Knowledge and Information Systems (2020) 62:2281-2300
https://doi.org/10.1007/s10115-019-01422-6

REGULAR PAPER

®

Check for
updates

Incremental community discovery via latent network
representation and probabilistic inference

Zhe Cui' - Noseong Park?* . Tanmoy Chakraborty?

Received: 8 July 2018 / Revised: 31 October 2019 / Accepted: 2 November 2019 /
Published online: 15 November 2019
© The Author(s) 2019

Abstract

Most of the community detection algorithms assume that the complete network structure
G = (V, &) is available in advance for analysis. However, in reality this may not be true due
to several reasons, such as privacy constraints and restricted access, which result in a partial
snapshot of the entire network. In addition, we may be interested in identifying the community
information of only a selected subset of nodes (denoted by Vr € V), rather than obtaining the
community structure of all the nodes in G. To this end, we propose an incremental community
detection method that repeats two stages—(i) network scan and (ii) community update. In
the first stage, our method selects an appropriate node in such a way that the discovery of its
local neighborhood structure leads to an accurate community detection in the second stage.
We propose a novel criterion, called Information Gain, based on existing network embedding
algorithms (Deepwalk and node2vec) to scan a node. The proposed community update stage
consists of expectation—maximization and Markov Random Field-based denoising strategy.
Experiments with 5 diverse networks with known ground-truth community structure show
that our algorithm achieves 10.2% higher accuracy on average over state-of-the-art algorithms
for both network scan and community update steps.

Keywords Community detection - Incremental community detection - Network
embedding - Probabilistic inference

1 Introduction

In social network analysis, the task of community detection has been widely studied [1]. In
many cases, instead of discovering the community structure of the entire network, we may
wish to detect communities within a target set of nodes [2,3]. For instance, a telecommunica-

B Noseong Park

npark9 @gmu.edu

Dept. of Electrical and Computer Engineering, University of Maryland, College Park, USA
Center for Secure Information Systems, George Mason University, Fairfax, USA

Dept. of Computer Science & Engineering, IIIT-Delhi, New Delhi, India

Department of Information Sciences and Technology, George Mason University, Fairfax, VA 22030,
USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-019-01422-6&domain=pdf

2282 Z.Cuietal.

tion company may want to find communities that its valuable customers are part of, in order
to provide better facilities.

Most studies in this direction assume that the overall network structure is known in advance
[4]. However, in real networks, complete information is difficult or even impossible to obtain
[5]. In Facebook network, for instance, the complete linkage structure of a user is often
unobtainable due to several privacy constraints. Moreover, in many online social network
sites, such as Twitter, many new edges are created daily. In such cases, the entire network
structure available to the users is incomplete.

This leads us to tackle a more realistic problem setting—given an initial sub-network
and a set of target nodes, our task is to progressively scan the network and explore the
communities' where the target nodes reside. Scanning a node means checking its social
profile and retrieving its neighborhood. By adding the scanned neighbors of a node, we
keep accumulating knowledge about the topology of the network. This problem setting is
realistic for several reasons—first, network information obtained is usually incomplete and
hard to acquire. Second, many new relationships are created everyday. Even though network
information is complete at a particular time, as time goes by, the network structure may need
to be scanned and updated.

However, in general the cost to scan a network is limited, which further creates two
challenges. The first is that we have to scan the network carefully. With no constraint on
scanning, we can explore the network in a brute force manner and at some point, enough
nodes are scanned and correct community membership of target nodes can be revealed.
However, when there is an upper limit on the cost (i.e., budget) to scan nodes, it is necessary
to judiciously scan nodes in order to explore the best community information of target node
set. The second challenge is to incrementally update communities of target nodes based on
partial information. After a network scan, more nodes are discovered, and the algorithm needs
to quickly and correctly update communities of target nodes.

To address the first challenge, we propose a metric, called information gain for selecting
a new node to scan. The key idea behind this metric is to use network embedding to find
latent representation of nodes, and compute which node (and its associated edge) have the
largest information gain. This metric tracks how the latent vector representations of nodes
change over a series of network updates in order to decide which node to scan that has closed
edge links. If a node’s latent representation drastically changes over successive updates, it is
likely that its neighborhood information has also been changed, and thus the node can be a
potential candidate to scan.

To address the second challenge, we propose a three-step incremental community update
method—Step I: an incremental local update based on expectation—-maximization [6]; Step
2: an intermittent global update to correct the local update; and Step 3: the Markov Random
Field (MRF)-based denoising [7] to further adjust both local and global updates.

These three steps that consist of (i) network scan, (ii) EM, and (iii) MRF are systematically
combined into one framework. To maximize the community structure inference performance
of the EM method, our information gain-based network scan actively searches community
boundaries rather than community cores. Connections are weaker around boundaries than
cores so our network scan method is designed to help the EM algorithm better infer about
community structures. Because we reveal community structures of selected targets only, its
number of hidden variables (community memberships) is not large when formulated in the
EM method. This is one of the main reasons why we have chosen the EM method. Our

! In this paper, we consider disjoint communities around the target nodes.

@ Springer

Incremental community discovery via latent network representation... 2283

MREF-based denoising supports the EM algorithm. Briefly, the contributions of our paper are
as follows:

— We investigate a contemporary problem which is more realistic than the traditional set-
tings of community detection and has rarely been explored in the past [8].

— We propose a novel method that interweaves network discovery and community detection
by first mapping the discovered network into an embedding space, followed by an incre-
mental community update that adjusts the current community structure by leveraging the
new information acquired in network discovery.

— We compare our method with 4 different variations of the existing state-of-the-art method
[8] along with 3 other commonly used baselines on 5 diverse datasets. We observe that
our proposed algorithm significantly outperforms other baselines with a performance
improvement of 8%~17% with an average improvement of 10.2%.

2 Related work

Innetwork science, the task of detecting dense modules from the network has been extensively
studied for static networks [4,9] (see [1,10] for a comprehensive review). Several attempts
have been made to detect local communities around a target node [2,3,11-15]. Some work
has focused on detecting dynamic communities in evolving networks [16—19]. Recently, [20—
22] attempted to discover communities from incomplete/noisy networks. All these methods
assume that the entire network structure is available a priori, whereas we assume that only
target nodes are given, and one needs to scan the nodes to explore the network structure.
Every scan operation incurs a cost, and the network exploration can be possible till a certain
budget is exhausted.

In the line of only network discovery (without community detection), there has been plenty
of research focusing on general sampling techniques [23,24], sampling web documents [25],
and sampling social network [26,27]. These techniques are not applicable in our settings
because they initially consider the entire network structure for sampling. Moreover, none of
them really focus on discovering the underlying community structure in the sampled network.
There is also a lot of work on incremental community discovery of dynamic graph, such as
[28-35]. These decentralized algorithms have similar scenarios as we choose here, but they
do not consider the cost when the algorithm makes a query or explores one or more nodes in
the graph. This implies our scenario is more difficult.

