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Abstract The stability of feature subset selection algorithms has become crucial in real-
world problems due to the need for consistent experimental results across different repli-
cates. Specifically, in this paper, we analyze the reproducibility of ranking based feature
subset selection algorithms. When applied to data, this family of algorithms builds an order-
ing of variables in terms of a measure of relevance. In order to quantify the reproducibility
of ranking based feature subset selection algorithms, we propose a model that takes into
account all the different sized subsets of top-ranked features. The model is fitted to data
through the minimization of an error function related to the expected values of Kuncheva’s
consistency index for those subsets. Once it is fitted, the model provides practical informa-
tion about the feature subset selection algorithm analyzed, such as a measure of its expected
reproducibility or its estimated area under the receiver operating characteristic curve regard-
ing the identification of relevant features. We test our model empirically using both synthetic
and a wide range of real data. The results show that our proposal can be used to analyze fea-
ture subset selection algorithms based on rankings in terms of their reproducibility and their
performance.

Keywords Feature selection - Stability - Reproducibility - High dimensionality

Ari Urkullu

Paseo Manuel de Lardizabal, 1, 20018, Donostia, Gipuzkoa, Spain

Tel.: +34-943-018070

Fax: +34-943-015090

E-mail: ari.urkullu@ehu.eus

Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU)
ORCID: 0000-0002-8597-3260

Aritz Pérez

Alameda Mazarredo, 14, 48009, Bilbao, Bizkaia, Spain

Department of Data Science, Basque Center for Applied Mathematics (BCAM)
ORCID: 0000-0002-8128-1099

Borja Calvo

Paseo Manuel de Lardizabal, 1, 20018, Donostia, Gipuzkoa, Spain

Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU)
ORCID: 0000-0001-9969-9664



2 Ari Urkullu et al.

1 Introduction

Due to the large quantity of irreproducible results, concern has arisen to such an extent
that a perception of a reproducibility crisis has spread through the scientific community [4].
Among other factors, researchers point out insufficient replication in the original labora-
tory, poor oversight, and low statistical power or poor analysis as the reasons for this crisis.
Moreover, researchers identify better understanding of statistics, better mentoring and more
robust designs as some of the possible solutions to boost reproducibility. Indeed, the Amer-
ican Statistical Association (ASA) warned recently about the problems derived from the
inappropriate use of some statistical tools [41].

In this work, we tackle the feature selection problem, a problem in which the previously
mentioned concerns regarding reproducibility are also present. Specifically, in this paper,
we focus on problems in which the selection of features is made through a ranking (derived
through a feature subset selection algorithm based on rankings) of all the features so as to
identify the i top-ranked features. In brief, the aim of this paper is the proposal and testing
of a statistical approach that enables the analysis of the reproducibility of ranking based
feature subset selection (RFSS) algorithms. In order to illustrate and test our proposal, in
addition to the use of synthetic data, we use several real datasets. Some of these belong to
the biomarker selection problem because it is a problem that belongs to the area in which
the reproducibility crisis is most apparent [3,13].

In summary, our proposal for RFSS algorithms consists of a framework that allows us
to quantify the reproducibility of the outcomes of such algorithms. In addition, it also en-
ables us to gather information of the performance of a given feature subset selection method.
Specifically, feature subset selection methods can be seen as classifiers that assess the fea-
tures they select as interesting, and the rest of the features as non-interesting. In the case of
RFSS methods, the resulting rankings can be seen as orderings of the features according to
how likely they are to be relevant from the point of view of the given RFSS methods. Conse-
quently, at least in dichotomous problems, the performance of a given RFSS algorithm can
be assessed through the AUC in terms of the identification of relevant features.

Briefly, our proposal can be summarized as follows. Our approach takes as input two
rankings of features provided by a feature ranking algorithm when applied to different
datasets sampled from the same population. With such input, our proposal starts with the
assessment of the similarity between the two rankings through the computation of a curve.
Succinctly, such a curve measures the consistency index of Kuncheva [23] for each possible
pair of top-ranked feature subsets (of the same size) derived from the two rankings. Next,
the proposed reproducibility model, which considers that each feature has one of two differ-
ent possible degrees of relevance, is fitted to the curve. Finally, the parameters of the fitted
model enable us to obtain an AUC in terms of the detection of relevant features for the given
method. We hypothesize that the estimated AUC derived from the parameters of the model
is correlated with the estimation of the true AUC (which should be derived from the data),
a hypothesis we have checked during the experimentation with synthetic data. Such infor-
mation is valuable for scientific research in terms of aiming for efficient research regarding
time, effort and money.

