Knowledge and Information Systems (2020) 62:2539-2575
https://doi.org/10.1007/s10115-019-01430-6

REGULAR PAPER

®

Check for
updates

Case notion discovery and recommendation: automated
event log building on databases

E. Gonzalez Lépez de Murillas'@® - H. A. Reijers’? - W. M. P. van der Aalst’-3

Received: 24 August 2018 / Revised: 4 December 2019 / Accepted: 8 December 2019 /
Published online: 31 December 2019
© The Author(s) 2019

Abstract

Process mining techniques use event logs as input. When analyzing complex databases, these
event logs can be built in many ways. Events need to be grouped into traces corresponding to
a case. Different groupings provide different views on the data. Building event logs is usually
a time-consuming, manual task. This paper provides a precise view on the case notion on
databases, which enables the automatic computation of event logs. Also, it provides a way
to assess event log quality, used to rank event logs with respect to their interestingness. The
computational cost of building an event log can be avoided by predicting the interestingness of
a case notion, before the corresponding event log is computed. This makes it possible to give
recommendations to users, so they can focus on the analysis of the most promising process
views. Finally, the accuracy of the predictions and the quality of the rankings generated by
our unsupervised technique are evaluated in comparison to the existing regression techniques
as well as to state-of-the-art learning to rank algorithms from the information retrieval field.
The results show that our prediction technique succeeds at discovering interesting event logs
and provides valuable recommendations to users about the perspectives on which to focus
the efforts during the analysis.

Keywords Process mining - Event log - Database - Case notion - Recommendation -
Ranking

B E. Gonzailez Lépez de Murillas
e.gonzalez@tue.nl; edu.gonza.lopez@gmail.com

H. A. Reijers
h.a.reijers@tue.nl; h.a.reijers @uu.nl

W. M. P. van der Aalst

w.m.p.v.d.aalst@tue.nl; wvdaalst@pads.rwth-aachen.de

Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

Department of Information and Computing Sciences, Universiteit Utrecht, Utrecht,
The Netherlands

Department of Computer Science, RWTH Aachen University, Aachen, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-019-01430-6&domain=pdf
http://orcid.org/0000-0002-6340-6388

2540 E.G. L. de Murillas et al.

1 Introduction

Process mining [1] is a field of data science devoted to the analysis of process behavior.
This data-driven analysis makes it possible to discover models, analyze performance, detect
deviations, identify bottlenecks and inefficiencies, make improvements, monitor the behavior,
and make predictions, all related to business processes in a large variety of domains. To
perform these kinds of analyses, process mining techniques require event logs as input. An
event log is a set of process instances or traces, each of which contains a set of events. Events
represent occurrences of process tasks or activities at a certain point in time.

Obtaining event logs is not a trivial matter. Data extraction and preparation are, very often,
the most time-consuming tasks (around 80% of the time) and one of the most costly (around
50% of the cost) in data analysis projects [2]. This is due to the fact that data come in many
forms, while alot of manual work and domain knowledge is needed to obtain meaningful event
logs from it. Additionally, not all systems worth analyzing are process-aware information
systems (PAIS), i.e., event data are not explicitly recorded as a first-class citizen within the
system. If that is the case, additional work needs to be performed to obtain the events required
to build logs for analysis. Another reason for the high cost in time and effort of the event
log building phase is that, in many cases, domain knowledge about the system at hand is
simply not available. Analysts need to interview the business owners and database managers
to understand what parts of the event data can be interesting to look into. This interaction
often requires several iterations and a large time investment from all parties.

The principal idea behind log building is to correlate events in such a way that they can be
grouped into traces to form event logs. Classical approaches would use a common attribute
to correlate events. This is a valid method in scenarios where the data schema has a star
shape [3] (Fig. la): there is a central table and the rest are directly related to it, with at
least one column in common, which can be used as a case notion. However, we consider the
scenario in which some pairs of events may not have any attribute in common. This is the
case for a snowflake schema [3] (Fig. 1b), which resembles the shape of a star schema, with
the difference that, at the points, we find tables that only hold a transitive relation with the
central table. In practice, we often find databases which schema presents a higher complexity
than a star or snowflake structure (Fig. 1c). In that case, there are many combinations in
which events can be grouped. These combinations cannot be arbitrary, but must obey some
criteria with a business meaning, e.g., group the invoice and delivery events by means of the
invoice_id field present in the former ones. Also, more complex combinations can be defined
when transitive relations are considered for the grouping, e.g., group the invoice, delivery,
and bill events according to the field invoice_id in delivery events and the field delivery_id
in the bill events. Each of these examples captures what we will refer to as a case notion, i.e.,
a way to look at event data from a specific perspective.

Invoice Payment B111 Invoice

Blll

1
1
1
| |
4 ! | 4
Cubtomer Order ' Customer Order I Cuatomer Order
1 1 I
1 1
! 1
! 1
! 1

| Bill |

Supplier Delivery Suppller Delivery
Item Item ITtem Ttem Ttem
'(b) ! (C)

Fig. 1 Example of database schema types: a star, b snowflake and ¢ arbitrary

@ Springer

Case notion discovery and recommendation: automated event log... 2541

When dealing with vast datasets from complex databases, the existence of many potential
case notions is evident. Enterprise resource planning (SAP, Oracle EBS, Dolibarr), hospi-
tal information systems (ChipSoft, GE Centricity, AGFA Integrated Care), and customer
relationship management (Salesforce, MS Dynamics, SugarCRM) are examples of systems
powered by large databases where multi-perspective analysis can be performed. According
to different case notions, many different event logs can be built. The research problem we
tackle in this paper is how to choose the right perspective on the data, which is a crucial
step in order to obtain relevant insights. It is common practice to perform this selection
by hand-written queries, usually by an analyst with the right domain knowledge about the
system and process under study. However, when facing complex data schemas, writing such
queries can become a very complicated task, especially when many tables are involved.

A naive way to tackle the exploration of complex databases is to automatically generate
all the possible case notions as combinations of tables. This can lead to many event log candi-
dates, even for a small database. The combinatorial problem is aggravated in more complex
scenarios, i.e., with hundreds of tables involved. Given a weakly connected! data schema of
90 tables, there exist 4005 combinations of pairs of tables.” If we consider combinations of
3 tables instead, the number increases to 117,480, even before considering the many differ-
ent paths that could connect the tables in each combination. In such cases, the automated
building of logs for all possible table combinations may still be possible, but has proven to
be computationally very expensive: in the hypothetical case that building an event log would
take 4 s on average, building the event logs for a data schema with 90 tables and 10,000
possible case notions would take approximately 11 h. Even if we spend the time to compute
all of them, we still need to inspect 10,000 event logs to find out which perspective is both
meaningful and interesting.

A way to mitigate the combinatorial explosion is to reduce the case notion search space
as much as possible. Identifying the most interesting event logs would help to prioritize the
most promising views on the data for its analysis. The challenge of identifying the most
promising views is related to the log quality problem. The log quality problem is concerned
with identifying the properties that make an event log more suitable to be analyzed, i.e., the
characteristics that increase the probability of obtaining valuable insights from the analysis
of such an event log. The choices made during the log building process have an effect on the
log quality [4]. Also, metrics to assess structural log properties have been proposed by some
authors [5], which may be important to assess log quality.

The main contributions of this work are: (a) formally defining complex case notions
to adopt different perspectives on event data; (b) automatically generating candidate case
notions on a dataset; (c) assessing the quality of the resulting event logs; (d) automatically
predicting an event log’s quality before it is built; (e) sorting the case notions according to their
relative quality from the analysis point of view. This drastically reduces the computational
cost avoiding the generation of uninteresting event logs. In order to achieve these goals, data
must be extracted from the original system and transformed to fit into a certain structure. This
structure should be able to capture both the process and the data sides of the system under
study. The techniques proposed in this paper have been implemented in a framework and
evaluated with respect to related ranking algorithms. The approach yields promising results
in terms of performance and accuracy on the computation of event log rankings.

1 Weakly connected graph: a directed graph such that, after replacing all of its directed edges with undirected
ones, it produces a connected graph. A connected graph is one such that, for any pair of nodes (a, b), there is
a path from a to b.

2 Foraset of n elements (n tables), the number of k-combinations (combinations of k tables) is (Z) = Wlk)'

@ Springer

2542 E.G. L. de Murillas et al.

Process view i Data view
A !
Events 1 Versions
1
l i l
1
1
Granularity Instances : Objects Abstraction
I p—
1
Processes : Data
: Models v
1

Fig.2 High-level structure of the OpenSLEX meta-model

The paper is structured as follows. Section 2 introduces some preliminary concepts about
how information contained in databases can be extracted and structured. Section 3 introduces
a running example. Section 4 defines the concept of case notion and proposes a formalized
way to build event logs. Section 5 provides a way to automatically assess the quality of
event logs. Section 6 proposes a technique to predict the quality of an event log before it is
computed, reducing the computation time several orders of magnitude. Section 7 presents
the implementation of all the techniques described in this work. The result of the evaluation
is presented in Section 8. Related work is discussed in Sect. 9. Lastly, Sect. 10 presents the
conclusions of this study.

2 Preliminaries

To enable the application of process mining and the techniques proposed in this work, we need
access to the database of the system under study. This information should be extracted and
transformed to fit into a specific data structure. An appropriate structure has been previously
defined as a meta-model [6] and implemented in a queryable file format called OpenSLEX.
Figure 2 shows a high-level view of the meta-model that describes the OpenSLEX format.
The meta-model captures all the necessary aspects to enable the application of our techniques.
This section describes the structure of OpenSLEX and provides the necessary background
to understand the techniques proposed in the coming sections.

Standards of reference like XES [7] are focused on the process view (events, traces, and
logs) of systems. OpenSLEX supports all concepts present in XES, but in addition, also
considers the data elements (data model, objects, and versions) as an integral part of its
structure. This makes it more suitable for database environments where only a small part of
the information is process oriented (i.e., events) with respect to the rest of data objects of
different classes that serve as an augmented view of the process information. The OpenSLEX
format is supported by a meta-model that considers data models and processes as the entities
at the highest abstraction level. These entities define the structure of more granular elements
like logs, cases, and activity instances with respect to processes, and objects with respect to
classes in the data model. Each of these elements at the intermediate level of abstraction can
be broken apart into more granular pieces. This way, cases are formed by events, and objects
can be related to several object versions. Both events and object versions represent different
states of a higher-level abstraction (cases or objects) at different points in time.

@ Springer

Case notion discovery and recommendation: automated event log... 2543

Figure 3 depicts the entity-relation diagram of the OpenSLEX format. Some elements of
the meta-model have been omitted from the diagram for the sake of simplicity. A full version
of the ER diagram is available online.? Each of the entities in the diagram, as represented by a
square, corresponds to the basic entities of the meta-model as formalized in Definition 2. Also,
these entities, together with their relations (diamond shapes), have been grouped in areas that
we call sectors (delimited by dashed lines). These sectors are: data models, objects, versions,
events, cases, and process models. These tightly related concepts provide an abbreviated
representation of the meta-model. As can be observed, the entity-relation diagram is divided
into six sectors. The purpose of each of them is described below:

— Data models this sector is formed by concepts needed to describe the structure of any
database system. Many data models can be represented together in this sector, whose
main element is the data model entity. For each data model, several classes can exist.
These classes are abstractions of the more specific concept of table, which is commonly
found in RDBMSs. Classes contain attributes, which are equivalent to table columns in
modern databases (e.g., id, name, address, etc.). The references between classes of the
same data model are represented with the relationship entity. This last entity holds links
between a source and a target class.

— Objects the object entity, part of the objects sector, represents each of the unique data
elements that belong to a class. An example of this can be a hypothetical customer with
customer_id =75. Additional details of this object are omitted, given that they belong to
the next sector.