The most similar existing work with ours is NetDiscover [8] which also attempted to
discover disjoint communities of a target node set. Although the problem definition is exactly
the same, we differ from their method w.r.t. both candidate node selection and incremental
community detection. In the former case, NetDiscover selects a query node based on one
of the two community scoring metrics (modularity, normalized cut), whereas the proposed
node selection algorithm is based on a novel metric information gain. A close inspection
of NetDiscover reveals that there is an information leakage while selecting the query
node in that it uses the entire network to compute the node scoring function. However,
NetDiscover detects initial communities using spectral clustering [36] (where the number
of communities needs to be given a priori) and adopts generative model (GM) [6] to update
communities, whereas we combine both EM and MRF algorithms for community update. To
compare with existing work, we consider both NetDiscover and commonly used random
sampling and greedy algorithm as baselines (see Sect. 7.3). We also compare our method
with Quick Community Adaptation (QCA) [37] and Dynamic Permanence (DyPerm)

@ Springer

2284 Z.Cuietal.

[38] methods. QCA is an adoptive modularity-based approach for identifying and tracking
community structure of dynamic network. DyPerm is another modularity maximization-
based approach which incrementally updates the community structure of a network at #;
based on the community structure at #;_; with detecting the community structure from the
scratch. We adopt these algorithms to our setting (incomplete network) and make them
comparable.

3 Problem statement

We denote a network as G = (V, £), where V is a set of nodes and £ is a set of edges. Assume
that initially we do not know the entire network G; only a partial subset of the network
Gs = (Vs, &) (where Vs € V and & C &) is known. Among all the nodes in Vg, we are
particularly interested in detecting the community structure of a given set of target nodes
Vr C V.

We iteratively scan nodes and explore the network with the neighborhood information of
the scanned nodes. We use G; = (V;, &;) to denote an intermediate network at the ith scan
iteration (thus, initially Go = Gs). The performance of community detection and the cost
incurred by scanning nodes greatly depend upon the node selection strategy (i.e., which node
to scan next). We assume a function Q(v) denoting the cost to scan a node v. If v is a private
node? and it does not allow a scan, then Q(v) = oo. In the simple case, the cost to scan
all non-private nodes may be same, i.e., Q(v) = 1. However, we also adopt a more general
setting with heterogeneous cost per node. Another general setting is that the available budget
B we invest for scanning is limited.

To this end, we consider two sub-problems: One is to decide candidate nodes’ to scan
next, and the other is to update the community structure incrementally.

Network scan Given abudget B, an intermediate network G; with a cost function Q associated
with it, and a target node set V', the aim of candidate selection is to decide the next candidates
whose exploration of the local neighborhoods leads to the best community detection. After
that, we actually scan the selected candidates, and G; 1 is generated from G; and scan results
of the candidates.

Community update Given G; and G; 1, the task of community update is to efficiently and
effectively discover the community structure in G; 1 considering the community structure in
G; from the last iteration.

4 Overall algorithm

The purpose of integrating both network scan and community update steps is to effectively
determine the community structure of a set of target nodes V1 while incrementally obtaining
network structure through scanning the nodes within a given budget B. Even in the case
that a budget is not specified, the proposed method should be able to progressively enhance
the community structure as network scan proceeds. Our method undergoes the following
steps (see Fig. 1): (i) Select the k best candidates that are not scanned yet among all nodes
in an intermediate network G;; (ii) scan the selected candidates to obtain their neighbors’

2 A private node does not allow others to access its profile. Therefore, we cannot directly scan a private node.

3 For efficiency, we allow to scan multiple nodes in an iteration.

@ Springer

Incremental community discovery via latent network representation... 2285

Initialization; Latent

Representation

Discover
Locality

'
I
I
I
I
I

an iteration,

Fig.1 Algorithmic flow of our proposed method

Algorithm 1 CommunityDetection (Seed network: G, Max community numbers: K, Target
nodes: Vr, The number of nodes to scan k, Budget: B)
1: Scan all nodes in V7
2:q = Zvevr Q(v) // Update total cost
3: Go = Vr U {u|u is a neighbor of v € Vr}
4: while ¢ < B do
: Choose a set V of k nodes to scan
G=q+X,cv QW)
Scan the selected nodes in V
Update G; | from G; with the scan results
Ci+1 = CommunityUpdate(G;i11,V,C;, K)

ORI

information that has not been discovered so far; and (iii) simultaneously update the network
G; to generate G; 41 and its community structure. While iterating the above procedures, the
currently available network structure G; is used as the main information source to decide
candidate nodes to scan. It is critical to scan the nodes in the network in such an order that it
facilitates the most efficient discovery of network communities while maintaining a low cost.

Algorithm 1 alternately solves the two sub-problems we mentioned earlier. It starts by
querying all the nodes in Vr (line 1). This is to ensure that all the target nodes and their local
network structures are fully scanned for an initial community assignment. We handle two
sub-problems by two parts: the network scan part in lines 5-8, and the community update
part in line 9. C; is the community structure for Vr at the ith iteration, and is incrementally
modified using CommunityUpdate() function (Algorithm 2). K is the maximum number of
communities the target set can have. The parameter K is internally used in the network
scan and community update steps. We will discuss these two parts in detail in the following
sections.

5 Network scan

The purpose of network scan is to discover unexplored parts of the network, where a node is
scanned to know its full neighborhood structure. It mainly aims at exploring and acquiring
more nodes and their connections, leading to the detection of better community structure.
Since the effectiveness of the algorithm mainly depends on the scan sequence, the main focus
of our network scan approach is to decide the best candidate nodes to be processed next
given an intermediate network. The parameter k denotes the number of nodes chosen to be
scanned.

@ Springer

2286 Z.Cuietal.

Candidates for network scan Let S; be a set of scanned nodes till iteration (i — 1). The
neighbor set is defined as ; = {v|3u € S;, (v, u) € &}. The scan candidate set C; = N; \ S;
contains only nodes that are not scanned among all nodes in A;.

There are many candidate selection algorithms for network scan [39,40]. Two of them are
simple but widely used in various fields: random sampling and greedy sampling [41]. We will
use these methods as baselines in Sect. 7. Soundarajan et al. [40] suggested to select the node
that maximizes the total number of nodes scanned with the aim of exploring the complete
network structure. Other methods were specifically designed for community detection [8].
These methods dynamically sample nodes from an intermediate network in such a way that
a certain community quality measurement metric is expected to be improved. Liu et al. [8]
selected nodes in such a way that the value of ‘normalized cut’ decreases or ‘modularity’
increases. Here, we briefly describe these two metrics and how we use them to design baseline
methods.

