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Abstract Mining of spatial data is an enabling technology for mobile services, Internet-
connected cars, and the Internet of Things. But the very distinctiveness of spatial data that
drives utility, can cost user privacy. Past work has focused upon points and trajectories for
differentially-private release. In this work, we continue the tradition of privacy-preserving
spatial analytics, focusing not on point or path data, but on planar spatial regions. Such
data represents the area of a user’s most frequent visitation—such as “around home and
nearby shops”. Specifically we consider the differentially-private release of data structures
that support range queries for counting users’ spatial regions. Counting planar regions leads
to unique challenges not faced in existing work. A user’s spatial region that straddles mul-
tiple data structure cells can lead to duplicate counting at query time. We provably avoid
this pitfall by leveraging the Euler characteristic for the first time with differential privacy.
To address the increased sensitivity of range queries to spatial region data, we calibrate
privacy-preserving noise using bounded user region size and a constrained inference that
uses robust least absolute deviations. Our novel constrained inference reduces noise and pro-
motes covertness by (privately) imposing consistency. We provide a full end-to-end theoret-
ical analysis of both differential privacy and high-probability utility for our approach using
concentration bounds. A comprehensive experimental study on several real-world datasets
establishes practical validity.
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1 Introduction

The ubiquity, quality and usability of location-based services supports the ready availabil-
ity of user tracking. Location data sharing is used across a wide range of applications such
as traffic monitoring, facility location planning, recommendation systems and contextual
advertising. The distinctiveness of location data, however, has led to calls for location pri-
vacy [5,20]: the ability to track users in aggregate without breaching individual privacy.
There exists a spectrum of approaches to address location privacy [9,10,19,30] with sig-
nificant attention having been paid to range queries on point location or trajectory data: for
example, providing statistics of how many mobile users are presently on an arterial road.

Typical private spatial analytics supports point locations or sequences of points (see
Figure 1a). Points and trajectories, however, do not best-represent user location in all appli-
cations. In facility-services planning, a planner may wish to locate a new department store
in a location that overlaps with users’ regions of frequent visitation. While hotel-booking
sites collect area-level information about customers’ preferred destinations. Such problems
motivate our focus on counting private planar bodies1 (see Figure 1b). Given a collection of
privacy-sensitive planar bodies representing regions of frequent location, we wish to support
counting range queries while preserving individual privacy. Figure 1b illustrates this task,
on a map of metropolitan Melbourne with planar bodies representing regions of individual
users’ frequent visitation. Third parties may wish to submit any number of queries request-
ing the number of users’ areas falling in a specified query region, e.g., for urban transport
planning or retail analytics.

A leading approach for responding to range queries in spatial data analytics is aggrega-
tion [37,38,47,46,34,6,35,32,48]. Initial interest in aggregation was due to computational
efficiency considerations and early data structures promote these properties. More recently
aggregation has been used as a qualitative approach to privacy, as it is a natural choice for
privacy-preserving data release [7].

In the setting of planar bodies, conventional grid-partitioned histograms cannot provide
accurate results due to the duplicate counting2 problem as a planar body may span more
than one histogram cell simultaneously. This is a problem unique to counting planar bodies.
To address this challenge, we instead leverage the Euler characteristic [50] where face, edge
and vertex counts are stored separately. Such Euler histograms [4] permit exact counting of
convex planar bodies [44,43,45] (cf. Section 3.1 and Figure 2).

The recently emerged strong guarantee of differential privacy [15,13] has attracted a
number of researchers in location privacy. Typically work studies aggregation of point
and trajectory data [26,8,11,41,23], often via histogram-like data structures—regular or
hierarchical—for controlling the level of perturbation required for privacy.

Our goal in this paper3 is to address the accurate counting of planar bodies, while provid-
ing the strong guarantee of differential privacy. While Euler histograms provide an excellent
starting point in terms of utility, computational efficiency and aggregation-based qualitative
privacy, a service provider may be directed by users to provide strong semantic privacy.
Differential privacy guarantees that an attacker with significant prior knowledge and com-
putational resources cannot determine presence or absence of a user in a set of planar bodies.

1 We use body and region interchangeably to refer to a user’s spatial area. We use the term body to distin-
guish query regions from users’ regions.

2 In the literature, the terms multiple, double or distinct counting are used interchangeably. We suggest the
term “duplicate” as it conveys that objects are over-counted.

3 This paper extends our ICDM’2016 conference paper [18].
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(a) Point locations or sequence of points (trajecto-
ries) as typical spatial representatives of a user.

(b) Users’ regions of frequent visitation; each user’s
spatial data is represented by a single planar body.

Fig. 1 Example users’ point locations (path) or spatial regions on a map of Melbourne. Bolded rectangle
depicts an example range query to count the number of users.

Differential privacy requires randomization. The challenge in combining the ideas of
Euler histograms and differential privacy is that the data structure’s large number of counts
require randomised perturbation. As a result, the total noise added could be prohibitively
high. Compared to point data in which at most one cell is impacted per record, here an
object could span more than one cell, impacting many counts. Naive solutions would there-
fore significantly degrade utility. Moreover when sampled independently, perturbations can
destroy the consistency of query responses over the resulting structure [3].

The first stage of our approach is to perturb counts of a Euler histogram by applying
noise controlled via sensitivity to a natural bound on planar body size. Then, to re-instate
consistency and improve utility with no cost to privacy, we apply constrained inference
that seeks to minimally update counts to satisfy consistency constraints. These constraints
reflect relationships between data structure counts that must exist, but may be violated by
perturbation. Under these constraints we apply least absolute deviations (LAD), which is
more robust to outliers than ordinal regression—used previously for constrained inference
in differential privacy. By enforcing consistency, we also “average out” previously-added
noise, thereby improving utility in certain cases. Finally, we round counts so that query
responses are integral. This final stage, combined with consistency, yields responses that
preserve a covertness property such that third-party observers cannot determine that privacy-
preserving perturbation has taken place.

Two privacy models have been studied for releasing datasets or their statistics: the in-
teractive and non-interactive models [15]. In the non-interactive setting, the database is san-
itized and then released while the interactive model considers mechanisms that respond to
queries by releasing approximate query responses. The main limitation with this latter ap-
proach is the limited number of queries permitted throughout the mechanism’s lifetime.
Interactive mechanisms (e.g., Euler histograms [17]) can provide inconsistent results also.
Our focus is on the non-interactive privacy setting, wherein our mechanisms release privacy-
preserving data structures to third parties, with no limitation on the number of subsequent
query responses permitted.
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Contributions. We deliver several main contributions:

– For the first time, we address the differentially-private counting of planar bodies (spatial
region objects) in the non-interactive setting;

– We propose differentially-private mechanisms that leverage the Euler characteristic (via
the Euler histogram data structure) to address the duplicate counting problem;

– We formulate novel constrained inference to reduce noise and introduce consistency
based on the robust method of least absolute deviations; combined with rounding, this
guarantees a covertness property;

– We contribute an end-to-end theoretical analysis of both high-probability utility and
differential privacy; and

– We conduct a comprehensive experimental study on real-world datasets, which confirms
the suitability of our approach to private range queries on spatial bodies.

