Skip to main content
Log in

Rough filters based on residuated lattices

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

The paper is devoted to introduce the notion of rough sets within the context of residuated lattices. By considering the notion of a residuated lattice, we concern a relationship between rough sets theory and residuated lattices theory. We shall introduce the notion of rough subalgebra (resp. filter) with respect to a filter of a residuated lattice, which is an extended notion of subalgebra (resp. filter) in a residuated lattice and investigate some of their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bahls P, Cole J, Galatos N, Jipsen P, Tsinakis C (2003) Cancellative residuated lattices. Algebra Univ 50:83–106

    Article  MathSciNet  MATH  Google Scholar 

  2. Biswas R, Nanda S (1994) Rough groups and rough subgroups. Bull Pol Acad Sci Math 42:251–254

    MathSciNet  MATH  Google Scholar 

  3. Blount K, Tsinakis C (2003) The structure of residuated lattices. Int J Algebra Comput 13:437–461

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonikowski Z (1994) Algebraic structures of rough sets. In: Ziarko WP (ed) Rough sets, fuzzy sets and knowledge discovery. Springer, Berlin, pp 242–247

    Chapter  Google Scholar 

  5. Bonikowski Z, Bryniarski E, Wybraniec-Skardowska U (1998) Extensions and intentions in rough set theory. Inf Sci 107:149–167

    Article  MathSciNet  MATH  Google Scholar 

  6. Busneag D, Piciu D (2006) On the lattice of filters of a pseudo BL-algebra. J Mult Valued Log Soft Comput 10:1–32

    MathSciNet  MATH  Google Scholar 

  7. Ciungu LC (2006) Classes of residuated lattices. Ann Univ Craiova Math Comput Sci Ser 33:189–207

    MathSciNet  MATH  Google Scholar 

  8. Ciungu LC (2009) Directly indecomposable residuated lattices. Iran J Fuzzy Syst 6(2):7–18

    MathSciNet  MATH  Google Scholar 

  9. Davvaz B (2004) Roughness in rings. Inf Sci 164:147–163

    Article  MathSciNet  MATH  Google Scholar 

  10. Davvaz B, Mahdavipour M (2006) Roughness in modules. Inf Sci 176:3658–3674

    Article  MathSciNet  MATH  Google Scholar 

  11. Davvaz B (2008) A short note on algebraic T-rough sets. Inf Sci 178:3247–3252

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Nola A, Georgescu G, Iorgulescu A (2002) Pseudo BL-algebras, part I. Mult Valued Log 8:673–714

    MathSciNet  MATH  Google Scholar 

  13. Di Nola A, Georgescu G, Iorgulescu A (2002) Pseudo BL-algebras, part II. Mult Valued Log 8:715–750

    MATH  Google Scholar 

  14. Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:191–209

    Article  MATH  Google Scholar 

  15. Dvurec̆enskij A, Rachu̇nek J (2006) Probabilistic averaging in bounded R\(\ell \)-monoids. Semigroup Forum 72:190–206

    MathSciNet  Google Scholar 

  16. Erne M, Klossowski E, Melton A, Strecker GE (1993) A primer on Galois connections. Ann NY Acad Sci Pap Gen Topol Appl 704:103–125

    Article  MathSciNet  MATH  Google Scholar 

  17. Flondor P, Georgescu G, Iorgulescu A (2001) Pseudo t-norms and pseudo-BL algebras. Soft Comput 5:355–371

    Article  MATH  Google Scholar 

  18. Feng F, Li C, Davvaz B, Irfan Ali M (2010) Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Comput 14:899–911

    Article  MATH  Google Scholar 

  19. Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated lattices: an algebraic glimpse at substructural logics. Elsevier, Amsterdam

    MATH  Google Scholar 

  20. Ganter B, Wille R (1999) Formal concept analysis. Mathematical foundations. Springer, Berlin

    Book  MATH  Google Scholar 

  21. Gediga G, Duntsch I (2002) Modal-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE international conference in data mining, pp 155–162

  22. Georgescu G (2004) Bosbach states on fuzzy structures. Soft Comput 8:217–230

    Article  MathSciNet  MATH  Google Scholar 

  23. Gumm HP, Ursini A (1984) Ideals in universal algebras. Algebra Univ 19:45–55

    Article  MathSciNet  MATH  Google Scholar 

  24. Hájek P (1998) Metamathematics of fuzzy logic, Trends in logic studia logica library 4. Kluwer, Dordrecht

    Google Scholar 

  25. Irfan Ali M, Davvaz B, Shabir M (2013) Some properties of generalized rough sets. Inf Sci 224:170–179

    Article  MathSciNet  MATH  Google Scholar 

  26. Iwinski T (1987) Algebraic approach to rough sets. Bull Pol Acad Sci Math 35:673–683

    MathSciNet  MATH  Google Scholar 

  27. Jipsen P, Tsinakis C (2002) A survey of residuated lattices. In: Martinez J (ed) Ordered algebraic structures. Kluwer, Dordrecht, pp 19–56