Normalized cut Given K communities at iteration i, the normalized cut is defined as:
Z/f: 1 % where assoc(Cy, G;) represents the total degree of nodes in C; within G;
and cut(Cg, G; — Cy) is the number of edge-cuts between C and all other remaining commu-
nities. The optimization of the above cost function is to minimize edge-cuts (connections)
among different communities. The baseline algorithms used in the experiment follow Liu
et al. [8]. We calculate the minimum normalized cut cost for each node in the candidate set
C;—at this step, the correct community membership of candidates is not known, and thus all
possible community assignments of candidates have to be tested after fixing the community
structures of the scanned nodes in S;. Among all the candidates in C;, k nodes leading to
the minimum normalized cut are selected and added to the intermediate network. Here, we
assume that the community structure does not change for all nodes but newly added ones in
the intermediate network.

Modularity Modularity is used to evaluate the strength of partitioning a network into
different communities: Z,le (e(Ck, S) — a(Ck, $)?), where e(Ck, S) is the fraction of edges
where both nodes are in the same community C*, and a(C¥,) is the fraction of edges that
at least one node is in C*. A high modularity value means dense connections between the
nodes in a community but sparse connections between the nodes in different communities.
We take the same approach as in normalized cut, i.e., testing with all possible community
membership assignments of candidates, and choosing k candidate nodes that lead to the
maximum modularity [8].

Here, we propose a new candidate selection method that does not incur any additional
hidden cost. We utilize Deepwalk [42] and node2vec [43] to obtain latent feature vectors of
nodes, i.e., network embedding into feature space. We first briefly introduce Deepwalk and
node2vec and then discuss our proposed algorithm.

5.1 Network embedding algorithms

Deepwalk [42] and node2vec [43] are deep learning-based embedding methods to learn latent
representations of nodes in a network. Deepwalk encodes social relations into a continuous
vector space after modeling a series of random walks with a Natural Language Processing
method. The key idea is that each visited node during a random walk can be considered as
a word, and the random walk corresponds to a sentence. Node2vec learns a latent feature
vector that maximizes the likelihood of maintaining the neighborhoods of the node.

The feature representation framework generally consists of two main parts: a random walk
generator and a representation update. Both of the above two frameworks have the common

@ Springer

Incremental community discovery via latent network representation... 2287

generator, and for representation updates, Deepwalk uses SkipGram [44] and node2vec uses a
modified SkipGram with customizations. The generator takes a graph as input and randomly
samples a path of a given length from the starting node which is uniformly chosen over all
possible nodes in the network. Each node is a neighbor of the previous node in the path.
Deepwalk and node2vec are both scalable, and their effectiveness for community detection
is shown in [42,43,45,46].

Terminology 1 (Latent representation) A latent vector representation of a node v in G; gen-
erated by a network embedding algorithm is an abstracted neighborhood information of v.
Thus, two nodes with similar latent vectors are close neighbors.

5.2 Proposed candidate selection method—information gain

The proposed algorithm is based on the latent representation described above. In each itera-
tion, we run a network embedding algorithm to update the representation of the nodes in the
network. Let L R; (v) be a vector representing the latent information of a node v € V.

Information gain The information gain of a node v at iteration i is defined as Gain;(v) =
[ILR;—1(v) — LR; (V)||1 or 2, Where || - ||1 (resp. || - ||2) means the L (resp. L) vector norm.
The higher the information gain, the greater the changes in network structures around v after
the last scan. If LR;_1(v) and LR;(v) are same, it means there is no change around v.

If a candidate node c is discovered and added in the ith iteration (i.e., LR;_(c) is not
defined), then Gain;(v) = a||LR;(c)||, where o accounts for the penalty for missing infor-
mation in the last iteration. A node with low information gain has very stable and rigid
neighborhood structure. It is unlikely that scanning such stable neighborhoods brings any
drastic update in community structure. Thus, we choose top k nodes with the highest infor-
mation gain. Throughout our experiments, the L, norm is considered for information gain,
and @ is set to 1.

5.3 Comparison of node selection metrics

In this section, we analyze the characteristics of three node selection metrics: normalized cut,
modularity, and information gain. We first suggest two key factors to be considered while
scanning a network as follows:

1. Scan as many communities as possible, and make the number of scanned nodes in each
community as even as possible.
2. Scan actively around community boundaries (rather than core of the communities).

These two actions are crucial for the EM algorithm to better identify community structure.
In general, community cores have very dense connections and are easier to detect [47].
However, connections are weak around community boundaries because their community
memberships are ambiguous in many cases [9]. To help the EM algorithm in this hostile
situation, we scan more around those community boundaries and evenly for each community.
Our information gain is designed to meet these key factors.

In Table 1, we summarize key statistics of three metrics that can show how good a metric
is w.r.t. the above two factors. We define the key statistics as follows:

. Given a selected node v and its ground-truth community C,,, we calculate the ratio of the
discovered nodes to the size of Cv i e. number of dmcovered node% so farin C, .
2. The number of ground-truth communities that v’s nelghbors belong to.

@ Springer

2288 Z.Cuietal.

Table 1 Statistics of various metrics to scan a selected node in Coauthorship dataset [48]: (i) the average ratio
of the number of discovered nodes to the number of all nodes in the same ground-truth community of top-5
candidates, and (ii) the average number of communities that the neighbors of top-5 candidates belong to

Candidate ranking Algorithm Discovered/total nodes No. of neigh.” comm.
Ist Normalized Cut 0.06 5.5
Modularity 0.08 5.6
Information Gain 0.05 6.3
2nd Normalized Cut 0.08 5.0
Modularity 0.10 52
Information Gain 0.06 58
3rd Normalized Cut 0.09 4.9
Modularity 0.12 4.7
Information Gain 0.07 55
4th Normalized Cut 0.11 4.5
Modularity 0.15 4.3
Information Gain 0.10 5.0
Sth Normalized Cut 0.12 4.0
Modularity 0.17 3.9
Information Gain 0.12 47

The best methods are shown in bold

In each iteration, the statistics of top-5 candidates are collected and the average across
iterations is reported. The proposed information gain shows the lowest values for the first
statistics and the highest for the second statistics, which indicates that it can (i) scan more
communities than others (so that the average number of discovered nodes in a community is
smaller than others given the same budget) and (ii) scan around community boundaries more
actively.

Algorithm 2 CommunityUpdate(Intermediate network: G;, A set of scanned nodes: V, Com-
munity structure: C;, Max community numbers: K)

1: for each c € V do
2: /I Let N be a set of neighbors of c. N was updated after scanning c.