2 Related Work

A series of effective privacy attacks on location data [20,30,19] has launched a significant
amount of activity around privacy-preserving techniques for spatial analytics [9,19,31].

Aggregation under range queries has emerged as a fundamental primitive in spatial and
spatio-temporal analytics [37,46,34,6,32]. Originally motivated by statistical and computa-
tional efficiency, aggregation is now also used for qualitative privacy.

A key challenge in aggregation is the distinct counting [37,46,34,6,32] or multiple-
counting problem [44,45]. In contrast to point objects, a spatial body can span more than
one cell in a partitioned space, inhibiting the ability of regular histograms to form accurate
counts. Euler histograms [4] are designed to address this problem for convex bodies [44,
45], by appealing to Euler’s formula from graph theory [50]. A variation of Euler histogram
has been studied for trajectory data to address aggregate queries on moving objects [52]. In
that work, Euler histograms were used in a distributed setting (motivating a distributed Euler
histogram), to tackle the duplicate (distinct) entry problem rather than duplicate (distinct)
counting. The Euler-histogram tree [53] has been studied as a tree-based data structure for
counting vehicle trajectories using the approach first developed in [17] to address the distinct
counting problem for reducing storage requirements.

There is a line of work [17], in which the CASE histogram has been proposed as a
privacy-preserving approach for trajectory data analytics, where only count data is utilised
in a partitioned space applying the Euler characteristic to address duplicate counting. The
authors in [17] discuss the interactive setting for differentially-private Euler histogram re-
lease, which has a prohibitive limitation of the number of queries being linear in the number
of bodies. Our work has no such limitation (see [13]).

Differential privacy [15,13] has now become a preferred approach to data sanitisation as
it provides a strong semantic guarantee with minimal assumptions placed on the adversary’s
knowledge or capabilities. Differential privacy has been studied for location privacy [19].
One existing approach is to obfuscate the user’s location by perturbing their real geographic
coordinates. The concept of geo-indistinguishability has been defined [2,40] as a notion of
differential privacy in location-based services. Due to its popularity, differential privacy has
been applied to many algorithms and across many domains, such as specialized versions of
spatial data indexing structures designed with differential privacy for the purpose of private
record matching [26]; in spatial crowdsourcing to help volunteer workers’ locations remain
private [49]; in machine learning, releasing differentially-private learned models of SVM
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Table 1 Taxonomy on private spatial data analytics using aggregates with examples of related work.

Privacy Model Data Type Approach
Spatial Aggregation Trajectory Probabilistic counting using sketches—approximation method

(Tao et al. [46])
Distributed Euler Histograms (DEHs) addressing distinct-
entry counting problem (Xie et al. [52]), Count-based ap-
proach similar to [52] (Leonardi et al. [32])
CASE histograms, addressing distinct-object counting prob-
lem (duplicate counting) [17]

Differential Privacy Point Quad-tree, KD-tree (Cormode et al. [11]), Uniform and Adap-
tive Grid (Qardaji et al. [41])

Differential Privacy Trajectory Prefix tree (Chen et al. [8]), DPT, using hierarchical reference
systems (He et al. [23]), CASE Histograms [17]

Differential Privacy Spatial Region
(Planar Body)

Differentially private Euler histograms (this work)

classifiers [42]; in geo-social networks for location recommendation [55]; and for modelling
human mobility from real-world cellular network data [36].

Within the scope of aggregation, studies in the area of point privacy have also proposed
sanitization algorithms for generating differentially-private histograms and releasing aggre-
gate statistics. Many studies have explored differential privacy of point sets [1,26,11,8,51,
16,23,41,33]. They have studied regular grid partitioning data structures and hierarchical
structures. This work for the first time addresses the problem of differentially-private count-
ing of planar bodies.

Table 1, demonstrates various techniques for privacy preserving spatial analytics using
aggregates comparing privacy model, data type and approach.

3 Preliminaries

One natural but qualitative approach to privacy preservation is spatial aggregation. We will
leverage a data structure that permits spatial aggregation for body counts.

3.1 Euler Histograms

Given a grid partitioned space, an Euler histogram data structure allocates buckets not only
for grid cells, but also for grid cell edges and vertices. We formally define the data structure
as below.

Definition 1 Consider an arbitrary partition of a subset of R2 into convex cells. Define F ,
E , V to be index sets over the partition’s faces, edges (face intersections), and vertices (edge
intersections). Let P be a vector with components, the faces, edges and vertices, indexed by
F ∪E ∪V (i.e., each Pi ⊂R2 represents a face/edge/vertex area of the Euclidean plane); and
let vector H of non-negative integers be indexed by F ∪E ∪V as well (representing counts
per face/edge/vertex). Then we call the data structure (P,H,F ,E ,V) an Euler histogram.

Originally, Euler histograms were designed as a grid partitioning data structure, but they
are valid for other convex partitions as well. For example, valid Euler histograms could be
defined over a Voronoi partition of space induced by a finite set of sensors as the sites of a
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Fig. 2 Two convex bodies overlapping a spatial partition and their related counts to corresponding Euler
histogram; an example query region (QR) to count the number of objects.

Voronoi diagram detecting any object in their region [52]; or a rectangular partition over an
urban area [17] such as in Figure 2.

Beigel and Tanin [4] first introduced to spatial databases, the observation that the Euler
characteristic [50] (including its extensions to higher dimensions) directly applies to this
data structure. Euler’s characteristic states that the number of convex bodies N overlapping
certain query regions can be computed exactly as

N = F−E +V , (1)

where F,E,V are the sum of face, edge, and vertex counts in H within the given query
region (QR in Figure 2). Duplicate counting due to summing face counts is corrected by
subtracting edge counts. This in turn can over-compensate, and is corrected by adding vertex
counts. This is a special case of the Inclusion-Exclusion Principle of set theory and applied
probability. Figure 2 illustrates the impact two planar bodies have on a square-partition
Euler histogram. Compared to conventional histograms, with the use of extra counts for grid
cell edges and vertices, large objects spanning more than one cell are now distinguishable
from several small objects intersecting only one cell. Applying Equation (1) to calculate the
number of objects inside the highlighted QR of Figure 2, we arrive at the correct answer of
N = 8−8+2 = 2.

