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Abstract
In this article, we introduce a new paradigm to achieve Pareto optimality in group decision-
making processes: bottom-up approaches to Pareto optimality. It is based on the idea that,
while resolving a conflict in a group, individuals may trust some members more than others;
thus, they may be willing to cooperate and share more information with those members.
Therefore, one can divide the group into subgroups where more cooperative mechanisms
can be formed to reach Pareto optimal outcomes. This is the first work that studies such use
of a bottom-up approach to achieve Pareto optimality in conflict resolution in groups. First,
we prove that an outcome that is Pareto optimal for subgroups is also Pareto optimal for the
group as a whole. Then, we empirically analyze the appropriate conditions and achievable
performance when applying bottom-up approaches under a wide variety of scenarios based
on real-life datasets. The results show that bottom-up approaches are a viable mechanism
to achieve Pareto optimality with applications to group decision-making, negotiation teams,
and decision making in open environments.
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1 Introduction

Group decision making, in which a group of agents with conflicting preferences aim to
reach mutually acceptable decisions, is probably one of the most challenging areas for the
decision sciences and related fields. The complexity arises from the preferential conflict
among groupmembers as well as the interactions among them during the underlying decision
process. This is perhaps one of the reasons why group decision making has received so much
attention in the scholarly world. For instance, the negotiation literature has been prolific in
studying how different multi-party mechanisms can be used to find unanimous agreements
that accommodate the interests of group members from a set of configurable negotiation
attributes; multi-objective optimizationmethods, distributed or not, have also been developed
to find optimal solutions for group decision-making settings. Regardless of the setting, one
of the desired properties of such a solution/agreement is Pareto optimality, proposed by the
Italian economist Vilfredo Pareto. Its desirability comes from the fact that, concerning non-
Pareto optimal solutions, at least one of the objectives can be improved without worsening
the performance of the rest of objectives. Hence, rational decision makers should see no
objection in moving from a non-Pareto optimal solution to a Pareto optimal solution.

Despite the benefits arising from reaching a decision that is Pareto optimal, practitioners
know that reaching a Pareto optimal agreement is not a straightforward practice. The reality
is that, in open and dynamic environments, agents rarely know each others’ preferences and,
to make it worse, the risk of exploitation by manipulation precludes agents from sharing their
complete preference profiles with all of the other group members. As a consequence, agents
must seek alternative mechanisms to obtain Pareto optimal agreements. To overcome this
lack of information, existing mechanisms invite a significant number of interactions among
agents and still cannot guarantee Pareto optimality.

A number of works in the field focus on finding a global Pareto optimal solution by involv-
ing all agents at the same time [14,15,20,45], which may lead to complex interactions and
lengthy decision-making processes. However, we believe that, in many situations, agents can
benefit from taking a bottom-up approach: calculating Pareto optimal outcomes in subgroups.
In other words, we pursue the question of whether or not it is possible to estimate some Pareto
optimal outcomes without explicitly interacting with all of the agents in a group. In essence,
solving the Pareto optimal set problem in a smaller group may be less complex than in larger
groups. For instance, there may be less exploitation risks in subgroups of trusted agents,
or agents may trust other subgroup members more and, therefore, be willing to share more
preferential information or cooperate to a greater degree.

To the best of the authors’ knowledge, this work constitutes the first attempt at introducing
bottom-up approaches to achieve Pareto optimal agreements. This article expands our initial
study carried out in [36], where we introduced the proof that shows that an outcome that is
Pareto optimal in a subgroup is also Pareto optimal in a larger group containing the subgroup
as long as agent preferences are strict, and in which we reported about some preliminary and
small scale experiments to test applicability of bottom-up approaches to Pareto optimality. In
this present article, we reintroduce the proof presented in [36] and provide extra lemmas and
corollaries that help to further understand how Pareto optimality in groups behaves in theory.
In addition to this, we report about new experiments to understand howbottom-up approaches
to Pareto optimality are affected by the degree of conflict of the domain, how the group size
affects the applicability of bottom-up approaches to Pareto optimality, and we report about
large scale experiments to test not only the applicability of bottom-up approaches to Pareto
optimality, but also the performance of these approaches in practice for a broad variety of
synthetic and real domains. Furthermore, we analyze inwhat scenarios bottom-up approaches
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to Pareto optimality are effective. Where possible, we also provide recommendations for the
application of bottom-up approaches to Pareto optimality.

In order to make a point for bottom-up approaches to Pareto optimality, in Sect. 2, we
first prove that any Pareto optimal outcome in a subgroup is also Pareto optimal in a larger
group that contains the subgroup, as long as agents’ preferences follow a strict order. Then, in
Sect. 3, we report the experimental setting that was designed to study both the applicability
and the prospective empirical performance of bottom-up approaches in a wide variety of
scenarios. Finally, we discuss relevant and related work in Sect. 4 and provide conclusions
and future lines of work in Sect. 5.

2 Bottom-up approaches to Pareto optimality

In this section, we provide the theoretical foundation that makes it possible to apply a bottom-
up approach to achieve Pareto optimal outcomes in a group of agents seeking an agreement.
More specifically, we show that, under agents’ strict preferences on outcomes, an outcome
that is Pareto optimal in a subgroup is also Pareto optimal in a larger group containing the
subgroup. Hence, an outcome that is identified as Pareto optimal in a subgroup by using any
mechanism can be later used as a Pareto optimal outcome in a posterior decision-making
phase involving all of the group. For the sake of simplicity, we will call this proof the bottom-
up Pareto optimality proof from this point onward. In addition to this proof, we identify an
extra lemma and corollary that throws some light on how Pareto optimality behaves in a
group, thus affecting the application of bottom-up approaches to Pareto optimality.

2.1 Theoretical foundations

We start by providing some basic definitions and notation that are needed to introduce the
bottom-up Pareto optimality proof. Let A = {a1, . . . , an} be a set of agents where k is the
index of agent ak and letA′ = {a1, . . . , am} be a superset ofA, i.e.,A ⊂ A′ andm > n.O is
the set of all possible solutions in a given domain. By �i we represent agent’s ai preference
profile over outcomes o ∈ O. If o �i o′ then agent ai likes o at least as well as o′, we write
o �i o′ to denote a strict preference for o and o = o′ to denote indifference. We assume that
the agents’ preference profiles are strict, transitive and complete.

An outcome o∗ is Pareto optimal with respect to A and O, denoted by po(o∗,A,O) if
and only if

�o ∈ O ∃ j ≤ n
n∧

i=1

o �i o
∗ ∧ o � j o

∗.

We denote the set of all Pareto optimal outcomes overA byO∗
A = {o∗ ∈ O | po(o∗,A,O)} .

Theorem 1 Given a set of outcomes O. For all two sets of agents A and A′, if A ⊂ A′, then
O∗

A ⊂ O∗
A′ .

Proof Let us assume by reductio ad absurdum that A ⊂ A′, but O∗
A �⊂ O∗

A′ . This means
there exists an o∗ ∈ O∗

A such that o∗ /∈ O∗
A′ . Expanding the definition of Pareto optimal

outcomes, we have

o∗ /∈
{
o ∈ O | �o′ ∈ O ∃k ≤ m,

m∧

i=1

o′ �i o ∧ o′ �k o

}
.
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Recalling that n and m are the index of the last agent in A and A′, respectively, this means

that there must exist an o ∈ O and a k ≤ m such that
m∧
i=1

o �i o∗ ∧ o �k o∗. We consider

two scenarios: either ak ∈ A or ak /∈ A.

– If ak ∈ A, then o is an outcome that dominates o∗ over A, which is not possible as o∗ is
Pareto optimal over A.

– Otherwise, k > n, so we have
n∧

i=1
o �i o∗. In that case, as o∗ is Pareto optimal over A,

the condition is only true if all of the agents in A are indifferent between o and o∗. As
preferences are strict, that cannot be true either.

Since both sides lead to a contradiction, we have proven the theorem. �
Note that while the bottom-up Pareto optimality proof assumes that agents’ preferences

are strict, it may be the case that in real-world domains an agent may indifferent between
multiple outcomes. Yet despite this, an outcome that is Pareto optimal in a subgroup with
non-necessarily strict preferences is usually also Pareto optimal in a larger group containing
the subgroup. For an outcome to be Pareto optimal in a subgroup but not Pareto optimal in
the larger group, which we will refer from now as a false positive, all of the agents in the
subgroup should be indifferent between such outcome and another Pareto optimal outcome.
Then, in the larger group, at least one of the agents in the group is not indifferent between
those outcomes.We believe that this situation is rare in practice. Its improbability stems from
the fact that finding a situation where all of the agents in a subgroup are indifferent between
two Pareto optimal outcomes becomes more and more unlikely as the size of the subgroup
increases since the more agents the more probable it is that their opinions will be different.

