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Abstract

The widely discussed and applied Johnson—-Lindenstrauss (JL) Lemma has an existential form
saying that for each set of data points Q in n-dimensional space, there exists a transformation
f into an n’-dimensional space (n’ < n) such that for each pairu, v e Q (1 —8)lu—v|> <
I f@) — FW? < (1 + 8)|lu— v]|? for a user-defined error parameter §. Furthermore, it is
asserted that with some finite probability the transformation f may be found as a random
projection (with scaling) onto the n’ dimensional subspace so that after sufficiently many
repetitions of random projection, f will be found with user-defined success rate 1 — €. In this
paper, we make a novel use of the JL Lemma. We prove a theorem stating that we can choose
the target dimensionality in a random projection-type JL linear transformation in such a way
that with probability 1 — € all of data points from Q fall into predefined error range § for
any user-predefined failure probability € when performing a single random projection. This
result is important for applications such as data clustering where we want to have a priori
dimensionality reducing transformation instead of attempting a (large) number of them, as
with traditional Johnson-Lindenstrauss Lemma. Furthermore, we investigate an important
issue whether or not the projection according to JL. Lemma is really useful when conducting
data processing, that is whether the solutions to the clustering in the projected space apply
to the original space. In particular, we take a closer look at the k-means algorithm and prove
that a good solution in the projected space is also a good solution in the original space.
Furthermore, under proper assumptions local optima in the original space are also ones in
the projected space. We investigate also a broader issue of preserving clusterability under JL
Lemma projection. We define the conditions for which clusterability property of the original
space is transmitted to the projected space, so that a broad class of clustering algorithms for
the original space is applicable in the projected space.
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1 Introduction

Dimensionality reduction plays an important role in many areas of data processing, and
especially in machine learning (cluster analysis, classifier learning, model validation, data
visualization, etc.).

Usually, it is associated with manifold learning, that is a belief that the data lie in fact in
a low-dimensional subspace that needs to be identified and the data projected onto it so that
the number of degrees of freedom is reduced and as a consequence also sample sizes can be
smaller without loss of reliability. Techniques such as reduced k-means [40], PCA (Princi-
pal Component Analysis), Kernel PCA, LLE (Locally Linear Embedding), LEM (Laplacian
Eigenmaps), MDS (Metric Multidimensional Scaling), I[somap, SDE (Semidefinite Embed-
ding), just to mention a few, are applied in order to achieve dimensionality reduction.

But there exists still another possibility of approaching the dimensionality reduction prob-
lems, in particular when such intrinsic subspace where data is located cannot be identified.
The problem of choice of the subspace has been circumvented by several authors by the so-
called random projection, applicable in extremely high-dimensional spaces (tens of thousands
of dimensions) and correspondingly large data sets (of at least hundreds of points).

1.1 Johnson-Lindenstrauss lemma and dimensionality reduction

The starting point here is the Johnson—Lindenstrauss (JL) Lemma [25]. Roughly speaking, it
states that there exists a linear! mapping from a higher dimensional space into a sufficiently
high-dimensional subspace that will preserve approximately the distances between points, as
needed, e.g. by k-means algorithm [5]. In fact, when designing optimal k-means clustering
algorithms, the possibility of dimensionality limitation via Johnson—Lindenstrauss Lemma
is assumed, see, e.g. [3].

To be more formal, consider a set  of m objects Q = {1, ..., m}. An object i € Q may
have a representation x; € R”. Then, the set of these representations will be denoted by Q.
An object i € £ may have a representation x’; € R", in a different space. Then, the set of
these representations will be denoted by Q.

With this notation, let us state:

Theorem 1.1 (Johnson-Lindenstrauss) Let§ € (0, %). Let Q be a set of m objects and Q—a

set of points representing them in R", and let n’ > C}S%, where C is a sufficiently large

constant. There exists a Lipschitz mapping f: R" — R" such that forallu,v e Q
(1=l —v* < [ f@ — fFWIP < A+ u—v] M

The above formulation is cited after [31]. Larsen and Nelson [28] demonstrated that if the
function f has to be linear, then the lower bound on n’ is optimal for § and m.

Other papers propose slightly different formulas for n’, for example Gupta and Dasgupta
[20]: prove the bound n’ > 4%. with a different denominator. But as § is limited from
above by %, it is easily seen that the formula of [20] implies n" > 81';—2'", that is the original
formulation with C = 8. Still another formulation by Frankl and Maehara [23] implies C is
around 9. Empirical studies [42] suggest that C = 2 is sufficient.?

I JL Lemma speaks about a general transformation, but many researchers look just for linear ones.

2 Other recommendations for C include value 20, see lecture on Random Projections by Sham Kakade and
Greg Shakhnarovich http://ttic.uchicago.edu/~gregory/courses/LargeScaleLearning/lectures/jl.pdf.
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The researchers are interested also in extensions to original JL Lemma. For example,
Matousek [31] considers other spaces than Euclidean, e.g. with £; norm or sparse spaces.
Achlioptas [1] studies random projections with sparse matrices. Baraniuk et al. [13] extend
the JL. Lemma to manifolds. Magen [30] explored the preservation of n-dimensional angles
when projecting to lower dimensional spaces so that volumes can be preserved also.

The JL Lemma has diverse applications. It has been used for rounding, embedding into
low-dimensional spaces, neural network-based machine learning, information retrieval, com-
pressed sensing, data stream analysis, approximate nearest neighbour search, just to mention
a few. Image analysis, in particular motion analysis, is a quite typical domain giving rise to
high-dimensional data that can be reduced via JL Lemma (see e.g. [35]).

In this paper, we are particularly interested in applications to cluster analysis. Already,
Schulman [36] was interested in this topic, in particular in optimizing the intracluster sum of
weights in graph clustering. He uses JL Lemma to reduce the computational time. Tremblay
et al. [41] exploit the JL Lemma also for the task of graph clustering in a kind of graph
sampling approach (in the spectral space).

A number of proofs and applications of Theorem 1.1 have been proposed which in fact
do not prove Theorem 1.1 as such but rather create a probabilistic version of it, e.g. [1,4,17,
20,24,29]. For an overview of Johnson—Lindenstrauss Lemma variants, see, e.g. [31].

Essentially, the idea behind these probabilistic proofs is as follows: Assume that it is
proven that the probability of reconstructing the length of a random vector from a projection
onto a subspace within a reasonable error bounds is high.

One then inverts the thinking and states that the probability of reconstructing the length
of a given vector from a projection onto a (uniformly selected) random subspace within a
reasonable error bounds is high.

But uniform sampling of high-dimensional subspaces is a hard task. So n’ vectors with
random coordinates are sampled instead from the original n-dimensional space and one uses
them as a coordinate system in the n’-dimensional subspace which is a much simpler process.
One hopes that the sampled vectors will be orthogonal (and hence the coordinate system will
be orthogonal) which in case of vectors with thousands of coordinates is reasonable. That
means we create a matrix M of n’ rows and n columns as follows: for each row i we sample
n numbers from A (0, 1) forming a row vector aiT. ‘We normalize it obtaining the row vector
b[T = aiT . (al.T a;) /2. This becomes the ith row of the matrix M. Then, for any data point
x in the original space its random projection is obtained as X' = Mx.

Then, the mapping we seek is the projection multiplied by a suitable factor.

It is claimed afterwards that this mapping is distance-preserving not only for a single
vector, but also for large sets of points with positive but usually very small probability, as
Dasgupta and Gupta [20] maintain. Via applying the above process, many times one can
finally get the mapping f that is needed. That is, each time we sample a subspace from the
space of subspaces and check whether condition expressed by inequality (1) holds for all the
points. If it does not, we sample again, while we have the reasonable hope that we will get
the subspace with required properties after a finite number of steps with probability that we

assume.3

1.2 JL dimensionality reduction and k-means clustering problem

In this paper, we explore the following deficiency of the discussed approach: If we want to
apply, for example, a k-means clustering algorithm, we are in fact not interested in resampling

3 Sivakumar [39] proposes an approach to de-randomization of the process of seeking the f function.
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the subspaces in order to find a convenient one so that the distances are sufficiently preserved.
Computation over and over again of m> /2 distances between the points in the projected space
may turn out to be much more expensive than computing O (mk) distances during k-means
clustering (if m > k) in the original space. In fact, we are primarily interested in clustering
data. But we do not have any criterion for the k-means algorithm that would say that this
particular subspace is the right one via, e.g. minimization of k-means criterion (and in fact
for any other clustering algorithm).

Therefore, we rather seek a scheme that will allow us to say that by a certain random
sampling we have already found the suitable subspace that we sought with a sufficiently high
probability. As far as we know, this is the first time such a problem has been posed.

But from the point of view of clustering (and more generally, other data mining tasks),
the fact of keeping the projection errors of pairs of points in a certain range is not by itself
sufficient from practical point of view. We want also to know whether or not the projection
will distort the solution to the problem in the original space.

In particular, we take a closer look at the k-means algorithm and prove that a good solu-
tion in the projected space is also a good solution in the original space (see Theorem 2.3).
Furthermore, under proper assumptions local optima in the original space are also ones in the
projected space and vice versa (Theorems 2.4, 2.5). Finally, we show that a perfect k-means
algorithm (an ideal algorithm that returns global optimum solution to the k-means clustering
problem) in the projected space provides with a constant factor approximation of the global
optimum in the original space (Theorem 2.6). In this way, we state conditions under which it
is worthwhile performing k-means in the projected spaces with guarantees that the solutions
will tell us something about the original problem in the original space.

To formulate claims concerning k-means, we need to introduce additional notation. Let

us denote with € a partition of  into k clusters {Cy, ..., Cr}. Forany i € £, let €(i) denote
the cluster C; to which i belongs. Let Q = {x1, ..., X;;} be the set of representations of these
objects in some Euclidean space, and let Q' = {x1, ..., X/;;} be the set of representations of

these objects in another Euclidean space (after a random projection). For any set of objects
1 ’ 1 ’
Cj,let u(C)) = ol Ziecj x; and u'(Cj) = ol Ziecj X';.
Under this notation, the k-means cost function may be written as

30.9) =" IIxi — w(€i)|? @
ieQ

QO =Y X — W (€0)P 3)
ieQ

for the sets Q, Q’.

1.3 JL dimensionality reduction and clusterability problem

We investigate also the broader issue of preserving clusterability when JL Lemma projection
is applied. We define the conditions for which clusterability property of the original space
is transformed to the projected space, so that a broad class of clustering algorithms for the
original space is applicable in the projected space. The property of clusterability is informally
speaking understood as a special property of data that makes finding the good clustering of
data an easy task. In the literature, five brands of clusterability are usually distinguished (see
[14]): Perturbation Robustness, o-Separatedness, ¢, o-Approximation-Stability, S-Centre-
Stability and the Weak Deletion stability. Perturbation Robustness refers to the property of the
data that under slight distortions of distances between data points the optimal clustering will be
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safeguarded. The projection under JL. Lemma may obviously lead to violation of this property,
because the projection already distorts the distances. Therefore in Theorem 3.6 we establish
conditions under which the Perturbation Robustness will be preserved. o-Separatedness
refers to the property that the cost of optimal clustering into k clusters should be by some
factor lower than clustering into k — 1 clusters. As the JL projection changes the distances
between points, the cost function value proportions will also change in a way that cannot be
determined in advance (decrease or increase). In Theorem 3.1, we establish conditions under
which this property is preserved. ¢, o-Approximation-Stability property refers to closeness
of costs between alternative partitions. This closeness may be obviously distorted by JL
projection, so that partitions close in the original space will not be sufficiently close in the
projected space and vice versa. Theorem 3.2 establishes conditions, under which the property
may be nonetheless preserved under projection. The 8-Centre-Stability property requires that
the distance of a point to its own cluster centre is by a factor smaller than to other cluster
centres. Under the JL projection, a violation of this property may take place as a point may
be moved further from its own cluster centre and closer to some other. Theorem 3.7 gives
conditions under which the property is retained. Finally, the Weak Deletion stability requires
that removal of one cluster centre will impose some minimal increase in the cost function of
the clustering. Changes in the distances may clearly lead to violation of this property, and it
cannot then be exploited in the projected space. Theorem 3.8 shows conditions under which
the projection will uphold the property.

1.4 Our contribution

Our contribution is as follows:

e We formulate and prove a set version of JL Lemma—see Theorem 2.1.

e Based on it, we demonstrate that a good solution to k-means problem in the projected
space is also a good one in the original space—see Theorem 2.3.

e We show that there is 1-1 correspondence between local k-means minima in the original
and the projected spaces under proper conditions—see Theorems 2.4, 2.5.

e We demonstrate that a perfect k-means algorithm in the projected space is a constant
factor approximation of the global optimum in the original space—see Theorem 2.6

e We prove that the projection preserves several clusterability properties such as Mul-
tiplicative Perturbation Robustness, (Theorem 3.6), o-Separatedness (Theorem 3.1),
¢, o-Approximation-Stability (Theorem 3.2), B-Centre-Stability (Theorem 3.7) and the
Weak Deletion stability (Theorem 3.8).

The structure of the paper is as follows. In Sect. 2, we introduce the set-friendly version
of Johnson-Lindenstrauss Lemma together with theorems investigating properties of results
of k-means algorithm in the original and the projected spaces (local and global optima). In
Sect. A.1, we prove the set-friendly version of JL Lemma, whereas the proofs of the remaining
theorems introduced in Sect. 2, that is, the ones relating k-means clustering results in the
original and the projected spaces, are deferred to Appendix B. In Sect. 3, we demonstrate
an additional advantage of our version of JL. Lemma consisting in preservation of various
data clusterability criteria. In Sect. 4, we illustrate the advantage of Theorem 2.1 by some
numerical simulation results, showing at the same time the impact of various parameters of
our version of Johnson—Lindenstrauss Lemma on the dimensionality of the projected space.
We show that k-means clustering behaves as expected under JL Lemma projection. We
verify also via simulations the clusterability preserving properties of the JL. Lemma related
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projection. In Sect. 5, we recall the corresponding results of other authors. Section 6 contains
some concluding remarks.