3 Initialize edge parameters g¢y (h), where w € Ne
4 while until parameters are converged do

5: for each node v in /.. do

6 Update 0,

7 Update gy (h), where w € N

8 if the global update condition is met then
9: // This part is a global update.

10: for each community 4 in C;, do

11: Update 6,, for all nodes in G;

12: Update gy (k) for all edges in G;
13: for each node w in V; do

14: /' Label j means the community of w.
15: Update Label; = argmaxy Oyx

16: // Enhance the local and global update results using the Markov Random Field (MRF) denoising technique.
17: MRFdenoising(Label, G;,C;, K)

@ Springer

Incremental community discovery via latent network representation... 2289

6 Community structure update

The task of this step is to update community membership of nodes in an intermediate net-
work G; based on (i) the community structure of G;_1, and (ii) new nodes discovered after
scanning. Existing approaches involve both local and global updates. While local updates
only consider new edges and nodes, global updates consider the whole intermediate network
G;. The proposed update process consists of three steps—Step I: an incremental local update
based on the expectation—maximization [6]; Step 2: an intermittent global update to correct
the local update; and Step 3: the MRF denoising [7] to further adjust both of the local and
the global updates. The expectation—maximization (EM) algorithm is originally a part of
the generative model suggested in [6]. The local update has less computational complexity.
However, it may introduce errors due to the lack of information about the whole intermediate
network.

The EM algorithm itself is very efficient but has a limitation. When the number of hidden
variables (i.e., community structures in our case) to learn is large, it is known to be sub-
optimal. For our targeted community detection, however, we think that the EM method can
still afford. In our method, however, the number of hidden variables is not as many as that of
usual full community detection problems. Alternatives are other moment-based or spectral-
based methods, e.g., hidden Markov model (HMM). However, the inference algorithm of
HMM is not as cheap as that of the EM method [49]. We think that the EM algorithm is a
good choice in our case considering the relatively small number of hidden variables to infer.

Thus, EM algorithm is applied in every iteration and a global update will be run peri-
odically. After that, we further reduce errors introduced by the network updates using the
Markov Random Field (MRF). We fully customize both of the EM and the MRF algorithms
in the proposed community structure update method.

6.1 Expectation—-maximization algorithm

The EM algorithm is an iterative method to find the maximum likelihood or maximum a
posteriori estimate of parameters. It consists of parameter learning and estimation processes.
For nodes in the network, the model is parameterized by 6,;, which represents the propensity
that a node v has edges in a community 4. 6, can be understood as a parameter that char-
acterizes the number of edges. The product 8, - 6, is the expected number of edges in the
community % that lie between nodes v and w. Let A be a matrix whose elements represent
the number of edges between nodes. The number of edges, i.e., Ay, is Poisson distributed
around the expected value, according to the generative model in [6]. Thus, the probability of
generating a graph G is:

(ZnOunOn) v

P(g|0) = vaw Avw!

exp(—Xp0vnOwn)
We follow [6] for updates in the EM step of Algorithm 2. gy, (%) is a parameter in the
update process:

Ovh - 6 A h
qow (h) = vk Twh and Oy = 2w AvwGow (h)

Zh Ovh - Owh vV va Apwqow(h)

The community label of a node v is & that maximizes the parameter 0,;. The Commu-
nityUpdate() function iterates the procedure for each scanned node ¢ € V. In Algorithm 2,
for the local update, only edges that are linked to the nodes in N, are initialized and updated

@ Springer

2290 Z.Cuietal.

(lines 3-7). O, and gy (h) can be updated accordingly. In the maximization step, all nodes
in G; should be updated as parameter 6, changes, where w € V;, and are also affected by
nodes that are not in the locality of v. Local update usually produces small errors because G;
and G; 4 are very similar in many cases.

However, it is also important to ensure that such errors do not become cumulative. There-
fore, in Algorithm 2, a global update process (lines 10-12) is executed when the number
of edges increases by at least 10% (i.e., the global update condition in line 8). Note that as
network size increases, the global update happens less frequently.

We are mainly interested in detecting the community structure of V. This does not mean
that only 6,; (where v € Vr) is needed to be calculated because 0, is strongly entangled
with 6y, where u € V \ Vr is a neighbor of v.

After the EM step, we assign an updated community label to each node in G; (lines 13-15
of Algorithm 2). Lastly, we perform one more denoising process (line 17) after updating for
scanned nodes.

6.2 Markov random field (MRF) denoising

The results of the community update operation from EM algorithm provide a good indication
of actual community membership labels. However, errors naturally inhere in the process
because it is an approximation of the true community assignment. We attempt to further
eliminate the errors from the estimated community assignment. In this paper, we utilize
conditional independence and clique factorization properties [7] of the Markov Random
Field (MRF). Simply put, we can consider MRF as a generalization of the Markov Chain
concept to graphs (Fig. 2). Thus a node’s community is decided by its neighbors’ community
memberships. In fact, MRF is one of the most popular graphical inference methods such as
Bayesian Network and Belief Propagation.

Note that the (observed) community results of EM algorithm are obtained from the (hid-
den) noise-free community structure. Our goal is to infer the noise-free hidden community
structure from the results observed in the EM algorithm. Let 0, € {1,2,..., K} be the
observed label of a node v € G;, and &, be the hidden actual community label. Given the
observed noisy labels of all nodes, our goal is to recover the original noise-free community
labels, considering the network connectivity of G;.

Since the noise level is likely to be small, there is a strong correlation among oy, h, and h,,,
where v and u are neighbors of each other. This prior knowledge can be captured using MRF.
This graphical model has two types of cliques, and each of them involves two nodes. The
cliques of the form {4, 0,} have an energy function that expresses the correlation between
the two. Since there are multiple community labels, a closed form of the energy function
between all observed and hidden label pairs is as follows:

Fig.2 MRF denoising model. X;
(white nodes) is the hidden
variable denoting the actual
community membership for each
node, and Y; (blue nodes)
represents the corresponding
observed variable obtained from
the EM algorithm (colour figure
online)

@ Springer

Incremental community discovery via latent network representation... 2291

e(h,0) = —ny_min(l, |h, — o,]) ey

For each pair of labels, energy penalty is equal to 1 only if community membership is
different, and 0 otherwise. This is desirable because it leads to a lower energy (i.e., high
probability) when labels are the same, and a higher energy otherwise. 7 is a positive constant
that needs a calibration.