— Versions for each of the unique object entities described in the previous sector, one or
many versions can exist. A version is an instantiation of an object during a certain period
of time, e.g., the customer object with id 75, existed in the database, during a certain period
of time, for example from “2015-08-01 14:45:00” to “2016-09-03 12:32:00.” During that
period of time, the object had specific values for the attributes of the customer class that
it belongs to. Therefore, there is a version of customer 75, valid between the mentioned
dates, with name “John Smith,” address “45, 5th Avenue,” and birth date “1990-01-03.”
If at some point, the value of one of the attributes changed (e.g., a new address), the end
timestamp of the previous version would be set to the time of the change, and a new
version would be created with the updated value for that attribute, and a start timestamp
equal to the end of the previous version, e.g., version_1 = {object_id = 75, name =
“John Smith,” address = “45, 5th Avenue,” birth_date = “1990-01-03,” start_timestamp
= “2015-08-01 14:45:00,” end_timestamp = “2016-09-03 12:32:00”}, and version_2 =
{object_id = 75, name = “John Smith,” address = “floor 103, Empire State Building,”
birth_date = “1990-01-03,” start_timestamp = ‘“2016-09-03 12:32:00,” end_timestamp
= NONE }. Note that the value of end_timestamp for the newly created object version
(version_2) is NONE. That means that it is the current version for the corresponding
object (object_id =75). Another entity reflected in this sector is the concept of relation.
A relation is an instantiation of a relationship and holds a link between versions of objects
that belong to the source and target classes of the relationship. For example, a version of
a booking object can be related to another version of a customer object by means of a
relation instance, as long as a relationship exists from class booking to class customer.

— Events this sector collects a set of events, obtained from any available source (database
tables, redo-logs, change records, system logs, etc.). In this sector, events appear as a
collection, not grouped into traces (such grouping is reflected in the next sector). In order
to keep process information connected to the data side, each event can be linked to one or

3 https://github.com/edugonza/OpenSLEX/blob/master/doc/meta-model.png.

@ Springer

https://github.com/edugonza/OpenSLEX/blob/master/doc/meta-model.png

2544 E.G. L. de Murillas et al.

Legend

Entity ,'_ TN
Vi \

\ Sector ?
o
\ 7

Participation Sector Name

eventToOVLabel

\ 1 /

Events Y /

\ ’
\

Objects

’
\
\
\
| Clas$ l— \

/

/
-I Relationship

Process \ ’
Models Mo o m e e e e e e e - - - -

Fig.3 ER diagram of the OpenSLEX meta-model. The entities have been grouped into sectors, delimited by
the dashed lines

@ Springer

Case notion discovery and recommendation: automated event log... 2545

VersionAttributeValue

1| Edu —
Activity Instance Event Version
1 »! 11986 11986 | 2014 |&

< 2| Spain -

2 »| 2| 2014 312014 5| Edu —

3 3(2019 4120192019 (—| 6 | The Netherlands ~ f——
Objec N

62019

Y

Relation

11

—)I 1 | Booking_to_Customer f Attribute
1| Name [—

2 | Address

Activity

v

1|Bom

A

Class

Data Model

<
1| Customer [+ 3 | BookingDate
1| Bookings DB
| 21 Booking
>

Fig.4 Diagram of an instance of the OpenSLEX meta-model

L3 2 | Move

Process

3 | Book 1] Life

many object versions by means of a label (eventToOVLabel). This label allows specifying
what kind of interaction exists between the event and the referred object version, e.g.,
insert, update, delete, read, etc. Events hold details such as timestamp, life cycle, and
resource information, apart from an arbitrary number of additional event attributes.

— Cases and instances the entities present in this sector are very important from the process
mining point of view. The events by themselves do not provide much information about
the control flow of the underlying process, unless they are correlated and grouped into
traces (or cases). First, the activity instance entity should be explained. This entity is used
to group events that refer to the same instance of a certain activity with different values
for its life cycle, e.g., the execution of an activity generates one event for each phase of
its life cycle. Both events, referring to the same execution of an activity, are grouped into
the same activity instance. Next, as in any other event log format, activity instances can
be grouped in cases, and these cases, together, form a log.

— Process models the last sector contains information about processes. Several processes
can be represented in the same meta-model. Each process is related to a set of activities,
and each of these activities can be associated with several activity instances, contained
in the corresponding cases and instances sector.

Figure 4 shows an example of an instance of the OpenSLEX meta-model. For the sake of
clarity, the model has been simplified, but the main structure remains. We see that there is a
global data model. All the classes belong to it: “Customer” and “Booking.” Also, there are
three attributes: “Name,” “Address,” and “BookingDate.” The first two attributes belong to
the class “Customer.” The third one belongs to “Booking.” There is a relationship connecting
bookings to customers named “Booking_to_Customer.” Two objects exist. The first object has
two versions. Each version of the customer object has values for the corresponding attributes.
We see that the first customer version corresponds to a customer named “Edu” while he lived
in “Spain,” from 1986 to 2014. The second version corresponds to the same customer, while
he lived in “The Netherlands” from 2014 until the present. There is another object version
that belongs to the second object, a booking object. The “BookingDate” value of this version
is “2019.” There is a relation (an instance of the relationship “Booking_to_Customer”), that
connects the second object version of customer / to the first object version of booking /. On
the left side of the figure, we see that three events exist. The first event, related to the first
version of customer /, is linked to the activity “Born,” and happened in 1986. The second

@ Springer

2546 E.G. L. de Murillas et al.

event, linked to the activity “Move,” happened in 2014 and is related to the second version
of the same customer. Finally, the third event is linked to the activity “Book” and is linked
to the first version of booking /. Each event belongs to its own activity instance. All activity
instances belong to one case. This case belongs to a log of the process “Life.”

The OpenSLEX format makes use of a SQL schema to store all the information, and a Java
API*is available for its integration in other tools. An evaluation of the use of OpenSLEX [6] in
several environments tackles the data extraction and transformation phase and demonstrates
its flexibility and potential to enable standard querying and advanced data analyses. To keep
this paper self-contained and to provide the necessary background for the understanding of
this work, a simplified version of the meta-model is formally presented below. Every database
system contains information structured with respect to a data model. Definition 1 provides a
formalization of a data model in the current context.

Definition 1 (Data model) A data model is a tuple DM = (CL, AT, classOfAttribute, RS,
sourceClass, targetClass) such that

— CL is a set of class names,

— AT is a set of attribute names,

— classOfAttribute € AT — CL is a function that maps each attribute to a class,

— RS is a set of relationship names,

— sourceClass € RS — CL is a function mapping each relationship to its source class,
— targetClass € RS — CL is a function mapping each relationship to its target class.

Data models contain classes (i.e., tables), which contain attribute names (i.e., columns).
Classes are related by means of relationships (i.e., foreign keys). Definition 2 formalizes each
of the entities of the meta-model and shows the connection between them.

Definition 2 (Connected meta-model) Let V be some universe of values and 7S a uni-
verse of timestamps. A connected meta-model is defined as a tuple CMM = (DM, OC,
classOfObject, OVC, objectOfVersion, EC, eventToOVLabel, IC, eventAl, PMC,
activityOfAl, processOfLog) such that

— DM = (CL, AT, classOfAttribute, RS, sourceClass, targetClass) is a data model,

— OC is an object collection,

— classOfObject € OC — CL is a function that maps each object to a class,

— OVC = (0V, attValue, startTimestamp, endTimestamp, REL) is a version collection
where OV is a set of object versions, attValue € (AT x OV) - V is a mapping of
pairs of object version and attribute to a value, startTimestamp € OV — TS is a mapping
between object versions and start timestamps, endTimestamp € OV — TS is a mapping
between object versions and end timestamps, and REL C (RS x OV x OV) is a set of
triples relating pairs of object versions through a specific relationship,

— objectOfVersion € OV — OC is a function that maps each object version to an object,

— EC is an event collection such that EC = (EV, EVAT, eventTimestamp, eventLifecycle,
eventResource, eventAttributeValue) where EV is a set of events, EVAT a set of
event attribute names, eventTimestamp € EV — TS maps events to timestamps,
eventLifecycle € EV — {start, complete, ...} maps events to life cycle attributes,
eventResource € EV — V maps events to resource attributes, and eventAttributeValue €
(EV x EVAT) - V maps pairs of event and attribute name to values,

4 https://github.com/edugonza/openslex.

@ Springer

https://github.com/edugonza/openslex

Case notion discovery and recommendation: automated event log... 2547

— eventToOVLabel € (EV x OV) - V is a function that maps pairs of an event and an
object version to a label. The existence of a label associated with an event and an object
version, i.e., (ev, ov) € dom(eventToOVLabel), means that both event and object version
are linked. The label defines the nature of the link, e.g “insert”, “update”, “delete”, etc,

— IC = (Al, CS, LG, aisOfCase, casesOfLog) is an instance collection where A/ is a set of
activity instances, CS is a set of cases, LG is a set of logs, aisOfCase € CS — P(Al)isa
mapping between cases and sets of activity instances,’ and casesOfLog € LG — P(CS)
is a mapping between logs and sets of cases,

— eventAl € EV — Al is a function that maps each event to an activity instance,

— PMC = (PM, AC, actOfProc) is a process model collection where PM is a set of pro-
cesses, AC is a set of activities, and actOfProc € PM — P(AC) is a mapping between
processes and sets of activities,

— activityOfAI € Al — AC is a function that maps each activity instance to an activity,

— processOfLog € LG — PM is a function that maps each log to a process.

A connected meta-model provides the functions that make it possible to connect all the
entities in the meta-model. However, some constraints must be fulfilled for a meta-model
to be considered a valid connected meta-model (e.g., versions of the same object do not
overlap in time). The details about such constraints are out of the scope of this paper, but
their description can be found in [6]. From now on, any reference to input or extracted data
will assume to be in the form of a valid connected meta-model. As we have seen, according
to our meta-model description, events can be linked to object versions, which are related to
each other by means of relations. These relations are instances of data model relationships.
In database environments, this would be the equivalent of using foreign keys to relate table
rows and knowing which events relate to each row. For the purpose of this work, we assume
that pairwise correlations between events, by means of related object versions, are readily
available in the input meta-model. This means that, prior to the extraction, we know the
data schema, i.e., primary and foreign keys, and how events are stored in each table, e.g.,
which columns contain the timestamp and activity name of each event. The first precondition
(knowing the data schema) is fair to assume in most real-life environment. Given the lack
of automated approaches in the literature that tackle the challenge of event data discovery,
the second precondition (knowing the events) requires having the right domain knowledge
in order to extract events. The presented meta-model formalization sets the ground for the
definition of case notion and log that will be presented in the coming sections.

3 Running example

Extracting data contained in an information system’s database is a complex task. Very often,
we lack the domain knowledge needed to identify business objects and meaningful case
notions. Also, understanding complex data schemas can be challenging when the number
of tables is beyond what can be plotted and explored intuitively. Consider for example the
SAP ERP system. This widespread ERP system is often a target for process mining analysis,
as it is used in a multitude of organizations and contains a huge amount of functionalities
by means of configurable modules. SAP can run on different database technologies. And its
instances always maintain acommon data model, which is well known for its complexity. SAP
represents a prime example because it is a widely used system. Nevertheless, the approach is
highly generic and can be applied in different environments, e.g., alternative ERP tools such

5 P (X) is the powerset of X, ie.,Y € P(X)if Y C X.

@ Springer

2548 E. G. L. de Murillas et al.

o] m X

/ 5‘\‘\}5“ <]

<‘-

DN
A" B—
Sy

N TO24E

V/
7 ~_5 n)
I F——— A% ‘

Fig.5 General view of the data model of the SAP dataset (the table attributes have been omitted)

as Oracle EBS, HIS solutions such as ChipSoft, and CRM systems like Salesforce. Figure 5
depicts the data model of a sample SAP dataset. This dataset, belonging to SAP IDES (Internet
Demonstration and Evaluation System), is an instance of a fictitious organization. It contains
more than 7M data objects of 87 different classes and more than 26k events corresponding
to changes for a subset of the objects present in the database. In the diagram, classes are
represented by squares, while edges show the relationships between classes. Table names in
SAP are codified in such a way that it is not easy to identify what these classes mean without
further documentation. Also, most of the relevant classes are connected to many other. This
makes it very difficult to plot the graph in such a way that clusters of classes can be easily
identified.