3.2 Differential Privacy

We consider statistical databases on records—each representing a user’s spatial region. Ran-
domisation is vital for preventing an adversary from inverting a released statistic to recon-
struct the original (private) data.

Definition 2 A randomised mechanism M(D) on database D, is a random variable taking
values in response set Range(M).

Definition 3 We say that two databases D, D′ are neighbours if they are of equal size and
differ on exactly one record—one spatial body representing a user in the context of this
paper.
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Definition 4 A randomised mechanism M, is said to preserve ε-differential privacy for ε >
0, if for all neighbouring databases D, D′, which differ in exactly one record, and measurable
C ⊆ Range(M):

Pr(M(D) ∈C) ≤ exp(ε) ·Pr(M(D′) ∈C) .

Definition 4 implies that an algorithm is differentially private if a change, addition or
deletion of a record, does not significantly affect the output distribution. Differential privacy
has become a de facto standard for privacy of input data to statistical databases due to it
being a semantic guarantee [15].

Remark 1 The threat model of differential privacy involves an incredibly powerful adver-
sary with full knowledge of mechanism M, all but one record of true latent database D,
the ability to sample from M(D), and unlimited computational power. Using these capa-

bilities, an optimal attack for reconstructing D is to sample m1, . . . ,mk
iid∼M(D). From this

sample the attacker can form a histogram that is an empirical estimate M̂(D) of the true
response distribution M(D). Knowing that the true D is neighbouring to the database D′

known by the attacker, they may simulate (using their unbounded computational resources)
each and every response distribution M(D′′) for neighbouring D′′,D′ and then attempt to
match these against M̂(D). Differential privacy states exactly that each of the simulated can-
didate response distributions are exceedingly similar (multiplicatively pointwise close), and
so for sufficiently small ε (relative to sample size k which is limited to linear in size of D) it
is impossible for the attacker to distinguish the true M(D) by comparison with M̂(D).

Lemma 1 (Post-Processing Immunity [15]) For any randomised algorithm M : X →R
and any (possibly randomised) function f : R→R′, if M is ε-differentially private then
f ◦M is also ε-differentially private.

Lemma 1 implies that differential privacy is immune to post-processing. This is also
referred as Transformation Invariance, as one of the privacy axioms [29], indicating that
post-processing privatised data maintains privacy.

4 Problem Statement

The focus of this paper is to respond to range queries over spatial datasets consisting of a
spatial region per user.

Problem 1 Given a set of planar bodies, our goal is to batch process them to produce a
data structure that can respond to an unlimited number of range queries within some fixed,
bounded area: given a query region QR, we are to respond with an approximate count of
bodies overlapping that region.

For example, a range query covering the entire area in Figure 1b might elicit a response
of (exact count of) 12.

4.1 Evaluation Metrics

We consider four properties of mechanisms, as competing metrics for evaluating solutions
to Problem 1.
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Fig. 3 A convex body with bounded diameter, on a spatial partition.

P1. Utility: We measure utility by the absolute error of query responses relative to the true
count of bodies intersecting a given query region.

P2. Privacy: Mechanisms should achieve non-interactive differential privacy, at some level
ε , in their release of a data structure on sensitive spatial data.

P3. Consistency: If responses to all possible queries agree with some fixed set of bodies
then we say that the mechanism is consistent. Such a set of bodies need not coincide
with the original input bodies.

P4. Covertness: If a consistent counting mechanism’s query responses are non-negative
integer-valued, then we also call it covert.

Utility and privacy are in direct tension, for establishing privacy typically involves re-
ducing the influence of data on responses. However for fixed levels of privacy, for example,
we can ask what levels of utility are possible for available solutions to Problem 1.

If privacy-preserving perturbations are made independently across a data structure, it
is unsurprising that overlapping queries will not necessarily result in consistent responses.
This may be undesirable for some applications that utilise multiple, overlapping queries
e.g., urban planning. We consider specific, public consistency constraints which relate to the
data structure adopted. As such, the level of consistency can be benchmarked according to
the number of consistency violations suffered. Unlike privacy, consistency is not necessar-
ily at odds with utility: indeed we will demonstrate how imposing consistency can actually
improve utility. Intuitively, if privacy-preservation involves injecting independent, random
perturbations to a data structure, then consistency corresponds to a public smoothness as-
sumption that can be used to ‘cancel out’ the deleterious effect of perturbation. Consistency
may also be applied when a measure of ‘stealth’ is desired for a counting mechanism.

4.2 Assumptions

The theoretical guarantees developed in this paper leverage four assumptions (cf. Figure 3).
Each is relatively weak, being well motivated and satisfied in most practical settings.

A1. We assume that the space partition’s cells are all convex.
A2. We assume that query regions are convex unions of our space partition’s cells.
A3. We assume that all planar bodies are convex.
A4. We assume that all planar bodies are of some bounded L2 diameter B > 0.

A sufficient condition for correctness of Equation (1), is that all objects are convex planar
bodies. However, convexity is not necessary. In general, objects being disconnected leads to
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inaccurate counts. Note that connected objects can become disconnected e.g., a concave
object not contained by a query region [17]. Our first three assumptions are sufficient for
guaranteeing correctness (perfect utility) for Euler histograms. Relaxing these assumptions
may come at the cost of utility. For example convex query regions that are not unions of
cells can exactly count the number of bodies in the (enlarged) union of cells intersecting the
QR. And general query regions will still result in excellent utility. Two important partition
geometries satisfy these conditions: rectangular and Voronoi partitions.

The fourth assumption controls the L1-Lipschitz smoothness of Euler histogram counts
with respect to input bodies. This parameter—also known as the global sensitivity (cf. Def-
inition 5)—calibrates the scale of noise added for differential privacy. We consider a moti-
vating example to be regions of frequent visitation. These are necessarily bounded. With B
sufficiently large, no restriction is made on valid bodies.

Without loss of generality we assume partitions are square of side length A > 0, divided
into n rows and n columns, yielding square cells of side length d = A/n (cf. Figure 3).

5 Algorithms and Analysis

Our approach consists of four complementary algorithms:
– Euler (Eu): Euler histogram construction from a set of convex planar bodies;
– DiffPriv (DP): Calibrated perturbation of histogram counts to achieve ε-differential pri-

vacy. To improve utility, negative counts are truncated at zero;
– LinProg (LP): Constrained inference for consistency;
– Round (R): Rounding counts for covertness.

We detail each mechanism, followed by its theoretical analysis. Figure 4 depicts an
example run of each algorithm in turn. As shown, Figure 4a illustrates two users’ spatial
regions, our running example in Figure 2, as input raw data for the first Algorithm 1 (cf.
Section 5.1).