Hypothesis 1 Overall, the likeliness of finding a false positive Pareto optimal outcome in a
subgroup is small in practice due to the unlikeliness of finding a situation where agents are
indifferent between two Pareto optimal outcomes.

We will confirm that this situation is generally rare, thus confirming H1 in practice, in our
experimental approach in Sect. 3.

So far, we have proved that an outcome that is Pareto optimal in a subgroup will also
be Pareto optimal in any group containing that subgroup. As a result, one can calculate
Pareto optimal outcomes for a group by calculating outcomes that are Pareto optimal in
the subgroup, restricting interactions to that subgroup, hence making it feasible to adopt a
bottom-up approach to Pareto optimality. In addition to this, it is also interesting to study a
few additional properties that stem from the definition of Pareto optimality and the previous
theorem. These properties are helpful to understand howPareto optimality in a group behaves,
and the implications for bottom-up approaches. First, we bring about a well-known result
from the literature: when two agents have completely opposite preferences then all of the
outcomes are Pareto optimal.

Lemma 1 Given an outcome space O and two agents ai and a j . If for all o, o′ ∈ O it holds
that o �i o′ ←→ o′ � j o, then O∗{ai ,a j } = O.

Proof The proof holds for any outcome spaceO = {o1, . . . , on} with ok �i ol and ol � j ok
for any k < l. Let us consider any outcome ok , ai can only improve its own utility by choosing
an outcome or where r < k, as ok �i ol for any k < l. However, in any case, a j will end up
in a less beneficial position as ol � j ok for any k < l. Similarly, a j can only improve its own
utility by choosing an outcome or where k < r , which ends up in a less beneficial position
for ai . Therefore, any outcome is Pareto optimal in that situation. �
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Given Lemma 1 and Theorem 1, one can reach the following in a straightforward way:

Corollary 1 If there exist two agents ai , a j ∈ A such that

∀ o, o′ ∈ O o �i o
′ ←→ o′ � j o,

then O∗
A = O∗{ai ,a j } = O.

Proof This follows directly: as any two agents with opposing preferences define a Pareto
optimal frontier consisting of all possible outcomes, and the Pareto optimal space defined in
the group is a superset of the Pareto optimal outcomes defined by that pair of agents, then all
of the outcomes will be Pareto optimal in the group. �

There are a fewdirect consequences to this corollary. First of all, there is no point in filtering
Pareto optimal outcomes in scenarios where agents’ have completely opposite preferences,
as any outcome chosen by the group will be Pareto optimal by definition. A hypothesis that
one can derive from this theoretical result is that in scenarios with a high degree of conflict,
most of the outcomes are Pareto optimal for particular subgroups. The prospective lack of use
for bottom-up approaches to Pareto optimality in high-conflict scenarios is not a shortcoming
of the approach, but a direct consequence of the definition of Pareto optimality. There may
still be use for bottom-up approaches for filtering outcomes according to stricter definitions
of optimality like k-optimality [7]. As part of the study of the applicability of bottom-up
approaches, we will test and analyze the relationship between the degree of conflict in a
group and the number of outcomes that are Pareto optimal in the experiments described in
Sect. 3.

2.2 A general scheme for bottom-up approaches to Pareto optimality

We showed that any outcome that is Pareto optimal in a subgroup with strict preferences is
also Pareto optimal in any extended group. Next, we discuss how this result may be applied in
practical scenarios. Note that the scheme proposed in this subsection is generally applicable
and aims to provide general guidelines for how the paradigm may be employed in practice.
Figure 1 illustrates the general scheme for a group decision-making setting.

There are three main steps to apply bottom-up approaches in group decision making:

1. Subgroup formation The first step involved in any bottom-up approach is dividing the
group of agents into subgroups. These subgroups will contribute to the group’s Pareto
optimal set by discovering the outcomes that are Pareto optimal in the subgroup. There
aremultiple ways of dividing agents into subgroups. Subgroups can either be overlapping
or non-overlapping, and they can include all agents or just include a handful of agents.
Even if the types of subgroups that are formed are limited, the strategies followed to
devise those types of subgroups are almost unlimited in nature, and they may follow
different criteria (e.g., trust among agents, similarity, agents’ roles, etc.).

2. Subgroup cooperation After subgroups have been identified and formed, it is time for
members of subgroups to cooperate with the goal of finding out outcomes that are Pareto
optimal. One of the assumptions underlying bottom-up approaches to Pareto optimality is
the existence of a certain degree of trust among the agents that are part of a subgroup. The
type of cooperative approach taken by the subgroup may differ according to the degree
of trust in the subgroup. The simplest mechanism entails sharing the full preference
profile among subgroup members and then aggregating these preference profiles [6,34]
to calculate Pareto optimal deals in the subgroup, but it also assumes complete trust among
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Fig. 1 A general workflow of steps to apply bottom-up approaches to Pareto optimality into a variety of
scenarios

subgroup members. Depending on the degree of trust, there may be other mechanisms
that can be applied such as mechanisms that only assume sharing partial information [17]
or negotiation mechanisms that assume sharing more limited information [18]. The key
with this task is that it is possible to apply a more cooperative mechanism in the subgroup
than it is in the whole group.

3. Group decision making Once the subgroups have applied a cooperation mechanism to
calculate Pareto optimal outcomes in the subgroup, all the Pareto optimal outcomes
identified in the subgroup are aggregated and presented to the whole group. At that point,
it is the time to decide on an appropriate outcome for the whole group, which depends
on the specific domain and the degree of cooperation vs. competition among agents. In
any case, note that, in this process, the group has reduced from a potentially large space
of outcomes to a more reduced space of outcomes that is known to be Pareto optimal.
Hence, the subgroup cooperationmechanism acts as a filtering process that keeps relevant
choices in the decision-making process.

The guidelines provided in the scheme can be applied to a wide variety of scenarios. For
instance, the application to group decision-making processes [1,11,14,45] is direct, with a
pre-negotiation phase where subgroups are identified, and a negotiation phase where Pareto
optimal outcomes in subgroups are identified, aggregated, and then negotiated as an entire
group. Another prospective application of the scheme is negotiation teams [37–41], where
a multi-individual party negotiates with one or several opponents. In this setting, bottom-up
approaches to Pareto optimality may be applied before the negotiation to discover outcomes
that are Pareto optimal among team members. These outcomes can later be used as a basis
to negotiate with the opponent.

3 Experiments

In Sect. 2, we showed that it is possible to obtain a part of the Pareto optimal frontier of a
group of agents by calculating the Pareto optimal frontier in a subgroup. As a consequence,
it is possible to employ a bottom-up approach to obtain part of the Pareto optimal frontier
in three steps: (1) divide the group into one or several subgroups, (2) calculate the Pareto
optimal outcomes in each subgroup, and (3) use the obtained outcomes as part of the final
Pareto optimal frontier of the entire group.

However, this does not provide any reasonable indication for how the approach would
perform in practice, as there are many questions that should be answered before claiming
that a bottom-up approach to Pareto optimality is feasible. For instance, what ratio of the
final Pareto optimal frontier is obtained using this approach?What is the quality of the Pareto
optimal frontier achievable in subgroups? In order to study this in more detail, we employ
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an experimental approach that aims to assess the performance of bottom-up approaches in
practical scenarios.

This section is structured as follows. First, we introduce thewide range of decision-making
domains used in this experimental setting. Then, we move to analyze the applicability of
bottom-up approaches to Pareto optimality by studying the relationship between the degree of
conflict and the ratio of Pareto optimal outcomes in the outcome space. After that, and linked
to studying the applicability of bottom-up approaches, we study the relationship between
group size and the ratio of Pareto optimal outcomes in the outcome space. As a final step
to study the applicability of bottom-up approaches to realistic scenarios, and due to the fact
that preferences are not guaranteed to be strict in real scenarios, we analyze the ratio of
outcomes detected as Pareto optimal in subgroups that are not Pareto optimal in the whole
group. Finally, we analyze the achievable performance of bottom-up approaches under two
possible families of subgrouping strategies with regard to the final ratio of the Pareto optimal
frontier calculated in the subgroups, and the relative joint utility performance.