The other cliques contain pairs of neighboring hidden node labels. Thus, (v, u) € &; for
a pair h, and h,. Similarly, the energy is expected to be low when two neighbors have the
same community label.

e(h, i)y =—p Y min(l, |k, — hy)) (@)

(v,u)e&;

The complete energy function used to define a joint distribution is as follows: p(h, 0) =
%exp(—e(h,o0)—e(h, h)), where Z is a normalizing constant. To achieve better community
updates, we wish to find /; having a high probability p(%, 0). There are many algorithms
to solve this optimization problem. Here, we use an iterative conditional modes technique
(ICM) [50] which is a coordinate-wise gradient ascent method.

7 Experiments

In this section, we start by presenting the metrics used for evaluation, followed by detailed
experimental results.

7.1 Evaluation metrics

The effectiveness should be measured in comparison with the true community labels of nodes.
Note that the measure aims only for the target nodes since the goal of our community update
is to obtain better community structure of the target set of nodes. There are in total at most K
different communities in the network, and let ny, na, ..., n,, be the number of target nodes
in the m different communities detected by the algorithms. The value of m may not be equal
to the total number of communities K. Let f;; be the fraction of target nodes in the estimated
ith community that belong to the jth true community. Thus, we can find the true community
that is most likely equivalent to the /th predicted community by argmaxc(;» gy fij- In
particular, F; = maxe(12,... .k} fij. The reason we do this is that the estimated community
may not have the same order of communities as the true labels; we have to find the mapping
between estimated and true communities. Also, F; is always in (0, 1]. In the ideal situation
when all the nodes in the ith estimated community have the same true label, F; is equal to

1. The Average Cluster Purity [8] is: ACP = % A higher value of ACP indicates a
better quality of the community structure. -

As the algorithm produces more estimated communities (i.e., m gets larger), ACP tends
to be improved. Therefore, ACP may not always be a good metric; in particular when the
number of communities is large, the ACP metric may be smaller compared with a small
number of communities. We evaluate the performance using another measure called Average
Cluster Entropy (ACE) that considers other estimated communities unlike F;. Simply put,

the entropy E; for an estimated community i is E; = 1 — Zf:] fli The Average Cluster

Entropy is defined as: ACE = % A low value of ACE implies a high purity and a
i=1"

@ Springer

2292 Z.Cuietal.

Table 2 Statistics of the datasets used in our experiments

Dataset Nodes Edges Targets Total Com. Target Com.
DBLP 28,702 66,831 115 4 4
Coauthorship 90,302 352,184 1374 24 10
Synthetic 36,000 291,424 715 10 10
Amazon 334,863 925,872 602 75,149 20
YouTube 1,134,890 2,987,624 800 8385 40

We use five different networks with various sizes and characteristics

better community structure. An estimated community i that consists only of nodes from same
true community will have the lowest entropy E; = 0, and if the true labels of the estimated
community i are evenly distributed over K different true communities, it will have entropy

(1 —1/m).

7.2 Datasets

There are very few publicly available networks with disjoint ground-truth communities. We
use the following networks in our experiments (see Table 2 for the statistics):

(i) DBLP network was collected by [8]. In this dataset, authors are considered as nodes
and pairs of co-authors are connected with edges if they collaborated in a paper. Liu et al. [8]
considered 115 authors from four real research groups led by Prof. Jiawei Han, Prof. Christos
Faloutsos, Prof. Dan Roth, and Prof. Michael Jordan as target nodes.

(ii) Coauthorship network was released by [48]. It contains authors in Computer Science
as nodes, and edges represent the co-author relationship. There are 24 disjoint ground-truth
communities representing different research areas (Algorithm, Al, NLP, ML, etc.). It may
be possible that an author has worked on multiple fields which causes the communities to
overlap. To make it disjoint, we follow the approaches in [48]—assign each author to that
research community in which he/she has published most papers. Total 1374 target nodes
constituting 10 communities are randomly selected.

(iii) Synthetic network is a LFR network [51], consisting of 36,000 nodes. The average
degree of a node is set to 8, and the number of nodes in a community is set in the range of
[50, 100]. The target nodes are randomly sampled from 10 communities. There are at least
20 nodes in each target selected community.

Further in our experiments, we adopt 2 standard networks which contain known overlap-
ping community structure [52], and pre-process the networks as follows—from each such
network, we select those nodes as target nodes whose communities are completely disjoint.
Then even though the underlying community structure of the entire network is overlapping,
the ground-truth communities around the target nodes are disjoint. The networks are as fol-
lows:

(iv) Amazon network [52] is a co-purchase network, consisting of nodes as products, and
two products are connected if they have been co-purchased by at least one customer. Products
from the same category define a community. We randomly select 602 nodes constituting 20
communities that have no overlap.

(v) YouTube network [52] consists of users as nodes and friendships as edges. The ground-
truth communities are user-defined groups. We randomly select 800 nodes constituting 40
communities that have no overlap.

@ Springer

Incremental community discovery via latent network representation... 2293

7.3 Baseline algorithms

We consider several baseline methods for two different sub-problems (network scan and com-
munity update) separately. As the performance of community detection algorithm depends
critically upon the order of nodes scanned, we test commonly used network scan algorithms
while maintaining the same community update stated in Lines 3—15 of Algorithm 2 without
the MRF denoising step. In particular, the following strategies mentioned in Sect. 5 were
tested.

— Random sampling This algorithm randomly picks k nodes from Zipf (exponential) dis-
tribution in the intermediate network G; that are not scanned, and searches their neighbors.

— Greedy sampling This algorithm selects the k nodes with the largest number of degree
in the candidate node set.

— Ratio of degree and entropy combination algorithm This approach combines the

greedy algorithm and community membership of the one-hop neighbors of the scanned
entropy
degree
the community distribution of neighbors [8]. Specifically, when the neighbors are from

one cluster, the entropy is small; it is large otherwise. We choose k candidates with the
smallest metric value.

— Normalized cut-based algorithm This is a variation of [8] (see Sect. 5).

— Modularity-based algorithm This is another variation of [8] (see Sect. 5).

node. The metric we compute for each node is , where entropy is computed with

We once again emphasize that the last two strategies were mistakenly utilized by Liu et al.
[8]; however, we use their original implementation without any modification. We will show
that despite the information leakage in [8], our method still outperforms them across different
datasets. We also compare our network scan algorithm with and without MRF denoising
step to better illustrate the improvement due to the MRF denoising. In addition to this, we
compare our method with two other incremental community detection methods: (i) (QCA):
This framework uses a modularity-based approach for incremental community detection [37],
and (ii) (DyPerm): It maximizes permanence, a local community-centric measure to detect
communities [38]. DyPerm was shown to outperform most of the state-of-the-art incremental
community detection methods (Fig. 3).