5.1 Algorithm: Euler

Algorithm 1 creates a data structure (Euler histograms cf. Section 3.1) to represent aggre-
gated counts of a given set of convex planar bodies X . The algorithm simply increments
counts for any face, edge, vertex that intersects a body. As shown in Figure 4b, processing a
convex body determines what counts need to be incremented.

Algorithm 1: Euler (Eu): Euler Histogram Construction
Input : Set of planar bodies X ; partition (P,F ,E ,V)
Output: Euler histogram (H,P,F ,E ,V)

1 for i ∈F ∪E ∪V do
2 Hi←− 0

3 for x ∈X do
4 for i ∈F ∪E ∪V do
5 if x∩Pi 6= /0 then
6 Hi←− Hi +1
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(a) Two users’ planar bodies. (b) Euler histogram construction. (c) Perturbing the counts (DP).

(d) Linear programming (LP). (e) Rounding the counts (R). (f) Example range query response.

Fig. 4 An example of the mechanisms’ outputs; numbers from a real run.

Privacy. Euler is qualitatively private via aggregation, but it does not achieve any differen-
tial privacy by virtue of being deterministic.

Utility. Assumptions A1–A3 guarantee the preconditions of the following, direct results of
Equation (1).

Corollary 1 If input bodies, partition cells, and query region are convex, and the query
region is a union of cells, then Euler’s responses to the range query via Equation (1) are
accurate.

Corollary 2 Euler is consistent (P3) and covert (P4).

Computational Complexity. As our partition has n rows and columns, Euler’s time and
space complexities are efficient at O(|X |n2) and O(n2) respectively.

5.2 Algorithm: DiffPriv

Euler achieves a number of our target properties but not differential privacy. We now in-
troduce differential privacy to our approach by perturbing Euler histogram counts. In Algo-
rithm 2, we add carefully-crafted random noise based on the sensitivity of the histogram to
input bodies. We truncate any resulting negative counts to zero, improving utility at no cost
to privacy (cf. Lemma 1). Figure 4c depicts the result of this phase for a real example. For
interested readers, the computed global sensitivity (GS) (cf. Definition 5 and Lemma 2) of
this example is 25, where dB/de= 2, and the allocated privacy budget, ε , is 1.
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Privacy. The key step to establishing the differential privacy of DiffPriv, is to calculate
Lipschitz smoothness for Euler—the scale of noise to be added to reduce sensitivity. This
represents how sensitive Euler is to input bodies, and so how much noise should be added
to reduce this sensitivity for privacy.

Definition 5 Let f be a deterministic, real-vector-valued function of a database. The L1-
global sensitivity (GS) of f is given by ∆ f = max

D,D′
‖ f (D)− f (D′)‖1, taken over all neigh-

bouring pairs of databases.

The L1-global sensitivity is a property of function f , independent of input database. For
Euler histograms, the GS measures the effect on the histogram count vector, due to changing
an input planar body related to a user’s spatial region.

Lemma 2 The L1-global sensitivity of Euler is 4.5
(⌈B

d

⌉
+ 1
)⌈B

d

⌉
, where d > 0 is the cell

side length, and B > 0 is an L2 bound on planar body diameter.

Proof By Assumption 4 (cf. Figure 3), the number of cells that could intersect with a body
is at most

⌈B
d

⌉
+1 in one direction. Therefore the total number of cells that could intersect a

body is

n2 ≤
(⌈

B
d

⌉
+1
)2

.

From this the number of faces, edges and vertices of partition P intersecting with a body
can be upper-bounded as

#Faces = n2 ≤
(⌈

B
d

⌉
+1
)2

;

#Edges ≤ 2n(n−1) ; and

#Vertices ≤ (n−1)2 .

Summing these, we may bound the total number of partition components intersected by
the body as

4n(n−1)+1

≤ 4
(⌈

B
d

⌉
+1
)⌈

B
d

⌉
+1

= 4
(⌈

B
d

⌉
+1
)⌈

B
d

⌉
+

1
2

⌈
B
d

⌉2

+
1
2

⌈
B
d

⌉
= 4

(⌈
B
d

⌉
+1
)⌈

B
d

⌉
+

1
2

(⌈
B
d

⌉
+1
)⌈

B
d

⌉
≤ 4.5

(⌈
B
d

⌉
+1
)⌈

B
d

⌉
.

Since changing a single body in a database can affect impacted histogram cell counts by
one, this expression is also a bound on global sensitivity.

DiffPriv applies the Laplace mechanism [15] to Euler: it adds to a non-private vector-
valued function f , i.i.d. Laplace-distributed noise with centre zero and scale λ given by
∆ f/ε , for desired privacy level ε > 0. Here, λ = ∆H/ε .
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Algorithm 2: DiffPriv (DP): Perturbation by Laplace Noise
Input : Euler histogram: (P,H,F ,E ,V); privacy ε > 0; sensitivity ∆H > 0
Output: Noisy histogram: (P,H′,F ,E ,V)

1 for i ∈F ∪E ∪V do
2 H ′i ←− Hi +Lap(0;∆H/ε)
3 if H ′i < 0 then
4 H ′i ←− 0

Corollary 3 DiffPriv preserves ε-differential privacy.

Proof The result follows by applying the triangle inequality to the odds ratio using the
definition of Laplace density, and global sensitivity [15].

Utility. DiffPriv is neither covert nor consistent, however we can bound its utility.

Theorem 1 For confidence level δ ∈ (0,1), the counts H output by Euler and counts H′
output by DiffPriv are uniformly close with high probability

Pr
(
‖H′−H‖

∞
≤ λ log

(
|F |+ |E |+ |V|

δ

))
≥ 1−δ .

Proof For convenience, we define the combined index set H=F ∪E∪V , noting that |H|=
|F |+ |E |+ |V|. Recall that by the definition of DiffPriv, we have that

∀i ∈H, H ′i = Hi +Yi, Yi ∼ Lap(0;λ ) .

By the cumulative distribution function of the zero-mean Laplace, it follows that

∀ i ∈H, Pr(|Yi| ≥ z) = exp
(
−z
λ

)
,

for any scalar z > 0. By the union bound it follows that

Pr

(⋃
i∈H
{|Yi| ≥ z}

)
≤ ∑

i∈H
Pr(|Yi| ≥ z)

= |H|× exp
(
−z
λ

)
.

Applying De Morgan’s law,

Prob

(⋂
i∈H
{|Yi|< z}

)
= 1−Prob

(⋃
i∈H
{|Yi| ≥ z}

)

≥ 1−|H|× exp
(
−z
λ

)
, 1−δ .

Solving yields

z = λ × log
(
|H|
δ

)
,
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so that

Prob

(⋂
i∈H

{
|Yi|< λ log

(
|H|
δ

)})
≥ 1−δ .