3.1 Domains

In order to assess the experimental performance of bottom-up approaches, one needs to select
a set of scenarios to test on. We classify the scenarios into synthetic and real decision-making
domains. As a prior step to carry out our analyses, we decided to further characterize domains
by their degree of conflict. For that, we employed the following metrics inspired by popular
metrics used to compare rankings of items/outcomes:

– Average Spearman rank correlation over pairs of preference profiles in the domain.
– Average Kendall Tau rank correlation over pairs of preferences profiles in the domain.
– The average precision@10%, defined as the ratio of overlapping between the top 10%

outcomes between pairs of preference profiles.

3.1.1 Synthetic domains

There are aspects that can affect the performance of bottom-up approaches to Pareto opti-
mality. Based on the hypothesis raised in Sect. 2, one can reasonably think that the degree of
conflict among agents shapes the Pareto optimal frontier and the number of Pareto optimal
outcomes. In fact, as discussed, a group where at least two agents’ preferences who are strict
and are in complete opposition will result in a group where all of the outcomes are Pareto
optimal. Therefore, it is suggested that the degree of preferential conflict may be an inter-
esting factor to study, and a wide range of degrees of conflict should be covered. For that
reason, we generated synthetic domains with varied degrees of conflict.

For generating scenarios with different degrees of conflict, we rely on the idea of clusters
of preferences. A cluster of preferences is a group of preference profiles that are close to each
other in a multidimensional space defined by the utility given by an agent to each outcome.1

Intuitively, we believe that the higher the number of clusters of preferences exist in a domain,
the more different the preferences of the agents in a group should be overall. With that
assumption in mind, we generated synthetic domains following the descriptive procedure
below:

1 This is similar to the classic machine learning notion of cluster, where the space has as many dimensions
as outcomes in the domain, and a point represents the evaluation of an agent for each of the outcomes in the
domain.
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Fig. 2 The figure shows the
average Spearman rank
correlation, Kendall Tau rank
correlation, and precision@10%
for synthetic domains generated
with a number of preferential
clusters ranging from 2 to 20

– A synthetic domain consists of m = {10, 100, 1000} different outcomes, k =
{1, 2, 3, 4, 5, . . . , 17, 18, 19, 20} clusters of preferences and 100 preference profiles.

– A cluster is defined by a multivariate m-dimensional isotropic Gaussian distribution
that defines the utility vector provided by an agent to each outcome in the domain U =
〈u1, . . . , um〉, whereui is the utility provided by the i th outcome in the domain. Therefore,
a cluster of preferences can be defined as those agents whose utility vectors have been
sampled fromU ∼ N (μ = 〈μ1, . . . , μm〉, 〈σ 2

1 · · · σ 2
m〉×I ), withμi is uniformly sampled

between 0 and 10, and the standard deviation of each component σi is uniformly sampled
between 0.1 and 2.0. A preference profile associated with a cluster consists of randomly
sampling a point from the multivariate Gaussian distributions.

– For each possible combination ofm and k, 20 possible domains are generated arbitrarily.

As a result, a total of 3×20×20 = 1200 synthetic domains were generated with different
sizes and different number of preferential clusters. For all of these domains, we calculated
the average Spearman rank correlation, the average Kendall Tau correlation, and the average
precision@10%. In order to test the validity of the domain generation process, we aggregate
the aforementioned metrics on the number of preferential clusters as depicted in Fig. 2. It can
be observed that when we increase the number of clusters it lowers the average Spearman
rank correlation, the average Kendall Tau rank correlation, and the Precision@10%; this
validates the generation process that aimed to generate domains with different degrees of
conflict.

3.1.2 Real domains

The real domains employed in the experimental evaluation represent a variety of problems
like deciding on a movie to be watched by a group, deciding on the best path to be taken by
a robot explorer, or deciding on the specific details with regard to a party. The description of
the 21 real domains selected for the experimental study can be found in Table 1.

It should be highlighted that the real domains contain preference profiles that are indifferent
among different outcomes. This will allow us to test the applicability of the bottom-up proof
in scenarios where strict preferences are not present.

For these domains, we also measure the average Spearman rank correlation, the average
Kendall Tau rank correlation, and the Precision@10% in the domain. Then, we group the
synthetic domains by the number of preferential clusters in them, and produce a centroid for
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Table 1 The real domains
employed in the experimental
section

Name Domain size # of profiles

Sushi [19] 10 5000

AGH [43] 6 153

Book [46] 23 7

Movielens [27] 298 10

Holiday [23] 1024 9

Symposium [23] 2305 9

Party [23] 3072 24

Jester [13] 100 7200

Debian leader [26] 9 430

Debian logo [26] 8 125

ERS 1 [26] 10 252

ERS 2 [26] 19 80

Mariner [26] 32 10

Minneapolis parks election [26] 477 556

Minneapolis tax election [26] 379 723

Glasgow election [26,32] 13 2704

Skate championship [26] 30 10

T-shirt [26] 11 30

Tram [23] 972 9

University [23] 2250 9

Zone planning [23] 448 9

each group to represent the group’s average Kendall Tau rank correlation, average Spearman
rank correlation, and average Precision@10%. Then, we make an educated guess on the
prospective number of preferential clusters for real domains by assigning the same number
of clusters than the closest2 centroid calculated in the previous step. It should be highlighted
that with this categorization we do not imply that the real number of clusters in the real
domains is the one associated by this clustering process. The sole goal of this categorization
is providing a rough idea on the degree of conflict in real domains, and being able to sort
real domains by the degree of conflict that they present. The only claim that can be done
on these real domains is that their conflict characteristics are similar to those outlined by
the predicted category. This categorization will help us to analyze experimental results when
analyzing results arising from real domains later in the experimental section. The results
of this clustering process can be observed in the following list, which separates domains
according to their expected levels of conflict (i.e., number of preferential clusters):

– Low conflict real domains: It includes those real domains whose number of assigned
preferential clusters falls below the first quartile. More specifically, we have the Skate
(1 cluster), Movielens (3), Minneapolis Park (3), Minneapolis Tax (3), and the Tee (3)
domain.

– Mild conflict real domains: It includes those real domains whose number of assigned
preferential clusters falls between the first and third quartile. More specifically, we have

2 Euclidean distance.
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Fig. 3 The graph shows the
relationship between the average
Spearman Rank correlation in the
domain and the ratio of outcomes
that are Pareto optimal in a group
of seven members

the Debian Leader (4 clusters), AGH (4), Mariner (4), Sushi (5), Debian Logo (6), ERS
1 (7), Holiday (8), University (9), Glasgow election (8), and the Jester (9) domain.

– High-conflict real domains: It includes those real domains whose number of assigned
preferential clusters above the third quartile. Therefore, we have the Zoning (10 clusters),
Symposium (10), ERS 2 (12), Party (15), and Tram (20) domain.

In the previous bulleted list, it is possible to observe that most of the real-world domains
tend to present characteristics that are similar to the synthetic domains with a low number of
preferential clusters.

3.2 Applicability: analyzing the relationship between the degree of conflict and
Pareto optimality in a group

From the definition of Pareto optimality, one can easily observe that when the preferential
rankings of two agents are completely opposite, all of the outcomes are Pareto optimal.
Apart from that, little is known with regard to the type of relationship between other degrees
of conflict in a group and the number of outcomes that are Pareto optimal in that group.
Understanding its relationship is important, as it may determine the kind of groups that may
benefit from bottom-up approaches to Pareto optimality. Guided by this theoretical result,
we formulate the following hypothesis:

Hypothesis 2 Overall, domains with a higher degree of conflict result in groups with a higher
ratio of Pareto optimal outcomes.

More interestingly, we also want to study the type of relationship between the degree of
conflict and the number of outcomes that are Pareto optimal in a group. For that, we carry
out some experimental simulations with our synthetic domains. For each possible number of
preferential clusters in the domain, we select 5 random domains with a domain size equal to
1000 outcomes. Then, for each domain, we calculate the average Spearman rank correlation
in the domain, generate 100 random groups of 7members, and calculate the ratio of outcomes
that are Pareto optimal in each group.