2 Relationship between k-means solutions in the projected and
original space

While it is a desirable property if we can reduce the dimensionality of space in which the
data is embedded (e.g. the computational burden is reduced), we should be aware of the fact
that we distort the data and in this way we run at risk that operating on the projected data
we miss the solution of our original problem. This is the primary concern about the original
JL Lemma as expressed in Theorem 1.1. This is in particular worthwhile considering risk in
the domain of k-centre data clustering. Distortion of distances may lead to an undesirable
situation that some data may switch between clusters and in an extreme case the optimal
clusters in the original and in the projected domains are barely overlapping.

2.1 Reformulated JL lemma and the impact on cost function value in projected
space

We begin this section with presentation of our version of the JL. Lemma, expressed in The-
orem 2.1. While the original JL Lemma is concerned with the existence of a solution to the
projection problem (a projection fitting error bounds on pairwise distances), we ensure under
what circumstances the projection almost surely fits the pairwise distance error bounds.

This theorem constitutes a significant step forward towards applicability of the projection.
However, itis not enough. Only keeping error bounds is ensured, but we need more: assurance
that the solutions to the clustering problem in the projected space faithfully represent the
solutions in the original space.

Therefore, we present subsequently a series of our claims about the relationship between
the k-means clustering algorithm results in the projected and the original space. A close
relationship is needed if the random projection is to be used as a step preceding application
of the k-means clustering algorithm to the data. We express the properties of the original
clustering problem required so that the dimensionality reduction makes real sense.

We restrict in this way our attention to a particular class/family of clustering algorithms.
Such a restriction is on the one hand necessary in order to get precise results, and on the other
hand the popularity of k-means family is so widespread that the results can still be of vital
interest for a broad audience.

This limitation, as shown in Theorem 2.3, allows us to exploit the particular form of
JL Lemma to limit directly the solution distortions in the projected space compared to the
original one.

This limitation is also related to specific properties of the k-means algorithm family. These
algorithms aim at optimizing a cost function that has quite a rough landscape. Therefore,
frequently the algorithms get stuck at a local minimum. To demonstrate the equivalence of
solutions in both original and projected spaces, we show in Theorem 2.4 that the local minima
of the original space may under some conditions correspond to local minima in the projected
space. This means if we look for local minima in the original space, we can as well limit
our attention to the projected space. Theorem 2.5 considers the relationship in the opposite
direction—Ilocal minima in the projected space may be well local minima in the original
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space. This means: if we found a local minimum in the projected space, we have found one
in the original space.

Concerning the global optimum, we demonstrate in Theorem 2.6 that the global optimum
in the projected space is a constant factor approximation of the global optimum of the original
space. Hence it makes sense to look for a global optimum in the projected space.

So let us turn to the general theorem on random projection.

Theorem 2.1 Let§ € (0, %), € € (0,1). Let Q C R”" be a set of m points in an n-dimensional
orthogonal coordinate system C,, and let
—Ine+2In
n =nly > 2+—(rn) )
—In(14+8)+§
Let C,y be a randomly selected n'-dimensional orthogonal coordinate system. For eachv € Q,
let V' be its projection onto C,y. Then, for all pairsu, v € Q

(1=8)u—v|*< %nu’ —VI?P <1 +8)u—v|? Q)
holds with probability of at least 1 — €.

The proof of this Theorem can be found in Appendix A.1.

The fundamental new insight of this theorem is to explicitly refer to the failure probability
€. In the literature, see, e.g. [10-12,20], the failure probability € was not referred to as a
control parameter of dimensionality. It was rather derived from other parameters controlling
n’ in the respective formulas. With our formulation, the user has the freedom to choose as
low € as she/he wants to have the probability of success 1 — € to get (in a single pass) a
random projection fitting the pairwise (relative) distance error to be limited by 4.

Note that the lower bound on dimensionality n” grows with the inverted square of the
permissible relative error range § (—In(1 + 8) + & ~ §%/2). One can see it in Fig. 1 (the
black line). The sample size, on the other hand, affects n’ logarithmically only, as visible in
Fig. 2 (black line). Figure 3 (black line) illustrates the strong dependence of lower bound of
n’ on the error rate € (logarithmic dependence for values below 1).

The formula (4) provides with an explicit expression for computing a lower bound on n’.
We will refer to it sometimes therefore as n';, “E” standing for Explicit. It is also independent
of n. The question may be raised, whether it is possible to reduce n’ via exploitation of n.

We propose for this purpose Algorithm 1. The algorithm seeks via bisection the solution
of minimalization problem for the function

/ " v n/ﬁ n—2n v n/8 n—zn
am)y=|,)|d=-9> {1+ —27 +(1+48)2 l—n_n, Q)

The algorithm proceeds as follows: One starts with n, = 1,n'y; := round(n/3) — 1.
If €;(n’y) > €, then seeking n; has failed. Otherwise, one determines in a loop n, :=
round((n; + n'y)/2) and computes e;(n} ), €7 (n),), €7 (n'y), then if €; (n),) < € then one
sets n'y := n’,, otherwise n, := ny, (n), is always rounded up to the next integer). This
process is continued till n'y, does not change. n; is then set to n',.

Theorem 2.2 Let s € (0, %), € € (0, 1). Let Q C R" be a set of m points in an n-dimensional
orthogonal coordinate system C, and let n' = n'; be computed according to Algorithm 1

n' = n'; > argmin,, €; (b) 7
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Dependence of reduced dimensionality $n'$ on error range delta
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|

200000 400000 600000 800000

0
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0.01 0.02 0.05 0.10 0.20 0.50

delta
n": black - explicit, green - implicit

Fig. 1 Dependence of reduced dimensionality n’ on error range 8. Other parameters fixed at m = 2e+06¢€ =
0.01 n = 5e+05 (color figure online)

Algorithm 1 Computing n; as argmin e;(n)

Require: n,m,e > 0,0.5> 48 >0
n’L «~ 1, "/H <~ round(n/3) — 1.
if €7(n’y) > € then return ERROR
end if
repeat

ny < rou/ndUP((n’L +1'y)/2)
e < €(ny)
ey < €r(nfy)
ey < GI(HIH)
if ep; < € then
ny < ny,
else
ny < nly,
end if
’ I
nMprev <Ny
'y </— roun/dUP((n’L +1'y)/2)
until (n), = nMprev)
ny < nly
return n/,
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Dependence of reduced dimensionality $n'$ on sample size m
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n'": black - explicit, green - implicit

Fig. 2 Dependence of reduced dimensionality n’ on sample size m. Other parameters fixed at € = 0.01 8 =
0.05n = 5e+-05 (color figure online)

Let C,y be a randomly selected (via sampling from a normal distribution) n’-dimensional
orthogonal coordinate system. For each v € Q, let V' be its projection onto C,y. Then, for all
pairsa, v € Q the relation (5) holds with probability at least 1 — €

Let us stress at this point the significance of these theorems. Earlier forms of JL Lemma
required sampling of the coordinates over and over again, with quite a low success rate (e.g.
in [20] about %) until a mapping is found satisfying the error constraints (see, e.g. [39]). In
our theorems, we need only one sampling in order to achieve the required success probability
of selecting a suitable subspace to perform k-means.

These sampling theorems can be used for any algorithm that requires a dimensionally
reduced sample keeping some distortion constraints.

It turns out, however, that the properties of this sampling technique are particularly relevant
for k-means.

We make the following claim for k-means objective:

Theorem 2.3 Let Q be a set of m representatives of objects from L in an n-dimensional
orthogonal coordinate system Cy. Let § € (0, %), € € (0,1). and let n’ satisfy condition
4) or (7). Let C,y be a randomly selected (via sampling from a normal distribution) n’-
dimensional orthogonal coordinate system. Let the set Q' consist of m objects such that for
eachi € Q, x'; € Q' is a projection of x; € Q onto Cy. If € is a partition of Q, then

(1-8)3(0.9 = %J(Q/, O =1+8)IQ. O (®)

holds with probability of at least 1 — €.
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Dependence of reduced dimensionality $n'$ on failure prob. epsilon
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n": black - explicit, green — implicit

Fig.3 Dependence of reduced dimensionality n’ on failure prob. €. Other parameters fixed at m = 2e+06 8§ =
0.05n = 5e+05 (color figure online)

Note that the inequality (8) can be rewritten as

b n' B
- — )30, < =30, <1+ — )30, ¢ 9
< 1+6>J(Q )_nJ(Q )_(+1_8>J(Q ) ©))

The above theorem tells us how close we can approximate the cost function of k-means
in the original space via the solution to k-means problem in the projected space—the relative
estimation error is limited by §.

2.2 Local and global cost function minima in projected space

But the interdependence between solutions to k-means problem in both spaces is even deeper,
as the two subsequent theorems show. Let us look at the local minima of k-means at which the
k-means algorithms usually get stuck. Theorem 2.4 states conditions under which the local
minima of the original space correspond to local minima in the projected space. Theorem 2.5
considers the relationship in the opposite direction.

Before proceeding, let us introduce the concept of the gap between clusters. It is obvious
that if there are points at the border of two clusters, then under projection there exists a
high risk that the points would move to the other cluster. Therefore, in order to keep cluster
membership unchanged under projection, a gap between the clusters needs to exist. We shall
understand the gap as follows: k-means assures that for any two clusters Cy, C, there exists
a hyperplane & orthogonal to the line segment connecting both cluster centres and cutting
it at half of the distance between these centres. The points of one cluster lie on the one

@ Springer



Machine learning friendly set version of... 1971

side of this plane, the points of the other on the other side. The absolute gap G between
the two clusters is understood as twice the smallest distance of any element of these two
clusters to this hyperplane /. That is, for an absolute gap G¢, ¢, between the two clusters,
the distance between any point of these clusters and the border is larger than G¢, ¢, /2. We
prefer subsequently to refer to the relative gap g, that is G divided by the distance between
the two cluster centres.

Theorem 2.4 Under the assumptions and notation of Theorem 2.3, if the partition €* yields
a local minimum (in the original space) of J(Q, €) over all possible partitions € of Q and
if for any two clusters for some a € [0, 1) g = 2(1 — ) is lower or equal the relative gap
between these clusters, and 5

1-(1-%

R URRUEET)

(10)

(p to be defined later by inequality (38) on page 46), then this same partition is (in the
projected space) also a local minimum of J(Q’, €) over &, with probability of at least 1 — €.

Theorem 2.4 tells us that we need to meet two conditions if we want that local minima
in the original space have their corresponding local minima in the projected space. The one
refers to the need of separation of each pair of clusters by a gap—the relative width of area
between clusters (where no data points are present) shall amount at least to some g. The
second condition imposes restrictions on the upper bound for § which does not equal to 1/2
any longer, but may be a smaller value, depending on the mentioned gap (the smaller the gap,
the smaller the §). § is influenced also by a factor p representing compactness of the clusters.
Indirectly of course the projected space dimensionality is affected because the smaller the §
is, the larger the n” will be.

Quite a similar behaviour is observed if we request that the local minimum found in the
projected space should correspond to a local minimum in the original space

Theorem 2.5 Under the assumptions and notation of Theorem 2.3, if the clustering €'* con-
stitutes a local minimum (in the projected space) of J(Q', €) over € and if for any two
clusters 1 — « times the distance between their centres is the gap between these clusters,
where a € [0, 1), and
8 1 —a?
<
1—-8 ~ (1+2p)+a?

an

then the very same partition €' is also (in the original space) a local minimum of J(Q, ©)
over €, with probability of at least 1 — €.

Note that in both theorems, the conditions on § are quite similar and converge to one
another for vanishing §. In fact the condition in Theorem 2.5 implies that of Theorem 2.4,
so if local minima in the projected space correspond to ones in the original one, then those
of the original one correspond to those of the projected one.

The fact that the local minima correspond to each other in both spaces does not automat-
ically mean that the global minimum in the original space is also the global minimum in the
projected space. However, the theorem as follows indicates that the values at both optima
correspond closely to one another. That is, if we find the global minimum in the projected
space then we can estimate the global optimum in the original space quite well.
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Theorem 2.6 Under the assumptions and notation of Theorem 2.3, if € denotes the clus-
tering reaching the global optimum in the original space, and Q:/@ denotes the clustering
reaching the global optimum in the projected space, then

%J(QC ) < (14 8)3(0. Co) (12)
”;:xQ, Co) < (1-8)7'3(Q'. &) (13)

with probability of at least 1 — €.
That is, the perfect k-means algorithm in the projected space is a constant factor approx-
imation of k-means optimum in the original space.

We defer the proof of Theorems 2.3-2.6 till Appendix B. We will derive the basic Theo-
rem 2.1 in Appendix A.1 which is essentially based on the results reported by Dasgupta and
Gupta [20]. And the proof of Theorem 2.2 can be found in Appendix A.2.

3 Clusterability and the dimensionality reduction

In Sect. 2, we have stated conditions under which our formulation of JL. Lemma (Theorem 2.1)
allows to use random projection to perform the clustering in the projected space instead of
one in original space using a specific class of clustering algorithms, namely k-means. One
may rephrase our results by saying that we have formulated conditions for k-means family
under which the transformed data can be clustered the same way as the original data.

Let us turn in this section to the somehow related topic of clusterability of data. The
property that the data is clusterable usually means that the clustering of that data can be easily
found, i.e. with an algorithm of polynomial complexity. This is a very useful property for
large data sets. Clusterability conditions usually include requirements of identical clustering
under some data transformation. An important question is whether or not adding the extra
random projection as data transformation may lead to the loss of clusterability property.
The specific contribution of this section is the discussion how well the general property of
clusterability is preserved under random projection using our version of JL. Lemma in case
when the cost function is defined as for k-means.

While clusterability property has some intuitive appeal as a property of data allowing for
“easy clustering”, concrete formal notions of clusterability differ substantially. The “easiness”
refers generally to (low) algorithm complexity given some restrictions imposed on the form
of the data, but these restrictions may have different forms hence the various notions of
clusterability.

And in fact, in the literature a number of notions of the so-called clusterability have been
introduced [2,6-8,14,15,32].* Under these notions of clusterability algorithms have been
developed clustering the data nearly optimally in polynomial times, when some constraints
are matched by the clusterability parameters.

It seems therefore worth to have a look at the issue if the aforementioned projection
technique would affect the clusterability property/properties of the data sets.