7.4 Sensitivity of parameters

In this section, we briefly describe our parameter selection strategy. The proposed method
has three major parameters, the number of nodes to scan k and two MRF parameters 8 and

Fig.3 ACP with values of B and n for Coauthorship, Synthetic and Amazon networks

0.80 Coauthorship 0.870 Synthetic
0.865
§ 0.79 EL() 0.860
0.78fv~ A ~ 0.855
“é» 077 % 0.850 >
B o
0.76 :
< ol < o35 —
0755 y— 10 0.8305 76 10
BIn BIn

@ Springer

2294 Z.Cuietal.

n. We varied k from 1 to 10. Of course, k = 1 theoretically gives the best result. In many
cases, however, we could not find any distinctive differences even for k = 10. Thus, we have
chosen the median value k = 5. The MRF denoising performance varies up to 2% across
different parameter settings (different values of 8 and n), which may not be significant. We
can therefore conclude that the result of our method is less sensitive to parameter selection.
In the rest of the section, we use the following parameter values as default: k = 5, 8 = 8.8
and n = 1.9.

7.5 Evaluation results

We run each experiment 20 times with random initialization of all parameters, and the average
performance is shown. We conduct a threefold experimental setup—(i) the cost of scanning
each node is equally set to 1 (Constant Cost); (ii) the cost varies across nodes (Varying Cost),
and (iii) the impact of MRF denoising in our method.

7.5.1 Results without denoising

We discuss the experimental results of our method without MRF denoising as follows.

Constant cost In this experiment, the cost of scanning a node is set to 1. Figure 4 shows
the performance of different network scan algorithms for all the networks. The performance
for each algorithm is shown, with increasing values of the budget on the x-axis and the
ACP/APE on the y-axis. Our proposed algorithm outperforms other baselines significantly
in all cases. This proves the superiority of information gain over other scan metrics.

The greedy algorithm shows the worst performance even compared to random sampling
(sometimes 20% less) as it adds a lot of noisy information to the network structure. Fur-
thermore, it is the least stable one among all algorithms. On the other hand, modularity and
normalized cut-based algorithms are expected to have better results as they use the informa-
tion of candidates’ neighbors. However, our algorithm (with both node2vec and Deepwalk)
outperforms these baselines for all the datasets—Deepwalk shows slightly better performance
than node2vec.

Varying cost To simulate real scenarios, we conduct experiments with various costs.
The cost is generated according to the Zipf distribution as suggested in [§]—all nodes are
randomly shuffled and z(v) = 1/ind (v)*, where ind(v) is the index of node v after shuffling.
The cost Q(v) is the normalization of z(v) over all nodes.

The ACP/ACE performance with varying costs shows the similar pattern —our method
achieves better performance than the baseline methods. While at some points there are small
fluctuations, the overall trend almost remains the same. This again confirms that our strategy
is superior to its competitors in community detection.

7.5.2 Performance with denoising

Here, we show the results after including the MRF denoising mentioned in Sect. 6.2. Figure 5
shows the results before and after applying the MRF denoising step. For simplicity, we only
show the ACP results (ACE results have similar trends). We observe that the MRF denoising
can improve the ACP/ACE by 2%~8%. The MRF denoising also improves the performance
of baseline methods, e.g., the random sampling in Fig. 5. We argue that the MRF denoising
has a positive effect on recovering actual hidden community memberships, and it can be
generalized to many other strategies.

@ Springer

Incremental community discovery via latent network representation...

2295

ACP

Coauthorship ___

0.651000

Amazon

Synth

0.60
0.58
& o.56
go.
0.54
1500 2000 1000 1500 2000 0-52 450 600 800 1000 1200 1400
Budgets Budgets Budgets
DBLP Youtub
0.97 0.64 QUIUDE Node2vec
. —— Deepwalk
063 = . / —— Entropy
il RSl
& 0.62 s@\/ 74—/ —— Rand.
< R > —— Greedy
0.61 —— Ncut
—=— Modu.
0.92 500 1000 1500 2000 060650 800 1000 1200 1400 —— QCA
Budgets Budgets —=— DyPerm
Coauthorship Synthetic Amazon

0.30
0.28

Go.26

o
0.24

0.22

1000

1000 1500 2000 1500 2000 05256660 800 1000 1200 1400
Budgets Budgets Budgets
DBLP Youtube
05[] Node2vec
1) —+— Deepwalk
0.20{ || —— Entropy
|
w | w —— Rand.
v} ’ | v}
<0.15 < —— Greedy
0.10 / —— Ncut
— —=— Modu.
0.05 5501000 15002000 600 800 1000 1200 1400 - QCA
Budgets Budgets DyPerm

Fig. 4 Performance (ACP/ACE) of network scan and community update with constant cost and without the
MREF denoising for five datasets. The higher (lower) the value of ACP (ACE), the better the performance

Coauthorship

0.88

Synthetic

0.59

Amazon

0.87
0.86.
o Deepwalk no MRF]
=—= Deepwalk MRF g 0.85

Node2vec no MRF

0.58
0.57
a 0.56
Q
< 0.55

Deepwalk no MRF

Deepwalk MRF
- Node2vec no MRF

Deepwalk no MRF
Deepwalk MRF
Node2vec no MRF

+—+ Node2vec MRF 0.84 Node2vec MRF 0.54 +—+ Node2vec MRF
+—+ Rand. no MRF Rand. no MRF 0.53 +—+ Rand. no MRF
Rand. MRF 0.83 Rand. MRF : Rand. MRF
10001200 1400 1600 1800 2000 2200 800 100012001400160018002000 0'52400 600 800 1000 1200 1400

Budgets

Budgets

Budgets

Fig.5 MREF denoising performance (ACP) of our algorithm and random sampling methods

7.6 Summary of the experimental results

For all five networks, we report the performance (in terms of both ACP and ACE) of all the
competing methods. We consider our complete method (node2vec/Deepwalk + EM algorithm
+ MRF denoising) and other existing baselines (without any modification). Table 3 shows

@ Springer

2296 Z.Cuietal.

Table 3 Summary of the experimental results for all the datasets

Dataset Coauthorship Synthetic Amazon DBLP YouTube Average
[8]+Ncut

ACP 0.76 0.87 0.52 0.96 0.62 0.74

ACE 0.34 0.21 0.59 0.07 0.55 0.35
[8]+Modu

ACP 0.78 0.86 0.56 0.96 0.62 0.75

ACE 0.33 0.22 0.58 0.06 0.55 0.35
DyPerm [38]

ACP 0.76 0.85 0.56 0.96 0.62 0.75

ACE 0.36 0.22 0.59 0.09 0.55 0.36
QCA [37]