Figure 3 shows the results of the simulation. It is easily observable that H2 can be con-
firmed. Additionally, one can observe that there is a nonlinear relationship between the degree
of conflict in a domain and the ratio of outcomes that are Pareto optimal in a group. The higher
the degree of conflict in the domain, the more rapidly the ratio of outcomes that are Pareto
optimal increase. Despite the fact that the ratio of Pareto optimal outcomes does not even
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reach 50% in the graph, this nonlinear relationship indicates that bottom-up approaches (or
any other approach) to Pareto optimality may not be appropriate for domains where the
degree of preferential conflict is very high, confirming our initial concern raised in Sect. 2.
The problem is not caused by bottom-up approaches, but by the fact that Pareto optimality
loses meaning and significance when almost all of the outcomes are Pareto optimal. Never-
theless, when practitioners employ bottom-up approaches to achieve Pareto optimality, they
are advised to carry out a prior study to ensure that the degree of conflict in the domain
does not tend to be high. Despite this result, and arising from the experiments in 3.1.2, it is
suggested that most real and practical domains seem to have a low or moderate degree of
conflict, high degrees of conflict being more unlikely.

3.3 Applicability: analyzing the effect of the group size on Pareto optimality

There are still other aspects thatweneed to analyze to determine the applicability of bottom-up
approaches to real scenarios. Another factor that may determine the applicability of bottom-
up approaches to Pareto optimality is the size of the group. In [31], O’Neill estimated the
number of Pareto optimal outcomes that one can expect in a domain with m outcomes and n
agents:

E(Km,n) = −
m∑

i=1

(−1)i
(
m

i

)
1

in−1 (1)

To put it simply, the author proved that the number of Pareto optimal outcomes grows expo-
nentially with the number of agents in the group, with the assumption that all preference
profiles are equally likely. The author also showed that the size of the domain had an effect
on the number of outcomes that are Pareto optimal: larger outcome spaces tend to slow down
the exponential growth of the Pareto optimal set, although the growth is still exponential.
In order to draw that conclusion, the author assumed that all preference profiles are equally
probable.We argue that, in practice, not all of the outcomesmay be equally feasible (e.g., high
prices in a team of buyers, popular choices in movies, popular choices in travel destinations,
etc.). Therefore, our hypothesis is:

Hypothesis 3 The exponential relationship between group size and the ratio of outcomes that
are Pareto optimal in a group will have a slower growth for scenarios where conflict is low,
and its speed will increase as conflict increases in the domain.

This has a direct translation to the number of preferential clusters in the domain, as we have
shown that there is an exponential relationship between the number of preferential clusters
and the degree of conflict in a domain. Hence, the ratio of outcomes that are Pareto optimal
should grow more slowly in domains with fewer preferential clusters (i.e., lower degree of
conflict) than in domains with a higher number of preferential clusters (i.e., higher degree of
conflict). The rationale behind this initial hypothesis is simple: given a group of agents, the
more likely it is for all preferential clusters to be represented in a group when the number of
clusters is low. Therefore, adding new agents to the group should not introduce significant
conflict, and, therefore, keep the ratio of Pareto optimal outcomes almost invariant. A direct
consequence of this hypothesis is that, if found true, the expected number of outcomes that
are Pareto optimal in a domain may deviate from O’Neill’s formula. A question that stems
from this consequence is the expected deviation that one can expect from the aforementioned
formula when working with real domains with different degrees of conflict.

Firstly, we test whether or not the degree of preferential conflict has an effect on the expo-
nential relationship between group size and the ratio of outcomes that are Pareto optimal. In
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Fig. 4 The joint effect of group
size and preferential conflict on
the ratio of Pareto optimal
outcomes

order to isolate the effect of group size and the degree of conflict on the ratio of Pareto optimal
outcomes, we focus on synthetic domains with a domain size equal to 1000 outcomes. For
each number of preferential clusters in the domain, we selected 5 random synthetic domains
and generated random groups of sizes ranging from 3 to 9 members. More specifically, for
each possible domain and group size, we generated 100 random groups. Then, we calcu-
lated the ratio of Pareto optimal outcomes in each group. Figure 4 shows the results of this
simulation. As it can be observed in Fig. 4, there is an increasing relationship between the
number of group members and the ratio of outcomes that are Pareto optimal. This is aligned
with both [31] and our initial intuition. However, it can also be appreciated that, on average,
the speed by which the ratio of Pareto optimal increases is different according to the number
of preferential clusters in the domain. Higher numbers of preferential clusters (i.e., higher
conflict) tend to increase the speed by which the ratio of Pareto optimal outcomes increases.
The exponential relationship between both is more acute for larger numbers of preferential
clusters, while it tends to flatten as the number of preferential clusters decreases. These results
support H3.

After this analysis with synthetic data, we replicate a similar experiment with our real-
world domains. The goal of this experiment is twofold. First of all, we seek to analyze if
bottom-up approaches to Pareto optimality are applicable to real-world domains by providing
some useful filtering when selecting Pareto optimal outcomes. Secondly, we also desire to
analyze the differences between the exponential expression provided by [31] and the effect
observed in real domains with different degrees of conflict. For this experiment, we calculate
the ratio of Pareto optimal outcomes for each real domain and group sizes ranging from 3
to 9 members. A selection of the results provided by this experiment can be observed in
Fig. 5. The figure shows the average ratio of outcomes that are Pareto optimal for different
group sizes and domains, with the top row showing domains with a low degree of preferential
conflict, the middle row showing domains with a mild degree of preferential conflict, and
the bottom row showing domains with a high degree of preferential conflict. In these graphs,
we represent the average ratio calculated in real scenarios (triangles) and the theoretical
estimation provided by [31] (dots) for domains of the same size. In addition to this, for each
data point we provide the total number of cases that provided the aggregate value3 that are
considered for calculating the average.

Similarly to our previous experiment, it is possible to observe the increasing relationship
between group size and the ratio of outcomes that are Pareto optimal in all of the graphs

3 The total number is min
(
1000,

(m
n
))
.
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Fig. 5 The effect of group size on the ratio of outcomes that are Pareto optimal for real domains with low
degree of preferential conflict (top),mild degree of preferential conflict (middle), andhighdegree of preferential
conflict (bottom)

shown in Fig. 5. It is also observable that the growth in the number of outcomes that are
Pareto optimal is usually slower in real domains than in the theoretical estimation provided
by [31]. In our experiments including all of the real domains, only the symposium and the
tram domain, two of our domains with high conflict, show a similar or more exponential
behavior to that of the theoretical case. The rest of the domains deviate from the theoretical
behavior sooner or later, showing a less acute exponential relation. The reason behind this
may be explained due to the fact that not all preference profiles are equally likely in real
domains.

Another important appreciation from this experiment is that in no case the ratio of outcomes
that are Pareto optimal was 100%. Even in the case of the largest groups (i.e., 9 members) and
smaller domains, the overall ratio of Pareto optimal outcomes never saturated and reached
all of the outcomes. This result is important, as it indicates that the application of bottom-up
approaches to Pareto optimality would filter out outcomes. Of course, the exact number of
outcomes that are discarded depends on the particular domain and its inherent characteristics
(e.g., degree of conflict, domain size, etc.), and the group size. Therefore, it is difficult to
provide a strict rule to determine the group size at which all of the outcomes will become
Pareto optimal.

However, there are some trends and insights that one can employ as a practitioner. If we
take into consideration the different degrees of preferential conflict in domains (i.e., number of
clusters), we can also observe that domains with low, mild, and high levels of conflict behave
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differently. In domains with a low degree of conflict, it can be observed that the growth for the
ratio of outcomes that are Pareto optimal tends to be slow compared to the theoretical case. On
average, the difference in the ratio of outcomes that are Pareto optimal between experimental
points in domains with a degree of conflict and the associated theoretical cases is 0.30. In
practice, this means that larger group sizes would be needed to find situations where most of
the outcomes are Pareto optimal. As we analyze mild conflict domains, we can observe that,
overall, the growth in the number of outcomes that are Pareto optimal with the group size
is closer to the theoretical case and, therefore, more exponential than domains with a low
level of conflict. This difference can be numerically represented by the average difference in
the ratio of outcomes that are Pareto optimal with respect to the theoretical case. In the case
of mild conflict domains this difference is observed to be 0.17, lower than the low conflict
case. However, the difference still suggests a relevant difference. This would suggest that,
despite the point of saturation indicated by the formulation proposed by [31] for a domain of
the same size, one can still form larger groups without the risk of all outcomes being Pareto
optimal. Finally, when analyzing domains with a high degree of conflict, the growth in the
ratio of outcomes that are Pareto optimal is the one that is closer to the exponential growth
depicted by the theoretical case. The difference between the ratio of outcomes that are Pareto
optimal in high-conflict domains and the associated theoretical case is set at 0.07. A practical
implication for domains with a high degree of conflict is that the group size at which one
can expect for most of the outcomes to be Pareto optimal is close to the point indicated by
O’Neill’s equation.