4 One says that a data set is clusterable if a clustering algorithm can cluster the data quickly, with low
complexity, usually polynomial. Formal definitions of clusterability have diverse forms as apparently there
exist various conditions under which clustering is an easy task.
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3.1 Selected notions of clusterability and issues with JL projection

Let us consider, as representatives, the following notions of clusterability, present in the
literature:

— o-Separatedness [32] means that the cost J(Q, €;) of optimal clustering € of the data
set Q into k clusters is less than 62 (0 < o < 1) times the cost J(Q, €_1) of optimal
clustering € _1 into k — 1 clusters

30, &) < a23(0, 1) (14)

— (c, 0)-Approximation-Stability [8] means that if the cost function values of two partitions
¢4, € differ by at most the factor ¢ > 1 (that is ¢ - J(Q, €,) > J(Q, ) and ¢ -
J(0, &) > J(O, €,)), then the distance (in some space) between the partitions is at
most o (d(&,, &) < o for some distance function d between partitions). As Ben-David
[14] remarks, this implies the uniqueness of optimal solution.

— Perturbation Robustness means that small perturbations of distances / positions in space
of set elements do not result in a change in the optimal clustering for that data set.
Two kinds may be distinguished: additive [2] and multiplicative ones [15] (the limit of
perturbation is upper-bounded either by an absolute value or by a coefficient).

The s-Multiplicative Perturbation Robustness (0 < s < 1) holds for a data set with d;
being its distance function if the following holds. Let € be an optimal clustering of data
points with respect to this distance. Let d> be any distance function over the same set of
points such that for any two points u, v, s - dj(u, v) < da(u,v) < % -di(u, v). Then, the
same clustering € is optimal under the distance function d».

The s-Additive Perturbation Robustness (s > 0) holds for a data set with d; being its
distance function if the following holds. Let € be an optimal clustering of data points for
this distance. Let dy be any distance function over the same set of points such that for
any two points u, v, dj(u, v) — s < d(u, v) < dj(u, v) + 5. Then, the same clustering
¢ is optimal under the distance function d>.

Next, we are interested only in the multiplicative version.

— B-Centre Stability [7] means, for any centric clustering, that the distance of an element
to its cluster centre is B > 1 times smaller than the distance to any other cluster centre
under optimal clustering.

— (1 + B) Weak Deletion Stability [6] (B > 0) means that given an optimal cost function
value O PT for k centric clusters, the cost function of a clustering obtained by deleting
one of the cluster centres and assigning elements of that cluster to one of the remaining
clusters should be bigger than (1 + 8) - OPT.

Subsequently, we consider the question what is the impact of random projection under
our proposal of dimensionality reduction on preservation of various forms of clusterability.
In Theorem 3.1, we show that the o-Separatedness in the projected space increases as a
function of § which means that the larger error § is allowed, the larger must be the advantage
of (optimal) clustering into k clusters over clustering into k — 1 clusters in order to be able
to take advantage of clusterability property by clustering algorithms (smaller o indicates a
bigger advantage of clustering into k clusters over one into k — 1 clusters, and usually o
must lie below some threshold for optimal algorithms to be applicable). Conversely, if this
advantage is lower in the original space, then also § has to be lower and therefore also a
smaller dimensionality reduction is permitted.

Theorem 3.2 points out that the random projection narrows (with increasing §) the range
¢ of clustering cost functions that have to lie within the same distance o from a given
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clustering for (c, o)-Approximation-Stability. The decrease in ¢, as shown by Balcan et al.
[8], is disadvantageous as it worsens the approximation complexity of the optimal clustering
of a data set, possibly to the point of NP-hardness. Therefore, low error values § are preferred.

The next notion of clusterability that we will investigate is the Multiplicative Perturbation
Stability. The effect of random projection on this property will be explained in Theorem 3.6.
In order to prove it, we will need two lemmas: Lemma 3.3 on double perturbation and
Lemma 3.5 on conditions when multiplicative perturbation stability ensures that the global
k-means optima in the original and the projected space are identical.

Finally, we will turn to theorems on B-Centre-Stability (Theorem 3.7) and 1 4+ g Weak-
Deletion-Stability (Theorem 3.8). The discussion of both these properties will be performed
in conjunction with Multiplicative Perturbation Stability.

3.2 o-separatedness in the projected space

Let us first have a look at the o -Separatedness. Assume that the data Q in the original space
have the property of o -Separatedness for some 0. Let € ¢ denote an optimal clustering into
k clusters in the original space and 6’6’ ¢ in the projected space.

From Theorem 2.6, we know that

%S(Q/, Cpp) = L +)IQ. Co.0) (15)

and n
IO, Coea) = (1 =8 71HQ, Cp ) (16)

o-Separatedness (14) implies that
1. Q. %) L(1+8)713(0, o)
T N0, € ) T J(Q, Ty 1)
Note that the latter inequality was obtained by applying inequality (15) in the nominator.
LA+)7IQ . (1-8IQ. Ty )

S I(1=0) 30, Oy ) 14030 Ty )

which was obtained by applying inequality (16) in the denominator
This implies

o

148 QL)
o s /o
1-6 J(Q 760579_1)

We have thus proved

Theorem 3.1 Under the assumptions and notation of Theorem 2.3, if the data set Q has the
property of o -Separatedness in the original space, then with probability at least 1 — € it has

the property of o %—S@pamtedness in the projected space.

The fact that this Separatedness increases under projection is of course a deficiency,
because clustering algorithms require as low Separatedness as possible (because the clusters
are then better separated). Recall that Ostrovsky et al. [32] developed a series of algorithms
for efficient computation of near-to-optimal k-means clustering in polynomial time in case the
data possesses the o -Separatedness property (with required o being small numbers, usually
0.01 or lower). The above theorem establishes conditions to what extent the random projection
keeps this property so that the special algorithms are still applicable to the projected data.
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3.3 (¢, 0)-approximation-stability in the projected space

Let us turn to the (c, 0)-Approximation-Stability property. We can reformulate it as follows:
If the distance (in some space) between the partitions is more than o, then the cost function
values of two partitions differ by more than the factor ¢ > 1. Thatis, d(&,, €;) > o implies
either ¢ - J(Q, &) < J(Q, &) or ¢ - J(Q, &p) < J(Q, €y)).

So assume we have the (c, o)-Approximation-Stability property in the original space.
Consider two partitions €, € with d(€1, €;) > o. Without loss of generality, assume that
therefore in the original space the following holds:

(0, &) >c-3(0,¢,)
By applying Theorem 2.3 to both clusterings €, , €,, we get

(1- 8)*‘%3@’, ¢)>c-(l +8)’1%J(Q’, )

and hence:
Q. €y) =0 50 e
s >\C¢c-—— s
J 1 1135 J 2
This result holds for any two clusterings €, , QZ.Soifc-% > 1,thatisc > %,tben we have

(c . % a)-Approximation—Stability in the projected space, with appropriate probability.
Thus, we have

Theorem 3.2 Under the assumptions and notation of Theorem 2.3, if the data set Q has the
property of (c, o)-Approximation-Stability in the original space, and ¢ > %, then it has

the property of (c - %, o)-Approximation-Stability property in the projected space with

probability at least 1 — €.

Recall that Balcan et al. [8] developed a series of algorithms, including one for k-means
(see their Lemma 4.1) that solve the clustering problem efficiently for data with (c, 0)-
Approximation-Stability. The above theorem states under what conditions the very same
algorithms are applicable to projected space. Note, however, the probabilistic nature of this
stability. Note also that the property can be lost altogether if ¢ is too small.

3.4 s-multiplicative perturbation robustness in the projected space

Let us now consider s-Multiplicative Perturbation Robustness. First, we need two auxiliary
results. The first one concerns transitiveness of this kind of robustness. We claim that:

Lemma 3.3 For a set Q of representatives of objects from £ with the distance function
dy, define the set Qp, of representatives of the very same Q with distance function dy as
v-(multiplicative) perturbation (0 < v < 1) of Q iffvd; < dp < %dl.

If the data set Q has the property of s-Multiplicative Perturbation Robustness under the
distance d\, and the set Q is its v-perturbation with distance dy and s = v - s,, where
0 <v,sp < 1, then set Q, has the property of s ,-Multiplicative Perturbation Robustness.

Proof O, is a v-perturbation of Q and as v > s, itis also an s-perturbation of Q, therefore by
definition of Multiplicative Perturbation Robustness, both share same optimal clustering. Let
Qg be an s),-perturbation of @, that is one with distance d3, such that s,dy < d3 < édz.
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Then, sdy = spvd| < spdy < d3 < idz < Sp%dl = %dl, that is Qg is a perturbation
of Q such that both share same optimal clustering. So Q) and Q, share common optimal

clustering, hence O, has the property of s,-Multiplicative Perturbation Robustness O

Let us note here in passing that Additive Perturbation Robustness implies Multiplica-
tive Perturbation Robustness. Consider a data set Q which has the property of s-Additive
Perturbation Robustness. Let | = maxXyvep [[u — Vv||. Then, for u # v;u,v € Q

i

flu—vl=s=lu—-vl(d—-G5p) <lu=vll-0d-zg5) =llu—-vl 75 <lu-v|] <

IIU—VII-“{J= u—vil- (1+7) < lu—=v[I(d+ G5 = llu—v] +s.
‘We can summarize this result via

l
I+s

Lemma 3.4 s-Additive Perturbation Robustness of a data set Q implies
Perturbation Robustness, where | = maxy vep [lu — V||

-Multiplicative

The second lemma, that is needed to prove the Theorem 3.6 on Multiplicative Robustness,
relates the global minima of the original and projected space when multiplicative perturbation
robustness is present in the data. We claim that:

Lemma 3.5 Under the assumptions and notation of Theorem 2.3, if the data set Q has the
property of s-Multiplicative Perturbation Robustness with s> < 1—8, and if € is the global
optimum of k-means in Q, then it is also the global optimum in Q' with probability at least
1—¢€

Proof Assume to the contrary that is that in Q' some other clustering €, is the global
optimum. Let us define the distance d; (i, j) = IIx; —X;| and da (i, j) = 7 [X'; —x';||. The
distance d is a realistic distance in the coordinate system C as we assume n > n’. As the
k-means optimum does not change under rescaling, so €, is also an optimal solution for
clustering task under d;. But

s2d3 (i, j) < (1= 8)di, j) < d3 (i, j)
< (14 8)di G, j) < (1 =87'di, j) < s 2d i, j)

hence the distance d5 is a s-multiplicative perturbation of d; and hence €g should be optimal
under d; also, as we assumed robustness of s-multiplicative perturbation of the data set. Thus,
we arrived at a contradiction and the claim of the lemma follows. O

This implies that

Theorem 3.6 Under the assumptions and notation of Theorem 2.3, if the data set Q has

s . . 2 2. (1=5)2
the property of s-Multiplicative Perturbation Robustess with factor s= < s,v5- (0 <
Sp, v < 1) in the original space, then with probability at least 1 — 2¢ it has the property of

sp-Multiplicative Perturbation Robustness in the projected space.

Proof Let Q' be the projection of the data set Q. In order to demonstrate that Q” has the prop-
erty s ,-Multiplicative Perturbation Robustness, we need to show that for each s, -perturbation
of Q' this perturbation has the same optimum as Q’. Obviously, any data set in the projected
space, so also each perturbation of Q’, is a projection of some set from the original space. So
we take any set Q, from the original space and look at its projection Q7. If O/, happens to be
an s,-perturbation of Q’, then we show that Q, is an s-perturbation of 0. We demonstrate
that, due to Q’s s-robustness, Q,, 0/, and Q' have the same optima. As this holds for all s,
perturbations of Q’, Q' is s p-robust. In detail, we proceed as follows:
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As s? < 1 — 8, Lemma 3.5 implies that the global optima of Q in the original and Q’ in
projected spaces are identical. So assume that in the original space for the distance d (i, j) =

Ix; — x| € is the optimal clustering. Then, under projection d{ (i, j) = ||Ix'; — X';|| we
have the same optimal clustering.
Furthermore, let the set O, with elements y;, i = 1, ..., m be another representation of

the set Q in the original space. Let the set O/ be its image under the very same projection
that was applied to Q and let this projection keep the error range § as well. The probability,
that something like this happens, amounts to 1 — 2¢ as we have now twice as many projected
points as was originally considered when calculating n’ for Q. d2(i, j) = Ily; — y,ll and
for the projected points of Q;, we have d; (i, j) = |ly’; —¥';l. Let it happen that Qj, is an
s p-perturbation of Q’.

Then, (1 + 8)~'%d% (i, j) < d3G.j) < (1 — 87" Zd(i, j) holds. As s,d|(i, j)
< &y, j) = (sp)7'd}(G, ) and (1 = AP, j) < Hdi*G, ) < (1+ 8)diG, j), we
obtain

_ .o _ no 2. . _1n .o
s2di G, j) < (1+8) sy (1 = 8)di G, j) < (1+6) lsf,;dfo,;)f(wrs) 1;0152(1,])
.. 1 n ..
<d3G, ) = (=87 Sds. )
12" 2. . -1.-2 20: . Lo
< (A=0)71s;22di 76 ) = (1 =87+ 0d, ) < 5di G, j)

So d5 is a perturbation of d; with the factor s.
As Q with d is s-multiplicative perturbation robust, therefore (by definition of multiplica-
tive perturbation robustness) both Q and O, have the same optimal clustering €. What is

more, the above derivation shows also that Q, with d is a s,/ {—;g—perturbation of Q with
di. As Q with d; is s-multiplicative perturbation robust, it is also (by assumption on s)

Spy/v(L —6) %;g -multiplicative perturbation robust.

Hence, according to Lemma 3.3, Q,, with d> has the property of ,/v(1 — 6)-Multiplicative
Robustness

Therefore, its counterpart Q, with @, has the same optimum clustering C¢s as Q, with d»
(see Lemma 3.5). As we already showed, Q, has the same optimal clustering as Q, Q—same
as Q’, so Q) has the same optimal clustering as Q’.