ACP 0.71 0.83 0.55 0.94 0.61 0.73

ACE 0.37 0.24 0.56 0.09 0.57 0.37
Random

ACP 0.69 0.84 0.55 0.94 0.62 0.73

ACE 0.42 0.24 0.57 0.10 0.56 0.38
Greedy

ACP 0.72 0.82 0.52 0.92 0.62 0.72

ACE 0.39 0.28 0.59 0.15 0.55 0.39
Entropy

ACP 0.72 0.85 0.56 0.96 0.62 0.74

ACE 0.39 0.24 0.56 0.07 0.56 0.36
Our+Deepwalk

ACP 0.80 0.88 0.56 0.96 0.64 0.77

ACE 0.30 0.22 0.56 0.08 0.54 0.34
Our+node2vec

ACP 0.79 0.87 0.57 0.96 0.64 0.77

ACE 0.32 0.21 0.56 0.08 0.54 0.34

Bold values highlight the best performance. We consider the largest budget with constant cost and default
parameter setting. The higher (lower) the value of ACP (ACE), the better the performance

that for all the networks, our method is as good as the best baseline [8] or even better than it.
The ACP (ACE) values of our Deepwalk-based and node2vec-based methods averaged over
all the datasets are the same, 0.77 (0.34), followed by [§]+Modu and [8]+NCut. In short, our
method significantly beats the existing baselines over all the datasets.

One thing to note is that the proposed method usually takes 5-20 times longer than the
existing NetDiscover[8] algorithm, while Net Di scover assumes every candidate node
is scanned, and selects the best one but it only considers the cost of the selected node as the
step for scanning step. The strict comparison of time between these methods may not be very
useful.

8 Conclusion

In this paper, we studied a realistic setup for community detection—the entire network
is not known a priori, and therefore one needs to progressively scan unknown nodes and

@ Springer

Incremental community discovery via latent network representation... 2297

update the community structure around a target node set. The problem is divided into two
sub-problems—network scan and community update. We proposed a novel method for each
sub-problem. In the network scan step, a new metric information gain was designed to decide
the best node to scan. A combination of the EM and MRF algorithm was proposed for the
community update step to further recover the actual community labels of the nodes.

The major advances that the present work provides in the field of community detection
are as follows:

— There are very few attempts made to process an incomplete network using an incremental
way where one network construction reinforces the community detection that in turn helps
discover better network structure. Most of the state-of-the-art algorithms assume that the
static snapshot of the network is available beforehand, which may not be a realistic
setting. Therefore, our problem definition is novel.

— The use of EM framework and Markovian denoising is the major technical novelty.

Our proposed method consistently achieved better performance (on average 10.2%
higher than the best baseline) across five different datasets. We also make our experi-
mental codes available in the spirit of reproducible research: https://github.com/ZheCui/
MRFCommDetect.

Acknowledgements T. Chakraborty would like to acknowledge the support of Ramanujan Fellowship, Early
Career Research Award (ECR/2017/001691) (SERB, DST) and the centre for Design and New Media (sup-
ported by TCS), IIIT-Delhi. Noseong Park is the corresponding author.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75-174
2. Clauset A (2005) Finding local community structure in networks. Phys Rev E 72(2):026132
3. Luo F, Wang JZ, Promislow E (2008) Exploring local community structures in large networks. Web Intell
Agent Syst Int J 6(4):387-400
4. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large
networks. J Stat Mech Theory Exp 2008(10):P10008
5. Kim M, Leskovec J (2011) The network completion problem: Inferring missing nodes and edges in
networks. In: Proceedings of the 2011 SIAM international conference on data mining, pp 47-58
6. Ball B, Karrer B, Newman MEJ (2011) Efficient and principled method for detecting communities in
networks. Phys Rev E 84:036103
7. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin
8. LiulJ, Aggarwal C, HanJ (2015) On integrating network and community discovery. In: WSDM, Shanghai,
China, pp 117-126
9. Chakraborty T, Srinivasan S, Ganguly N, Mukherjee A, Bhowmick S (2016) Permanence and community
structure in complex networks. ACM Trans Knowl Discov Data 11(2):14:1-14:34
10. Chakraborty T, Dalmia A, Mukherjee A, Ganguly N (2017) Metrics for community analysis: a survey.
ACM Comput Surv 50(4):54:1-54:37
11. Nassar H, Kloster K, Gleich DF (2015) Strong localization in personalized PageRank vectors. In: Inter-
national workshop on algorithms and models for the web-graph. Springer, pp 190-202
12. Yin H, Benson AR, Leskovec J, Gleich DF (2017) Local higher-order graph clustering. In: ACM Confer-
ence on knowledge discovery and data mining, pp 555-564
13. Liu C, LiuJ, Jiang Z (2014) A multiobjective evolutionary algorithm based on similarity for community
detection from signed social networks. IEEE Trans Cybern 44(12):2274-2287
14. Wang X, Liu J (2017) A layer reduction based community detection algorithm on multiplex networks.
Physica A 471:244-252

@ Springer

https://github.com/ZheCui/MRFCommDetect
https://github.com/ZheCui/MRFCommDetect
http://creativecommons.org/licenses/by/4.0/

2298 Z.Cuietal.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

. LiZ,LiuJ (2016) A multi-agent genetic algorithm for community detection in complex networks. Physica

A 449:336-347

Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: ACM Conference on knowledge
discovery and data mining, pp 554-560

Zhang J, Yu PS (2015) Community detection for emerging networks. In: Proceedings of the 2015 SIAM
international conference on data mining, Vancouver, Canada, pp 127-135

Cheng J, Wu X, Zhou M, Gao S, Huang Z, Liu C (2018) A novel method for detecting new overlapping
community in complex evolving networks. IEEE Trans Syst Man Cybern Syst 99(99):1-13

Wang Z, Zhang D, Zhou X, Yang D, YuZ, YuZ (2014) Discovering and profiling overlapping communities
in location-based social networks. IEEE Trans Syst Man Cybern Syst 44(4):499-509

Lin W, Kong X, Yu PS, Wu Q, Jia Y, Li C (2012) Community detection in incomplete information
networks. In: International conference on world wide web. Lyon, France, pp 341-350

Wang L, Wang J, Bi Y, Wu W, Xu W, Lian B (2014) Noise-tolerance community detection and evolution
in dynamic social networks. J Comb Optim 28(3):600-612

Koujaku S, Kudo M, Takigawa I, Imai H (2015) Community change detection in dynamic networks in
noisy environment. In: Proceedings of the international conference on World Wide Web, pp 793-798
Leskovec J, Faloutsos C (2006) Sampling from large graphs. In: International conference on knowledge
discovery and data mining, pp 631-636

Ahmed NK, Neville J, Kompella R (2014) Network sampling: from static to streaming graphs. ACM
Trans Knowl Discov Data 8(2):1-56