The fact that, as we have shown, not all preference profiles are equally likely in practice
makes bottom-up approaches more applicable to real-life scenarios than the results depicted
in theory [31]. However, despite the fact that not all preference profiles are equally likely, and
clusters of preferences do exist, the relationship between group size and the ratio of outcomes
that are Pareto optimal still seems exponential. The exponential relationship between group
size and the ratio of outcomes that are Pareto optimal, suggests that bottom-up approaches to
Pareto optimality may not be useful for scenarios where very large groups need to come to
an agreement. Preferably, this approach should be taken for small and moderate group sizes.

3.4 Applicability: determining the ratio of false positives in subgroups

As it was mentioned in Sect. 2, one can only guarantee with absolute certainty that a Pareto
optimal outcome in a subgroup is also Pareto optimal in a larger subgroup when agents’
preferences are strict. As we suggested before, in case of non-strict preferences, there are
scenarios where an outcome that is Pareto optimal in a subgroup is not Pareto optimal in
a larger group containing the subgroup. We refer to these outcomes that are Pareto optimal
in the subgroup but not in the whole group as false positives. Even though the situation is
possible, we argued that it may be unlikely in practice, as it requires all of the agents in
a subgroup to be indifferent among the pair of outcomes. Taking that into consideration,
we formulated the first hypothesis of this study (H1), which claims that the likeliness of
finding a false positive Pareto optimal outcome in a subgroup is small in practice, due to the
unlikeliness of finding a situation where agents are indifferent between two Pareto optimal
outcomes

The study of the ratio of false positives raised when a bottom-up approach is applied is
important, as a high ratio of false positives may deteriorate the efficiency of the final decision
made by the group. Therefore, in this experiment, we study the ratio of false positives found
in subgroups of different sizes. We hypothesize the following:
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Table 2 Average percentage of false positives generated in subgroups of different sizes and degrees of conflict

Group size Subgroup size

2 3 4 5 6 7 8

Low

5 0.31% 0.20% 0.10% – – – –

(0.30) (0.24) (0.11)

7 0.34% 0.25% 0.17% 0.10% 0.04% – –

(0.42) (0.31) (0.21) (0.13) (0.06)

9 0.32% 0.25% 0.18% 0.12% 0.08% 0.04% 0.01%

(0.42) (0.32) (0.23) (0.15) (0.10) (0.05) (0.02)

Mild

5 0.25% 0.09% 0.02% – – – –

(0.60) (0.27) (0.07)

7 0.11% 0.04% 0.01% 0.00% 0.00% – –

(0.28) (0.13) (0.04) (0.00) (0.00)

9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

High

5 1.15% 0.17% 0.00% – – – –

(2.44) (0.38) (0.00)

7 0.31% 0.02% 0.00% 0.00% 0.00% – –

(0.65) (0.04) (0.00) (0.00) (0.00)

9 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(0.20) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

The standard deviation of the average is found between brackets

Hypothesis 4 Overall, given a group of agents, the ratio of false Pareto optimal outcomes
(i.e., false positives) discovered by bottom-up approaches is higher in smaller subgroups than
it is in larger subgroups.

The rationale behind this hypothesis is that smaller groups of agents are more likely to
agree on being indifferent between some outcomes than a larger group. As we are interested
in studying this phenomenon in a realistic setting, we employ our real-world domains.

For this experiment, we employ all of our real-world domains, and we create 1000 random
groups of 5, 7, and 9 members for each domain. Then, for each group, we generate every
possible subgroup of size ranging from 2 to the size of the group minus one. In each of
these subgroups, we calculate the Pareto optimal outcomes defined by the subgroup and then
determine the percentage of false positives by comparing with the Pareto optimal outcomes
defined by the whole group. Table 2 aggregates the results of this experiment by showing the
average percentage and standard deviation (between brackets) of false positives generated in
subgroups with different sizes and degrees of conflict.

As it can be observed in the table, the percentage of false positives generated in subgroups
of all sizes is low, being approximately 1% at most. This suggests that, in practice, one can
expect that if an outcome is Pareto optimal in a subgroup, it will also be Pareto optimal
in any group containing that subgroup. This result supports the applicability of bottom-up
approaches to Pareto optimality, even in scenarios where preferences are not strict. Our
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initial hypothesisH4 is also confirmed by these experiments, as one can observe that smaller
subgroups tend to generate higher percentages of false positives. Still, the percentages can
be considered as low and it should not radically disrupt the final decision made by the group.
The results are also broken down according to the degree of conflict in the domain. However,
we could not observe any pattern or notable difference arising from the individual analysis
of the ratio of false positives in domains with different degrees of conflict.

3.5 Performance: studying the ratio of the Pareto optimal outcomes achievable by
bottom-up approaches

After studying the applicability of bottom-up approaches to Pareto optimality in scenar-
ios with different characteristics, we aim to study the prospective performance of these
approaches in real domains. First, we focus on the overall percentage of Pareto optimal out-
comes that are achievable in subgroups.4 If a higher percentage of the final Pareto optimal
frontier is calculated, the whole group can bemore flexible in the group negotiation.We argue
that the prospective performance of bottom-up approaches depends on how the subgroups
are formed. However, the subgroups can be formed by a very large number of strategies.
As studying each of these strategies would be infeasible and it is out of the scope for this
article, we focus on studying the performance achievable by bottom-up approaches when the
subgrouping strategy ends up producing subgroup structures at extreme sides of a spectrum:
onewhere a single subgroup is formed that does not include all agents, and another one where
multiple subgroups are formed that contain all of the agents in the group. The performance
achievable by specific subgrouping mechanisms should lie between both extremes:

– Single maximum subgroup (SMS) The general idea behind this family of scenarios is that
only a single subgroup is formed, although it may be close to the whole group. Despite
this, some agents are not included in the subgroup.

– Inclusive subgroups (IS) In this case, multiple subgroups can be formed with varying
size. The second family of scenarios ends up with each agent in a subgroup, leaving no
agent left out of the bottom-up process.

By analyzing the prospective performance of bottom-up approaches in these two opposite
scenarios, we aim to provide broad look at the performance achievable by the bottom-up
paradigm. In addition to this, we also plan to provide recommendations on the outcomes that
should be aimed by subgrouping strategies. Based on the description of SMS and IS, we can
formulate the following hypotheses based on Theorem 1:

Hypothesis 5 In the SMS scenario, a higher ratio of the final Pareto optimal frontier are
obtainable in larger subgroups.

Hypothesis 6 In the IS scenario, a higher ratio of the final Pareto optimal frontier are obtain-
able with fewer but larger subgroups.

Hypothesis 7 Higher ratios of the final Pareto optimal frontier are obtainable in SMS scenar-
ios than in IS scenarios.

The reason for formulating both H5 and H6 is similar. An outcome is Pareto optimal
due to the relationship between pairs of preference profiles and, thus, all the Pareto optimal

4 The number of Pareto optimal outcomes calculated in the subgroups compared to the total number of Pareto
optimal outcomes in the whole group.
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outcomes in a group should be identified by the Pareto optimal outcomes arising from the
interactions between all possible pairs of preference profiles in that group. Therefore, a larger
subgroup should contain more pairs of preference profiles than smaller subgroups, and, then,
it should produce a Pareto optimal frontier that is closer to the final Pareto optimal frontier
in the whole group. In the case of H7, we believe that a larger subgroup should contain more
pairs of agents than those contained by aggregating the pairs present in smaller subgroups.

In order to test these hypotheses, we run a series of experiments in our real domains.
More specifically, for our SMS scenario, we create a maximum of 1000 random groups
for each combination of domain and group size, with the group sizes selected being 5, 7,
and 9. For each random group, we test all the possible subgroups of size ranging from 2
to the size of the group, and calculated the average ratio of outcomes of the final Pareto
optimal frontier achievable in the subgroup. We follow a similar methodology for the IS
scenario, whereby we create 1000 random groups for each combination of domain, group
size (5, 7, and 9), and number of subgroups with equal size (from 2 subgroups to a setting
where all agents are put in pairs). Then, we calculate the average ratio of the final Pareto
optimal frontier that is achieved by aggregating the partial Pareto optimal frontiers found
in the subgroups. The results of this experiment are gathered in Table 3. The table shows
the average percentage of Pareto optimal outcomes calculated in case of ending up in a
SMS scenario and a IS scenario for domains with a low, mild, and high degree of conflict,
respectively. The reader may also appreciate the standard deviation for each scenario within
brackets.