Note that for any s,-perturbation Q/, of Q’, there exists a Q, in the original space such
that Q) is its image under the projection. And it turned out that it yields the same optimal
solution as d| for Q’. So with high probability (factor 2 is taken as we deal with two data sets,
comprising points x; and y;), Q" with d{ possesses s,-Multiplicative Perturbation Robustness
in the projected space. O

Let us note at this point that Balcan et al. [9] developed a special polynomial cluster-
ing algorithm suitable among others for k-means exploiting the Multiplicative Perturbation
Robustness. The above theorem shows that with careful choice of dimensionality reduction
we can uphold applicability of such algorithms. Also via Lemma 3.4 it is possible to extend
these results to Additive Perturbation Robustness.

3.5 B-centre-and (1 + B)-weak-deletion-stability in the projected space

Let us discuss now two remaining clusterability properties, S-Centre-Stability and 1 + 8-
Weak-Deletion-Stability. They differ substantially from the previously discussed ones, if
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we look from the perspective of k-means under projection. The former allowed to establish
a kind of link between the clustering in the original space and the projected space. We
were able, for example, to say for Multiplicative Perturbation Robustness, when the optimal
clusterings in the original and in the projected spaces are identical. o-Separatedness dealt
with optimal clustering costs for clustering into k and k — 1 clusters and we knew from
Theorem 2.6 what was the relationship between optimal clustering costs in the original and the
projected spaces. In the case of ¢, o-Approximation-Stability, we considered all the possible
clusterings, not just the optimal ones. In these two types of stability that we shall consider
now, we have to handle the optimal clusterings explicitly, and we do not have a possibility
to derive a relationship between the optimal clusterings of the original and the projected
space from the stability property alone. Hence, we need some additional knowledge about
the optimal clusterings. We have chosen here the Multiplicative Perturbation Robustness,
as it establishes a straightforward relation between the optimal clusterings in both spaces.
Hence, our formulation of the subsequent results.
We claim that:

Theorem 3.7 Under the assumptions and notation of Theorem 2.3, if the data set Q has
both the property of B-Centre Stability and s-Multiplicative Perturbation Robustness with
52 < 1 — 8 in the original space, then with probability at least 1 — € it has the property of

B ijrg -Centre Stability in the projected space.

Proof The s-Multiplicative Perturbation Robustness ensures that both the original and the
projected space share same optimal clustering € (see Lemma 3.5). To prove the claim, we
need hence to explore for each data point to what extent the distance to its own cluster centre
will relatively increase while the distance to the other cluster centres will decrease upon
projection. When considering the relationship of a point to its own cluster centre, we will
use the same technique as in the proof of Lemma B.1. When considering the relationship of
a point to some other cluster centre, we will proceed as if we would merge the point with
the other cluster, and so the relationship of Lemma B.1 applies again to the extended cluster
and we need only to explore the relationship between the centre of the other cluster and the
centre of the extended cluster.

Consider adata pointx; and acluster C € €notcontainingi. Then, x;, u(C) and p(CU{i})
are co-linear. So are x’;, u'(C) and u'(C U {i}), that is the respective (linear) projections.
Ixi—pn(CULHI  _ IC]

|
Furthermore, O —pCui = 1° hence
ICl+1 .
Ixi — (O = Cl Ixi —p(CULEDI a7
Likewise, in the projected space, M% = Q hence
IC1+1 .
IX'; — ' (Ol = Tel Ix'; — ' (CU D] (18)

Upon projection, the distance to own cluster centre can increase relatively by 4/1 + § and
to the C U {i} centre can decrease by 4/1 — 8, see Lemma B.1. That means

/

s — ' (@@NI* < (1+ 5)%”"1‘ — r(€@)|? 19)

and
/

IX'; — 0 (CUGDI? = (1 - 8)”;||x,~ —p(CU{ihI? (20)
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Due to the aforementioned relations, that is if we multiply both sides of (20) with %

substitute (18) on the left-hand side and (17) on the right-hand side into the relation (20), we
will obtain

/
n
IXi = /©)I7 = (1 = 8)—lIxi = p(O) (1)
Due to B-Centre-Stability in the original space we have: 2||x; — w(€(i)|1? < |Ixi — p(C)||%.
Hence, by substituting on the right-hand side of (21), we get
n' ) 14+6n )
IXi = /(O] > B*(1=8)—|Ix; — (€N |* = B> (1 =) —— —[Ix; — p(E(@)]* (22)
n 1+6n
By substituting with (19) on the right-hand side of (22), we get

1-6
Ix'; — w (O))* > ﬂzmnx’i — 1 (€)I? (23)

1-46
Ix; = ' (O > B,/ 155 Ix; — ' (€@l

Hence, the data centre stability can drop to 8

That is

3. u]

Awasthi et al. [7] developed algorithms to find optimal k-means clustering in polynomial
time if the data fits the requirements of S-Centre Stability. The results of the above theorem
indicate to what extent their algorithms can be applied to randomly projected data given the
original data fit the requirements.

B-Centre Stability implies that in the optimal solution each data point preserves some
proportion of distances to the neighbouring cluster centres. Awasthi et al. considered also
somewhat weakened condition in that a constraint is imposed on cost function under deletion
of a cluster centre. Also in this case, we could find conditions when random projection
upholds the new deletion-based stability condition.

We claim that:

Theorem 3.8 Under the assumptions and notation of Theorem 2.3, if the data set Q has both
the property of (14 B) Weak Deletion Stability and s-Multiplicative Perturbation Robustness
with s2 < 1 — 8 in the original space, then with probability at least 1 — € it has the property
of (1+ ,8)% Weak Deletion Stability in the projected space.

Proof The s-Multiplicative Perturbation Robustness ensures that both the original and the
projected space share same optimal clustering (see Lemma 3.5). Let this optimal clustering
be called €,. By €, denote any clustering obtained from €, by deletion of one cluster centre

and assigning cluster elements to one of the remaining clusters.
Theorem 2.3 implies that (1 — §) %3(Q, ¢) < J(Q', €). Therefore,

30, ¢ = (- 6)%3(@ )

By the assumption of (1+8)-Weak Deletion stability (1+8)J(Q, €,) < J(Q, €). Therefore,
n' n'
(I— S)ZJ(Q, O=0+p0- 5);3(Q, <)
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Theorem 2.3 implies that (1 +8)~!1J(Q/, €,) < ”;/J(Q, ¢,). Hence,

I+p0d - 5)%/3(Q, €)= (1+ A1 =8)(1+8)7'3(Q", &)
So we can conclude that
QO = ((1+BU =81 +8)7")I(Q, &)
which implies the claim. O

Awasthi et al. [6] have demonstrated among others for k-means that the data having
the property of (1 + B) Weak Deletion Stability possess also the so-called PTAS property
(existence of Polynomial-time approximation scheme). The above theorem states conditions
under which this property is preserved under random projection.

Summarizing this section we can say that the random projection, under suitable condi-
tions, may preserve at least several clusterability properties, known in the literature, and thus
conditions may be identified when efficient clustering, according to k-means cost function, is
applicable in the projected space if it is applicable in the original space. So not only distance
relations, but also clusterability can be maintained under projection according to JL Lemma.

4 Experiments

In the experimental part of this work, in a series of numerical experiments, we want to
demonstrate the validity of various aspects of JL. Theorem applied to projected data from the
perspective of k-means algorithm.

4.1 Numerical experiments on importance of differences between various
dimensionality reduction formulas

It is a frequently stated question that to what extent the concrete formula for dimensionality
reduction overshoots the real need for embedding dimensions. In order to give an idea how
effective the random projection is, see Fig. 4. Figure 4 illustrates a typical distribution of
distortions of distances between pairs of points in the projected space for one of the runs
characterized by figure caption. Itillustrates the distribution of discrepancies between squared
distances in the projected and in the original spaces. The distortions are expressed as

If () = FI?

lhu —vi2

One can see that they correspond quite well to the imposed constraints. The vast majority of
point pairs have a distortion much lower than . There exist, however, sufficiently many pairs
for which the distortion is close to § (in terms of the order of magnitude); therefore, one can
assume that not much more can be gained.

Another important question related to § is its relation to k-means clustering under projec-
tion. Figure 5 illustrates the role of the intrinsic gap between clusters in the original space and
the permitted value of §. As one would expect, the bigger the relative gap between clusters,
the larger the error value § is permitted, if class membership shall not be distorted by the
projection.

Finally, when discussing the various formulas on dimensionality reduction under random
projection, the question may be raised whether or not, under realistic values of the parameters
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Discrepancy between original and projected squared distances
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Fig.4 Discrepancy between projected and original squared distances between points in the sample expressed
as their quotient adjusted by n/n’. Parameters fixed at m= 5000 € = 0.1 = 0.2n = 50001’ = 2188
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Table 1 Dependence of reduced dimensionality n” on sample size m. Other parameters fixed at € = 0.01§ =
0.05 n = Se+05

m n'y ' 'l /ny ng n /ng r

10 15,226 14,209 1.07 3879 3.7 44
20 17,518 16,389 1.07 5046 33 90
50 20,547 19,191 1.07 6589 3 228
100 22,839 21,269 1.07 7757 2.8 459
200 25,131 23,323 1.08 8924 2.7 919
500 28,160 26,016 1.08 10467 2.5 2301
1000 30,452 28,030 1.09 11,635 2.5 4603
2000 32,744 30,027 1.09 12,802 2.4 9209
5000 35,773 32,648 1.1 14,345 2.3 23,024
10,000 38,065 34,609 1.1 15,513 2.3 46,050
20,000 40,357 36,554 1.1 16,680 22 92,102
50,000 43,386 39,097 1.11 18,223 2.2 230,257
le+05 45,678 41,017 1.11 19,391 2.2 460,515
2e+05 47,970 42,910 1.12 20,558 2.1 921,032
Se+05 50,999 45,392 1.12 22,101 2.1 2,302,583
le+06 53,291 47,250 1.13 23,269 2.1 4,605,168
2e+06 55,582 49,099 1.13 24,436 2.1 9,210,339
Se+06 58,612 51,515 1.14 25,979 2 23,025,849
le+08 68,516 59,243 1.16 31,025 2 460,517,014
2e+07 63,195 55,127 1.15 28,314 2 92,103,402
S5e+07 66,225 57,480 1.15 29,857 2 230,258,508
le+08 68,516 59,243 1.16 31,025 2 460,517,014

Symbols: n;—implicit n’, n’,—explicit n’, ny;—for comparison n’ as computed by Dasgupta and Gupta [20],
r—the number of repetitions of sampling needed to compute k-means under Dasgupta and Gupta dimension-
ality reduction approach

8, €, m and n there is a real advantage of our newly derived formulas of computing n’ over
the ones provided by the literature, in particular that of Gupta and Dasgupta [20] and whether
or not the implicit n’ computation gives us an advantage over the explicit n’ formula. The
practical reason for an interest in getting as low n’ as possible is the following: the lower the
dimensionality, the lower numerical effort for computing distances between the objects.

We have considered the following value ranges for these parameters: 6 € [0.01, 0.5],
€ €[0.001,0.1],m € [10,10%] and n € [4 - 10°, 10 - 10°].

Let us recall that under application of k-means it is vital that we have a high success
probability (1 — €) of selecting a random subspace such that under projection of data points
onto this subspace the distortion of distances between pairs of points is at most the assumed
8.

We investigate the behaviour of n/, versus n; and at the ration to ny;/} (ny; being the
reduced dimensionality of Gupta/Dasupta). We also want to know how many times the random
projection has to be repeated under Gupta/Dasgupta proposal in order to get the assumed
success probability 1 — €. We investigated the impact of the original data dimensionality
n (Table 4 and Fig. 6), the sample size m (Table 1 and Fig. 2), the accepted error § (Table
3 and Fig. 1, the assumed failure rate € (Table 2 and Fig. 3). In these experiments, we
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Table 2 Dependence of reduced W ! nlom, n ' /n v
dimensionality 7’ on failure prob. E ! EFFT G I’’G
€. Other parameters fixed at 01 51776 46020 113 24436 1.9 4,605,170
m = 2e+068 = 0.051 = 5e+05
005 52,922 46955 1.13 24436 2 5,991,464
002 54437 48180 1.13 24436 2 7,824,045

0.01 55,582 49,099 1.13 24,436 2.1 9,210,339
0.005 56,728 50,014 1.13 24,436 2.1 10,596,633
0.002 58,243 51,221 1.14 24,436 2.1 12,429,214
0.001 59,389 52,134 1.14 24436 2.2 13,815,508

Symbols: n;—implicit n’, n’g—explicit n’, ni;—for comparison n’ as
computed by Dasgupta and Gupta [20], r—the number of repetitions
of sampling needed to compute k-means under Dasgupta and Gupta
dimensionality reduction approach

Table 3 Dependence of reduced dimensionality n’ on error range 8. Other parameters fixed at m = 2e+06 € =
0.0l n = 5e+05

) "/E n/l n/E/n/I ”/G n/l/n/G r

0.5 712 697 1.02 465 1.5 9,210,339
0.4 1059 1032 1.03 605 1.8 9,210,339
0.3 1787 1745 1.02 922 1.9 9,210,339
0.2 3804 3692 1.03 1814 2.1 9,210,339
0.1 14,339 13,640 1.05 6449 2.2 9,210,339
0.09 17,593 16,631 1.06 7874 22 9,210,339
0.08 22,128 20,742 1.07 9857 22 9,210,339
0.07 28,721 26,604 1.08 12,736 2.1 9,210,339
0.06 38,846 35,329 1.1 17,150 2.1 9,210,339
0.05 55,582 49,099 1.13 24,436 2.1 9,210,339
0.04 86,291 72,387 1.19 37,783 2 9,210,339
0.03 152,415 115,298 1.32 66,478 1.8 9,210,339
0.02 340,701 201,059 1.69 148,048 1.4 9,210,339
0.01 1,353,858 1,353,859 1 586,209 2.4 9,210,339

Symbols: n—implicit n’, n’p—explicit n’, n;—for comparison n” as computed by Dasgupta and Gupta [20],
r—the number of repetitions of sampling needed to compute k-means under Dasgupta and Gupta dimension-
ality reduction approach

investigated only the theoretical values (checking for low sample sizes (below 1000) and
low dimensionality (below 50,000) whether or not the values are confirmed in multiple (10)
simulation runs—they were confirmed on each run so no extra reporting is done). We did not
experiment whether lower values of n” than those suggested by our formulas on n’;, n/; and
their corresponding nf; would be sufficient, though it is a good subject for further research.

