, D. Kocev, and L. Todorovski, editors, Discovery Science - 17th International
Conference, DS 2014, Bled, Slovenia, October 8-10, 2014. Proceedings, volume 8777 of
Lecture Notes in Computer Science, pages 49–61. Springer, 2014.

6. M. Ceci, C. Loglisci, E. Salvemini, D. D’Elia, and D. Malerba. Mining spatial association
rules for composite motif discovery. In R. Bruni, editor, Mathematical Approaches to
Polymer Sequence Analysis and Related Problems, pages 87–109. Springer, 2011.

7. L. Cerf, J. Besson, K.-N. Nguyen, and J.-F. Boulicaut. Closed and noise-tolerant patterns
in n-ary relations. Data Mining and Knowledge Discovery, 26(3):574–619, 2013.

8. Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz. Catch the moment: maintaining closed
frequent itemsets over a data stream sliding window. Knowledge and Information Systems,
10:265–294, October 2006.

9. T. P. Exarchos, M. G. Tsipouras, C. Papaloukas, and D. I. Fotiadis. A two-stage methodol-
ogy for sequence classification based on sequential pattern mining and optimization. Data
& Knowledge Engineering, 66:467–487, September 2008.

10. P. Fournier-Viger. SPMF: A sequential pattern mining framework. http://www.
philippe-fournier-viger.com/spmf/index.php. Accessed: 2014-08-08.

11. D. Fradkin and F. Moerchen. Margin-closed frequent sequential pattern mining. In Pro-
ceedings of the ACM SIGKDD Workshop on Useful Patterns, UP ’10, pages 45–54, New
York, NY, USA, 2010. ACM.



CloFAST: Closed Sequential Pattern Mining using Sparse and Vertical Id-Lists 37

12. A. Gomariz, M. Campos, R. Maŕın, and B. Goethals. ClaSP: An efficient algorithm for
mining frequent closed sequences. In J. Pei, V. S. Tseng, L. Cao, H. Motoda, and G. Xu,
editors, PAKDD (1), volume 7818 of Lecture Notes in Computer Science, pages 50–61.
Springer, 2013.

13. J. Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

14. K.-Y. Huang, C.-H. Chang, J.-H. Tung, and C.-T. Ho. COBRA: Closed sequential pattern
mining using bi-phase reduction approach. In A. M. Tjoa and J. Trujillo, editors, DaWaK,
volume 4081 of Lecture Notes in Computer Science, pages 280–291. Springer, 2006.

15. G. G. Jingjun Zhu, Haiyan Wu. An efficient method of web sequential pattern mining
based on session filter and transaction identification. Journal of Networks, 5(9):1017–1024,
2010.

16. Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: Finding copy-paste and related bugs in
large-scale software code. IEEE Transactions on Software Engineering, 32:176–192, 2006.

17. F. Masseglia, P. Poncelet, and M. Teisseire. Efficient mining of sequential patterns with
time constraints: Reducing the combinations. Expert Systems with Applications: An In-
ternational Journal, 36:2677–2690, March 2009.

18. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. PrefixSpan:
Mining sequential patterns by prefix-projected growth. In Proceedings of the 17th Inter-
national Conference on Data Engineering, pages 215–224, Washington, DC, USA, 2001.
IEEE Computer Society.

19. E. Salvemini, F. Fumarola, D. Malerba, and J. Han. FAST sequence mining based on sparse
id-lists. In M. Kryszkiewicz, H. Rybinski, A. Skowron, and Z. W. Ras, editors, ISMIS,
volume 6804 of Lecture Notes in Computer Science, pages 316–325. Springer, 2011.

20. S. Song, H. Hu, and S. Jin. HVSM: A new sequential pattern mining algorithm using
bitmap representation. In X. Li, S. Wang, and Z. Dong, editors, Advanced Data Mining
and Applications, volume 3584 of Lecture Notes in Computer Science, pages 455–463.
Springer Berlin Heidelberg, 2005.

21. A. Turi, C. Loglisci, E. Salvemini, G. Grillo, D. Malerba, and D. D’Elia. Computational
annotation of UTR cis-regulatory modules through frequent pattern mining. BMC Bioin-
formatics, 10:1–12, 2009. 10.1186/1471-2105-10-S6-S25.

22. J. Wang, J. Han, and C. Li. Frequent closed sequence mining without candidate mainte-
nance. IEEE Trans. on Knowl. and Data Eng., 19:1042–1056, August 2007.

23. X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in large
datasets. In In SDM, pages 166–177, 2003.

24. Z. Yang and M. Kitsuregawa. LAPIN-SPAM: An improved algorithm for mining sequential
pattern. Data Engineering Workshops, 22nd International Conference on, 0:1222, 2005.

25. M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1-2):31–60, Jan. 2001.

26. X. Zhang, G. Dong, and K. Ramamohanarao. Exploring constraints to efficiently mine
emerging patterns from large high-dimensional datasets. In Knowledge Discovery and
Data Mining, pages 310–314, 2000.



38 F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba

Author Biographies

Fabio Fumarola, Ph.D., is a research assistant at the Department
of Computer Science of the University of Bari, Italy. He was visit-
ing researcher at the University of Illinois at Urbana Champaign.
He also worked as lead data scientist at Angelo Investment Group
on big data applied to game analytics. He was awarded a prize by
the Apulia Region for the project ”WhereToLive” on social security
monitoring through big data mining solutions. His research mainly
concerns data stream mining, web information harvesting, and big
data. He co-authored more than 20 papers on referred journal and
conferences and a book on Data Mining Techniques in Sensor Net-
works.

Pasqua Fabiana Lanotte is a Ph.D. student of Computer Science
at University of Bari, Italy. Her research interests are sequential pat-
tern mining, web mining, and information extraction. She received
her Master degree in Computer Science at University of Bari, and
she is currently a visiting scholar of Computer Science at Univer-
sity of Illinois, Urbana-Champaign. She was awarded a prize by the
Apulia Region for the project ”WhereToLive” on social security
monitoring through big data mining solutions.

Michelangelo Ceci, Ph.D., is an assistant professor at the Dept
of Computer Science, University of Bari, Italy. His main research
interests are in data mining and machine learning. He was a vis-
iting researcher at the University of Bristol (U.K.) and at the JSI
(SLO). He has published more than 140 papers in refereed journals
and conferences. He is responsible for a research unit of the MAES-
TRA EU project and of several national projects. He has served
in the Program Committee of many conferences, including: IEEE
ICDM, IJCAI, ECMLPKDD. He is member of the editorial boards
of: IJSNM, IJDSN, IJDATS and JAIS. He has been the program co-
chair of five workshops and DS2016, the organizing committee chair
of SEBD 2007 and member of the editorial board of the ECMLP-
KDD 2014 and 2015 journal tracks.

Donato Malerba, is a full professor at the Department of Com-
puter Science of the University of Bari Aldo Moro. His research ac-
tivity mainly concerns data mining, machine learning, data science
and big data. He has published more than 200 papers in interna-
tional journals and conference proceedings. He received the IBM
Faculty Award for the year 2004. He is responsible for a research
unit of several European and national projects. He is the Director
of the CINI National Lab on Big Data and a member of the Board
of Directors of the Big Data Value Association.