In the SMS scenario, the larger the subgroup is, the higher the percentage of the Pareto
optimal frontier calculated in that subgroup. This trend just confirms H5 and highlights the
rationale provided above: Pareto optimality depends on the conflict between pairs of agents,
so subgroups that include more pairs of agents (i.e., larger subgroups) should be able to
achieve a higher percentage of the Pareto optimal frontier. On average, and regardless of
the team size, one can calculate 65% of the Pareto optimal frontier in a subgroup of about
half the size of the group (i.e., subgroup of size 3 for a group of size 5, subgroup of size 4
for a group of size 7, and a subgroup of size 5 for a group of size 9) when the domain has
a low conflict, 58% when the domain as a mild conflict, and 35% in case of domains with
high conflict. In all the three cases, a notable proportion of the Pareto optimal frontier can be
calculated. Even in the case when the subgrouping ends up with a minimum subgroup (i.e.,
a pair of agents), the approach is capable of obtaining an average of 41%, and 27% for low
and mild conflict domains. It is only in domains when just an average of 9% of the Pareto
optimal frontier can be provided with a single subgroup of two agents.

In the IS scenario, it is observable that the fewer subgroups the higher ratio of the final
Pareto optimal outcomes is obtained. If we follow an inclusive strategy that includes all of
the agents, the fewer the number of subgroups, the largest those subgroups are. As mentioned
above, the larger the subgroups the more pair of agents that are contained in that subgroup,
and, therefore, the more Pareto optimal points we should discover in those subgroups. This
result confirms H5. In addition to this, one can also observe that the average percentage
of Pareto optimal outcomes calculated in subgroups tends to be notable for low and mild
conflict domains. To support this claim, note that even in the case that smaller subgroups are
formed (i.e., 2 subgroups in the case of teams of size 5, 3 subgroups in the case of teams
of size 7, and 4 subgroups in the case of teams of size 9), an average of 87% of the Pareto
optimal frontier can be calculated for domains with low conflict and 67% for domains with
mild conflict. The performance decreases when the approach is employed in domains with
high conflict. Yet, even in the worst case (i.e., largest number of subgroups), the approach
can detect an average of 33% of the final Pareto optimal frontier.
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Table 3 Average percentage of the Pareto optimal frontier achieved and standard deviation (brackets) in low,
mild, and high-conflict real domains by the single maximum subgroup with different subgroup sizes, and the
maximum inclusive subgroups for different number of subgroups

SMS IS

Subgroup size Number subgroups

2 3 4 5 6 7 8 2 3 4

Low

n = 5 50.0 65.9 82.4 – – – – 89.62 – –

(14.3) (13.1) (8.9) (10.2)

n = 7 40.0 51.9 63.8 75.8 87.9 – – 88.9 86.5 –

(16.5) (18.5) (18.1) (14.8) (8.6) (13.6) (12.8)

n = 9 35.1 45.4 55.5 65.2 74.7 83.6 92.1 89.8 86.0 85.9

(17.7) (20.3) (21.0) (19.6) (16.4) (11.8) (6.3) (14.1) (16.7) (13.6)

Mild

n = 5 33.6 55.2 77.6 – – – – 71.5 – –

(16.5) (16.9) (10.9) (21.2)

n = 7 24.9 40.5 56.3 71.5 86.1 – – 75.7 60.9 –

(15.2) (18.6) (17.9) (14.0) (7.8) (18.9) (26.7)

n = 9 22.4 35.9 48.8 60.9 72.0 82.2 91.4 85.3 74.9 67.0

(14.0) (18.3) (19.4) (18.1) (15.1) (10.9) (5.8) (16.6) (25.0) (28.7)

High

n = 5 14.6 33.6 62.9 – – – – 44.5 – –

(11.3) (13.1) (9.4) (21.5)

n = 7 8.2 18.4 34.3 54.3 76.7 – – 52.9 30.8 –

(9.4) (12.5) (13.0) (10.9) (6.3) (18.4) (24.8)

n = 9 6.1 13.3 24.2 37.9 53.2 69.1 84.9 61.6 38.7 26.3

(7.9) (11.1) (12.5) (12.3) (10.6) (7.7) (4.0) (15.1) (22.4) (25.7)

Overall, a notable percentage of the final Pareto optimal frontier can be calculated in both
scenarios.However, there are someobservations that can bemade. First of all, one can observe
that for any team size, and almost any scenario, the best result achievable in a SMS scenario
(i.e., one subgroup formed by all group agents except for one) seems to outperform the best
result in a IS scenario (i.e., 2 subgroups with half the group members each). The gathered
average is always higher, also showing a lower standard deviation. The only exception is for
domains with a low level of conflict. More specifically, the overall difference between the
best result achievable in the SMS scenario and the best result achievable in the IS scenario is
about 2% higher for the IS scenario in domains with low conflict. This advantage is lost when
analyzing domains with mild and high conflict. The best performance in the SMS scenarios
is 7.53% higher in the case of a domain with mild conflict, and 21.8% higher in domains
with high conflict. These results partially support H7. Subgrouping strategies may aim for
outcomes closer to the IS scenario when domains present a low conflict, as forming smaller
subgroups should be easier than forming a single and large subgroup. However, subgrouping
strategies should aim for outcomes closer to the SMS scenario for domains with a mild or
high level of conflict as the ratio of the final Pareto optimal outcomes calculated by the single
and large subgroup tends to be higher with a lower standard deviation than in the case of
smaller subgroups.
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Table 4 10% quantile for the normalized joint utility obtainable in subgroups formed in the SMS and the IS
scenarios in real domains with low, mild and high degree of conflict

SMS IS

Subgroup size Number subgroups

2 3 4 5 6 7 8 2 3 4

Low conflict

n = 5 0.51 0.74 0.98 – – – – 0.99 – –

n = 7 0.39 0.61 0.79 0.97 1.00 – – 1.00 0.99 –

n = 9 0.32 0.50 0.66 0.89 0.97 1.00 1.00 1.00 0.99 0.99

Mild conflict

n = 5 0.41 0.9 1.00 – – – – 0.98 – –

n = 7 0.25 0.75 0.95 1.00 1.00 – – 0.99 0.95 –

n = 9 0.17 0.61 0.89 0.98 1.00 1.00 1.00 1.00 0.99 0.96

High conflict

n = 5 0.26 0.53 0.89 – – – – 0.81 – –

n = 7 0.20 0.38 0.61 0.9 1.00 – – 0.92 0.79 –

n = 9 0.18 0.30 0.51 0.73 0.95 1.00 1.00 0.99 0.90 0.78

3.6 Performance: studying the joint utility achievable by bottom-up approaches

In the previous experiment, we studied the percentage of the final Pareto optimal frontier that
is achievable in subgroups. Even though the percentage of the Pareto optimal frontier obtained
in subgroups is a relevant metric to characterize the performance of bottom-up approaches,
this metric does not offer a full picture about the performance of bottom-up approaches. A
question that should be answered is: How fair is the subset of Pareto optimal outcomes for the
whole group? In order to answer that question, we studywhat the best joint utility5 achievable
using a bottom-up approach is. As in the previous experiment, we aim to provide a broad
look at the performance of bottom-up approaches by focusing in the two opposite scenarios
proposed in the previous experiment: SMS and IS. This comparison should also help us to
identify what type of outcomes should be aimed by subgrouping strategies. Attending to the
observations raised in the previous experiment, we formulate the following hypothesis:

Hypothesis 8 The best joint utility achievable in SMS scenarios outperforms the best joint
utility achievable in IS scenarios.

In this particular experiment, we repeated the same settings described in Sect. 3.5. How-
ever, this time we focus on the maximum joint utility observable in the outcomes calculated
in the subgroup(s). The results of this experiment can be found in Table 4, which contains
the performance of low, mild, and high-conflict real domains. The results from the different
scenarios and repetitions are aggregated by means of the 10% quantile. This means that in
90% of the situations it is expected that the joint utility will be at least equal or greater than
the joint utility reported in the tables.

We start by describing the performance achievable in SMS scenarios. In general, the joint
utility that is achievable in a small subgroup is low compared with the joint utility achievable
from the whole Pareto optimal frontier. For instance, overall, the joint utility achievable in

5 Product of utilities of the agents in the group.
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subgroups that are smaller than half of the group6 is only 0.50 for scenarioswith a low conflict,
0.51 for scenarios with a mild conflict, and 0.30 for scenarios with high conflict. This means
that 90% of the times we can only guarantee for the best joint utility in a subgroup of less than
half the group size to be half as good as the best joint utility achievable in the whole group
for domains with low and mild conflict, and approximately over one third as good as the best
joint utility achievable in the whole group for domains with high conflict. However, the best
joint utility found in a single subgroup rapidly grows from that point onwards. In fact, the
average joint utility that one can expect 90% of the times for subgroups of about half the
size7 is 0.81 for domains with low conflict, 0.94 for domains with mild conflict, and 0.62 for
domains with high conflict. The best joint utility can be guaranteed in subgroups containing
all agents but one in almost any possible scenario. Nevertheless, one should consider that the
inherent trust in the domain must be high for all team members but one to be able to form a
subgroup and share preferential information.