Note that we have two formulas for computing the reduced space dimensionality n’, the
formula (7) for n; and (4) for n’;. The latter does not engage the original dimensionality #,
while it is explicit in n’. The value of n’ in the former depends on n, however n’ can be only
computed iteratively.
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Table 4 Dependence of reduced dimensionality n” on original dimensionality n. Other parameters fixed at
m =2e+06€ = 0.015 =0.05

n n'y ' g /'y n ny/ng r

4e+05 55,582 47,891 1.16 24,436 2 9,210,339
Se+05 55,582 49,099 1.13 24,436 2.1 9,210,339
6e+05 55,582 49,933 1.11 24,436 2.1 9,210,339
7e+05 55,582 50,551 1.1 24,436 2.1 9,210,339
8e+05 55,582 51,025 1.09 24,436 2.1 9,210,339
9e+05 55,582 51,399 1.08 24,436 2.2 9,210,339
le+06 55,582 51,703 1.08 24,436 2.2 9,210,339

Symbols: n;—implicit n’, n’,—explicit n’, n;—for comparison n’ as computed by Dasgupta and Gupta [20],
r—the number of repetitions of sampling needed to compute k-means under Dasgupta and Gupta dimension-
ality reduction approach

Dependence of reduced dimensionality $n'$ on original dimensionality n

52000 54000
1 !

50000
1

48000
!

T T T T T T T
4e+05 5e+05 6e+05 7e+05  8e+05 9e+05 1e+06

n
n': black - explicit, green — implicit

Fig. 6 Dependence of reduced dimensionality n’ on original dimensionality 7. Other parameters fixed at
m = 2e+06€ = 0.016 = 0.05 (color figure online)

The content of the tables indicates the limitations of dimensionality reduction via JL .
There is no point of applying dimensionality reduction via JL Lemma if the dimensionality
lies below 1000 (for § < 0.1, € < 0.5, m = 10).

Let us investigate the differences between n” computation in implicit and explicit cases.
Let us check the impact of the following parameters: n—the original dimensionality (see
Table 4 and Fig. 6), 6—the limitation of deviation of the distances between data points in the
original and the reduced space (see Table 3 and Fig. 1), m—the sample size (see Table 1 and
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Fig. 2), as well as e—the maximum failure probability of the JL transformation (see Table 2
and Fig. 3). Note that in all figures, the X-axis is on log scale.

Concerning the differences between n’E and n’[ , we see from Table 1 (see also Fig. 2), that
increase in sample size in reasonable range 10—108 increases the advantage of n'; over n'; to
even 15%. On the other hand, in Table 2 (see also Fig. 3) we see that the failure probability
€ does not give a particular advantage to any of these dimensionality sizes, which may be
partially attributed to the considered sample size m, though the implicit one approaches the
explicit one with increase in €. We see also that when we increase the acceptable failure rate
€, the requested dimensionality n’ drops.

The decrease in error rate §, as visible from Table 3 (see also Fig. 1), increases the gap
between n'; and n'; up to the point when the original dimensionality » is exceeded and hence
usage of dimensionality “reduction” is pointless (see the last line of Table 3). Figure 1 shows
that the requested dimensionality drops quite quickly with increased relative error range &
till a kind of saturation is achieved.

As visible in Fig. 6, the value of n’ from the explicit formula does not depend on the
original dimensionality n, while the implicit one does. From Table 4 (see also Fig. 6), we see
that the increase in the original dimensionality gradually reduces the advantage of n/, over
n'z. In fact, the value computed from the implicit formula approaches the explicit value with
the growing dimensionality .

On the other hand, the implicit n” departs from the explicit one with growing sample size
m, as visible in Fig. 2. Both grow with increasing m.

In summary, these differences are not very big, but nonetheless can be of significant
advantage when the computations over large data sets are likely to have long run times.

The behaviour of explicit n’ is not surprising, as it is visible directly from the formula (4).
The important insight here is, however, the required dimensionality of the projected data,
of hundreds of thousands for realistic €, §. Thus, the random projection via the Johnson—
Lindenstrauss Lemma is not yet another dimensionality reduction technique. It is suitable
for very large data only, and it proved to be a useful ingredient to techniques such as PCA,
see, e.g. the so-called compressive PCA [37].

The behaviour of implicit n’ for the case of increasing original dimensionality n is as
expected—the explicit n’ reflects the “in the limit” behaviour of the implicit formulation.
The discrepancy for € and the divergence for growing m indicate that there is still space for
better explicit formulas on n’. In particular, it is worth investigating for increasing m as the
processing becomes more expensive in the original space when m is increasing.

With regard to n; /n;; quotient, one shall stress that n; has always numerically a clear
advantage, of up to 400%, but one shall take into account that the warranty of obtaining a useful
projection from the point of view of k-means is low according to theoretical considerations.
Hence, while we can perform random projection only once for our dimensionality reduction
method, the Dasgupta/Gupta projection needs to be repeated for a multitude of times
(r column in the tables). So in Table 1, the number of needed repetitions r is already 44
in the most advantageous case of n'; /n(;. with increase in sample size m the quotient falls
down to 100% advantage, while r increases radically to hundreds of millions. This fact
renders Dasgupta/Gupta projection useless. The same disadvantage of Dasgupta/Gupta
projection is visible in other tables. However, note that according to Table 2 with decrease
in € the advantage of n’G over n’I raises from 90 to 120%. However, the increase in r is
disproportional with respect to this advantage. The increase in original dimensionality n
gives advantage to the value of n(;. Error range § does not exhibit such an obvious pattern
when influencing the quotient.

@ Springer



1986 M. A. Ktopotek

4.2 Impact of projection on correctness of clustering

In this series of experiments, the validity of Theorem 2.6 along with Theorem 2.3 was verified.
The problem with an experimental investigation results from the fact that k-means and its
variants are known to usually stick at local minima (at the cost of speed), especially in the
high-dimensional landscape, and our Theorem 2.6 relates to the global optimum. So for an
arbitrary data set, we would not know the optimum in advance, neither from experimental
runs nor from theoretical considerations. Therefore, we created a special generator, providing
with well-separated clusters in some sense for which we knew the theoretical solution in the
original space (being a parameter of the generator). The solution in the projected space
was not known in advance, and it was considered to be the same as in the original space
due to theorems on perturbative robustness, and k-means and k-means++ were run in order
to discover it experimentally. The experiment was considered as a failure when either the
deemed clustering was not discovered or the inequalities of the theorems were violated.

A series of experiments consisting in generating samples of n-dimensional data (n = 4900)
consisting of m records (m = 5000), which had a cluster structure known in advance, was
performed. In order to know the clustering in the original space in advance, the sample gener-
ator proceeded as follows: m points from n-dimensional normal distribution centred at zero,
with unit standard deviation and zero correlation between dimensions were generated. Then,
in a random manner, these data points were assigned to the desired number of clusters so
that sizes of any two clusters differ only by at most 1. Then, the required distance between
balls enclosing the clusters was computed. The required distance was set to twice the largest
intrinsic cluster radius (measured from the centre to the most exterior cluster element) multi-
plied by square root of the number of clusters k. Then, each cluster was moved away from the
zero point along a different direction (which was possible as k < n) by the required distance
divided by V2. This division by V2 ensures that the distances between cluster enclosing
balls were equal to the required distance.

The data was projected onto a lower dimensional subspace with dimensionality according
to the formula (4), and k-means clustering procedure was executed both in the original space
and in the target space. k-means was executed at least k/2 times up to k%/2 times till an
agreement with the true clustering was obtained. If the true clustering was not obtained, k-
means++ was applied up to k times. If still there was a disagreement, it was checked whether
the total within sum of squares of the intrinsic clustering was lower than the one obtained
from k-means++. If it were not the case in the projected space, then it would mean a failure
of the theory. It would be a failure because it would mean that k-means++ was able to find a
better clustering than one predicted by our theoretical considerations.

Multi-start k-means was applied because the algorithm is known to get stuck in local
optima, while we were checking whether the global minimum is achieved. k-means++ is
known to have guaranteed vicinity to the intrinsic optimum (while k-means does not) though
it is more time-consuming than k-means. It turned out that for larger values of k > 9, the
k-means++ had to be called always to get the intrinsic clustering, while for k = 2 one or
more calls of k-means were sufficient.

Counts of complete and incomplete matches of clusterings in the original scape
and in the projected space have been performed for various numbers of clusters k =
2,3,9, 81,243, 729. The other parameter of the experiments, €, was fixed at 0.05, which
implied 6 ~ 0.23 and n,, = 1732.

The results are presented in Table 5. It is clearly visible that the probability of not violating
projection cost constraints is even higher than the respective theorem predicts.
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Table 5 Impact of projection on k= 2 3 9 81 243 729
correctness of clustering for 100
runs No. of disagreements between 0 0 0 0 O 0

clusterings of X and X’
No. of violation of relationship (8) 0O 0 0 O 0 0

Table 6 Impact of projection on k= 2 3 9 81 243 729
Multiplicative Perturbation
Stability for 100 runs

No. of disagreements between 0 0 0 O 0 0
clusterings of X and Y

No. of disagreements between 0 0 0 O 0 0
clusterings of X" and Y’

No. of violation of formulas of 0 0 0 O 0 0
Theorem 3.6

4.3 Impact of projection onto multiplicative perturbation stability

The experimental set-up was exactly the same as in Sect. 4.2 except that now multiplicative
perturbations were performed. So we had an original data set X, that was projected resulting
into the set X’. Furthermore, we had a set Y being a multiplicative perturbation of X and a
set Y’ being a multiplicative perturbation of X’. We clustered each of them as indicated in the
previous section via k-means or k-means++ and checked if all these clusterings agree with
the intrinsic one.

We assumed that the maximal multiplicative perturbation permissible s is the one not
violating the criterion on knowing in advance the intrinsic clustering. Then, we perturbed the
elements of X by arandomly selected factor from the permissible range (1/s to s) with respect
to the respective cluster centre. This perturbation was effectively bigger than the theoretical
value allowed by perturbation definition, nonetheless it is obvious that if the properties hold
for stronger perturbation then they will hold also for proper ones. In this way, the set Y was
obtained. We computed the actual value of perturbation s, of Y, by the respective formula we
computed maximal theoretically possible perturbation s, in the projected space and applied
this perturbation to X’ to obtain the set Y’. We expected that under this perturbation to X’
the result of (optimal) clustering should be the same.

The results are presented in Table 6. It is clearly visible that the probability of not violating
multiplicative perturbation robustness constraints is even higher than the respective theorem
predicts.

4.4 Impact of projection onto o-separatedness

We performed the experiment in the same way as described in 4.3 computing additionally
the o -separation both in X and in X’ and checked if they fit the restrictions of the respective
theorem.

The results are presented in Table 7.

@ Springer



1988 M. A. Ktopotek

Table 7 Impact of projection on k= 2 3 9 81 243 729
o-Separatedness for 100 runs

No. of disagreements between 0 0 0 O 0 0
clusterings of X and X’

No. of violation of relationship from 0 0 0 0 0 0
Theorem 3.1

Table 8 Impact of projection on k= 2 3 9 81 243 729
B-centric Stability for 100 runs _

No. of disagreements between 0 0 0 O 0 0
clusterings of X and X’

No. of violation of relationship from 0 0 0 0 0 0

Theorem 3.7
Table 9 Impact of projection on k= 2 3 9 81 243 729
1 + B-Weak Deletion Stability _
for 100 runs No. of disagreements between 0 0 0 0 O 0

clusterings of X and X’

No. of violation of relationship from 0 0 0 0 0 0
Theorem 3.8

4.5 Impact of projection onto (B-centric Stability

We performed the experiment in the same way as described in 4.3 computing additionally the
B-centric Stability both in X and in X’ and checked if they fit the restrictions of the respective
theorem.

The results are presented in Table 8.

4.6 Impact of projection onto 1 + (-weak deletion stability

We performed the experiment in the same way as described in 4.3 computing additionally
the 1+ B-Weak Deletion Stability both in X and in X’ and checked if they fit the restrictions
of the respective theorem.

The results are presented in Table 9.

Note that we did not experiment with ¢, o-Approximation-Stability because it requires
not only a substantially larger set of experiments (not only the optimal clusterings need to be
investigated but also all the other), but also generation of samples (for k-means algorithm)
exhibiting ¢, o -Approximation-Stability is rather tedious because in typical large samples this
property is violated (e.g. local minima exist with close cost function and radically different
structures).

5 Previous work

As already mentioned in the introduction, there exists a vast number of research papers that
explored the consequences of the Johnson—Lindenstrauss Lemma in various dimensions.
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We shall focus here on those aspects that are relevant for the research results presented in
this paper. The original formulation of JL Lemma was rather existential without the primary
goal to apply it to machine learning tasks. The applied research was therefore concentrated
around the issue of actual computational burden related to use of random projection. First of
all, an attempt was made to reduce maximally the dimensionality of the projected space.

The denominator of the expression for n” of original JL. Lemma was § 2, [25,28,31]. Later,
papers suggest 82 — 83 [1,20] (decreasing the nominator) so that a slight decrease in the
number of dimensions is achieved. We suggest the denominator — In(1 + §) + § that reduces
the allowed dimensionality slightly more.

Larsen and Nelson [29] concentrate on finding the largest value of n’ for which Johnson—
Lindenstrauss Lemma does not hold demonstrating that the value they found is tight even for
nonlinear mappings f. Though not directly related to our research, they discuss the flip side
of the problem, that is the dimensionality below which at least one point of the data set has
to violate the constraints.

Kane and Nelson [26] and Cohen et al. [19] pursue a research on Sparse Johnson—
Lindenstrauss transform (SJLT). The SJLT deals with the problem that the original JL
transform densifies vectors coming from sparse spaces. Also Clarkson et al. [ 18] are proposing
an algorithm for low dimensionality embedding for sparse matrices that has low computa-
tional complexity in the number of nonzero entries in the data matrix. This is an interesting
research direction for sparse matrices because the traditional random projection usually den-
sifies the projected vectors causing losses to efficiency gained by dimensionality reduction.
We do not pursue this problem though the densification may be an issue for versions of
clustering algorithms that explicitly address sparse spaces. k-means in its original version
densifies in fact the cluster centre vectors. So in fact k-means itself would require some
changes.