    Chapter  Google Scholar 

  28. Kowalski T, Ono H (2001) Residuated lattices: an algebraic glimpse at logics without contraction. Japan Advanced Institute of Science and Technology

  29. Krull W (1924) Axiomatische Begrundung der allgemeinen Idealtheorie. Sitzungsberichteder Physikalisch Medizinischen Societatder Erlangen 56:47–63

    MATH  Google Scholar 

  30. Kuroki N, Wang PP (1996) The lower and upper approximations in a fuzzy group. Inf Sci 90:203–220

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuroki N (1997) Rough ideals in semigroups. Inf Sci 100:139–163

    Article  MathSciNet  MATH  Google Scholar 

  32. Lai H, Zhang D (2009) Concept lattices of fuzzy contexts: formal concept analysis vs. rough set theory. Int J Approx Reason 50:695–707

    Article  MathSciNet  MATH  Google Scholar 

  33. Lianzhen L, Kaitai L (2007) Boolean filters and positive implicative filters of residuated lattices. Inf Sci 177:5725–5738

    Article  MathSciNet  MATH  Google Scholar 

  34. Ono H (2003) Substructural logics and residuated lattices—an introduction, 50 Years of Studia Logica, Trends in logic, vol 21. Kluwer, Dordrecht, pp 193–228

    Google Scholar 

  35. Pawlak Z (1982) Rough sets. Int J Inf Comput Sci 11:341–356

    Article  MATH  Google Scholar 

  36. Pomykala J, Pomykala JA (1988) The stone algebra of rough sets. Bull Pol Acad Sci Math 36:495–508

    MathSciNet  MATH  Google Scholar 

  37. Rachånek J, S̆alounová D (2012) Roughness in residuated lattices. Adv Comput Intell 297:596–603

    Google Scholar 

  38. Rasouli S, Davvaz B (2010) Roughness in MV-algebras. Inf Sci 180:737–747

    Article  MathSciNet  MATH  Google Scholar 

  39. Rasouli S, Davvaz B (2014) An investigation on algebraic structure of soft sets and soft filters over residuated lattices. ISRN Algebra. https://doi.org/10.1155/2014/635783

  40. Rasouli S, Davvaz B (2015) An investigation on Boolean prime filters in BL-algebras. Soft Comput 19(10):2743–2750

    Article  MATH  Google Scholar 

  41. Rasouli S, Radfar A (2017) PMTL filters, R\(\ell \) filters and PBL filters in residuated lattices. J Mult Valued Log Soft Comput 29(6):551–576

    MathSciNet  MATH  Google Scholar 

  42. Rasouli S, Zarin Z, Hassankhani A (2018) Characterization of a new subquasivariety of residuated Lattice. J Appl Log IfCoLog J Log Appl 5(1):33–63

    Google Scholar 

  43. Torkzadeh L, Ghorbani S (2011) Rough filters in BL-algebras. Int J Math Math Sci. https://doi.org/10.1155/2011/474375

  44. Turunen E (1999) Mathematics behind fuzzy logic. Advances in soft computing. Physica, Heidelberg

    MATH  Google Scholar 

  45. Van Gasse B, Deschrijver G, Cornelis C, Kerre EE (2010) Filters of residuated lattices and triangle algebras. Inf Sci 180:3006–3020

    Article  MathSciNet  MATH  Google Scholar 

  46. Ward M, Dilworth RP (1939) Residuated lattices. Trans Am Math Soc 45:335–354

    Article  MathSciNet  MATH  Google Scholar 

  47. Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (ed) Ordered sets. Reidel, Dordrecht, pp 445–470

    Chapter  Google Scholar 

  48. Xiaoa Q, Lia Q, Guo L (2014) Rough sets induced by ideals in lattices. Inf Sci 271:82–92

    Article  MathSciNet  Google Scholar 

  49. Yamaka S, Kazanci O, Davvaz B (2010) Generalized lower and upper approximations in a ring. Inf Sci 180:1759–1768

    Article  MathSciNet  MATH  Google Scholar 

  50. Yao YY (1998) Constructive and algebraic methods of the theory of rough sets. Inf Sci 109:21–47

    Article  MathSciNet  MATH  Google Scholar 

  51. Yao YY (2004) A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto S, Slowinski R, Komorowski J (eds) Proceedings of the fourth international conference on rough sets and current trends in computing, Lecture notes in computer science, vol 3066. Springer, Berlin, pp 59–68

Download references

Acknowledgements

The authors are highly grateful to referees for their valuable comments and suggestions which were helpful in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Davvaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasouli, S., Davvaz, B. Rough filters based on residuated lattices. Knowl Inf Syst 58, 399–424 (2019). https://doi.org/10.1007/s10115-018-1219-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-018-1219-5

Keywords

Navigation