With respect to IS scenario, one can observe that even in the situations where the smallest
subgroups are formed (i.e., pairs of agents) the best joint utility achieved in 90% of the cases
is very close to the best joint utility found in the whole group. Overall, we can expect that
90% of the times the best joint utility achievable in the smallest subgroups formed by this
approach to be 0.99 for domains with low conflict, 0.96 for domains with mild conflict, and
0.79 for domains with high conflict. These results are closer to the optimum than in the case
of SMS scenarios. This results suggest that, subgrouping strategies should aim for smaller but
inclusive subgroups rather than a single and large subgroup, which may leave some agents
out of the subgroups, when optimizing the best joint utility of the group.

This finding is in contrast with our findings in Sect. 3.5, where we highlighted that, in the
best case, higher percentages of the final Pareto optimal set are obtainable in SMS scenarios.
Despite providing a Pareto optimal subset that is less flexible for negotiations (i.e., a lower
percentage of the final Pareto optimal frontier), the frontier obtainable in IS scenarios contains
the best possible joint utility outcome, or at least an outcome that is very close to it. This
rejects our initial hypothesis H8 and raises a need for system designers to trade-off between
both type of scenarios when creating/deploying subgrouping strategies.

3.7 Discussion

In the previous experiments, we have studied both the applicability and prospective per-
formance of bottom-up approaches to Pareto optimality. As other approaches, bottom-up
approaches to Pareto optimality have both their strengths and limitations. As a consequence
of the experiments that we have carried out, we have identified the scenarios where these
approaches may be the most useful. This information is useful for researchers aiming to
develop new group decision mechanisms based on this philosophy. Next, we highlight the
most important results of our experiments:

– Firstly, we confirmed that the ratio of outcomes that are Pareto optimal increases in
a nonlinear way with the conflict in the scenario. As the whole objective of bottom-
up approaches is pre-selecting outcomes that are Pareto optimal and filtering out the
rest, it may not be useful if most of the outcomes are already Pareto optimal. This
growth is consequence of the definition of Pareto optimality itself. Therefore, bottom-up
approaches, and any other approach to reach Pareto optimality, should not be employed

6 Subgroups of size 2 for teams of size 5, subgroups of size 2, and 3 for groups of size 7, and subgroups of
size 2, 3, and 4 for subgroups of size 9.
7 Subgroups of size 3, 4, and 5 for groups of size 5, 7 and 9 respectively.
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in domains where there is a high degree of conflict. The results suggest that they are more
useful when applied to scenarios with a low and mild level of conflict.

– A partial consequence of the definition of Pareto optimality, and its relationship with the
degree of conflict, is the effect of the group size. As a rule of thumb, the more group
members, the more outcomes that are Pareto optimal. Again, this limits the applicability
and meaning of Pareto optimality to particular scenarios. When the degree of conflict in
the domain is low, it is meaningful to apply bottom-up approaches to Pareto optimality
even for large groups. Even though in the experiments we never found scenarios and
groups for which all of the outcomeswere Pareto optimal, we only suggest the application
of this approach to small and medium groups in case of high and mild degrees of conflict.

– Despite the fact that one can only guarantee that an outcome that is Pareto optimal in
a subgroup is also Pareto optimal in the whole group in case of strict preferences, in
practice an outcome that is Pareto optimal in a subgroup will also be Pareto optimal in
the whole group regardless the strictness of preferences. This supports the applicability
of bottom-up approaches to Pareto optimality.

– We have identified that, given the appropriate circumstances, bottom-up approaches can
provide with notable percentages of the final Pareto optimal frontier and good quality
Pareto optimal outcomes for the group.

– When aiming to maximize the percentage of the Pareto optimal outcomes calculated in
subgroups, the subgrouping strategies should aim to produce a larger and single subgroup.

– When optimizing the quality of the Pareto optimal outcomes for the group, the subgroup-
ing strategies should aim to include as many agents as possible in subgroups.

The aforementioned recommendations are guidelines that should provide researchers with
indication on how and when to apply bottom-up approaches to Pareto optimality, and how
to create subgrouping mechanisms that maximize the goals of the system. Of course, they
are not strict rules that will determine the exact performance of bottom-up approaches in
every single domain. Every domain has its own characteristics (e.g., conflict degree, group
size, trust, etc.) and these characteristics should be properly analyzed before deciding on the
application or rejection of bottom-up approaches to Pareto optimality.

4 Related work

Since its introduction by the Italian mathematician Vilfred Pareto, Pareto optimality has been
an efficiency and stability concept that has had an impact on many disciplines and areas of
knowledge. Not only it has been studied in mathematics, but Pareto optimality has been
considered a cornerstone concept in some computer science areas like artificial intelligence,
especially in those fields concerned with making decisions by means of automated software
(e.g., multi-agent systems, automated negotiation, etc.).

In automated negotiation, Pareto efficiency is a central quality measure of the negotiated
outcome, and in particular to quantify the success in estimating the opponent’s preferences [4].
There have been several successful approaches proposing mechanisms that guarantee Pareto
optimal or near Pareto optimal outcomes in negotiation processes.

For instance, Ehtamo et al. [15] propose a centralized andmediatedmechanism for achiev-
ing Pareto optimal outcomes in groups of agents. The negotiation model assumes that the
domains are solely composed of multiple real-valued negotiation issues, the utility function
of agents is linear and additive, and that the agents have agreed on a set of feasible agreements
resulting of the aggregation of the agents’ constraints. The mediator proceeds by requiring
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agents to inform about the gradient to be followed to increase one’s utility. The mediator then
chooses a compromise direction and proposes a tentative agreement in that direction. The
agents in the process then inform the mediator on an agent in the same compromise direc-
tion that improves the utility of the tentative agreement. With this information, the mediator
chooses a new tentative agreement and the process is repeated until no further improvements
can be done. The authors proved that by the end of the process, the achieved outcome is
Pareto optimal. Differently to this work, bottom-up approaches are more general as they do
not assume any particular domain values, or any particular type of utility function.

Luo et al. [25] propose a semi-cooperative negotiation model for buyers and sellers in
electronic commerce. The agents represent their preferences overmultiple issues bymeans of
fuzzy constraints, and negotiate with each other in a bilateral process that gradually converges
toward a Pareto optimal outcome in case that it exists. Similarly to this work setting, we also
assume that the environment is semi-cooperative as some agents in the group are willing to
engage in a more cooperative process with some group members. However, we again do not
assume any particular type of preferences or utility functions. In addition to this, we consider
group decision settings instead of bilateral processes.

In [21], the authors propose a general framework for multi-issue bilateral negotiation
that reaches Pareto optimal or near Pareto optimal outcomes. The framework assumes con-
vex utility functions, and a time constrained bilateral negotiation. The authors propose two
proposing mechanisms that can be applied to different situations. First, the authors propose
an offer proposal mechanism for scenarios where agents’ know their own utility function
but they do not have information about their opponents’ utility function. In that situation,
agents build their own iso-utility curve and chooses the offer from the iso-utility curve that
is the most similar to the best offer proposed by the opponent in the previous round. Then, if
more offers need to be sent in that round, offers in the neighborhood of the chosen offer are
randomly selected. Experimentally, it is shown that, when both agents follow this strategy,
final outcomes tend to be close to the Pareto optimal frontier. In the second mechanism, it is
assumed that agents do not have an elicited utility function, but they can compare a handful
of offers. The mechanism assumes the existence of a non-biased mediator that works by
dividing the negotiation space into base lines. Agents choose a base offer from the base line
and then a process is started to find a point in the base line that improves the utility of both
agents with respect to the base offer. If the selected offer is rejected, the mediator updates the
base line and the same process is repeated until an agreement is found. The experiments show
that near Pareto optimal outcomes are achieved. Bottom-up approaches to Pareto optimality
guarantee Pareto optimality, while also not making implicit assumptions about the agents’
utility functions.