Note that if we would set € close to 1, and expand by Taylor method the In function
in denominator of the inequality (4) to up to three terms then we get the value of n’ from
equation (2.1) from the paper [20]:

, Inm
n > 4m

Note, however, that setting € to a value close to 1 does not make sense as we want to keep
rare the event that the data does not fit the interval we are imposing.

Though one may be tempted to view our results as formally similar to those of Dasgupta
and Gupta, there is one major difference. Let us first recall that the original proof of Johnson
and Lindenstrauss [25] is probabilistic, showing that projecting the m -point subset onto a
random subspace of O (Inm /e?) dimensions only changes the (squared) distances between
points by at most 1 — § with positive probability. Dasgupta and Gupta showed that this
probability is at least 1/m, which is not much indeed. That is, if we pick with their method
one random projection, we may fail to obtain the projection with required properties with
probability 1 — 1/m. For m = 1000, we will fail with probability of 99.9%. In order to get
failure probability € below say 0.05%, one needs to proceed as follows: repeat the process
of picking the random projection r times, r to be specified below. Then, among the resulting
r projections, with probability Ps(r) < 1 — €, at least one will have the required properties.
But we do not know which of the r projections. So for each projection, we need to check
whether or not the distances under projection have the desired properties. In our method, we
need to pick only one projection and the check is not needed. Let us go over to the estimation
of r and of P, (r). Note that each choice of a random projection is independent of the other.
Therefore, the probability P (r) of failing to pick a projection with desired properties in
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each of the r trials, amounts to (1 — %)’, as 1 — % is the failure probability in a single
experiment. (Note that by definition Py(r) = 1— Py (r).) If we want to ensure that Py (r) < €,

that is
1 r
(1 - 7) <e (24)
m
we need an r > In(e)/In(1 — 1),

In case of m = 1000, this means over r = 2995 repetitions, and with m = 1, 000, 000—
over r = 2,995, 000 repetitions,

In this paper, we have shown that this success probability can be increased to 1 — e for an €
given in advance. Hereby, the increase in target dimensionality is small enough compared to
Dasgupta and Gupta formula, that our random projection method is orders of magnitude more
efficient. A detailed comparison is contained in Tables 1, 2, 3, 4 in the last three columns. We
compare in these tables n” computed using our formulas with those proposed by Dasgupta and
Gupta as well as we present the required number of repetitions of projection onto sampled
subspaces in order to obtain a faithful distance discrepancies with reasonable probability.
Dasgupta and Gupta generally obtain several times lower number of dimensions. However,
as stated in the introduction, the number of repeated samplings nullifies this advantage and
in fact a much higher burden when clustering is to be expected.

Note that the choice of n" has been estimated by [1]

, Inm

n = @+2y) 2o

where y is some positive number. They propose a projection based on two or three discrete

values randomly assigned instead of ones from normal distribution. With the quantity y, they

control the probability that a single element of the set Q leaves the predefined interval £8.

However, they do not control the probability that none of the elements leaves the interval of
interest. Rather, they derive expected values of various moments.

Though in passing, a similar result to ours is claimed in Lemma 5.3 by Bandeira [10], that
is that he requires n’ > 2+ 1) 8221:’5”3 . In fact, if one substitutes in (4) the failure probability ¢
withm " and — In(1 + 8) + 8 with 62 — 83, then purely formally we get Bandeira’s formula.
However:

— Bandeira refrains from proving his formula.

— His lower bound on ' is higher than ours, because —In(1 + §) +§ > 82 — 83,

— As he does not investigate the proof of his formulation, he also fails to find still lower
bound on n’ as we have done investigating the implicit formula for n’ in Sect. A.2.
We provided possibilities to reduce n’ via our implicit formulation of conditions for n’
and proving that the implicit function is invertible. As Table 1 shows, for example, the
dimensionality reduction may be up to 15%. We are unaware of this being observed by
anyone else.

— From a practical point of view, Bandeira’s formulation is misleading as to the nature of
increase in n’ with increase in the sample size. The formula above would superficially
suggest that it grows linearly with the logarithm of the sample size m, while our formu-
lation clearly shows that this growth is slower when keeping the failure probability €.
See, for example, the results in Table 1. For a practical illustration, consider the case of
m = 100, § = 0.1, ¢ = 0.05 and accordingly T = 0.65. Bandeira’s n’ would amount
to 5230. Our explicit n” would be 5205 which are pretty close (though our is lower (by
0.5%), while at the same time their failure probability m~% > 0.0501 is slightly bigger.
If we increase, however, m to say 10,000, while keeping respective parameters of Ban-
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deira’s relation, he gets n’ = 10, 460, while we require only n’ = 9134 (12% less), and
for m = 1, 000, 000 he needs 15,691 dimensions and we only 13,061 (16% less). In this
sense, our formulation is more user-friendly.

— His parameter t has no practical meaning from the point of view of a user, while our €
has a clear-cut semantics.

— He does not draw conclusions with respect to the clustering task and clusterability as
done in this paper in our theorems, especially in Theorem 3.6 which rely on the fact that
¢ is explicitly mentioned in the formula for n’. It would be really hard to explain the user
of Bandeira’s formula what it means to having to double our €.

The publications [11,12] by Baraniuk et al. present a theorem similar in spirit to [10], in a bit
different area of transformations with the so-called RIP (restricted isometry property). Our
above remarks apply also to those publications, respectively.

Our research was oriented towards applicability of Johnson-Lindenstrauss Lemma to the
task of clustering. This application area has been explored already by Schulman [36]. He
optimized the intracluster sum of weights in graph clustering and used JL. Lemma to reduce
the computational time. Recently, a number of papers pursued the research path of applying
JL Lemma to improve clustering process for graphs [27]. It is a combination of compressive
sampling with spectral clustering [33,34,38,41], spectral compressive principal component
analysis [22] and similar approaches. Our research differs from these developments. The
graph clustering explores the fact that data items (graph nodes) are interdependent. Therefore,
it is possible to explore these dependencies to reduce the number of attributes (they are
dependent as they are the nodes of the graph) and at the same time the sample size and
hence automatically reduce the dimensionality further (as it depends on the sample size).
We considered here only the case of independent data items (objects) and therefore could
not benefit from their results. Note also that typical graph-based clustering methods ignore
long distances between nodes and their usage of JL. Lemma keeps rather distances between
eigenvectors of Laplacians of such graph.

While we insisted on avoiding multiple repetitions of projections, Cannings and Samworth
[16] explicitly use multiple projections for purposes of classification.

See also Fedoruk et al. [21] for an overview of theoretical and practical bounds for dimen-
sionality reduction via JL Lemma.

6 Conclusions

In this paper, we investigated a novel aspect of the well-known and widely investigated
and applied Johnson-Lindenstrauss lemma on the possibility of dimensionality reduction by
projection onto a random subspace.

In this paper, we made three main claims:

— JL Lemma can be enhanced in such a way that, in the process of dimensionality reduction,
with user-controlled probability, all the projected points keep error bounds;

— the proposed framework can identify the suitable subspace by random projection that pre-
serves the cluster structure of higher dimension in the embedding with some controllable
error;

— inthe proposed framework, we derived deterioration degrees of a number of clusterability
properties under the projection.

With respect to claim one, the original formulation of JL Lemma means in practice that
we have to check whether or not we have found a proper transformation f leading to error
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bounds within required range for all pairs of points, and if necessary (and it is theoret-
ically necessary very frequently), to repeat the random projection process over and over
again.

‘We have shown here that it is possible to determine in advance the choice of dimensionality
in the random projection process as to assure with desired certainty that none of the points
of the data set violates restrictions on error bounds. This new formulation, expressed in
Theorem 2.1, proven in Sect. A.1 and empirically validated in Sect. 4.1, can be of importance
for many data mining applications, such as clustering, where the distortion of distances
influences the results in a subtle way (e.g. k-means clustering). Via some numerical examples,
we have pointed at the real application areas of this kind of projections, that is problems with
high number of dimensions, starting with dozens of thousands and hundreds of thousands of
dimensions. Also the superiority of our approach to that of Gupta/Dasgupta was demonstrated
by pointing at the computational burden resulting from the need to repeat the projections
multiple times.

As the second claim is concerned, we have broadened the analysis of JL. Lemma-based
random projection for k-means algorithms in that we identified the conditions under which
clusterings yielding local minima of k-means objective coincide in the original and the
projected spaces, and also conditions when the values of global optima of this objective
for the original and projective spaces are close to one another. This has been expressed in
Theorems 2.3-2.6, proven in Appendix B. An empirical investigation was performed in the
Sect. 4.2.

Additionally, as stated in the third claim, we have formulated Theorems 3.1-3.8 and
proved them in Sect. 3 showing, when our reformulation of the JL Lemma permits to uphold
five well-known clusterability properties at the projection. An empirical investigation was
performed in Sects. 4.3—4.6 on four of them.

The scope of this investigation was restricted in a number of ways. Hence, there exist
numerous possibilities to extend the research. First of all, this research and papers of other (e.g.
[41,42]) indicate that the JL Lemma-induced dimensionality reduction is too conservative. We
have seen this, for example, by comparison of explicit and implicit dimensionality reduction
differences. Various empirical studies suggest that the dimensionality could be radically
reduced, though no analytical results are yet available.

We restricted ourselves to studying the impact of JL Lemma on k-means clustering algo-
rithm cost function. It may be of interest to study particular brands of k-means algorithms
in terms of not the theoretical optimum, but rather the practically achievable ones (an “in
the limit behaviour study”). An extension to other families of algorithms, based on other
principles, may turn out to be interesting.

Furthermore, we insisted on keeping bounds for distance distortions for all pairs of points.
From the perspective of clustering algorithms, it may not be so critical if the distance distortion
bounds are violated by a sufficiently small number of points. This may be an interesting
study direction on JL Lemma itself. And also for the study of clustering algorithms based on
subsampling rather than on the whole data set. One may suspect, for example, that k-means
algorithm will stabilize under increasing sample size. But the sample size increase delimits
the possibilities of dimensionality reduction. Hence, the subsampling may be an interesting
research direction for generalizations of JL Lemma.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
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duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

A Proof of Theorems 2.1 and 2.2
A.1 Derivation of the set-friendly Johnson-Lindenstrauss lemma (Theorem 2.1)
Let us recall the process of seeking the mapping f from Theorem 1.1, as proposed by

Dasgupta and Gupta [20]. We then switch to our target of selecting the size of the subspace
guaranteeing that the projected distances maintain their proportionality in the required range.

Let us consider first a single vector x = (xg, .Xx2, ..., X,) of n independent random
variables drawn from the normal distribution A/ (0, 1) with mean 0 and variance 1. Let X' =
(x1,.x2, ..., Xy), where n’ < n, be its projection onto the first n’ coordinates.’

Dasgupta and Gupta [20] in their Lemma 2.2 demonstrated that for a positive
— if B < 1 then

Pr (nx’n2 < ﬂ%IIXHz) < B (1 + %) 2 25)
— if B > 1 then
Pr (nx’n2 > ﬁ%IIXIIZ) <% (1 + %) 2 (26)

As probabilities are non-negative numbers, and we seek only possible projections, this
latter bound makes sense only if 1 + % > 0, that is n’ < n/B. But what happens
if this condition is violated? Rewrite Pr(|x'||? > ﬂ%||x||2) as Pr(x12 + -+ x,%, >
BE () = Pr((1=BL)(F 4 +x2) 2 L (2, 4+ 3)) I
n’ > n/B, then (1 — ﬁ%) < 0 which means that the mentioned probability is equal to

zero, as it is the case when n = n’ 8. Therefore, the Gupta/Dasgupta Lemma is formally cor-
rect if we assume subsequently that there exists some nr gy g being the true dimensionality
and we take

n=max(nrrye,n'B+e¢€) , e>0 27

Now, imagine we want to keep the error of squared length of x bounded within a range of
4§ (relative error) upon projection, where 6 € (0, 1). Hence, 1 —§ < 8 < 1 + 6. Then, we
get the probability

n
Pr(=8)xI” = I < (1+ )1

n' n/8 ”%"/
31—(1—5)7<1+ ,>

n—n

’
n—n

o n's 2
—(148)% (1—n )

—n

5 This is the random projection technique proposed by Dasgupta and Gupta [20]. In fact, if we first choose
randomly a vector and then we would project it onto randomly selected n’-dimensional subspace, we would get
the very same probability distribution for the vector and its projection as with this Dasgupta/Gupta approach.
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This implies

n
Pr(=8)lx> = ZIXI” = (1+8)[x]?)

n n/8 2
> 1 — 2 max (1—8)7<1+ ) s
n

_n/
n n/8 "_2"/
(1+87~ (1— /)
n—n
n §*n’ nEn’
=1-2 1—-8%)2 (1 28
grnax | (1=57) (+n_n/) 28)

The same holds if we scale the vector x.

Let us consider a sample consisting of m points in space, without however a guarantee that
coordinates are independent between the vectors. We want that the probability that squared
distances between all of them lie within the relative range +4 is larger than

l—es1- (’Z) (1=pPr(a—-om? = ZIXIP <A +0IxI?)) @9

for some failure probability® term € € (0, 1).
To achieve this, it is sufficient that the following holds:

€>er(n)

o 'S niTn’ o 'S n%w
—("Ya=9%(1+-L +A+8T (1- 2 (30)
2 n—n' n—n'

Let us now depart from the path of reasoning of [20] because we do not want to have a
failure rate as big as "’T’I but rather of say 0.05 or less, whichever we desire.
The formulas (28) and (29) allow us to conclude, that it is sufficient if € satisfies:

m n 8*11/ %M
>2 1-6%7 (1
€= (2) s*er{IES),(H} ( ) < + n— n’)

Taking logarithm, we obtain:

Ine > In(m(m — 1))

n n’l (1 8%+ (n —n’)1 - 8*n’
max — In(1 — n
s*e{—8,+8) \ 2 2 n—n'
Ine —In(m(m — 1))
n' (n—n") §*n’
> — In(1 — §* In(1
_é*er{rl%),(+8}(2 n( )+ 2 n( * n—n’))

6 We speak about a success if all the projected data point pairs fit formula (1). Otherwise, we speak about
failure (even if only one data point lies outside this range).