The result follows from H′−H = Y, Y∼ Lap(λ ) iid.

Computational Complexity. As our partition has n rows and columns, DiffPriv’s time/space
complexities are efficient at O(n2).

5.3 Algorithm: Linear Programming

After additive randomised perturbation with DiffPriv, we apply constrained inference to
smooth this noise, as detailed below. We begin by defining constrained inference, followed
by a set of public consistency constraints.

5.3.1 Constrained Inference: LAD

Constrained inference models the noisy counts output by DiffPriv as noisy observation of
latent counts which are themselves related according to a set of constraints. Inference effec-
tively smooths the differentially-private release, potentially improving utility without affect-
ing privacy. Previously ordinary least squares (OLS) has driven constrained inference [11,
22]. Here we propose instead to use least absolute deviation (LAD) (also referred to as least
absolute residuals, least absolute errors and least absolute value) [12]. In contrast to OLS,
LAD has the benefit of being robust to outliers. LAD is ideal for our setting, since its choice
of minimising L1 error corresponds to maximising the exponential of the negative L1: a
Laplace noise model, akin to maximum-likelihood estimation, matching DiffPriv precisely.

Definition 6 Let H be the Euler histogram counts with a set of defined constraints, C. Given
noisy histogram counts, H′, constrained LAD inference returns vector H′′, that satisfies the
constraints C while minimising ‖H′′−H′‖1.

Proposition 1 Suppose Alice (A) wished to communicate to Bob (B) her parameter vector
θθθ ∈ Θ some Euclidean parameter family known to B, but that her communication of θθθ

passed through a noisy channel specified by the Laplace mechanism: B observes θθθ with
additive i.i.d. zero-mean Laplace with known scale λ > 0. Then LAD corresponds to B
using maximum-likelihood estimation to recover θθθ .

Proof In this abstract setting (that applies beyond our mechanisms, to the Laplace mecha-
nism more generally) suppose that B observes via the channel from A

Xi
indep.∼ Lap(θi,λ ) , i ∈ {1, . . . ,m} .

Then the joint likelihood of the Xi, known to B, is given by

m

∏
i=1

1
2λ

exp
(
−|xi−θi|

λ

)
=

1
2mλ m exp

(
−‖x−θθθ‖1

λ

)
.
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The MLE of unknown θθθ given the observations and known scale λ corresponds to the con-
strained optimisation

θ̂θθ MLE ∈ argmax
θθθ∈Θ

1
2mλ m exp

(
−‖x−θθθ‖1

λ

)
= argmax

θθθ∈Θ

log
(

exp
(
−‖x−θθθ‖1

λ

))
= argmax

θθθ∈Θ

−‖x−θθθ‖1

λ

= argmin
θθθ∈Θ

‖x−θθθ‖1 .

The first equality follows from a strictly monotonic transformation of the objective func-
tion, the second follows from cancelling the logarithmic and exponential functions, and the
final equality follows from another strictly monotonic transformation. This last formulation
corresponds to constrained LAD.

The application of this result to our present setting involves equating the latent parameter
vector to the raw histogram H, Laplace-perturbed observations to H′, and the parameter
family Θ to constraint set C (to be discussed below). This connection demonstrates that our
use of LAD is principled. Given public prior knowledge of counts, one could incorporate a
corresponding (public) prior distribution on the θ and perform maximum a posteriori (MAP)
point-estimation which would in-turn correspond to placing a regularisation term on the
LAD objective. We leave such extensions to future work.

Consistency. We define three constraints C1, C2 and C3 for Euler histograms as follows.
Our consistency constraints consider the relationships between face, edge and vertex counts.
Every increment to an edge count must correspond to an increment to the counts of both
incident faces as well; and similarly for an increment to a vertex count, the corresponding
four incident edge counts must be incremented. Finally query regions should respond with
non-zero count estimates. These represent the intuition behind our three sets of consistency
constraints.

For ease of exposition, we refer to face, edge and vertex components of H by Fi,Ei,Vi
respectively. The meaning will be apparent from context.

Constraint 1 Every edge count is less than or equal to the minimum value of its two incident
faces.

E ′′i ≤ F ′′j ∀i ∈ E ,∀ j ∈ Fi; Fi = { j ∈ F : j incident to i ∈ E}

Constraint 2 Every vertex count is less than or equal to its four incident edges’ counts.

V ′′i ≤ E ′′j ∀i ∈ V,∀ j ∈ Ei; Ei = { j ∈ E : j incident to i ∈ V}

Constraint 3 Every two by two grid partition should have a non-negative count computed
by Euler, Equation (1).

F ′′j −E ′′k +V ′′i ≥ 0 ∀i ∈ V,∀ j ∈ Fi,∀k ∈ Ei

where Fi = { j ∈ F : j incident to i ∈ V}
Ei = {k ∈ E : k incident to i ∈ V} .

Figure 4d demonstrates the output of LinProg algorithm that smooths the noise and
applies consistency constraints.
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Algorithm 3: LinProg (LP): Linear Programming
Input : Noisy Histogram: (P,H′,F ,E ,V)
Output: Consistent Histogram: (P,H′′,F ,E ,V)

1 Solve Program (2).

Algorithm. We consider two constrained inference programs for enforcing these con-
straints. Both minimise the change to the histogram counts subject to the constraints. The
first, LAD, minimises counts with respect to the L1-norm.

min
H′′
‖H′′−H′‖1 s.t. H′′ ≥ 0 Constraints C1,C2,C3

By introducing a primal variable per histogram cell count, we can transform this to the
following linear program

min
H′′,h

|H|

∑
i=1

hi (2)

s.t. H′′,h≥ 0
H ′i −H ′′i ≤ hi ∀i ∈H
H ′′i −H ′i ≤ hi ∀i ∈H
Constraints C1,C2,C3

Alternatively we could adopt the L∞-norm for minimising the change to the histogram
cell counts, as in the following program.

min
H′′
‖H′′−H′‖

∞
s.t. H′′ ≥ 0 Constraints C1,C2,C3

And again we may transform this program to an equivalent LP, this time by introducing
only a single new primal variable

min
H′′,h

h (3)

s.t. H′′,h≥ 0
H ′i −H ′′i ≤ h ∀i ∈H
H ′′i −H ′i ≤ h ∀i ∈H
Constraints C1,C2,C3

We analyse Program (3), however we recommend that in practice Program (2) be used
since it is better able to minimise change to all cell counts (and is derived according to the
MLE principle as per Proposition 1), while Program (3) only minimises the maximum error.
Algorithm 3 and our experiments reflect this recommendation.