Figure 6 shows in detail a small portion of the graph, where we observe that the EKKO
(Purchasing Document Header) class is linked, among others, to the EKPO (Purchasing
Document Item) class. Also, the EBAN (Purchase Requisition) class is connected to both.
Additionally, the class EKET (Scheduling Agreement Schedule Lines) is linked to EBAN.
According to the official documentation, both EKKO (header table) and EKPO (item table)

@ Springer

Case notion discovery and recommendation: automated event log... 2549

Yy

Fig. 6 Detail of the data model of the SAP dataset. EKKO and EKPO tables refer to purchase documents,
while EBAN contains information about purchase requisitions

refer to purchasing documents. The EBAN class contains information about purchase requi-
sition, and the EKET class contains schedule lines related to a scheduling agreement. This
could very well be a valid case notion, if we use the connection between the four tables to
correlate the corresponding events in traces. However, there are many ways in which this
correlation could be constructed. One-to-many relationships can exist between classes, which
leads to the well-known problems of data divergence (several events of the same type are
related to a single case) and data convergence (one event is related to multiple cases), as
described in [8]. This means that the combination of a subset of classes can yield several,
different event logs, depending on the choices made to correlate the events. Should all the
purchase items or the same purchase requisition be grouped in the same trace? Should one
trace per purchase item exist? Would that mean that the same purchase requisition events
would be duplicated in different traces? The fact that these choices exist makes the process
of log building a non-trivial task. Section 4 provides a definition of case notion and presents
a framework to build event logs effectively, taking into account the aforementioned choices
in a formal manner.

4 Case notions and log building

As we have discussed earlier, event log building is a job that has been traditionally performed
by analysts. It remains a manual and tedious task, and the time dedicated to it has a large
impact on the cost of process mining projects, especially at the start, when the explorative
analysis is performed.

When applying the traditional approach to event extraction and event log building, ana-
lysts need to perform several manual tasks (Fig. 7). First, a query will be written to extract
events from the dataset, selecting a set of required attributes (timestamp, activity name, case
identifier), and additional attributes (e.g., resource, life cycle, etc.). These events are then
grouped in traces with respect to the value of the chosen case identifier. This method works
well in situations when the case notion is clear, and all the events share a common field as
case identifier. This is the case, for example, in databases with a star schema [9], where a
factual table is at the center, being connected to other dimensional tables in a star-like shape.
However, more complex database schemas, like the one exposed in Sect. 3, may lack a com-
mon case-identifying attribute between all the events. In that case, transitive relationships
between data elements need to be pursued in order to correlate events that are not directly

@ Springer

2550 E.G. L. de Murillas et al.

Traditional approach

Q ‘.- ‘.- Legend
N Q
Event 109 it = N
Database Collection Manual Automatic Data
Task Task

Our approach

Source
Database)

Class &
Relationship

Statistics
Computation S AN
tatistics
Event Event Event Log
N Log Building Logs Analysis
Case Notions Candidate
Generation Case Notions

Contribution of this work

C > 2

OpenSLEX
Data
Store

N
predicted

Quality
Ranking

Quality
Prediction

Fig.7 Overview of the approach for case notion discovery and recommendation

Fig.8 Simple data schema with 5
nodes (tables) and 4 edges C
(relationships) /
a b
\
d e

linked (e.g., invoices related to orders that are related to customers). In this situation, queries
to extract and correlate events become increasingly complex with respect to the number of
tables involved.

Additionally, it may be that we lack the right domain knowledge about the process to be
able to identify the correct case notion. When this happens, analysts are forced to approach
the data in an explorative way. This means applying a trial and error approach, selecting a
specific case notion, building the log, inspecting the result and, if it is not satisfying, repeating
the process from a different perspective. The problem of this approach is that, in complex
scenarios, it can be extremely time-consuming. Consider the data schema in Fig. 8, where
nodes represent tables and edges relationships (foreign keys) between tables. With only 5
tables and 4 relationships, 17 different combinations, or subgraphs, exist: {a, b, ¢, d, e, ab,
abc, abcd, abcde, abd, abde, be, bed, bede, bd, bde, de}

The approach to event log building presented in this work aims at automating the process
as much as possible. As shown in Fig. 7, the goal is to provide input event logs to the user
to be analyzed during the explorative phase of a process mining project, while reducing the
time spent performing manual tasks. First, we rely of previous work [6] to extract the data
from the source database, transforming and storing it in a format suitable for automated
analysis. Then, we collect several statistics on different dimensions. These statistics will help
us assess which perspectives (case notions) on the data look more interesting and are sorted
in a ranking. Finally, based on the ranking, the user can choose which of the suggested case
notions to use to automatically obtain an event log for analysis. The methodology that we
propose for event log building is explained in detail along the present and coming sections.

The focus of this section is on defining what a case notion is, in order to build logs from
event data. Relying on the meta-model structure to correlate events gives us the freedom to
apply our log building technique to data coming from different environments, where SAP is
just an example. As long as the existing data elements can be matched to the class, object and
event abstractions, event correlation will be possible. Therefore, our log building technique
will be feasible. The fact that this kind of data and correlations can be obtained in real-life
environments has been previously demonstrated in [6]. Our approach defines case notions

@ Springer

Case notion discovery and recommendation: automated event log... 2551

EBAN Legend
root class class
/ A k\
EKET | EKKO | | converging class
A o
' v -----3 Relationship direction

EKPO ——> Tree hierarchy

Fig.9 Sample of a case notion, represented as an annotated rooted tree

based on the data model of the dataset (classes and relationships) and projects the data onto
it (objects, object versions, and events) to find build traces with correlated events.

4.1 Defining case notions

We define a case notion (Definition 3) as an annotated rooted tree in which there is always a
root node (root class of the case notion). There can be a set of additional regular class nodes,
together with some converging class nodes, as children of the root node or other nodes of the
subtrees. The root node is the main class of the case notion and triggers the creation of a new
case identifier for each object that belongs to it (e.g., a case identifier for a purchase order).
Regular nodes will force the creation of a new case identifier when several of its objects relate
to one root or regular object (e.g., several deliveries of the same order will result in one case
identifier for each delivery). Converging nodes are the ones that allow one case identifier to
refer to objects of that same class (e.g., several delivery items linked to the same delivery
will be grouped in under the same case identifier).

Definition 3 (Case notion) Let us assume a data model DM = (CL, AT, classOfAttribute,
RS, sourceClass, targetClass). We define a case notion as a tuple CN = (C, root, children,
CONV, IDC, rsEdge) such that:

— C C CL is the set of classes involved in the case notion,

— root € C is the root class in the case notion tree,

— children € C — P(C) is a function returning the children of a class in the case notion
tree,

— CONV C C is the set of classes of the case notion for which convergence is applied. If
a class ¢ belongs to CONV, all the members of the subtree of ¢ must belong to this set,
i.e., Yc € CONV : children(c)CSCONV,

— IDC = C\CONYV is the set of identifying classes that will be used to uniquely identify
cases of this case notion,

— rsEdge € (C x C) — RS is a function returning the relationship of the edge between
two classes in the tree such that, Ve € C : V¢’ € children(c) : Ars € RS : {c, '} =
{sourceClass(rs), targetClass(rs)} A rsEdge(c, c') = rs.

Figure 9 shows an example of a case notion combining classes EBAN, EKET, EKKO,
and EKPO. The class EBAN is the root of the case notion. The class EKET is a reg-
ular child of the root node, while the child node EKKO is a converging class. By
inheritance, the node EKPO is a converging class as well, given that it belongs to a

@ Springer

2552 E.G. L. de Murillas et al.

al, bl, cl, c2, d1, d2 ,d3

a2, b2, ¢3, d4

Fig. 10 Links between objects of classes EKET (al, a2), EBAN (b1, b2), EKKO (cl, c2, ¢3), and EKPO (d1,
d2, d3, d4). The objects have been grouped in two sets, corresponding to the case identifiers computed for the
case notion of Fig. 9

subtree of the converging class EKKO. Therefore, Fig. 9 is the graphical representation
of the case notion cn for which C = {EBAN, EKET, EKKO, EKPO}, root = EBAN,
CONV = {EKKO, EKPO}, IDC = {EBAN, EKET}, children € C — P(C) such that
children(EBAN) = {EKET, EKKOY}, children(EKKO) = {EKPOY}, children(EKPO) = 0,
and children(EKET) = (), and rsEdge € (C x C) — RS such that rsEdge(EKET, EBAN) =
fk_ekez_to_eban,6 rsEdge(EKKO, EBAN) = fk_ekko_to_eban, and rsEdge(EKPO, EKKO)
= fk_ekpo_to_ekko. According to this case notion, each trace will contain events belonging
only to one EBAN object, only one EKET object, but to any EKKO or EKPO objects that hold
a relation with the EBAN object represented by the trace. This is due to the fact that EKKO
and EKPO are defined as converging classes in our case notion. The log building process is
described in greater detail below.

4.2 Building alog

The process of building an event log can be seen as the projection of a dataset on a certain case
notion. First, a set of case identifiers will be constructed, which will determine the objects
that will be correlated per trace. Definition 4 describes in more detail how this set of case
identifiers is generated. Figure 10 will be used in this section as an example to illustrate the
method.

Definition 4 (Case identifiers) Let us assume a valid connected meta-model CMM and a case
notion CN = (C, root, children, CONV , IDC, rsEdge). We define CI as the maximal set’
of case identifiers such that, each case identifier c¢i € CI is a set of objects ci = {o € OC |
classOfObject(o) € C} and the following properties apply:

-~ Yo € ci : classOfObject(o) € IDC = (30’ € ci : classOfObject(0’) =
classOfObject(o) = o = 0), i.e., cannot exist two objects per identifying class in
each case identifier,

— Jo € ci : classOfObject(0) = root, i.e., one object of the case identifier belongs to the
root,

— R C (ci x ci) = {(0,0)|3(rs,ov,00') € REL : ¢ = classOfObject(o) A ¢’ =
classOfObject(0") AobjectOfVersion(ov) = o A objectOfVersion(ov') = o' Ars =
rsEdge(c, ¢') AsourceClass(rs) = ¢ AtargetClass(rs) = c'}, i.e., R is arelation between
two objects of the case identifier such that both objects have at least one link in the orig-
inal data for a relationship considered in the case notion. To improve readability, we can
say that oRo’ <= (0, 0’) € R,

6 Jk_* stands for “foreign key”, e.g., fk_eket_to_eban represents a foreign key from table EKET to table
EBAN.

7 A is a maximal set for property P if: (a) A satisfies property P and (b) VB O A satisfying property P:
B = A.

@ Springer

Case notion discovery and recommendation: automated event log... 2553

Table 1 Sample object, version, ¢y, q¢ ObjectID VersionID EventD RelationID

and event identifiers for the

classes involved in the case EKET al avl ael bvl

notion
EKET al av2 ae2 bv2
EKET a2 av3 ae3 bv3
EBAN bl bvl bel -
EBAN bl bv2 be2 -
EBAN b2 bv3 be3 -
EKKO cl cvl cel bv2
EKKO c2 cv2 ce2 bv2
EKKO c3 cv3 ce3 bv3
EKPO dl dvl del cvl
EKPO d2 dv2 de2 cvl
EKPO d3 dv3 de3 cv2
EKPO d4 dv4 de4 cv3

— |ci] > 1 = V(0,0 € (ci x ci) : o0RT0', i.e., as long as the case identifier contains more
than one object, any pair of objects must belong to the transitive closure® of the relation
R, i.e., directly or transitively related through objects of the case identifier.

Let us consider the sample dataset in Table 1. It corresponds to the tables EBAN,
EKET, EKKO, and EKPO. In total, there are 11 objects ({al, a2, b1, b2, cl1, 2, c3,d1, d2,
d3, d4}), 13 object versions ({avl, av2, av3, bvl, bv2, bv3, cvl, cv2, cv3, dvl, dv2, dv3,
dv4}), and 13 events ({ael, ae2, ae3, bel, be2, be3,cel, ce2, ce3,del, de2, de3, ded}).
Additionally, there are 10 relations between object versions ({avl — bvl,av2 —
bv2,av3 — bv3, cvl — bv2, cv2 — bv2, cv3 — bv3,dvl — cvl,dv2 — cvl,dv3 —
cv2, dvd — cv3}).

The first step to build the event log corresponding to the case notion in Fig. 9 is to build the
set of case identifiers. First, we have to find the maximal set of case identifiers that comply
with the constrains set by the case notion at hand, i.e., (a) all the objects must belong to the
classes in the case notion, (b) at least one object per case identifier must belong to the root
class of the case notion, (c) two objects of the same case identifier cannot belong to the same
identifying class of the case notion, and (d) all the objects in the same case identifier must
be related, either directly or transitively, by means of the relationships specified in the case
notion.

Going back to our example, we will construct the set of case identifiers by looking at
Fig. 10. In it, we see the relations between objects. Knowing that {b1, b2} are the objects
belonging to the EBAN class and that EBAN is the root class of the case notion, we know
that exactly one of these objects must be in each of the resulting traces. That means we will
generate, at least, two traces. Objects {al, a2} belong to the class EKET, which is the other
identifying class of the case notion. Only one of these objects is allowed per trace. In this
case, each one of them is related to a different EBAN object. Because EKET and EBAN are
the only identifying classes of the case notion, we can combine their objects already to create

8 Rt is the transitive closure of a binary relation R on a set X if it is the smallest transitive relation on X
containing R.