Hence,
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We know” that In(1 + x) < x forx > —1 and x # 0, hence®

(n—n")y &*n >

2 n—n'

I

n
Ine —1 —1) > — In(1 — §*
ne — In(m(m ))_8*61{11%)’(%}(2 n( ) +

It can be simplified to

Ine — In(m(m — 1))

%

n' 1
—In(1 —§* — (8’
5*er{11%),(+5} < 2 n )+ 2( n )
n/

— In(l — §* §*

2 5ol (01 =85 +07)

Recall that also we have In(1 — x) + x < 0 for x < 1 and x # 0, therefore

Ine —In(m(m — 1)) ,
max 2 <n
s*e{—8,+8} In(1 — §*) 4+ 6*

So finally, realizing that —In(1 — §) —§ > —In(1 + ) + 8§ > 0, and that In(m(m — 1)) <
21In(m) we get as sufficient condition’

. —1Ine + 2In(m)

n
T —In(1+8+6

This proves Theorem 2.1. Note that this expression does not depend on n that is the
number of dimensions in the projection is chosen independently of the original number of
dimensions. This is in spite of the fact that it was present in the formula (30) and it vanished
“in the limit”, when n was increasing. One may therefore ask if for lower values of n, n’ can
be lower than in that formula. We will handle this issue in Sect. A.2.

A.2 Computing n’ from implicit representation in formula (7): Proof of Theorem 2.2

Having determined the explicit way of computing n’, let us turn to the derivation of the
algorithm for implicit computation for n” from formula (30).

Wherever we refer in our theorems and lemmas to the relation (4) for n’, we can use
always alternatively (7) for n’.

Let us now show that €; (n”) is a decreasing function of n’. If it is so, then the above formula
(30) can serve as a way of implicit n’ computation via e;l (e), as explained subsequently.

n—n’

€;(n') is a decreasing function if both (1 — 8T (1+ n's ) ° and a+ 87

n—n’

’
—n

n
/ 2 . .
(1 — ””7‘2[,) are decreasing in n’.

7 Recall at this point the Taylor expansion In(1 + x) = x — x2/2 +x3/3 — x3/5... which converges in
the range (— 1,1) and hence implies In(1 + x) < x for x € (—1,0) U (0, 1) as we will refer to it discussing
difference to JL theorems of other authors.

"fi';:/ > —1 that is §* > —";—/n/. In case of §* = §, it holds obviously. In case of

8% = —§, we require § < % — 1, thatis 1 + 6 < % From condition (27), we have that n > n/ﬁ, so that

% > B forevery B € [1 — &, 1+ §]. Hence, also 2 > 1 + § holds.

n

8 This step requires that

9 We substituted the denominator with a smaller positive number and the nominator with a larger positive
number so that the fraction value increases so that a higher n’ will be required than actually needed.
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n's
n—n

Let us investigate (1 4 8)”7 (1 -
too. So let us look at

)

n

7

!

n

o0

Recall that log(1 +x) = — ijl

can be rewritten as:

(=x)/
J

n—n’

° L Itis decreasing if its logarithm is decreasing
/

" log(l— )
n

for x € (—1, 1). Therefore, the above expression

n's

—n

o i (—8)/ n—n' i n's ’/
N o j 2 o n—n' /
n' n' X (=8)) n—n'" n's n—n' ad n's \’
= ——(=§ — — — — 1
PRI R D 2 a—n 2 Z(n—n’) /]
Jj=2 j=2
, o0 i ’ o ’ J
n (—=68)/ n—n n'é .
=2 ; el ( ;(n n,) /J
n N (—8)/ 1 > n'isi
A R 2T

Let us compute the derivative of the latter expression

e}

d | n (=8)7 1 >
wla |2
dn’ | 2 s j 2 =
1 N (—8)/ 1 >, 8
L A Y]
j=2 j=2
1 2 (=8)/ 1 > 8/
)l AT
j=2 j=2
1 >, (=8)/ 1 >, 8/
== - Z N + = - Z -
2 = 2 =/
1 2 (=8)/ 1 > 8/
A= A=A

n'iss

n—n)i-1.j

(

Jn 7t (n=n) T = (j = D (n —n) 2
(n _ n/)Z(jfl)

be(n—n)—(j —Dn"

(n—n')J

jn/.j_

n,j_lj-(n—n/)—(j—l)n/
(n—n")J
7\ jn—@j—n
n—n n—n

n—n’

In the same way, we can obtain the derivative of the logarithm of (1 —4§) 7 (1 + %) :
as
1 i U i (=8 (' N jn—@j—n
2 = j 2 = Jj n—n' n—n'
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Convergence of both is granted (because the summands in absolute value decrease quicker
than in power series) if nfn, < % (or equivalently 3n’ < n)'° which is a reasonable value
for n’, if we would bother about random projection.

Recall that (— > (_8)'f) = log(1 + 8) — 8 < 0 and that (— > ‘Si) = log(1 —

=277 =277
’

i J=1 i 4\,
8) + 6 < 0. Furthermore, — Z?ozz % (,,f”/) % < 0 because all summands are

of the same sign. And — > 72, % (nﬁiln’)] ! %fnjl)”/ < 0 because this is a sum of
decreasing elements of alternating signs so the sign of the sum is identical with that of the
first summand (which is positive, and the whole sum is negated).

Hence, both derivatives are negative. So the respective expressions are decreasing in n’
so that the expression € > €;(n’) can be exploited to find the lowest n’ (the n)) that this
expression is satisfied for a fixed €. This search can be performed using the bisectional
method. One starts with n, := 1, n, := round(n/3) — 1.If €;(n};) > €, then seeking n/,
has failed. Otherwise, one determines in a loop n;w = round ((n’L + n}{) /2) and computes
er(n}), er(nly,), e;(ny), thenif €/ (ny,) < € then one sets n'y, := n'y,, otherwise n; = n/,
(n)y, is always rounded up to the next integer). This process is continued till n,, does not
change. n is set to n’.

B Proofs of Theorems 2.3-2.6

The proofs of theorems 2.3—-2.6 require several intermediate lemmas, establishing stepwise
partial results of these theorems.

B.1 Proof of Theorem 2.3

So the proof of Theorem 2.3 on cost function under projection requires first demonstration
of Lemma B.1 showing that our Theorem 2.1 establishes limitations not only on distortions
of point-to-point distances but also on point-its-own-cluster-centre distances.

LemmaB.1 Lets € (0O, %), € € (0, 1). Let Q C R”" be a set of m representatives of elements
of Q in an n-dimensional orthogonal coordinate system C,, and let the inequality (4) or (7)
hold. Let C,y be a randomly selected (via sampling from a normal distribution) n’-dimensional
orthogonal coordinate system. For each x; € Q, letx'; € Q' be its projection onto C, . Let
€ be a partition of Q. Then, for all data points x; € Q

n
=

(1 =8)lIx; — pEENI* < = IX; — W(E@EDI* < (1 +8)Ix — r(E@)* 31

n

hold with probability of at least 1 — €,

Proof As we know, data points under k-means are assigned to clusters having the closest
cluster centre. On the other hand, the cluster centre u is the average of all the data point
representatives in the cluster.

— ) -0
10Then%<j52/‘ls("/) " orj =2
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Hence, the cluster element i has the squared distance to its cluster centre u(€(i)) amount-
ing to

Ix; — p(€@)I* = > lxi =X
|¢()| o

But according to Theorem 2.1

n
=0 Y Ixi=xjlP == > IXi=xIP <A +8) Y lxi —x;1?

JEC@) JEC() JEC@)

Hence,
(1= 8)lIx; — @) <*||Xz 1 (EOI* < A+ 8)lxi — pE@NII?

Note that here u’(€(i)) is, by intention, not the projective image of u(€(i)), but rather the
centre of projected images of cluster elements. However, due to the linear nature of the
projection, u/(€(i)) and the centre of projected images of cluster elements coincide.

Lemma B.1 permits us to prove Theorem 2.3
Proof Theorem 2.3 According to formula (31):

(1= 8)lIx; — p(EEN|* < %nx’i — W E@NI* < A+ 8% — pE€@)I?

Hence,
DA =8)lx — €@ < Z X' — w (€@ONIP < Y (0 +8)lIxi — p(€i)|?
ieN zeD ie
(1-8) 3 Ixi — w@IPF <> - SN = R @@O)IP = (1 +8) Y % — pE@I®

ie zeQ ieq
Based on defining equations (2) and (3), we get the formula (8)

1-0)3(0.9 = %J(Q', O =1+8IQ. O

B.2 Proof of Theorem 2.4

In order to prove Theorem 2.4 on preservation of local minima under projection, we need to
go beyond point-its-own-cluster-centre distance considerations and investigate the cluster-
cluster distance change under random projection, as described by Lemma B.2. Then, in
Lemma B.3 we establish conditions under which a point does not change locally optimal
assignment to cluster under projection (as the change would not decrease the cost function) if
we concentrate on two clusters only. An alternative formulation of no cluster change condition
is expressed in Lemma B.4.

Let us derive now first Lemma B.2 on distances between projected cluster centres.
Let us investigate the distance between centres of two clusters, say Cp, Cp. Let their
cardinalities amount to m1, mj, respectively. Denote C;; = C; U C,. Consequently
mi2 = |Ci2| = my + ma. For a set Cj, let VAR(C;) = ﬁ ZieCj IIx; — IL(C/)HZ and

VAR'(C)) = ¢ Yicc, Xt = 1/ (CPIP
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Therefore,

VAR(Cp2) = —— Z Ixi — p(C12)II?

lEC12

|C| D oix —w @I |+ [ Y Ixi — n€il?
12 ieC ieCy
By inserting a zero

|c12| ((Z Ixi — p(C1) + p(Cy) — u<c12)||2) + (Z % — Mcm”z))
ieCy
1
" [Cual ((Z ((xi — m(CD)? + (1(C) — 1(C12))?

ieCy

+2(x; = p(C1)) o (1(C1) — 1(C12))) + (Z lIx; — IL(CIZ)HZ))

ieCr

c Do — @) |+ | Do m(C) = r(Ci)?
| 12' ieCy ieCy

+2 (Z Xi— ) u(co) o (m(Cy) — M(Clz))) + (Z Ix; — M(Clz)llz))

ieCy ieCy ieCy

" ICnl (((Z(X’ M(CI))Z) +1C11(r(Cy) — p(C12))?

ieCy

+2(IC1 |1 (C1) — [C1p(C1)) o (m(C1) — r(C12))) + (Z lIxi — IL(C12)||2))

ieCy

1
~ICnl ((VAR(C1)|C1| +1C1(r(C1) = n(C12))?) (Z lIx; — u(C12)||2))

ieCy

Via the same reasoning, we get:

= Cl — (VARCDICH +1C1IR(ED = 1(C12)) %)
(VAR(C2)|C2| +1C2l ((C2) — m(C12))%))
|C—| (VAR(C)|C)| + VAR(C2)|Ca|
+1C1(R(C1) = p(C12)* + |C2l(1(C2) — 1(C12))?)
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Asp(C12) = 1o Liec, X = 1o (Liee, %0 + Liee, X)) = 1@ (IC1lR(C) + 11l

1(C)) that is pu(C12) = (G (CY) + 64 1 (Ca, we get

1 C 2
VAR(C))IC1| + VAR(C)[Ca| 4+ C] < -1 pen - ﬂu(cz)
= ol Coal Cnl

+1Ca ( - 1w - 'Cz'mcz))2
[C12] |C12]

# VAR<cl)|cl|+VAR(C2>|Cz|+|Cl|(ﬂm - 'Cz'mcz))2
[C12 |C12] |C12]

IC IC1 :
Cy — —u(C
+ |< oD+ »))
_
|C12

C1]|C2* + €112 |C
(VAR(C1)|C1|+VAR(C2)|C2|+| 12 + €1 PG

|C12]?

(n(Cy) — M(Cz))2>

hence

[C1l|Cal
[C12]

1
VAR(C12) = ﬁ (VAR(C1)|C1| + VAR(C2)|C2| +
12

This leads immediately to

(n(Cy) = n(C2) )

VAR(C12)-m1p = VAR(C1)-m1+VAR(C2)-ma+my-ma/mia- | (C1)—p(C2) | (32)

which implies

2
VAR(C)2) - - = VAR(C)) - = + VAR(C2) - —2 + [|(Cy) — p(C)|)?

my -

By analogy, we can derive

VAR'(C12) -m12 = VAR'(C1)-m1+VAR'(Cp) -ma+my-my/mya- |/ (C1) — p' (C2)|*
(33)
Notethat J(Q12, {C12}) = VAR(C12)-m12,3(Q),, {C12}) = VAR'(C|2)-m13. According
to Lemma B.1, applied to the set C as a cluster,

n
(1 =8)3J(Qi2, {Ci2}) = ;3(@12, {Ci2h) < (1 +8)J(Q12, {C12})
that is after the substitution (32), (33), and its complement for the projected space

(1= 8) (VAR(C)) - m12/my + VAR(C2) - miz/my + ||£(C1) — p(Co)||?)
% (VAR'(Cy) - m12/ma + VAR'(C2) - mia/my + |1/ (Cy) — u'(C2) %)

IA

IA

(1+8) (VAR(CY) - miz/ma + VAR(Co) - myz/my + | (C1) — p(C)[?)  (34)

According to Lemma B.1, applied to the set C; as a cluster, and C; as a cluster,
(1 =8)J(Q1,{C1}) = %J(Qﬁ, {C1}) = (1 +8)J(Q1,{C1})
(1 =8)J(Q2, {C2}) = %3(Q/2’ {C2) < (1 4+ 8)J(Q2, {C2))
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which implies

(I =8@(Q1.{C1}) +3(Q2.{C2})) = %(3(Q’1, {C1) + 305 (C2])
= (148021, {C1}) +3(22.{C2}) (35)

Recall also that J(Q1,{C1}) = VAR(Cy) - m1, J(Q}.{C1}) = VAR'(Cy) - my,
J(02,{C2}) = VAR(C?) - m2, J(Q%, {C2}) = VAR'(C3) - m». These equations combined
with the relation (35) imply:

(1 —68) (VAR(C1) - mia/ma + VAR(C2) - mi2/my)
2 (VAR'(C1) -1z /m3 + VAR'(C2) - 1z /m1)
(1+68) (VAR(C1) - my2/m2 + VAR(C2) - my2/my) (36)

IA

A

The two inequalities (34) and (36) mean that
—28 (VAR(CY) - mya/ma + VAR(C2) - min/my) + (1 = 8) | w(C1) — p(Ca)|*
= = (/€)= W (©I?)
<28 (VAR(C}) - m1a/ma + VAR(C2) - mi/m1) + (1 + 8)[|w(C1) — (C) > (37)
Let us assume that the quotient

VAR(Cy) - m12/my + VAR(C3) - m2/m _
[1(Cr) — r(C)|I? -

where p is some positive number. So substituting this relation into (37), we have in effect

(38)

A

(1 =8(1 +2p)llr(C1) — w(C)|* < % (I (1) — ' (C1?)