Privacy. Since LinProg depends only on the output of DiffPriv, it preserves the same level
of differential privacy (cf. Lemma 1).
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Algorithm 4: Rounding (R)
Input : Consistent Histogram: (P,H′′,F ,E ,V)
Output: Rounded Histogram: (P,H′′′,F ,E ,V)

1 for i ∈F ∪E ∪V do
2 H ′′′i ←− round(H ′′i )

Utility. We can establish high-probability utility bounds on LinProg (L∞) that take a similar
form to those proved for DiffPriv, but via different arguments.

Theorem 2 For any confidence level δ ∈ (0,1), and for histogram counts H′ output by
DiffPriv and H′′ minimising Program (3), we have

Pr
(
‖H′−H′′‖

∞
≤ λ log

(
|F |+ |E |+ |V|

δ

))
≥ 1−δ .

Proof We reduce to the bound on DiffPriv, by noting that since LinProg is minimising
distance, the distance from H′′ to H′ must be no more than H to H′. In other words

LP︷ ︸︸ ︷
‖H′−H′′‖

∞
≤

Laplace Analysis︷ ︸︸ ︷
‖H′−H‖

∞
≤ λ log

(
|F |+ |E |+ |V|

δ

)
with the final bound holding with probability at least 1−δ .

Computational Complexity. Linear programming interior-point methods—also referred to
as barrier algorithms—are polynomial-time, with worst-case complexity of O(a3.5) [28], for
a, the number of variables. Therefore, for Euler histograms the time complexity is O(n7),
but in practice it is efficient as demonstrated in our runtime experiments (cf. Section 6.10 for
running time).

5.4 Algorithm: Rounding

After running LinProg, we introduce covertness via Round (Algorithm 4). This allows the
data curator to hide that the data has been perturbed (see Figure4e). Figure 4f depicts an
example range query response to privately count the number of users via Equation (1), N =
F−E +V = 2.

Privacy. Since Round depends only on differentially-private data, it also preserves differ-
ential privacy (cf. Lemma 1).

Utility. The analysis of utility for Round is more straightforward than for DiffPriv and Lin-
Prog.

Lemma 3 If H′′ is the output histogram of LinProg and H′′′ is the result of Round, then
‖H′′−H′′′‖

∞
≤ 0.5.

Lemma 4 Round is consistent when run after LinProg, and so it is also covert.

Proof We only need to check the consistency constraints, as to whether Round violates any.
This cannot happen, since the smaller side of a constraint inequality rounding up must coin-
cide with the larger side rounding up. Similarly the larger side rounding down must coincide
with the smaller side doing the same. Therefore, consistency is invariant to rounding.
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Computational Complexity. Similar to DiffPriv since our partition has n rows and columns,
Round’s time and space complexities are efficient at O(n2).

5.5 Full Theoretical Analysis

We are now able to combine the individual utility analyses of the four stages of our approach,
into an overall high-probability bound on utility.

Corollary 4 For confidence level δ ∈ (0,1), and histogram counts H, H′′′ output by Euler
and Round respectively we have that

‖H−H′′′‖
∞
≤

9
(⌈B

d

⌉
+1
)⌈B

d

⌉
ε

log

(
4A2

d2 − 4A
d +1

δ

)
+0.5

holds with probability at least 1−δ .

Proof By Theorems 1, 2, Lemma 3, triangle inequality

‖H−H′′′‖
∞
≤ ‖H−H′‖

∞
+‖H′−H′′‖

∞
+‖H′′−H′′′‖

∞

≤ 2×λ log
(
|F |+ |E |+ |V|

δ

)
+0.5

with high probability , where λ = 4.5
(⌈B

d

⌉
+1
)⌈B

d

⌉
/ε . Continuing

2×λ log
(
|F |+ |E |+ |V|

δ

)
+0.5

≤
2
[
4
(⌈B

d

⌉
+1
)⌈B

d

⌉
+1
]

ε
log
(
|F |+ |E |+ |V|

δ

)
+0.5

≤
9
(⌈B

d

⌉
+1
)⌈B

d

⌉
ε

log

(
4A2

d2 − 4A
d +1

δ

)
+0.5 .

We have used the following counts, where n is the number of rows/columns in the grid-
partitioned area of volume A2:

|F | = n×n = n2 =
A2

d2 ;

|E | ≤ 2n× (n−1) = 2(n2−n) = 2(|F |−
√
|F |) ;

|V| ≤ (n−1)2 = n2−2n+1 = |F |−2
√
|F |+1 ;

|F |+ |E |+ |V| ≤ |F |+2(|F |−
√
|F |)+ |F |−2

√
|F |+1

= 4|F |−4
√
|F |+1

≤ 4
A2

d2 −4

√
A2

d2 +1

=
4A2

d2 −
4A
d

+1 .

This completes the proof.
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Note, the utility bound’s error is O
(

B2

εd2 log
(

A2

δd2

))
with high probability.

Remark 2 In order to achieve appropriate utility, we recommend selecting cell size d, based
on third-party requirements. The smallest QR that a third party might run on an area is a
reasonable choice for d. B can naturally be set by users or service provider. There is little
risk that B would be made too large, as a user cannot have a very large region representing
their regular location in a short time interval. In e.g., fitness applications, users can determine
the area in which they usually perform their workouts. Regarding the ε parameter, there are
studies in the literature discussing how to set this parameter [14,24]. In fact, there is a
trade-off between ε and accuracy. Ultimately these must be set depending on third-party
requirements.

6 Experimental Study

6.1 Datasets

We conduct extensive experiments on three real-world datasets that vary in terms of density
and concentration of locations. One dataset records GPS coordinates of more than 500 taxis
over 30 days in the San Francisco Bay Area; Cab mobility traces are provided through the
Cabspotting project [39]. Here, cabs’ GPS points are more concentrated on the financial
district and surrounding areas (cf. Figure 6a); we select this area for the empirical study (cf.
Figure 6c). Our remaining datasets are in Beijing (Microsoft Research Asia), Geolife project
Version 1.3 [56], as well as T-Drive [54]. In Geolife 1.3, GPS trajectories were collected by
182 users, containing 18,000 trajectories. 91.5 percent of the trajectories are logged in a
dense representation (every 1–5 seconds or every 5–10 meters per point). GeoLife dataset
gathered a broad range of users’ outdoor movements, including not only everyday routines—
e.g., going home and commuting to work—but also entertainment and sporting activities,
including shopping, sightseeing, dining, hiking, and cycling. T-Drive includes the GPS tra-
jectories of about 10,000 taxis within Beijing, with a total number of points at about 15 mil-
lion. The distribution of users’ spatial bodies over the map of the selected area per dataset
is visualised in Figure 5. The distribution of the GeoLife 1.3 and T-drive are different in the
same selected area (cf. Figures 5a and 5b). Compared to GeoLife, T-Drive has a more spread
distribution of users’ spatial regions over the partitioned space.
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Fig. 5 The density of users’ spatial regions for the selected area per dataset, which measure 20km ∗ 20km,
20km∗20km, 3.2km∗3.2km respectively.
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(a) (b) (c) (d)

Fig. 6 Pre-processing in experimental setup: Computing the KDE and mode for a set of GPS points, then
convex hull. Based on a sample of one cab’s GPS points in San Francisco, from Cabspotting.