@ Springer

2554 E.G. L. de Murillas et al.

a (non-maximal) set of case identifiers CI' = {ci1’, ¢i2'}:

cil ={al, b1}
ci?' = {a2, b2}.

The next class to look at in the case notion hierarchy is EKKO. There are three objects
({c1, c2, ¢3}) belonging to this class. Two of them ({c1, ¢2}) are related to the EBAN object
b1. Given that it is a converging class, we can put them in the same case identifier, in this case
cil’. The other object (c3) is related to the EBAN object b2. Therefore, it will be inserted
in the case identifier c¢i2’. We proceed analogously with the EKPO objects {d1, d2, d3, d4},
given that EKPO is a converging class in our case notion as well. Finally, the maximal case
identifiers set CI = {ci 1, ci2} is:

cil = {al,bl,cl,c2,dl,d2,d3}
¢i2 = {a2, b2, ¢3, d4).

Once the case identifiers have been generated, it is possible to build the log in its final
form. First we introduce some useful notation in Definition 5.

Definition 5 (Shorthands I) Given a valid connected meta-model CMM, a case notion CN =
(C, root, children, CONV , IDC, rsEdge) and a maximal set of case identifiers CI, we define
the following shorthands:

— Act, = {act € AC | (e, 0v) € dom(eventToOVLabel) : objectOfVersion(ov) = o A
activityOfAl (eventAl (e)) = act}, i.e., the set of activities of the activity instances related
to an object through its versions and events,

— ActC, = {act € AC | d(e,ov) € dom(eventToOVLable) : objectOfVersion(ov) =
o A activityOfAl (eventAl (e)) = act A classOfObject(o) = c}, i.e., the set of activities
related to a class through its activity instances, events, versions, and objects,

— O, = {0 € OC | classOfObject(0) = c}, i.e., the set of objects of a certain class ¢ € C,

— EvO, = {e € EV | (e, ov) € dom(eventToOVLabel) :
objectOfVersion(ov) = o}, i.e., the set of events of a certain object 0 € OC,

— EvC,. = {e € EV | A(e, ov) € dom(eventToOVLabel) :
classOfObject(objectOfVersion(ov)) = c}, i.e., set of events of a certain class ¢ € C,

— E,i = {e € EV]ai € Al A eventAl(e) = ai},i.e.,setof events of a certain activity instance
ai € Al.

In order to build the final log, we will map a set of activity instances to each object and
group them per case identifier to form traces. According to the definition of the OpenSLEX
meta-model, an activity instance is a set of events that belong to the same activity and case,
e.g., correlated events with different life cycle of the same activity (start and complete events).
In our example, for the sake of clarity, we assume that each activity instance is a singleton
with a single event. In fact, we will represent traces as a set of events. Definition 6 provides
a formal description of a log and how to build it from a maximal set of case identifiers.

Definition 6 (Log) Given a valid connected meta-model CMM, a case notion CN = (C, root,
children, CONV , IDC, rsEdge) and a maximal set of case identifiers C/, we define alog/ €
CI — P(AI) as a deterministic mapping between the set of case identifiers and the powerset
of activity instances, such that each of the activity instances in the mapped set is linked to at
least one object of the case identifier, i.e., for all ¢ci € CI : l(ci) = {ai € Al | e € EV : ai =
eventAl(e) A Jov € OV : (e, ov) € dom(eventToOVLabel) A objectOfVersion(ov) € ci}.

@ Springer

Case notion discovery and recommendation: automated event log... 2555

Table 2 Case identifiers and final traces built from the sample dataset, according to each of the three case
notions

ID Case notion Case identifiers and traces

al, bl, cl, ¢2, d1, d2 ,d3

a2, b2, ¢3, d4

Trace 1: {ael, ae2, bel, be2, cel, ce2,del, de2, de3}
Trace 2: {ae3, be3, ce3, ded}

al, bl, cl, d1, d2

al, bl, ¢2, d3
a2, b2, ¢3, d4

Trace 1: {ael, ae2, bel, be2, cel, del, de2}
Trace 2: {ael, ae2, bel, be2, ce2, de3}
Trace 3: {ae3, be3, ce3, ded}

al, bl, cl, d1
al, bl, cl, d2
al, bl, ¢2, d3
a2, b2, ¢3, d4

Trace 1: {ael, ae2, bel, be2, cel, del}
Trace 2: {ael, ae2, bel, be2, cel, de2}
Trace 3: {ael, ae2, bel, be2, ce2, de3}
Trace 4: {ae3, be3, ce3, ded}

Assuming that, in our example, each activity instance is represented by a single event, we
can build the final log / as the following mapping:

Cl — P(Al)
l:cil ={ael,ae2, bel, be, cel,ce2,del,de2, de3}
ci2 = {ae3, be3, ce3, ded}

Of course, different variations of case notions will lead to different event logs, given that
the grouping rules will change. Table 2 shows three different case notions, as well as the
corresponding case identifiers and final traces. The first row (a) is based on the case notion
in Fig. 9, representing the same example we have just analyzed. Case notions (b) and (c)
are variations of the case notion (a). In (b), the EKKO class has been promoted to be an
identifying class. This provokes the generation of an additional case identifier, since objects
{c1, ¢2} cannot coexist in the case identifier anymore. In (c), also the EKPO class has been
transformed into an identifying class. This triggers the creation of another case identifier,
since the objects {d1, d2, d3, d4} cannot belong to the same case identifier either. These
examples show the impact of converging and identifying classes in the output of the log
building process.

@ Springer

2556 E.G. L. de Murillas et al.

These definitions make it possible to create specialized logs that capture behavior from
different perspectives. If all the possible case notions for a data model are generated, auto-
mated analysis techniques could be applied to each of the resulting logs, relieving users from
tedious analysis tasks and enabling process mining on a large scale. However, the combinato-
rial explosion problem makes it practically impossible to explore all the case notions for large
and complex data models. Even if the search space could be reduced to discard irrelevant case
notions, the remaining number would be too high in order for humans to interpret the insights
for each of the resulting event logs. This means that we must focus our efforts on the most
interesting perspectives to obtain insights without being overwhelmed by excessive amounts
of information. The following section proposes a set of metrics to assess the interestingness
of a case notion, based on measurable quality features of the resulting event log.

5 Log quality: is my log interesting?

The log quality problem concerns the identification of characteristics that make event logs
interesting to be analyzed. This problem is not new to the field. Some authors have studied
how the choices made during the log building process can affect the log quality [4] and have
developed procedures to minimize the negative impact. Other authors have tried to define
metrics to assess different log properties from the structural point of view [5]. In this work,
we aim at assessing the quality of an event log in an automated way. For that purpose, we
adopt some metrics from [5] that will give us an idea of the structural and data properties that
a log should possess in order to be an interesting candidate. In the scope of our meta-model
and the logs we are able to build, we need to adapt these concepts to be able to compute
them based on our input data, an OpenSLEX file. Considering a valid connected meta-model
CMM, a case notion CN, a set of case identifiers C/, and a log [, we adapt the following
three metrics to match the structure of our meta-model:

Support (SP) (Eq. 1): number of traces present in an event log:
SP(l) = |dom(l)| = |CI| ey

Level of detail (LoD) (Eq. 2): average number of unique activities per trace:

> ciecr ‘ Uaieiei activityOfA[(ui)’ > ciecr ‘ Uspeci Acto

LoD(l) = 2
ob® SP(l) Cl| -
Average number of events (AE) (Eq. 3): average number of events per trace:
ZciECI ‘ Uaiel(ci) Eai ZciECI ‘ UoEci EVOU
AE() = = 3)

SP(]) N |CI|

When analyzing processes, intuitively, it is preferable to have event logs with as many
cases as possible, i.e., higher support (Eq. 1), but not too many activities per case, i.e.,
reasonable level of detail (Eq. 2). The reason for this is that the complexity of the resulting
model, and therefore its interpretation, is closely related to the amount of activities it needs
to represent. However, too few activities result in very simple models that do not capture
any interesting patterns we want to observe. Also, we try to avoid cases with extremely long
sequences of events, i.e., large average number of events per trace (Eq. 3), because of the
difficulty to interpret the models obtained when trying to depict the behavior. However, too
short sequences of events will be meaningless if they represent incomplete cases.

@ Springer

Case notion discovery and recommendation: automated event log... 2557

Table 3 Default parameters used to configure the scoring function for case notions

Metric Parameter Value Description

Support SPode - Mode of the beta pdf used to score
the support (number of cases).
Default is null, since we try to
maximize sp

SPmax 00 Highest value of the desired range
used to score the support value
SPin 0 Highest value of the desired range
used to score the support value
Level of detail LoD,y040 4 Mode of the beta pdf used to score
the lod (level of detail) value
LoDyax 10 Highest value of the desired range

used to score the lod value

LoD,y 2 Lowest value of the desired range
used to score the lod value

Average number of events AE,0de 8 Mode of the beta pdf used to score
the ae (average number of events
per trace) value

AEpax 30 Highest value of the desired range
used to score the ae value
AEpin 4 Lowest value of the desired range
used to score the ae value
Global score Wsp 0.33 Weight of the support score on the
final global score
Wiod 0.33 Weight of the lod score on the final

global score

Wae 0.33 Weight of the ae score on the final
global score

Therefore, while we would like to maximize the support value (1), i.e., give priority to logs
with a higher number of traces, we cannot say the same for the level of detail (2) and average
number of events per case (3). These last two metrics will find their optimality within a range
of acceptable values, which will depend on the domain of the process and taste of the user,
among other factors. Given the differences between the pursued optimal values for each of the
metrics, the need for a scoring function becomes evident. It is required to be able to effectively
compare log metrics. A candidate is the beta distribution. The reason for our choice is that
the beta distribution has two parameters to control its shape, and this gives us additional
freedom to customize the scoring function. Choosing the right values for the parameters of
the distribution can seem daunting at first. However, it is possible to estimate their value
based on more intuitive parameters that describe the shape of the resulting distribution, e.g.,
mode and inflection points of the curve. In practice, the technique yields satisfactory results
using the default parameters (Table 3), and only the advanced user might need to modify
them. Note that the choice of the scoring function is not restricted by the approach and could
be replaced by any distribution more appropriate to the setting of application.

The beta distribution is defined on the interval [0, 1] and has two shape parameters, «
and B. The values of these two parameters determine the shape of the curve, its mean,
mode, variance, etc. Also, the skewness of the distribution can be shaped choosing the right

@ Springer

2558 E.G. L. de Murillas et al.

combination of parameters (see Fig. 11). This allows one to define a range of values for which
the probability density function (PDF) of the beta distribution (Eq. 4) will return higher scores
as they approximate to the mode.

(1 —x)f ! . .

Betappr(x;a, B) = B(—ﬂ)’ where B(a,) is the Euler beta function. (4)

o,

The input values will get a lower score as they get farther from the mode. One advantage
of this distribution is that it is possible to define a mode value different from the mean,
i.e., to shape an asymmetric distribution. Figure 11 shows examples of beta distributions for
different values of & and 8.

The parameters o and B can be estimated based on the mode and approximate inflection
points of the desired PDF [10]. We show an example considering only the mode. If we are
interested on event logs with a level of detail close to 7, we need to estimate the values of «
and S to obtain a PDF with mode 7. First we scale the value. If the minimum and maximum
values for LoD are 1 and 20, then the scaled mode is 0.32. Assuming that we are after a
unimodal PDF and «, 8 > 1, we use Eq. (5) to compute the mode:

oa—1
mode = —— fora, B > 1. 5)
a+p -2

Given the desired mode, we can fix the value of one of the shape parameters and estimate
the other one using Eq. (5):

ﬂ = 2’ o = 1

.
—mode’

if mode < 0.5 = positively skewed

est(mode) = fa=2,8 = %, if mode > 0.5 = negatively skewed (6)
o, B =2, if mode = 0.5 = symmetric.