Lou et al. [24] propose amediatedmulti-party negotiationmechanism that finds an approx-
imation of the whole Pareto optimal frontier in a decentralized way. The negotiation model
assumes a negotiation domain composed by real-valued issues and utility functions that are
strictly convex. Under this assumption, the authors proposed a negotiation mechanism based
on an iterative process that employs the weighted summethod and subgradient optimization.
By controlling the number of iterations of the iterative process, it is possible to gradually
converge toward the real Pareto optimal frontier. The main difference striving from this work
and our paradigm is that we do not assume any particular type of utility function or domain.
In addition to this, under a bottom-up approach to Pareto optimality it is assumed that a Pareto
optimal solution is reached.

The aforementioned approaches normally make several assumptions with regards to the
type of decision-making domain, the way preferences are represented, and inmany cases also
with regard to the information that is shared in the process. One may be tempted to think that
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either bottom-up approaches to Pareto optimality are not necessary, or that the previousworks
will be automatically substituted by bottom-up approaches to Pareto optimality. The reality
is that both are complementary and employable in different scenarios, as the underlying
assumptions are different. Many important optimality metrics that employ the notion of
Pareto efficiency can be used in conjunction with our work, including the distance to the
Pareto frontier [2,22,30,33,35], correctly estimated Pareto outcomes [3], and the distance to
a fair solution (located on the Pareto frontier), such as the Nash solution [16,28] or Kalai-
Smorodinsky [2,16]. Bottom-up approaches to Pareto optimality assume that there is some
degree of trust and willingness to cooperate among some of the members of the group. It
is this willingness to cooperate and trust the one that allows for the formation of subgroups
and the application of a more cooperative mechanism in subgroups. We expect for this
cooperative mechanism to be less complex and costly than, for instance, the ones described
in this literature review. Then, after the use of a cooperative mechanism, Pareto optimal
outcomes found in subgroups can be aggregated to make a decision in the group, again
with a mechanism that may be less complex than the ones described in the literature review.
This inherent sense of trust and cooperation among some group members is not necessarily
present in the approaches described above. Thus, bottom-up approaches to Pareto optimality
are complementary to existing work.

Pareto optimality is not only important in multi-agent systems, but also in other research
areas such as multi-objective optimization, where the solution to problems where different
functions must bet optimized at the same time. Normally, the maximization/minimization of
one of the functions incurs in some loss for the other functions. Therefore, the importance
to detect those solutions that are Pareto optimal. The importance of Pareto optimality in
multi-objective optimization has given rise to a variety of centralized optimization methods
to achieve Pareto optimality. For instance, specific genetic algorithms have been designed to
seek approximations of the real Pareto optimal frontier [8,42]. The idea behind these genetic
algorithms is the preservation of those solutions that are non-dominated, and then the appli-
cation of genetic operators taking these non-dominated solutions as parents. In addition to
this, other specific algorithms have been designed to obtain Pareto optimal outcomes to opti-
mization problems. For instance, Hu et al.’s [17] propose an iterative process to discover the
Pareto optimal frontier in discrete domains. The algorithm relies on the existence of mecha-
nisms that quickly determine the k best possible solutions to a single function. Generally, the
algorithm compares the kth best solution for a single objective j with the kth best solution
for the rest of objectives to determine whether an objective needs to continue in the iterative
process. k is progressively incremented and objectives are removed accordingly from the
iterative process, unless no more objectives are left. At that point, the Pareto optimal frontier
can be quickly determined.

The curse of the definition of Pareto optimality has also been documented in the multi-
objective literature. For instance,Winkler [44] documented that the number of non-dominated
solutions increases as random objectives are added to an optimization problem. Due to this
unfortunate property of the definition of Pareto optimality, some researchers have proposed
practical alternatives to optimizationwithmany problemswithmany objectives. For instance,
some body of research has made successful attempts at simplifying a search space composed
by many objectives into a space with fewer objectives that retain part of the information
contained in the objectives removed [9,29]. One could attempt to apply similar dimensionality
reduction methods in our setting to reduce the number of agents participating in the decision-
making process. However, there will always be some point at which most outcomes will
become Pareto optimal or many preferences will not be represented in the decision-making
process. The solution to the curse of Pareto optimality is quite probably further guiding

123



1042 V. Sanchez-Anguix et al.

the decision-making process into a particular subset of Pareto optimal outcomes. In this
sense, the multi-objective optimization literature has already provided with some prospective
efficiency metrics that could substitute Pareto optimality in cases where most outcomes are
Pareto optimal [7,10]. For example, Di Pierro et al. [10] define the concept of k optimality for
deciding over Pareto optimal outcomes. A non-dominated outcome is defined as k-optimal
when that outcome is non-dominated over every possible combination of k objectives. Thus,
it results in a stronger concept of optimality that may help to choose a solution over a set
of Pareto optimal outcomes. Despite the recent proposal in the multi-objective literature, as
far as we know, the application of these stricter definitions of optimality has been largely
overlooked in the decision-making literature. Due to the curse of Pareto optimality, it may
be necessary to design group decision-making algorithms that are guided by these metrics
instead of Pareto optimality. The study of how bottom-up approaches can be applied to obtain
other type of efficient outcomes is left as an interesting future line of study.

Finally, economic and theoretical studies are also a source of related work. For instance in
[31], it is analyzed how the number of Pareto optimal outcomes exponentially increases with
the number of agents by assuming that all preference profiles are equally probable. In our
present study,wehave, amongother contributions, shownhowreal domains in practice behave
with regards to Pareto optimality. More specifically, we have shown that, despite the increase
in the number of Pareto optimal outcomes with the number of agents, the growth speed is
not as quick as portrayed by [31]. This is, as far as we know, our closest work in the study of
the underlying properties of Pareto optimality. Of course, there have been other successful
studies on Pareto optimality for specific domains and problems like characterizing fairness,
or studying the relationship between monotonic solutions and Pareto optimality [5,12], but
their focus of study has not been on the exploration of bottom-up approaches for reaching
Pareto optimality.

5 Conclusions and future work

In this paper, we have introduced a new paradigm to reach Pareto optimal outcomes in group
decision making: bottom-up approaches to Pareto optimality. The paradigm is based on
dividing groups into subgroups, and calculating portions of the final Pareto optimal frontier
in the subgroups by means of a more cooperative mechanism than the one that would be
applied in the whole group. It assumes the existence of certain trust and willingness to
cooperate among some of the agents in the group. For the applicability of this paradigm, we
have shown that an outcome that is Pareto optimal in a subgroup of agents, is also Pareto
optimal in a group containing the aforementioned subgroup. This property holds always as
long as agents’ preferences are strict, but we have also shown how the property can hold in
practice in case of non-strict preferences.

As far as we know, this is the first study on bottom-up approaches for finding Pareto
optimal outcomes in a group of decision makers. This is a clear step away from the classic
approach followed so far in the decision-making literature, which consisted of the application
of complex and specific mechanisms that guaranteed Pareto optimality by involving all of
the agent at the same time. Being a new paradigm, in this article we have (i) proved the
applicability of this paradigm from a theoretical perspective; (ii) discussed how bottom-up
approaches can be applicable in practice (iii) studied what are the conditions that make the
application of bottom-up approaches to Pareto optimality more convenient; (iv) studied the
performance achievable by the paradigm under different conditions and schemes; and (vi)
identified goals that should be pursued by subgrouping strategies when optimizing different
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criteria. The experimental setting has proved both the applicability and achievable perfor-
mance of bottom-up approaches in real-world domains.

The bottom-up paradigm to Pareto optimality still remains largely unexplored and there
is potential for further interesting research. We hope this work can further inspire research
in the field of group decision making. For instance, given a decision-making scenario that
is prone to the application of the paradigm, one of the questions that needs to be analyzed
is what are the optimal or near optimal processes that should be followed to divide agents
into subgroups. As we have observed in the experiments, the performance of bottom-up
approaches largely depends on this division mechanism. Moreover, some Pareto optimal
outcomes may be ignored by a bottom-up approach. In those particular scenarios, it would
be beneficial to research whether or not one can easily detect new Pareto optimal outcomes
given an existing Pareto optimal subset. Finally, another interesting question is whether
or not bottom-up approaches can be used to identify outcomes given stricter definitions
of optimality, as Pareto optimality soon becomes meaningless as conflict and group size
increase.
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Reyhan Aydoğan is an assistant professor at Özyegin University, Istan-
bul and guest researcher in Interactive Intelligence Group at Delft Uni-
versity of Technology, the Netherlands. She received her Ph.D. in Com-
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