6.2 Pre-processing

We pre-process each dataset to extract convex planar bodies, representing regions where
users mostly frequent. This simulates a real application where extraction might be con-
ducted at the end point. For instance, in some applications, e.g., in a fitness tracker, users
can determine the area in which they usually locate their workouts, in order to obtain a de-
sired service. We conduct the following steps, which represent just one approach to creating
convex regions of high visitation.

– Fit a kernel density estimate (KDE) and consequently take the mode of each user’s set
of GPS points;

– Take k-nearest neighbours (k-NN) points to the mode, e.g., for GeoLife, 8 hours corre-
sponds to k = 5760. If the number of GPS points are less than k we take all points;

– Check if all the points are within the defined B diameter, otherwise discard outliers; and
– Compute the convex hull of remaining points to create a convex planar body representing

an area of frequent visitation.
We use standard libraries from the Scipy package [27] to compute the kNN and convex

hull. To deal with geographic coordinates, Euclidean computations do not directly apply,
such as to calculate a distance between two points (here: the opposite corners of a bounding
box of B diameter). We refer the interested reader to [25].

Figure 6 demonstrates the trajectory of a cab in San Francisco 6a, taken from the Cab-
spotting project. In this picture (cf. Figure 6b), the level sets within the contour lines are
convex, and we could have picked these for our convex planar body. But in general, level
sets are not convex. Our approach generates a convex approximation. As depicted in Fig-
ure 6c, cab GPS points in this dataset are dense and concentrated in a specific area. Figure 6d
illustrates the extracted convex body.

After pre-processing, we create histogram counts per convex body, to construct the Euler
histograms as our baseline approach and as the basis for our other algorithms.

For constrained inference, we used the Gurobi optimisation software package [21] which
implements dual simplex and barrier algorithms to solve LinProg, with concurrent optimiza-
tion. We next explain how to choose parameters, then describe our evaluation metrics.

6.3 Parameter Settings

Initial settings for Beijing with four parameters A (area side length), d (cell size), B (bounded
diameter), ε are 20km, 1km, 2km and 1 respectively. These settings are applied on T-Drive,
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Table 2 Experimental settings. This table shows the range of parameters, bolded are those that are varying.

Dataset Cell Size (d) B Area Size (A) A/d QR Size/Shape ε

T-Drive 1km 2km 20km*20km 20 1-10% 1
T-Drive 1km 2km 20km*20km 20 10-100% 1
T-Drive 0.66,1,2km 2km 20km*20km 30,20,10 1% 1
T-Drive 2km 2km 20km*20km 10 1% 0.1,0.4,0.7,1

GeoLife1.3 1km 2km 20km*20km 20 1-10% 1
GeoLife1.3 1km 2km 20km*20km 20 10-100% 1
Cabspotting 0.8km 2km 3.2km*3.2km 4 10-100% 1

and GeoLife1.3 datasets. With regard to San Francisco, Cabspotting dataset, area size is
3.2km×3.2km, and cell size is 0.8km with the remaining parameters the same. The density
of users’ spatial regions per dataset in a selected spatial partition are illustrated in Figure 5.
As shown in Figures 5a, 5b, T-Drive and GeoLife reflects a different distribution of users’
spatial regions, and even for the selected area of San Francisco some partitions are more
dense, Figure 5c.

Table 2 demonstrates our experimental parameter values, not including the experiments
in Sections 6.8–6.10. As demonstrated, bold parameters are varying.

Even though the literature on point data [11,41] tends to use only specific QR sizes,
we vary the QR parameter over the entire range of the area size to more fully evaluate our
technique. For experiments where we compare histograms, the A/d ratio, which defines the
number of grid cells for each axis, has been kept constant for all datasets (cf. Sections 6.8–
6.10).

6.4 Evaluation Metrics

Apart from the varying parameter, we keep all other parameters fixed to compute the me-
dian relative error as an empirical measure of utility, as is standard [11,41]. We repeat each
of the experiments 100 times and compute median relative error. The baseline approach is
Euler as it provides exact answers. Algorithms DiffPriv, LinProg, Round that are privacy-
preserving, are compared to Euler. Another evaluation metric is the percentage of the differ-
ences between Euler histograms and the DiffPriv, LinProg, and Round approaches over the
difference between Euler histograms and the DiffPriv (relative error to DiffPriv). Here, the
L1-norm is adopted.

We also compute the number of times each constraint has been violated in each tech-
nique compared to LinProg and Round which are the consistent techniques, as well as Euler
as our baseline approach, consistency constraints violation. Furthermore, we compute the
running time for each algorithm (cf. Section 6.10).

6.5 Varying Query Rectangle Size

In this section we compute the median relative error on all datasets, representing diversity
in terms of sparsity, density and concentration, to demonstrate effect on accuracy. We fix
every parameter, except QR size to run a range query on various sizes, with varying position
on the partitioned map, based on definition of a QR as a union of grid cells. Range queries
are varied from 1 to 10 and 10 to 100 percent of the total area size of the respective city.
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(a) QR Size (1-10% of Total Area).
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(b) QR Size (10-100% of Total Area).
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(c) Various QR Shapes (smaller).
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(d) Various QR Shapes (larger).

Fig. 7 Median relative error per query size and shape for T-Drive dataset.

The results for various sizes as well as shapes of a range query are shown in Figures 7–9.
Various parameters can affect the response to a QR, including shape of a QR, size of a QR,
whether convex bodies are sparse in the space or dense, or if they are concentrated or not.
Furthermore, the computed global density (cf. Lemma 2) differs across dataset settings, e.g.,
25 for both T-Drive and GeoLife datasets, and 49 for Cabspotting, and this value also affects
the results. The similarity between T-Drive and Cabspotting is that both record taxi driver
movements; but a difference is that the former is not concentrated on a specific area while
the latter is. In GeoLife1.3 the convex bodies are more dense, having a large number of
trajectories.

As depicted in Figure 7 for the T-Drive dataset, since the data is more evenly distributed
the error is very low for larger QR sizes (Figure 7b), and is less than 20% for smaller QRs
(Figure 7a). A variety of QR shapes for the smaller sizes (Figure 7c), and larger ones (Fig-
ure 7d) are depicted accordingly. For instance, 1% QR in a 20× 20 partitioned-map of
Beijing city could be (1,4), (2,2), (4,1) geometries, where the first coordinate represents
the number of rows and the second represents number of columns. Compared to GeoLife1.3
(Figure 8), since trajectories are more focused on some area (cf. Figure 5b), the error in-
creases by decreasing QR size (Figure 8a).