Therefore, for the mode 0.32, the PDF is positively skewed. Using Eq. (6), we evaluate
est(0.32) to obtain the values § = 2 and « = 1/(1 — 0.32) = 1.47. The resulting PDF
can be observed in Fig. 11 (dotted curve). This is a basic yet effective method to set the
shape parameters of the beta function using domain knowledge, i.e., the optimal value that
we desire to score higher. Once the parameters « and B have been selected, we can compute
the scores of the previous log metrics. To do so, we provide a score function:

score(f, x;, X, , fi) = Betappr (scaled(f, x;, X); o, B) @

Here, f is a function to compute the metric to be scored (e.g., SP, LoD, or AE), x; is the input
of function f (e.g., alog l), X is the set of elements with respect to which we must scale
the value of f(x;) (e.g., a set of logs L), @ and B are the parameters of the beta probability
distribution function, and scaled(f, x;, X) is a rescaling function such that:

J () — mingex {f ()}

scaled(f, xi, X) = max;ex {f ()} — mingex{f(x)}’

®)

With the score function in Eq. (7), first we perform feature scaling (Eq. 8). Next, we
apply the beta distribution function (Eq. 4) with the corresponding « and B parameters. With
respect to the support of the log, the score will be the result of scaling the support feature
(SP(1)) with respect to the set of possible logs L and applying the beta probability distribution
function. As the purpose, in this case, is to give a higher score to higher support values, we
will set the parameters «sp and Ssp such that the probability distribution function resembles
an ascending line (e.g.,« =2 and § = 1 in Fig. 11):

ssp(l, L) = score(SP, I, L, sp, fisp). ©)

@ Springer

Case notion discovery and recommendation: automated event log... 2559

Beta(o,) Distribution

2
™~ — o=5p=2
- (x:4,[3:4
o | - o=2B=5
~ oa=1.47,p=2
-— a=2,B=1
B Eh
(=)
a9}
e]
—
0
2
o
g

Fig. 11 Sample of beta distribution curves for different values of the & and g parameters

To score the level of detail, we let the parameters oy ,p and Br,p to be tuned according
to the preference of the user:

Siod (I, L) = score(LoD, I, L, 14D, fiLoD)- (10)

The score of the average number of events per case is computed in the same way, using
the appropriate values for the parameters a4 and S4g:

Sae(l, L) = score(AE, I, L, A, fiar) Y

The interestingness of a log / with respect to all the logs L can be defined by the combi-
nation of the score values for each of the previous metrics. In order to combine the scores
for each log metric, a global scoring function gsf € L x P(L) = R can be used, which
takes a log / and a set of logs L and returns the score of / with respect to L. The approach
does not depend on the choice of this function, and it can be replaced by any custom one. For
the purpose of demonstrating the feasibility of this approach, we define the global scoring
(or “log interestingness”) function as the weighted average of the three previous scores. The
weights (wyp, wsp, wsp) and the parameters of the beta distribution (asp, Bsp, ®rop, BLoDs
aAE, BaE) can be adjusted by the user to balance the features according to their interest.

gsf(l, L) = Wsp - Ssp(l, L) + wioaq - slod(la L) +wee - sqe(l, L) (12)

It must be noted that it is not necessary to set custom values for the parameters of our
scoring function every time that we want to tackle a different dataset. In most of the cases, it
will be enough to apply the technique using the default parameters in Table 3.

The “log interestingness” scoring function (Eq. 12) proposed in this section aims at giving
anindication of how likely itis that alog will be of interest, with respect to the other candidates,
given a set of parameters. Table 4 shows the top 8 discovered case notions of the sample SAP
dataset, according to the computed score. We see that the tables involved in the purchase
requisition process represent a relevant case notion candidate for this specific dataset. The
main contribution until now is not the specific scoring function, but the framework that
enables the assessment and its configuration.

@ Springer

2560 E.G. L. de Murillas et al.

Table 4 Top 8 discovered case notions, sorted by score with parameters (asp =2, Bsp = 1, apo,p = 4.16,
ﬂLoD =1, UAE = 1.28, lgAE = 1.53, Wsp = 0.3, Wiod = 0.3, and Wae = 0.3)

Root Tables SP/ LoD’ AFE/ Score
1 EBAN EKPO, EINE, EBAN, EKKO, LFA1 0.54 1.00 0.60 1.90
2 EINE EKPO, EINE, EBAN, EKKO, LFA1 0.70 0.95 0.65 1.79
3 EBAN EKPO, EINE, EBAN, MARA 0.28 1 0.69 1.73
4 EKPO EKPO, EINE, EBAN, EKKO, LFA1 0.80 0.87 0.63 1.60
5 EKKO EKPO, EINE, EBAN, EKKO, LFA1 0.55 0.88 0.47 1.53
6 EINE EKPO, EINE, EBAN, EKKO 0.70 0.85 0.56 1.52
7 EBAN EKPO, EINE, EBAN, EKKO 0.54 0.87 0.48 1.51
8 EINE EKPO, EINE, EBAN, MARA 0.45 0.89 0.71 1.44

The o and B parameters have been estimated based on desired min, max, and mode values for the corresponding
beta distribution (Lo D,,;;, = 2, LoDpmax = 10, LoDypqe =4, AEin =4, AEmax = 30, and AE,, o4, =
8). The values for SP, LoD, and AE have been scaled

The metrics that we chose (support, level of detail, and average number of events per
trace) represent a baseline set of key indicators to compute an interestingness score per event
log. It can be the case that, in certain scenarios, assessing the potential interestingness of an
event log requires the use of different metrics, e.g., the variety of trace types, some structural
property of a discovered process model, or the fitness score with respect to a normative model.
The framework proposed in this work allows the user to define any custom metric and/or
global score to be computed for each candidate event log.

However, this framework still requires a log to be generated in order to be subjected to
evaluation. Taking into account that the final goal is to automatically assess log interesting-
ness at a large scale, we need better ways to score case notions before the corresponding
logs are built. The following section explores this idea, proposing a method to predict log
interestingness based on our baseline metrics and score function.

6 Predicting log interestingness

If an event log is completely created from an extracted dataset, then it is straightforward
to assess the actual interestingness. However, as explained before, for large databases, it is
infeasible to compute all candidates. In order to mitigate this problem and save computation
time, we aim at approximating the value of the metrics considered in Sect. 5 for a certain
case notion, before the log is computed. To do so, it is important to define bounds for the log
metrics, given a certain case notion. The purpose is to restrict the range of uncertainty and
improve the prediction accuracy. In fact, at the end of this section, the bounds will be used
to define a custom predictor for each of the log metrics.

As we mentioned in the previous section, the framework is extensible, allowing the user
to define additional metrics when necessary. Any additional metric used to assess log inter-
estingness will need to be taken into account in the global scoring function (Eq. 12). Also,
in order to take advantage of the log interestingness prediction method, an approximation
function must be provided for any additional metric that the user defines. The approximation
function for a certain metric must be able to compute an approximated value for a metric,
given a certain case notion and the extracted data, without the need to compute the corre-

@ Springer

Case notion discovery and recommendation: automated event log... 2561

sponding event log. As an example, in this section, we present upper and lower bounds of
the baseline metrics used in our global scoring function.

First, we try to set bounds to the support of a log. From Eq. (1), we see that the support
of a log is equal to the domain of the mapping, i.e., the amount of case identifiers of the log.
Definition 4 shows that the amount of case identifiers depends on the combinations of objects
belonging to the identifying classes of the case notion (IDC). Given that every case identifier
must contain one object of the root class, that only one object of the root class is allowed per
case identifier, and that the set of case identifiers is a maximal set, we can conclude that the
set of case identifiers will contain at least one case identifier per object in the root class:

Bound 1 (Lower bound for the support of a case notion) Given a valid connected meta-
model CMM, a case notion CN = (C, root, children, CONV , IDC, rsEdge), a maximal set
of case identifiers CI, and the corresponding log | we see that ¥ci € CI : o € ci :
classOfObject(0) = root <= No € Oypor : Aci € CI : 0 € ci = |CI| = |Oorl-
Therefore, we conclude that: SP(l) > |SP(CN)] = |Oyoot|

For a case identifier to be transformed into an actual trace, at least an event must exist
for the root object involved in it. For the sake of simplicity, Bound 1 assumes that at least
one event exists for every object in the root class. This has been taken into account in the
implementation, considering only objects of the root class that contain at least one event.

Each of the case identifiers is a combination of objects. Also, exactly one object of the
root class and no more than one object of each identifying class (classes in IDC) can exist
per case identifier. This leads to the following upper bound for support:

Bound 2 (Upper bound for the support of a case notion) Given a valid connected meta-
model CMM, a case notion CN = (C, root, children, CONV , IDC, rsEdge), a maximal set
of case identifiers CI, and the corresponding log 1, we define a maximal set CI' for which the
Sfollowing properties hold:

(a) Yei € CI' : Yo € ci : classOfObject(o) € IDC = 30’ € ci : classOfObject(o)
= classOfObject(0) <= o = 0/, i.e., only one object per class belongs to the case
identifier,

(b) ¥Yci € CI' : Jo € ci : classOfObject(o) = root, i.e., one object of the root class must
always belong to the case identifier.

This implies that CI' contains all the possible combinations of one or zero objects of each
class in IDC, except for the root class, that must always be represented by an object in
the case identifier. That means that |CI'| = |Oyper| -]_[CE{C\,,,,,I} (|O¢| + 1). Given that CI'
is less restrictive than CI, we know that CI' 2 CI = |CI'| > |CI|. Therefore, SP(l) <
[SP(CN)T = 10so0tl - TLecicvoon (10l + 1)

Following the same logic to set a lower bound for support, we know that all the objects
that belong to the root class will be involved in at least one case identifier. However, the
number of traces is still unknown if the log has not been built and we can only consider it
as the maximum possible, i.e., the upper bound of the support. Therefore, a lower bound for
the level of detail will be given by the sum of the unique activities per object of the root class
divided by the maximum number of case identifiers. If we consider that the additional case
identifiers (beyond the number of objects of the root class) will, at least, add a unique number
of activities equal to the minimum number of activities per object of the root class, we can
get a better lower bound as described below:

@ Springer

2562 E.G. L. de Murillas et al.

Bound 3 (Lower bound for the LoD of a case notion) Given a valid connected meta-model
CMM, a case notion CN = (C, root, children, CONV , IDC, rsEdge), a maximal set of
case identifiers CI, and the corresponding log I, we see that Yci € CI : Jo € ci :
classOfObject(o) = root <= Yo € Oyypr 1 3ci € CI : 0 € ci = Veci € CI :
Upeci Acto 2 Uae(ciﬂOm,,,)ACt(" Additionally, we know that)" ..y | er(dﬂomm) Act,| >
(Zggomm |Acto|) + (ICI| — | Oroot|) - mingeo,,,, {|Actol}. Therefore,

(Zoco,., Actol) + (TSPCN)T = 1000t) - Minoea,., (| Actol)

LoD(l) > |LoD(CN)| = PV

A lower bound for LoD is given by the lower bound of the sum of the unique activities
per case, divided by the upper bound on the number of cases. We know that, at least, one
case will exist per object belonging to the root class. That is why the sum of the unique
activities per objects of root is added on the top part of the formula. Also, because these
objects could be involved in more than one case, to a maximum of [SP(CN)] cases, we add
the minimum number of unique activities they could have and multiply it by the maximum
number of additional case identifiers. This will always be a lower bound given that the number
of activities we add at the upper part for the additional case identifiers will always be equal
or lower than the average. Not adding these extra case identifiers would still result in a lower
bound, but an extremely low one since the divisor is usually an overestimation for the number
of possible case identifiers.