(1+8(1+2p)Ilr(Cr) — p(C)|?

IA

Under balanced ball-shaped'! clusters, p does not exceed 1. So we have shown the lemma.

Lemma B.2 Under the assumptions of preceding lemmas for any two clusters C1, C3

(1= 38(1+2p)(C)) — p(CI* < % (') =W (C)1?)

(1+8(1+2p)[r(Cr) — p(C)|?

IA

where the non-negative p, defined by relation (38), depends on degree of balance between
cluster distance and cluster shape, holds with probability at least 1 — €.

Now, let us consider the choice of § in such a way that with high probability no data point
will be classified into some other cluster. We claim the following:

T A ball-shaped set of data has the variance of at most the squared radius of the ball. If clusters are balanced,
that is of the same enclosing radius (r; = r), so the variance VAR(C1) < ry, VAR(C2) < rp), and the
same cardinality m| = my, the nominator of expression for p has the form of at most four times the common
squared radius (VAR(C) - m1p/my + VAR(Cp) -mip/my < rl2 -2+ rl2 -2). The denominator is bigger than
squared sum of radii (||u(C1) — u(C2)|| = r1 +rp = 2ry), that is four times the squared common radius. So
the quotient does not exceed 1.
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Lemma B.3 Consider two clusters C1, C>. Let § € (0, %), € € (0,1). Let Q C R" be a
set of m points in an n-dimensional orthogonal coordinate system C, and let the inequality
(4) or (7) hold. Let C,y be a randomly selected (via sampling from a normal distribution)
n’-dimensional orthogonal coordinate system. For each x; € Q, let X'; be its projection
onto Cy. For two clusters Cy, Ca, obtained via k-means, in the original space let wy, jt, be
their centres and Uy, jt, be centres to the corresponding sets of projected cluster members.
Furthermore, let d be the distance of the first cluster centre to the common border of both
clusters and let the closest point of the first cluster to this border be at the distance of ad from
its cluster centre as projected on the line connecting both cluster centres, where o € (0, 1).
Then, all projected points of the first cluster are (each) closer to the centre of the set of
projected points of the first than to the centre of the set of projected points of the second if

5 1-(1-% 1-a?
T(-8+a+2p (U+2p)+e?

(39)

where g = 2(1 — «), with probability of at least 1 — €.

Proof Consider a data point x “close” to the border between the two neighbouring clusters,
on the line connecting the cluster centres, belonging to the first cluster, at a distance ad
from its cluster centre, where d is the distance of the first cluster centre to the border and
a € (0, 1). The squared distance between cluster centres, under projection, can be “reduced”
by the factor 1 — § (beside the factor -7 which is common to all the points), whereas the
squared distance of x to its cluster centre may be “increased” by the factor 1+ §. This implies
a relationship between the factor « and the error §.
If X’ should not cross the border between the clusters, the following needs to hold:

/ ! ] ! /
IX = il < Sl — i (40)
which implies:
n nl
SN = w I> < gl - il
As (see Lemma B.1)
n
Sl = R < L+ 8)x — I = (1 + 8)(ad)?
and (see Lemma B.2)
nl 1
Sl —w I > (1—8(1 + 2p)) = will? = (1= 8(1 +2p))d?
we know that, for inequality (40) to hold, it is sufficient that:

(1+8)(ad)* < (1 —8(1 +2p))d*

[T=5(1+2p)
o<, ————
= 1+6

But 2(1 — a)d or 2(1 — &) can be viewed as resp. absolute or relative gap between clusters.
So if we expect a relative gap g = 2(1 — «) between clusters, we have to choose § in such a
way that

that is
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| _ 8 [1=8d+2p)
2" 146

S a2

Therefore,

(41)

[m}

So we see that the decision on the permitted error depends on the size of the gap between
clusters that we hope to observe.
Lemma B.3 allows us to prove Theorem 2.4 in a straightforward manner.

Proof (Theorem 2.4) Observe that in this theorem we impose the condition of this lemma on
each cluster. So all projected points are closer to their set centres than to any other centre.
So the k-means algorithm would get stuck at this clustering and hence we get at a local
minimum. O

B.3 Proofs of Theorems 2.5 and 2.6

In order to prove Theorem 2.5 on mapping of local minima from the projected space to the
original space, we need first a proof of Lemma B.5 on no cluster change when stepping
back from the projected space to the original space (keeping locally optimal assignment to a
cluster).

Having these results, we complete the section with the proof of Theorem 2.6.

Note that we can make another characterization of the situation of no cluster change, not
related to cluster centres but rather to point-to-point distances. Now, let us consider the choice
of § in such a way that with high probability no data point will be classified into some other
cluster. We claim the following:

Lemma B.4 Consider two clusters Cy, Co. Let § € (0, %), € € (0,1). Let Q C R" be a
set of m points in an n-dimensional orthogonal coordinate system C, and let the inequality
(4) or (7) hold. Let C,y be a randomly selected (via sampling from a normal distribution)
n’-dimensional orthogonal coordinate system. For each x; € Q, let X'; be its projection onto
Cyr. For two clusters Cy, Ca, obtained via k-means, in the original space let p1, w, be their
centres and p, w5 be centres to the corresponding sets of projected cluster members.

Then, all projected points of the first cluster are (each) closer to the centre of the set of
projected points of the first than to the centre of the set of projected points of the second if

1
> Ik —x0P MRToNE D lxi — p(C)IP

IC1l ieCr—{j) ieCs
1-6 1
<— | = Ix; — w(C1 — {jDI?
1+68\|Cil ieQX—:{j} !
1
2 I —x,? (42)
|Cal +1 Z.GXCZZ ! J

with probability of at least 1 — €.

@ Springer



2004 M. A. Ktopotek

Proof For the change in clusters to be prevented, for any point j € Cy, the combined sum of
squared distances to cluster centres in these two clusters Cp, C2 should be lower or equal to
such a sum for clusters resulting from the switch of the element j from C; to C», that is for
clusters C1 — {j}, C> U {j}. This means that the following has to hold:

DI = (@ 1P+ ) IX = (G|
ieCy ieCy
< > IKi—p@=UYIP+ DD X = m(CUGHIP
ieCi—{j} ieCU{j}

By replacing the sums of squared distances to centres by squared distances between data
points, we get:

ZZ—nx,—xm + ) I = (€)1

lEC]]EC] ieC
< Y IKi—r@=UGYIP+ DYDY o U{}| I — X717
ieCi—{j} ieCrU{j}1eCrUlj}
By rearranging terms, we obtain:
1
o Z SO =xilF )+ {2 >0 X=X
ieCi—{j}leCi—{j} ieCi—{j}
D b A (e =N W S SR (e ] o
ieCy ieCi—{j}
1 / /2 ’ r 2
aToyeT Zani—x;u + 2|Z||x,~—x,~||
ieCyleCy ieC

We consider now the centric sums of squares for smaller clusters (Co, C; — {i})

1
—dal=-n Y IKi—p@ =GP+ 2 Y X=X

€1l ieCi—(j) ieCi—{))

Y IXi =@ Y K= mC = GYIP

ieCy ieC1—{j}
|C | +1 €2 Z Ix'; — w (CI* | + |2 Z Ix; — ;|12
ieCy ieCy

By simplification, we obtain:

. 1
ﬁ<|c1|—1> > I —wie = bt e |2 > I =X
ieCi-{j) W\ ieci-1)

+Y I =W @IP < Y X —wC = GYIP

ieCy ieCi—{j}

1 1
C C 2 -
|C|+l| 2 E Ixi — ' (C)? +|C|+l E Ix's —x'; 17
ieCy ieCy
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We subtract from both sides » ;¢ X — p'(C2) 1%+ Yicci—j IX'i —m(Ci — Y I1%:

1
+— (2 > T S el B C
Cr] x5 =l |C|+1 Ix'; — ' (C)II?

ieCi—{j} ieCy

1 .
= >IN == GhIP +|C|+1 2 X —x1P

ieCi—{j} ieCy

In order that the above formula is valid, it suffices that

n' 1
1+8)— [ — |2 x —x; 2|+ —— X c
S Vel AP DRI Eireesd DOl
ieC1—{j} icCy

n' 1 .
=A=9|r| 2 I mC=UDI )+
A ey

2> lIxi—x;

IC2 H_l ieCy

because of the relationship between the original and projected space distances from Theo-
rems. 2.1. and 2.3 )
Now, we obtain the claim of the Lemma, by dividing both sides with (1 + §) ’,’7:

1
— 2 xi —x;|I? | + ——— X; o)?
C1] E lIxi — x|l |C| 1 E Ixi — pn(Ca)l

ieCr—{)) icCs
LY w23 = x12
AT ieCi—{j} |C|+1 ity

Note that the above relation can be interpreted as stating that the “mean” squared distance
to elements of the own cluster increased by mean squared distance to cluster centre in the
opposite cluster must be lower from the “mean” squared distance to elements of the other
clusters increased by the mean squared distance to cluster centre within the rest of the cluster
reduced the factor % Note also that when ignoring the % fraction, the condition is
normally satisfied in the original space if clustering gets at a local minimum. Hence, this factor

is actually the only one required additionally for the clustering to be kept under projection. O

LemmaB.5 Let s € (0, %), € € (0, 1). Let Q C R" be a set of m points in an n-dimensional
orthogonal coordinate system C,, and let the inequality (4) or (7) hold. Let C,; be a randomly
selected (via sampling from a normal distribution) n’-dimensional orthogonal coordinate
system. For each x; € Q, let X'; be its projection onto C,s. For any two k-means clusters
Cy, C; in the projected space, let py, p, be their centres in the projected space and juy, jt,
be centres to the corresponding sets of cluster members in the original space. Furthermore,
let d be the distance of the first cluster centre to the common border of both clusters in the
projected space and let the closest point of the first cluster to this border in that space be at
the distances of ad from its cluster centre , where o € [0, 1).

Then, all points of the first cluster in the original space are (each) closer to the centre of
the set of points of the first than to the centre of the set of points of the second cluster in the
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original space if

2
-20)
- (1-32) o2

5< —
— 2 2
(1_@) f(42p dF2P e

(43)

with probability of at least 1 — €.

13

Proof Consider a data point x” “close” to the border between the two neighbouring clusters
in the projected space, on the line connecting the cluster centres, belonging to the first cluster,
at a distance ad from its cluster centre, where d is the distance of the first cluster centre to
the border and @ € (0, 1). The squared distance between cluster centres, in original space,
can be “reduced” by the factor (1 + 8)~! (beside the factor ”;/ which is common to all the
points), whereas the squared distance of x to its cluster centre may be “increased” by the
factor (1 — 8)~! . This implies a relationship between the factor « and the error 8.

If x (in the original space) should not cross the border between the clusters, the following
needs to hold:

1
=il = Zlmo = pl (44)

which implies:
/

n 2
—lIx=pl” =
n

n' 2
— =2 —
n

B —

As (see Lemma B.1)

/

n _ —
—lx =il = (1= )7HIX = 17 = (1= )7 (@d)’
and (see Lemma B.2)
n'1 2 !
——lpy =il = A +310+2p)~
n4 4

We know that, for inequality (44) to hold, it is sufficient that:

Iy — i lI> = (1 +8(1 4 2p))~1d?
(1=8)""ad)* <1+ +2p)~'d*

[ 1-38
o0d< | ————
1+8(1+2p)

But 2(1 — «)d or 2(1 — &) can be viewed as absolute or relative gap between clusters. So if
we want to have a relative gap ¢ = 2(1 — «) between clusters, we have to choose § in such

that is

a way that
1— § < i
2 7V 1I+8(042p)
Therefore,
2
1= (1-%)
s — (45)
(19 +a+2p)
O
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Lemma B.5 allows us to prove Theorem 2.5 in a straightforward manner.

Proof (Theorem 2.5) Observe that in this theorem we impose the condition of this lemma
on each cluster. So all original space points are closer to their set centres than to any other
centre. So the k-means algorithm would get stuck at this clustering and hence we get at a
local minimum. O

Having these results, we can go over to the proof of Theorem 2.6.

Proof (Theorem 2.6)Let € denote the clustering reaching the global optimum in the original
space. Let C’Qﬁ denote the clustering reaching the global optimum in the projected space. From
Theorem 2.3, we have that

(1-83(Q,Cs) = %3(Q’, Co) = (14+68)J(Q, Ce) (46)

On the other hand
/

n
(1+8)7'3(0, ) < —3(0, ) < (1—8)7'3(0Q, )
 is the global minimum in the projected space, hence

J(Q'. Cp) < J(Q'. Ce) 47
So from inequalities (46) and (47)

n n
300, €p) < 230, €e) < (1+5IQ, Co)
n n
So we proved the claim of Theorem 2.6 that is that
n ~ ~
=30, Cp) = (1 +8)J(Q, o)
n
Note additionally, that analogously, € is the global minimum in the original space, hence

3(0,C) < J(Q, C)
and therefore , ,
n n
—3(0,Cs) < —J(0. C) < (1 —8)71J(Q', )
n n
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