With regard to the Cabspotting dataset (Figure 9), some parts of the selected area are
sparser which consequently affects the result of DiffPriv. Specifically for the QR shape of
(3,3) (Figure 9a) and the QR sizes of 50% and 60% (Figure 9b), such QRs contain dense
and sparse cells. This results in larger errors. However for larger QRs, errors cancel each
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(a) QR Size (1-10% of Total Area).
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(b) QR Size (10-100% of Total Area).
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(c) Various QR Shapes (smaller).
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(d) Various QR Shapes (larger).

Fig. 8 Median relative error per query size and shape for GeoLife1.3 dataset.
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(a) Various QR Shapes.
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(b) QR Size (10-100% of Total Area).

Fig. 9 Median relative error per query size and shape for Cabspotting dataset.

other out due to the Euler formula, Equation (1). In all cases, LinProg and Round reduce
the errors, and provide a high level of accuracy. Since the number of spatial partitions for
the chosen area is smaller than the other datasets, only QR sizes and shapes between 10%–
100% are shown in Figures 9a and 9b. The QR errors for the smaller sizes 1%–9% are less
than 10%.

LinProg and Round provide similar results, and as discussed in Section 5, the difference
is the covertness property of Round. There is inconsistency in the DiffPriv histogram results
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Fig. 10 Varying area size/cell size ratio for T-Drive
dataset.
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Fig. 11 Varying privacy parameter for T-Drive
dataset.

(see Section 6.9). Providing consistency, through the LinProg and Round techniques, can
improve accuracy (cf. Sections 6.6, 6.7).

For the remainder of the experiments for varying other parameters, we focus results on
T-Drive dataset, and the 1% QR size as a conservative representative, since it incurs higher
error.

6.6 Varying Area Size/Grid Cell Size Ratio

We vary the area size (A) over grid cell size (d) ratio and compute the median relative error
for QR taken as 1% of total area of T-Drive dataset. The area size for this dataset is 20km×
20km. By increasing the cell size, we expect that the accuracy improves, as demonstrated in
Figure 10. We have fixed the QR as 1%, and varied the size of the grid cell in a range 0.66km,
1km, and 2km to yield the ratios of 30, 20, and 10 respectively. As shown, by increasing the
grid cell size the accuracy increases. As illustrated in Figure 10, as we decrease the grid cell
size, the error increases due to higher values of global sensitivity for smaller cell sizes: 49,
25, 9 are the global sensitivity (GS) values for 0.66km, 1km, and 2km cell sizes respectively.
If we wish to decrease d without incurring reduced accuracy, our theoretical results suggest
that we should also decrease B and A.

6.7 Varying Privacy Parameter ε

We apply a similar procedure to vary the privacy parameter across values 0.1, 0.4, 0.7,
and 1 with fixed QR of 1% of the total area 20km× 20km, and cell size 2km. The effect
of increasing ε on accuracy is depicted in Figure 11. Decreasing the ε value from 1, will
increase the scale parameter of Laplace distribution (added noise to the counts) from 9 to 90
for ε = 0.1, and this affects the accuracy of the result. To keep accuracy relatively constant
when reducing ε , the third party can vary other parameters.
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Fig. 13 Consistency constrains violations for all
datasets.

6.8 Difference on Histograms

Computing the differences on histograms and their relative error to DiffPriv show that Lin-
Prog and Round are superior in terms of having less difference, while still being private. For
this part of the experiment, in order to make the dataset histogram differences comparable,
we kept the A/d ratio fixed as discussed in Section 6.3, for San Francisco 3.2km/0.16km
and for Beijing 20km/1km.

Figure 12 depicts this comparison for all datasets, showing that on the first concentrated
dataset, DiffPriv has a considerable difference with LinProg and Round (cf. Cabspotting).
This difference decreases for the relatively evenly distributed datasets (cf. GeoLife and T-
Drive). LinProg and Round have similar differences with Euler.

6.9 Consistency Constraint Violations

In Figure 13 the percentage of violations of constraints C1,C2,C3 is depicted for our datasets.
The total number of constraints for each of the datasets is 3325 (as we held n fixed), in
which 1520 are for C1, 1444 for C2 and 361 for C3. Approximately the same proportion
of the constraints are violated in each dataset, and C3 is less than the other constraints,
therefore it is not considerably violated. As we decrease the size of the grid cell to 0.16km
in Cabspotting, the global sensitivity (cf. Definition 5) increases to 729, therefore it has a
greater percentage of violation compared to the other datasets.

6.10 Running Time

Figure 14 shows running times for all datasets of various sizes. As discussed in Section 6.3,
we kept the ratio A/d fixed. The running time for all the datasets are approximately similar
per technique. The y-axis is in seconds (log-scale) and for the largest dataset GeoLife1.3, the
total running time is ≈ 196 seconds. DiffPriv, LinProg and Round take less than 1 second
for all the datasets. Each of our algorithms are eminently practical to implement and to run.
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7 Concluding Remarks

For the first time we propose a non-interactive differentially-private approach to counting
planar bodies representative of users’ spatial regions e.g., a workout area, areas of customer
preference for hotel bookings, or locations of frequent visitation for facility planning.

The key insight of our approach is to leverage Euler histograms for accurate counting,
cell perturbations for differential privacy, and constrained inference smoothing to reinstate
consistency. Constrained inference often improves utility by cancelling noisy perturbations.
Our formulation of constrained inference is a novel constrained application of the robust
method of least absolute deviations. Unlike existing constrained inference based on ordinal
regression, our formulation precisely matches our privacy-preserving cell perturbation dis-
tribution according to maximum-likelihood estimates. By optimising for consistency while
rounding cell counts, we achieve a covertness property for our counting mechanism: third
parties cannot determine that we have perturbed data in the first place.

A full theoretical analysis of utility and differential privacy is complemented by ex-
perimental results on three datasets. As demonstrated in the experimental study, uniformly
distributed datasets and larger grid partitions result in a better performance. The best prac-
tice to select the cell size is the smallest QR that a third party might run on an area to achieve
appropriate utility.

Potential directions for future research include utilising adaptive partitioning to have
varying partitions sizes according to the dataset distributions to improve the accuracy. The
constraints that we have defined for the Euler histogram counts could be potentially more
tight to improve utility. Finally, prior public knowledge about true counts could be incorpo-
rated into our constrained inference via regularisation that corresponds to Bayesian priors.
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