With respect to the upper bound for the level of detail, we need to consider the most extreme
situation. This is caused by a case identifier that contains one object per identifying class
and one or more objects per converging class, such that, for each object, the events related
to them represent all the possible activities. For this case identifier, the number of unique
activities will be the sum of the number of unique activities per class involved. However,
there is a way to restrict this bound. If we count the number of unique activities for the events
of each object, and find the maximum per class, the upper bound will be given by the sum of
the maximum number of unique activities per object for all the identifying classes, plus the
total of unique activities per converting class involved in the case notion:

Bound 4 (Upper bound for the LoD of a case notion) Given a valid connected meta-model
CMM, a case notion CN = (C, root, children, CONV , IDC, rsEdge), a maximal set of case
identifiers CI, and the corresponding log I, we know that, V¢ € C : Yo € O, : |Act,| <
max, co, {|Acty |}. This implies that, Vci € CI : | i Actol <Y ccipe MaXoeo, {|Acto|} +
> e inconv |ActCe|. Therefore,

ICT1 - (X ceine Maxoeo, MActol} + . iucony [ActCel)
|CI|

= Act, ActCe|.
Zné%xﬂ cty|} + Z |[ActC,|

o€U¢
celDC ¢ inCONV

LoD(l) < [LoD(CN)1 =

The same reasoning used to obtain a lower bound for the level of detail can be applied in
the case of the average number of events per trace. Only that, in this case, instead of counting
the number of unique activities, we count the number of events per object:

Bound 5 (Lower bound for the AE of a case notion) Given a valid connected meta-
model CMM, a case notion CN = (C, root, children, CONV , IDC, rsEdge), a maximal
set of case identifiers CI, and the corresponding log |, we see that Vci € CI

do € ci : classOfObject(o) = root <= No € Oy : Ici € CI : o0 €

@ Springer

Case notion discovery and recommendation: automated event log... 2563

ci = Vei € CI : J,ei EVO, 2 er(ciﬁOr”m) EvO,. Additionally, we know that

Y eicct | Uoeeinon EVOol = (Coco,., IEVOoD) + (ICI| = | Oroor]) - minge o, {| Ev O,).
Therefore,

(Zoc0n, 1EVO0l) + (TSPCNIT = 10100t) - mingeo,, (1 EVO,)

AE(l) = |[AE(CN)] = [SP(CN)]

A lower bound for AE is given by the lower bound of the sum of the events per case,
divided by the upper bound on the number of cases. At least one case will exist per object
of the root class. Therefore, we consider the sum of the number of events per object. These
objects could be involved in more than one case, to a maximum of [SP(CN)] cases. So, we
add the minimum number of events they could have, multiplied by the maximum number
of additional case identifiers. This is a lower bound given that the number of events added
at the upper part for the additional case identifiers is equal or lower than the average. Not
adding these extra case identifiers would still result in a lower bound, but an extremely low
one since the divisor is usually an overestimation on the number of possible case identifiers.

To define an upper bound for AE, we use an approach similar to the one used to compute
an upper bound for LoD. We need to consider the most extreme case, the case in which the
maximum number of events per object (for the identifying classes) could be included in the
final trace. However, if the case notion has converging classes, the most extreme case is the
one in which all the objects of such classes are contained in the case identifier, therefore all
the events belonging to the converging classes would be inserted in the trace:

Bound 6 (Upper bound for the AE of a case notion) Given a valid connected meta-
model CMM, a case notion CN = (C, root, children, CONV, IDC, rsEdge), a maximal
set of case identifiers CI, and the corresponding log I, we know that, V¢ € C : Yo €
Oc : |EvO,| < maxyeo {|EVOy|}. This implies that, ¥ci € CI : ||J,coi EVOol <
> ceipe Maxyeo (|EVOy 1} + Y cccony |EVCe|. Therefore,

AE(l) < [AE(CN)] = 1l - (ZceIDC max, o, {|EVOy |} + 3 cconv |E"Cc|)

ICI|
= E max {|EvO, |} + E |EvC,]|.
0'€e0¢
celDC ceCONV

These bounds define the limits for our prediction. For each metric (SP(I), LoD(l) and
AE(l)), either the lower or upper bound could be a prediction. However, a better heuristic
can be designed. We defined equations to predict the values as the weighted average of the
corresponding bounds (Eqgs. 13, 14, 15). Given a valid connected meta-model CMM and a
case notion CN, our prediction for each metric is given by the following heuristics:

SP(CN) = wipsp - [SP(CN)] + wupsp - [SP(CN)] (13)
LoD(CN) = Wipied - LLoD(CN)] + Wypiod - [LoD(CN)] (14)
AE(CN) = wipae - LAE(CN)] + Wypae - [AE(CN)] . (15)

From these equations we see that, in order to calculate the heuristics for each metric, we
need to collect some features. These features (Table 5) can be easily computed once for each
class ¢ € CL in the dataset and be reused for every case notion CN we want to assess.

Finally, in order to score the predicted values of each metric, the scoring function previ-
ously used (Eq. 7) must be individually applied. The input parameters are two: a case notion

@ Springer

2564 E.G. L. de Murillas et al.

Table 5 Features used to compute upper and lower bounds for each log metric

Feature Description
1 MaxEvO, = max,c o, {|EVO,|} Maximum # of events per object of a class ¢
2 MaxAct, = max,ec o, {|Acto} Maximum # of activities per object of a class ¢
3 MinEvO, = min,e o {|EvOo |} Minimum # of events per object of a class ¢
4 MinAct. = min,e o, {|Actol} Minimum # of activities per object of a class ¢
5 |EvCe| # of events per class ¢
6 |ActCe| # of unique activities per class ¢
7 SumEvO, = Zoe 0, |EvO,| Total # of events per object for a class ¢
8 SumActe =Y oc0, |Acto] Total # of unique activities per object for a class ¢
9 |O¢| # of objects of a class ¢

CN, and a set of case notions CN S to compare to. Equations (16), (17), and (18) provide
the scores for the predicted metrics given a case notion C N and a set of case notions CN S.

s’s;(CN, CNS) = score(§f’, CN, CNS, sp, fisp) (16)
510d(CN, CNS) = score(LoD, CN, CNS, Lop. firoD) (17)
S2(CN, CNS) = score(gl\z", CN, CNS, AE, fiaE)- (18)

Next, a global scoring function is defined to combine the three of them. We will call this
function the predicted global scoring function, pgsf € CNS x P(CNS) — R and it is the
weighted average of the scores of each of the three predicted values:

p&Sf(CN, CNS) = wyp - 555(CN, CNS) + Wiod - Sioa(CN, CNS) + Wee - 52.(CN, CNSY19)

This function represents our custom predictor for log interestingness. The accuracy of the
predictor will be evaluated in Sect. 8, where it will be compared to alternative techniques.

7 Implementation

All the techniques proposed in this paper are part of the Event Data Discovery Tools package
(eddytools®). This tool assists the user at every step from data extraction to event log building.
The eddytools Python package provides six commands that cover the main steps (some of
them out of the scope of this paper) of the data extraction and preparation phase. These steps
and their purpose are described below:

1. Data exploration to get a feeling of the size and dimension of the data. Also, to look for
any high-level structure that can be extracted from it.

2. Data schema discovery to discover the data relations (primary, unique, and foreign keys)
in order to be able to correlate data objects in future steps.

3. Data extraction to obtain an off-line copy of the data that we can transform into a format
suitable for analysis. Also, this allows us to complete the data once a schema has been
discovered.

4. Event data discovery event data might be implicitly stored within or across different
tables in the dataset. We need to discover the events and make them explicit.

9 https://github.com/edugonza/eddytools.

@ Springer

https://github.com/edugonza/eddytools

Case notion discovery and recommendation: automated event log... 2565

Table 6 Details about the SAP dataset used during the evaluation

Tables 87 Case notions 10,622
Objects 7,339,985 Non-empty logs 5180
Versions 7,340,650 Total log building time 13h 57 m
Events 26,106 Average log building time 4.7s
Features computation time 2m

5. Case notion discovery defining a case notion allows us to correlate events into traces.
Many alternative case notions can be defined depending on the perspective we want to
take.

6. Eventlog building from the discovered events and a case notion we can build an event log.
Many case notions can be defined, and the corresponding event logs can be constructed
in order to analyze different coexisting processes, or the same process from different
perspectives.

We claim that these steps can be executed in a semiautomatic way, given that they allow
for a certain customization depending on the characteristics of the environment to analyze.
In [11] (Chapter 8), we provide additional details on the use of the tool in a real-life case
study.

8 Evaluation

So far, we proposed a set of metrics to assess the interestingness of an event log once it has been
constructed. Also, we provided predictors for these metrics based on (a) the characteristics
of the case notion being considered and (b) features of the dataset under study. The aim of
this section is twofold. (1) To find out how good our predictors are at estimating the value of
each log characteristic. (2) To evaluate the quality of the rankings of case notions, based on
their potential interestingness according to certain log metrics, using our custom predictor
and compare them to existing learning to rank algorithms.

The evaluation was carried out on a SAP sample dataset (Table 6). It contains the data
model, objects, object versions, and events of 87 SAP tables. The following steps were
executed using the open source software package eddytools. First, a set of candidate case
notions was generated. To do so, each one of the tables in the data model was taken as the root
node of a potential case notion. Next, for each of them, all the possible simple paths following
outgoing arcs were computed, yielding a result of 10,622 case notion candidates. For each
of the candidates, the corresponding event log was generated and the metrics presented in
Sect. 5 were computed. This set of logs and metrics represent the ground truth. Given that
we want to predict the metrics in the ground truth set, we need to measure the features that
our predictors require. The following section describes these features.

8.1 Features for log quality prediction

Section 6 presented our predictors for each of the log characteristics. These predictors estimate
the values of the support (SP, Eq. 13), level of detail (LoD, Eq. 14), and average number
of events per trace (AE, Eq. 15) of a log, given the corresponding case notion and a set of
features. This subsection describes the features used during the evaluation which are (a) the

@ Springer

2566 E.G. L. de Murillas et al.

Table 7 Features used to predict log interestingness

Feature Description
1 LSP(CN)] Lower bound for the support
2 [SP(CN)] Upper bound for the support
3 [LoD(CN)| Lower bound for the level of detail
4 [LoD(CN)] Upper bound for the level of detail
5 lAE(CN)] Lower bound for average number of events per trace
6 [AE(CN)] Upper bound for average number of events per trace
7 |C| Number of classes in the case notion
8 |[E(CN)| Total number of events of all the classes in the case notion
9 IR(CN) Average number of events per object

lower and upper bounds of each log property as listed in Sect. 6 and (b) additional features
used to improve the accuracy of the regressors we will compare to.

Given a valid connected meta-model CMM (i.e., a dataset stored in the OpenSLEX format
containing events, objects, versions, and a data model) and a specific case notion CN, we can
measure the features enumerated in Table 7. The log associated with such case notion does
not need to be built in order to compute these features. Actually, many of the features are the
result of an aggregation function over a class property. Once the class properties have been
computed, the complexity of calculating these case notion metrics is linear with respect to
the number of classes involved.

8.2 Evaluation of predictors’ accuracy

In Sect. 6, upper and lower bounds were given for each log property given a case notion
(CN). These bounds have been used to estimate the value of such log properties by means
of three predictors (one per log property), before the log is actually built. Now it is time to
evaluate the accuracy of these predictors. To do so, we compared the predicted value for
each log property (SP, LoD, and AE) with the actual values in the ground truth dataset.
This was done for the predictors for each log property as defined in Sect. 6 (Egs. 13, 14,
15). The combination of the scores of the three individual predictors (Egs. 16, 17, 18) in a
single scoring function of log interestingness (Eq. 19) is what we call our Custom Predictor
(CP). Additionally, we compared the accuracy of the individual predictors to three different
regressors: (a) Multiple Linear Regressor (MLP), (b) Quantile Regressor (QR) [12], and (c)
Neural Network Regressor (NN). Each of them where trained and tested using the features in
Table 7. A fivefold cross-validation was performed in order to determine the accuracy of the
predictors (our predictors, MLP, QR, and NN). To avoid underestimation of the prediction
error, empty logs where filtered out of the dataset, using only 5180 case notions from the
original 10,622.

Figure 12 shows the mean absolute error (MAE) measured per normalized property for
each predictor. We see that our predictors do not perform really well, presenting an average
error of around 1.0 when predicting LoD or AE and around 1.1 when predicting SP. In
comparison, the regressors perform better, in particular the Quantile regressor with an average
error of around 0.8 for SP and LoD, and around 0.9 for AE. This figure, however, could be
misleading, given that the MAE is computed on all the predictions, regardless of the existence

@ Springer

Case notion discovery and recommendation: automated event log... 2567

Mean Absolute Error on each property

LoD AE
o0 o0 o0
S S S
= = =
= = =
= = =
o fe=l fe=l
fe=} fe=} fe=}
=] S S
SF ML QR NN ToD ML QR NN AE ML QR NN
§ Our predictors |]:|:|] Quantile Regression
Multiple Linear Regressor E Neural Network Regressor
Fig. 12 Comparison of mean absolute error for the predictors on the three normalized log properties

Absolute Error for Support (SP)

SP ML QR NN

| |
-
!
H
1
i
H

- '

T 1

' H

' H

! H

' 1

' i

' H

' H

! .