Baykan E, Henzinger M, Weber I (2013) A comprehensive study of techniques for url-based web page
language classification. ACM Trans Web 7(1):1-37

Gabielkov M, Rao A, Legout A (2014) Sampling online social networks: an experimental study of twitter.
ACM Comput Commun Rev 44(4):127-128

LuJ, Li D (2012) Sampling online social networks by random walk. In: International workshop on hot
topics on interdisciplinary social networks research, pp 33—40

Yun S-Y, Proutiere A (2014) Community detection via random and adaptive sampling. In: Conference on
learning theory, pp 138-175

Mahoney MW, Orecchia L, Vishnoi NK (2012) A local spectral method for graphs: with applications to
improving graph partitions and exploring data graphs locally. J Mach Learn Res 13(8):2339-2365
Meng F, Zhang F, Zhu M, Xing Y, Wang Z, Shi J (2016) Incremental density-based link clustering
algorithm for community detection in dynamic networks. Math Prob Eng 2016:1873504

Xie J, Chen M, Szymanski BK (2013) Labelrankt: incremental community detection in dynamic networks
via label propagation. In: Proceedings of the workshop on dynamic networks management and mining,
pp 25-32

Takaffoli M, Rabbany R, Zaiane OR (2013) Incremental local community identification in dynamic social
networks. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks
analysis and mining, pp 90-94

Zakrzewska A, Bader DA (2015) Fast incremental community detection on dynamic graphs. In: Interna-
tional conference on parallel processing and applied mathematics, pp 207-217

Clementi A, Di Ianni M, Gambosi G, Natale E, Silvestri R (2015) Distributed community detection in
dynamic graphs. Theor Comput Sci 584:19—-41

Becchetti L, Clementi A, Natale E, Pasquale F, Trevisan L (2017) Find your place: simple distributed
algorithms for community detection. In: Proceedings of the 28th annual ACM SIAM symposium on
discrete algorithms, pp 940-959

Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. In: Advances in
neural information processing systems. Vancouver, British Columbia, Canada, pp 849-856

Nguyen NP, Dinh TN, Xuan Y, Thai MT (2011) Adaptive algorithms for detecting community structure in
dynamic social networks. In: IEEE International conference on computer communications, pp 2282-2290
Agarwal P, Verma R, Agarwal A, Chakraborty T (2018) Dyperm: maximizing permanence for dynamic
community detection. In Pacific-asia conference on advances in knowledge discovery and data mining
(PAKDD), pp 437-449

Li X, Wu B, Guo Q, Zeng X, Shi C (2015) Dynamic community detection algorithm based on incremental
identification. In: 2015 IEEE International conference on data mining workshop, pp 900-907
Soundarajan S, Eliassi-Rad T, Gallagher B, Pinar A (2016) Maxreach: reducing network incompleteness
through node probes. In: ASONAM, San Fransisco, CA, USA, pp 152-157

Vitter JS (1985) Random sampling with a reservoir. ACM Trans Math Softw (TOMS) 11(1):37-57
Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: SIGKDD,
New York, USA, pp 701-710

@ Springer

Incremental community discovery via latent network representation... 2299

43.

44,

45.

46.

47.

48.

49.

50.
SI.

52.

Grover A, Leskovec J (2016) Node2vec: scalable feature learning for networks. In: SIGKDD, San Fran-
cisco, CA, USA, pp 855-864

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector
space, CoRR, arXiv:1301.3781

Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding.
In: WWW, Florence, Italy, pp 1067-1077

Chang S, Han W, Tang J, Qi G-J, Aggarwal CC, Huang TS (2015) Heterogeneous network embedding
via deep architectures In: SIGKDD, Sydney, Australia, pp 119-128

Seifi M, Junier I, Rouquier J-B, Iskrov S, Guillaume J-L (2013) Stable community cores in complex net-
works. In: Menezes R, Evsukoff A, Gonzdlez MC (eds) Complex networks. Springer, Berlin, Heidelberg,
pp 87-98

Chakraborty T, Srinivasan S, Ganguly N, Mukherjee A, Bhowmick S (2014) On the permanence of
vertices in network communities. In: Proceedings of international conference on knowledge discovery
and data mining, pp 1396-1405

Khreich W, Granger E, Miri A, Sabourin R (2010) On the memory complexity of the forward—backward
algorithm. Pattern Recogn Lett 31(2):91-99

Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc. Ser B (Methodol) 48(3):259-302
Lancichinetti A, Fortunato S (2009) Benchmarks for testing community detection algorithms on directed
and weighted graphs with overlapping communities. Phys Rev E 80:016118

LeskovecJ, Krevl A (2014) SNAP Datasets: stanford large network dataset collection, http://snap.stanford.
edu/data. Accessed May 2018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Zhe Cui received a B.E. degree from Zhejiang University, Hangzhou,
China, in 2013 and an M.S. and Ph.D. degree from University of Mary-
land, College Park, USA, in 2018 and 2019, respectively. His research
interests include recommendation systems, machine learning, and data
mining.

@ Springer

http://arxiv.org/abs/1301.3781
http://snap.stanford.edu/data
http://snap.stanford.edu/data

2300

Z.Cuietal.

@ Springer

Noseong Park is an Assistant Professor at the Dept. of IST, George
Mason University, since August 2018. Prior to this, he was an assistant
professor at the University of North Carolina at Charlotte. He com-
pleted his Ph.D. at the University of Maryland at College Park in 2016.
His primary research interests include data mining and applied machine
learning.

Tanmoy Chakraborty is an Assistant Professor and a Ramanujan Fel-
low at the Dept. of CSE, IIIT Delhi, India since May 2017. Prior to this,
he was a postdoctoral researcher at University of Maryland, College
Park, USA. He completed his Ph.D. as a Google India Ph.D, fellow
at IIT Kharagpur, India in 2015. His primary research interests include
social network analysis, graph mining, and natural language process-
ing. He is a recipient of several awards, including two Faculty Awards
from Google, Early Career Research Award, DAAD Faculty award.

	Incremental community discovery via latent network representation and probabilistic inference
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	4 Overall algorithm
	5 Network scan
	5.1 Network embedding algorithms
	5.2 Proposed candidate selection method—information gain
	5.3 Comparison of node selection metrics

	6 Community structure update
	6.1 Expectation–maximization algorithm
	6.2 Markov random field (MRF) denoising

	7 Experiments
	7.1 Evaluation metrics
	7.2 Datasets
	7.3 Baseline algorithms
	7.4 Sensitivity of parameters
	7.5 Evaluation results
	7.5.1 Results without denoising
	7.5.2 Performance with denoising

	7.6 Summary of the experimental results

	8 Conclusion
	Acknowledgements
	References