H

H

I H

i

H

H

H |
1
H
H

T 1

' H

! H

! H

1

H

H

H

g]

8

° |

8 o

° 8
8
o
o

-]

QR NN
1
|

e T —
(% - R e e |:I:| --------- {—memessmmo @ wH © 0 00 000
—
T T T T T T T T
0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

ML QR NN
1 1
I

H
8

AE
L
-
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
°
8
°
°
8
o
°
8
°

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0
SP.LoD.AE = Our predictors QR = Quantile Regression

ML = Multiple Linear Regressor NN = Neural Network Regressor

Fig. 13 Comparison of absolute error for the three normalized log properties per predictor. The scale is
logarithmic

of outliers. To get a better idea of the influence of extremely bad predictions on the overall
performance, we include Fig. 13, which shows box-plots for each log property per predictor.
It is important to notice that a logarithmic scale has been used, in order to plot extreme
outliers and still be able to visualize the details of each box.

We see that our predictors (SP, LoD, and AE) are the worst performing ones, especially
when it comes to SP. Also, they are the ones presenting the most extreme outliers for the

@ Springer

2568 E.G. L. de Murillas et al.

three log properties. Quantile Regression and Neural Network regressors present the most
consistent results, with the least extreme outliers. These results show that there is considerable
room for improvement to predict SP, LoD, and AE accurately. This can be achieved, for
example, by selecting additional features that have a stronger correlation with the properties
we aim to predict. It must be noted that our predictors are unsupervised, i.e., do not need
a training set. This represents an advantage with respect to the regressors, since they can
generate predictions on the absence of training data. Despite the inaccuracy of our predictors,
their usefulness is yet to be determined. The aim of the prediction is to build a ranking of
case notions based on their interestingness (Eq. 19). This means that, as long as the relative
interestingness is preserved, the ranking can be accurate. The following section will address
this issue, using a metric to evaluate the quality of the rankings.

8.3 Evaluation of ranking quality

Until now, we have evaluated the accuracy of our predictors and compared them to other exist-
ing regressors. However, the goal of predicting log properties is to assess the interestingness
of the log before it is built. If we are able to predict the interestingness of the logs for a set of
case notions, we can rank them from more to less interesting and provide a recommendation
to the user. In this section we evaluate how good the predictors are at ranking case notions
according to their interestingness. To do so, we use the metrics on the resulting event logs
as the ground truth to elaborate an ideal ranking (Eq. 12). Then, a new ranking is computed
using our custom predictor (Eq. 19) and it is compared to the ideal one. This comparison is
done by means of the metric normalized discounted cumulative gain at p (nDCG),), widely
used in the information retrieval field.

p p
rel_score; rel;
DCG, = ——— = rel_score; + —_ 20
r §1og2(i +1) ! Z1og2(z +1) (20)
|REL_SCORES)| vel score:
IDCG, = — 21
; log, (i + 1) D
DCG,
nDCG, = (22)
IDCG,

The normalized discounted cumulative gain at p (Eq. 22) is a metric that assumes the
existence of a relevance score for each result, penalizing the rankings in which a relevant
result is returned in a lower position. This is done by adding the graded relevance value of
each result, that is logarithmically reduced proportional to its position (Eq. 20). Next, the
accumulated score is normalized, dividing it by the ideal score in case of a perfect ranking
(Eq. 21). This means that the ranking (3, 1, 2) will get a lower score than the ranking (2, 3, 1)
for an ideal ranking (1, 2, 3) and a relevance per document of (3, 3, 1).

When it comes to ranking, there is a large variety of learning to rank (LTR) algo-
rithms in the information retrieval field [13]. These algorithms are trained on ranked lists
of documents and learn the optimal ordering according to a set of features. A fivefold
cross-validation was performed on the unfiltered set of case notions (10,622 candidates) com-
paring the implementation'® of 10 learning to rank algorithms (MART, RankNet, RankBoost,
AdaRank, Coordinate Ascent, LambdaRank, LambdaMART, ListNet, Random Forest, and
Linear Regression) with the predictors evaluated in Sect. 8.2 (Quantile Regression, Multiple

10 https://sourceforge.net/p/lemur/wiki/RankLib/.

@ Springer

https://sourceforge.net/p/lemur/wiki/RankLib/

Case notion discovery and recommendation: automated event log... 2569

] 8
T ﬂ

NDCG@10 per ranker for different (o,) values

1 + + T T f T T
[T

T T T T

L
T+ T+
T
. R 0 O T

PR o —
"
+
f— —Y
| S— ——
n

P o

= <@
® S
> 1
o 1
[+ +
Zo S N L T T T
| T i
< 4
e}
X X Y X N
R o e R S OIS
% { &8 5 . .
PSS IS TS T Vs S TS T S
2 <7 & - &
e ?V&& x\'i'@ ‘z&;Q & A fzv‘&c S¥ v“b ¥ & &\Q%Q& & @0‘\62& Fo
FFF ST S VTS T & Fo ¢ 8
O A ~ < \)\3& S8 C60‘4\‘2' S
© WS F e
S S
\QV N Q:@“
e
S
F S

Fig. 14 NDCG@ 10 per ranker given different combinations of « and f values. The box-plot corresponding
to our custom predictor has been highlighted in red (second box-plot from the right)

Linear Regression, Neural Network Regressor, and our custom predictor). Two models were
trained for each algorithm: one with the 9 input features in Table 7 and another one with 4
extra features (the estimated value for SP, LoD, AE, i.e., Egs. 13, 14, and 15). The purpose of
adding these extra features is to find out how the estimations made by our predictors affect
the predictions of the other algorithms.

Figure 14 shows the result of the evaluation. The 13 algorithms (10 LTR + 3 regressors)
were trained on two different sets of features (9 and 13 input features), 3 different combina-
tions of o and S values for the log quality function ((«, B) € {(2,5), (5, 2), (2, 1)}), and with
equal weight for the three metrics. That makes a total of 78 models ((10 4 3) x 2 x 3). The
NDCG@ 10 metric was measured for each model and the results were grouped per algorithm
and feature set. That resulted in 27 categories ((10 LTR algorithms x 2 sets of features) + (3
regressors x 2 sets of features) + our custom predictor) with 15 NDCG@ 10 values each (5
folds x the 3 combinations of & and § values). The models trained with 13 features are repre-
sented in the figure with the symbol + at the end of their name. Additionally, the NDCG @10
was calculated for a set of random rankings, in order to set a baseline. In the case of our
custom predictor, given that it only takes 6 features (the lower and upper bounds for SP, LoD,
and AE) and that it does not need training, only three NDCG @10 values were computed,
one for each pair of values for the o and B parameters. The horizontal dashed lines drawn
in Fig. 14 represent the median of the NDCG @ 10 for our custom predictor (upper) and the
random ordering (lower). Any algorithm whose median is above the upper line will perform
better than our custom predictor at least 50% of the time. Any algorithm whose median is
above the lower line, will perform better than random at least 50% of the time. Most of the
algorithms perform better than random. But only two have the median above the upper line:
MART, and Random Forest. When trained with 9 input features, both MART and Random
Forest show very similar behavior. However, when considering 13 input features, MART’s

@ Springer

2570 E.G. L. de Murillas et al.

median is lower. In the case of Random Forest, using 13 features is better than using 9 in
every aspect.

8.4 Discussion

The aim of this evaluation has been twofold. First, to assess the precision of our predictors at
estimating the value of each log characteristic. Second, to evaluate the quality of the rankings
of case notions, based on their potential “interestingness,” using our custom predictor and
compare them to LTR algorithms. The results (Figs. 12, 13) show that our predictors are
not very good at predicting log characteristics with precision. Other regressors, like Quantile
Regression, have shown better results in this aspect. However, when it comes to ranking
quality, the precision in the prediction of the log characteristics is of less importance than the
relative differences between predictions for several case notions (i.e., it is not so important to
predict accurately the log quality of case notions a and b, as long as we can predict that a will
be more interesting than b). In fact, the results obtained from the ranking quality evaluation
(Fig. 14) show that our custom predictor performs better, on average, than other regressors,
even though they showed better prediction accuracy.

We conclude that for the purpose of predicting accurately the value of log characteristics
and when training data are available, the use of regressors such as QR is the best option.
When it comes to ranking candidates, LTR algorithms such as Random Forest and MART
provide better results. However, unlike our custom predictor, all these techniques require the
existence of training data to build the models. Therefore, in the absence of such data, the
proposed custom predictor provides close-to-optimal results when it comes to rankings and
indicative values for the prediction of log characteristics.

9 Related work

The field of process mining is dominated by techniques for process discovery, conformance,
and enhancement. Yet event correlation and log building are crucial since they provide the
data that other process mining techniques require to find insights. In fact, the choices made
during the log building phase can drastically influence the results obtained in further phases
of a process mining project. Therefore, it is surprising that there are only a few papers on
these topics. Works like the one presented in [4] analyze the choices that users often need
to make when building event logs from databases. Also, it proposes a set of guidelines to
ensure that these choices do not negatively impact the quality of the resulting event log. It is
a good attempt at providing structure and a clear methodology to a phase typically subject to
experience and domain knowledge of the user. However, it does not aim at enabling automated
log building in any form. It has been shown that extracting event logs from ERP systems
like SAP is possible [14]. However, the existing techniques are ad-hoc solutions for ERP
and SAP architectures and do not provide a general approach for event log building from
databases. Another initiative for event log extraction is the onprom project [15-17]. The
focus is on event log extraction by means of ontology-based data access (OBDA). OBDA
requires to define mappings between the source data source and a final event log structure
using ontologies. Then, the onprom tools perform an automatic translation from the manually
defined mappings to the final event log.

Event log labeling deals with the problem of assigning case identifiers to events from an
unlabeled event log. Only a few publications exist that address this challenge. In [18], the

@ Springer

Case notion discovery and recommendation: automated event log... 2571

authors transform unlabeled event logs into labeled ones using an Expectation-Maximization
technique. In [19], a similar approach is presented, which uses sequence partitioning to
discover the case identifiers. Both approaches aim at correlating events that match certain
workflow patterns. However, they do not handle complex structures such as loops and paral-
lelism. The approach proposed in [20] makes use of a reference process model and heuristic
information about the execution time of the different activities within the process in order to
deduct case ids on unlabeled logs. Another approach called Infer Case Id (ICI) is proposed
in [21,22]. The ICI approach assumes that the case id is a hidden attribute inside the event log.
The benefit of this approach is that it does not require a reference process model or heuristics.
The approach tries to identify the hidden case id attribute by measuring control-flow discovery
quality dimensions on many possible candidate event logs. Its goal is to select the ones with
a higher score in terms of fitness, precision, generalization, and simplicity. The mentioned
approaches for event log labeling are clearly related to the problem we try to solve. However,
they ignore the database setting, where event correlations are explicitly defined by means of
foreign keys. This means that case identifiers do not need to be discovered. Therefore, the
challenge of identifying interesting event logs remains open. Only the ICI approach tackles
this issue by measuring control-flow metrics to select the best event log. This is similar to
our idea of measuring log “interestingness.” However, the ICI approach requires to build all
the candidate event logs in order to measure such properties. Our approach is able to reduce
the computational cost by predicting interestingness properties before the log is built.

Other authors have already considered the idea of evaluating event log characteristics.
The metrics proposed in [5] aim at discovering the structural properties of event logs without
actually mining the behavior. These metrics have proven to be of great value in order to
develop our automated approach. The approach in [23] focuses on event correlation for
business processes in the context of Web services. Additionally, it proposes semiautomatic
techniques to generate process views with a certain level of “interestingness.” Instead of
focusing on what is interesting, it discards uninteresting correlations based on the variability
of values on the correlating attributes, or on the ratio of process instances per log. The
approach is certainly of value in the area of event correlation. On the other hand, it does not
provide a framework for automatic case notion discovery. Also, the approach chosen by the
authors to deal with the combinatorial explosion problem is search space pruning, which still
requires to compute the event logs, but for a smaller set of candidates.

When it comes to computing rankings, in our case rankings of event logs or case notions,
we must consider learning to rank (LTR) algorithms from the information retrieval field.
These algorithms are able to learn an optimal ordering of documents with respect to certain
features. Three main categories can be distinguished among them: pointwise, pairwise, and
listwise. Pointwise algorithms try to predict the relevance score of each candidate, one by
one. These algorithms are able to give a prediction of the score, but do not consider the
position of a document in the ranking. Examples of pointwise algorithms are Random For-
est [24], Linear regression [25], the predictors evaluated in Sect. 8.2, and any other algorithm
that applies regression in general. Pairwise algorithms take pairs of candidates and predict
which candidate ranks higher. In this case, the relative position of documents is taken into
account. Examples of pairwise algorithms are MART [26], RankNet [27], RankBoost [28],
and LambdaRANK [29]. Listwise algorithms take lists of candidates and learn to optimize
the order. A disadvantage of this type of approach is the difficulty to obtain training sets of full
ranked lists of candidates. Examples of listwise algorithms are AdaRank [30], Coordinate
Ascent [31], LambdaMART [32], and ListNet [26].

As a summary, event correlation, log building, and process view “interestingness” are
known topics in the field. Despite the attempts of authors, none of the approaches succeeded at

@ Springer

2572 E.G. L. de Murillas et al.

reaching a satisfactory level of automation. Also, none of them proposes a way to recommend
process views to the user, neither to rank them by interests.

10 Conclusion

Applying process mining in environments with complex database schemas and large amounts
of data becomes a laborious task, specially when we lack the right domain knowledge to
drive our decisions. This work attempts to alleviate the problem of event log building by
automatically computing case notions and by recommending the interesting ones to the
user. By means of a new definition of case notion, events are correlated to construct the
traces that form an event log. The properties of these event logs are analyzed to assess their
interestingness. Because of the computational cost of building the event logs for a large
set of case notion candidates, a set of features was defined based on the characteristics of
the case notion and the dataset at hand. Next, a custom predictor estimates the log metrics
used to assess the interestingness. This allows one to rank case notions even before their
corresponding event logs are built. Finally, an extensive evaluation of the custom predictor
was carried out, comparing it to different regressors and to state-of-the-art learning to rank
algorithms. We believe that evaluating the approach in comparison to techniques from the
information retrieval field has not been considered before in the process mining discipline.

To conclude, this work proposes a framework that covers the log building process from
the case notion discovery phase, to the final event log computation, providing the tools to
assess its interestingness based on objective metrics. This assessment can be done on the
case notion itself before the event log is generated. The result of this assessment is used to
provide recommendations to the user.

Our framework presents several limitations, however. The most important one has to do
with log interestingness. We are aware that the notion of log “interestingness” proposed in
this work is somewhat superficial. Only certain structural properties of the log (level of detail,
support, average number of events per trace) are taken into account when evaluating event
logs. The current notion of log “interestingness” ignores other important aspects such as the
relevance of the log semantics at the business level, how meaningful the activities are with
respect to the process, as well as the homogeneity of behavior captured in the event log. Our
definition of log “interestingness” is a first attempt at providing an objective score to rank
event logs. However, the relation of the proposed “interestingness” metric with respect to a
subjective interestingness score provided by users has not been evaluated. A study should be
carried out involving real business analysts and domain experts to evaluate the suitability of
the metric when applied to different datasets and contexts. Also, this study would be valuable
to identify additional measurable aspects that contribute to the notion of log “interestingness”
and have not been considered by our definition.

Another limitation has to do with our prediction results. We proposed certain predictors for
the event log metrics used to assess log “interestingness.” It has been shown that the resulting
ranking based on predicted scores resembles, at an acceptable level of accuracy, the ranking
based on the actual metrics. However, the individual predictions for each log metric lack
accuracy. Relative assumptions can still be made, e.g., log A has higher support than log B.
However, accurate predictions would make the technique more robust to outliers, and benefit
the overall quality of the log “interestingness” assessment. Finding stricter upper and lower
bounds and designing more accurate predictors for each log metric would help to improve
the quality of event log “interestingness” rankings and provide better recommendations to

@ Springer

Case notion discovery and recommendation: automated event log... 2573

the analyst. This could be combined with sampling techniques that combine predicted scores
on candidate case notions with actual scores on computed event logs. This would allow to
compute event logs only for a limited number of case notions, while increasing ranking
quality introducing some certainty in the scores.

Additionally, processing queries expressed on natural language would be a great addition
to the framework, allowing the user to refine the search and insert domain knowledge in
the recommendation process. Also, interactive approaches based on feedback provided on
example logs would allow to guide the search using domain knowledge.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. van der Aalst WMP, Adriansyah A, de Medeiros AKA, Arcieri F et al (2012) Process mining manifesto.
Springer, Berlin, pp 169-194. https://doi.org/10.1007/978-3-642-28108-2_19
2. Watson HJ, Wixom BH (2007) The current state of business intelligence. Computer 40(9):96-99. https://
doi.org/10.1109/MC.2007.331
3. Gopalkrishnan V, Li Q, Karlapalem K (1999) Star/snow-flake schema driven object-relational data ware-
house design and query processing strategies. In: International conference on data warehousing and
knowledge discovery. Springer, Berlin, pp 11-22
4. Jans M, Soffer P (2017) From relational database to event log: decisions with quality impact. In: BPM
workshops. Springer, Berlin
5. Gunther C (2009) Process mining in flexible environments. Ph.D. thesis, Eindhoven University of Tech-
nology
6. Loépez Gonzdlez, de Murillas E, Reijers HA, van der Aalst WMP (2019) Connecting databases with
process mining: a meta model and toolset. Softw Syst Model 18:1209-1247. https://doi.org/10.1007/
$10270-018-0664-7
7. XES Working Group (2016) IEEE standard for eXtensible event stream (XES) for achieving interoper-
ability in event logs and event streams. https://doi.org/10.1109/IEEESTD.2016.7740858
8. Lu X, Nagelkerke M, van de Wiel D, Fahland D (2015) Discovering interacting artifacts from ERP
systems. IEEE Trans Serv Comput 8(6):861-873
9. Giovinazzo WA (2000) Object-oriented data warehouse design: building a star schema. Prentice Hall
PTR, Upper Saddle River
10. Panik MJ (2005) Advanced statistics from an elementary point of view, vol 9. Academic Press, Cambridge
11. Gonzélez Lopez de Murillas E (2019) Process mining on databases: extracting event data from real-life
data sources. Ph.D. thesis, Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven
12. Koenker R (2005) Quantile regression. Econometric society monographs. Cambridge University Press,
Cambridge
13. Tax N, Bockting S, Hiemstra D (2015) A cross-benchmark comparison of 87 learning to rank methods.
Inf Process Manag 51(6):757-772
14. Ingvaldsen JE, Gulla JA (2008) Preprocessing support for large scale process mining of SAP transactions.
In: BPM workshops. Springer, pp 30-41
15. Calvanese D, Kalayci TE, Montali M, Santoso A (2017) Obda for log extraction in process mining. In:
Reasoning web international summer school. Springer, pp 292-345
16. Calvanese D, Kalayci TE, Montali M, Santoso A (2017) The onprom toolchain for extracting business pro-
cess logs using ontology-based data access. In: Proceedings of the BPM demo track and BPM dissertation
award. CEUR-WS.org

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1109/MC.2007.331
https://doi.org/10.1109/MC.2007.331
https://doi.org/10.1007/s10270-018-0664-7
https://doi.org/10.1007/s10270-018-0664-7
https://doi.org/10.1109/IEEESTD.2016.7740858

2574 E.G. L. de Murillas et al.

17.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Calvanese D, Kalayci TE, Montali M, Tinella S (2017) Ontology-based data access for extracting event
logs from legacy data: the onprom tool and methodology. In: International conference on business infor-
mation systems. Springer, pp 220-236

Ferreira DR, Gillblad D (2009) Discovering process models from unlabelled event logs. In: International
conference on business process management. Springer, pp 143—-158

Walicki M, Ferreira DR (2011) Sequence partitioning for process mining with unlabeled event logs. Data
Knowl Eng 70(10):821-841

Bayomie D, Helal IM, Awad A, Ezat E, ElBastawissi A (2015) Deducing case IDs for unlabeled event
logs. In: International conference on business process management. Springer, pp 242-254

Andaloussi AA, Burattin A, Weber B (2018) Toward an automated labeling of event log attributes. In:
Halpin T, Krogstie J, Nurcan S, Proper E, Schmidt R, Ukor R (eds) Enterprise, business-process and
information systems modeling. Springer, Berlin, pp 82-96

Burattin A, Vigo R (2011) A framework for semi-automated process instance discovery from decorative
attributes. In: IEEE symposium on computational intelligence and data mining (CIDM). IEEE, pp 176—
183

Motahari-Nezhad HR, Saint-Paul R, Casati F, Benatallah B (2011) Event correlation for process discovery
from web service interaction logs. VLDB J 20(3):417—444. https://doi.org/10.1007/s00778-010-0203-9
Breiman L (2001) Random forests. Mach Learn 45(1):5-32

Ng AY (2004) Feature selection, 11 vs. 12 regularization, and rotational invariance. In: Proceedings of the
twenty-first international conference on machine learning. ACM, p 78. https://doi.org/10.1145/1015330.
1015435

Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189—
1232

Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2005) Learning to rank
using gradient descent. In: Proceedings of the 22nd international conference on machine learning. ACM,
pp 89-96

Freund Y, Iyer R, Schapire RE, Singer Y (2003) An efficient boosting algorithm for combining preferences.
J Mach Learn Res 4:933-969

Burges CJ, Ragno R, Le QV (2007) Learning to rank with nonsmooth cost functions. In: Gretton A,
Borgwardt KM, Rasch M, Scholkopf B, Smola AJ (eds) Advances in neural information processing
systems. MIT Press, Cambridge, pp 193-200

Xu J, Li H (2007) Adarank: a boosting algorithm for information retrieval. In: SIGIR. ACM, pp 391-398
Metzler D, Croft WB (2007) Linear feature-based models for information retrieval. Inf Retr 10(3):257—
274

Wu Q, Burges CJ, Svore KM, Gao J (2010) Adapting boosting for information retrieval measures. Inf
Retr 13(3):254-270

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

E. Gonzalez Lopez de Murillas obtained his Ph.D. at the Eindhoven
University of Technology, the Netherlands, in 2019. His research inter-
ests include process mining, data extraction and transformation, data
querying, automated event log building, and business process manage-
ment. Currently, he works as a Machine Learning Engineer at Accha.nl,
where he develops solutions to optimize manual processes using tech-
niques from different fields such as NLP and information retrieval.

@ Springer

https://doi.org/10.1007/s00778-010-0203-9
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1145/1015330.1015435

Case notion discovery and recommendation: automated event log... 2575

H. A. Reijers is a full professor in the Department of Information and
Computing Sciences of Utrecht University, where he holds the chair in
Business Process Management and Analytics. He is also a part-time,
full professor in the Department of Mathematics and Computer Sci-
ence of Eindhoven University of Technology, as well as an adjunct
professor in the School of Information Systems of Queensland Uni-
versity of Technology. Previously, he headed a research unit within
Lexmark and led IT projects as a management consultant for Accenture
and Deloitte. The focus of his research is on business process innova-
tion, process analytics, robotic process automation, and enterprise IT.
On these and other topics, he published over 200 scientific papers, book
chapters, and professional publications. His latest research is concerned
with how to let people and computer systems work together gracefully
within business processes.

W. M. P. van der Aalst is a full professor at RWTH Aachen Univer-
sity leading the Process and Data Science (PADS) group. He is also
part-time affiliated with the Fraunhofer-Institut fiir Angewandte Infor-
mationstechnik (FIT) where he leads FIT’s Process Mining group. His
research interests include process mining, Petri nets, business process
management, workflow management, process modeling, and process
analysis. Next to serving on the editorial boards of over ten scientific
journals, he is also playing an advisory role for several companies,
including Fluxicon, Celonis, and Processgold. Van der Aalst received
honorary degrees from the Moscow Higher School of Economics (Prof.
h.c.), Tsinghua University, and Hasselt University (Dr. h.c.). He is also
an elected member of the Royal Netherlands Academy of Arts and
Sciences, the Royal Holland Society of Sciences and Humanities, and
the Academy of Europe. In 2018, he was awarded an Alexander-von-
Humboldt Professorship.

@ Springer

	Case notion discovery and recommendation: automated event log building on databases
	Abstract
	1 Introduction
	2 Preliminaries
	3 Running example
	4 Case notions and log building
	4.1 Defining case notions
	4.2 Building a log

	5 Log quality: is my log interesting?
	6 Predicting log interestingness
	7 Implementation
	8 Evaluation
	8.1 Features for log quality prediction
	8.2 Evaluation of predictors' accuracy
	8.3 Evaluation of ranking quality
	8.4 Discussion

	9 Related work
	10 Conclusion
	References