This paper is organized as follows. First, Section 2 focuses mainly on describing the
process under study in this work and on presenting research on the reproducibility in the
feature selection problem. In Section 3, we will explain a procedure to empirically estimate
the reproducibility of the results of a RFSS method through two repetitions of the same
experiment. Section 4 exposes the model for reproducibility curves. Section 5 poses how
the model can be fitted to empirical data and how further information of interest can be
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derived from the parameters of the fitted model. Then, in Section 6, the experimentation
conducted both with synthetic data and real data is explained and the results are described.
Finally, in Section 7, the main conclusions that have been drawn from this research and
future work possibilities will be discussed.

2 Background and related work

This section is divided into two subsections. First, Subsection 2.1 is dedicated to the de-
scription of the process under study in this work. Secondly, Subsection 2.2 focuses on the
description of research related to the problem under analysis in this paper.

2.1 Background

Currently, there is no firm consensus about what reproducibility means exactly [4,13]. In
this work, we stick to the definition of the reproducibility of results provided by Goodman
et al. [13]. They basically stated that reproducibility of results consists of obtaining the same
results as a given prior study when conducting an independent study collecting new data and
following, as closely as possible, the procedures of the prior study. Specifically, we focus
on reproducibility of results when the different datasets collected in different studies are
sampled from the same population. In such conditions, although reproducing experimental
results may seem a trivial task initially, in a recent Nature’s survey more than half of the
researchers declared to have failed to reproduce their own experiments [4]. Moreover, the
stochasticity that the sampling procedure generally implies makes it difficult to state whether
the original results have been reproduced or not. Furthermore, there is no consensus either
on what a successful reproduction of results consists of [13]. For the sake of brevity, from
now on we also refer to such reproducibility of results under those conditions simply as
reproducibility.

The aforementioned concerns regarding reproducibility are also present in the feature
selection problem. Specifically, in order to assess the reproducibility of a given feature se-
lection algorithm, the stability (sensitivity to variations in the data) of its outcomes is mea-
sured [8,19,20,29,30,32,34]. Given a certain problem in which there is a specific objective
(e.g., classification, clustering, knowledge discovery, ...), the feature selection problem is
normally conceived as a subproblem or step in which, among all the features available, the
aim is generally to select the most interesting features regarding the objective, while discard-
ing the rest. That search of the most interesting features may be carried out for many reasons
[8,14,34], such as the improvement of the interpretability or the generalization capability
of a given classification model. The many algorithms that have been proposed to tackle the
feature selection problem can usually be divided into three major types according to which
sort of outcome they produce: weight-scores for the features, rankings of features or sub-
sets of features [8,19,20,29,30,32,34]. Another frequent way to classify feature selection
algorithms is according to the relationship they keep with the learning methods, normally
distinguishing three categories: filter, wrapper and embedded methods [9, 14, 34]. Moreover,
another possibility is to group the feature selection algorithms according to whether the
algorithms ignore dependencies between features (univariate) or not (multivariate) [19,20,
34].

When the feature selection problem is posed in an environment in which the sample size
is small and high dimensionality occurs, the concerns regarding reproducibility are greater.
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The main reason is that those two circumstances favor the variability of the outcomes the
feature selection algorithms produce, an occurrence which may likely have a great impact
on the reproducibility of the results achieved regarding the specific objective pursued (e.g.,
classification, clustering, knowledge discovery, ...). In practice, when dealing with such a
problem in which instances are divided into two or more groups of interest, and in which
both high dimensionality and small sample size occur, a common procedure consists of ap-
plying a univariate filter feature selection method capable of generating rankings of features.
That method, which normally is a statistical test or a heuristic measure, is mainly used to
quantify how each feature behaves differently throughout the different groups of instances
provided, thus enabling the construction of a ranking. Once the ranking is ready, a subset
of features, which is usually composed of top-ranked features, is selected (e.g., setting a
threshold or fixing the size of the subset). Indeed, this feature subset selection step is gen-
erally seen as a filtering process, in which the great majority of the features are filtered out,
and in which the usefulness of the remaining ones is yet to be checked.

Let us recall that within the feature selection problem, the reproducibility crisis is most
apparent in the biomarker selection problem [3, 13]. On one hand, the relevant features (true
biomarkers) are normally expected to be far fewer than the features (candidate biomarkers).
On the other hand, both high dimensionality and small sample size are present to such an
extent that the feature selection becomes not only a convenient step, but also an indispens-
able one [20,35]. Those two facts combined increase the difficulty of the task consisting
of the detection of relevant features. In fact, in that context (biomarker selection), it is not
unusual for relevant features identified in a study to later turn out to be invalid [3,17]. As
aforementioned for this kind of problems (in which the amount of relevant features is far
greater than the amount of irrelevant features and the amount of features is far greater than
the amount of instances), the subset of selected features is analyzed and checked in further,
more costly in terms of time, effort and money, studies so as to validate them [34].

2.2 Related work

The aforementioned concern regarding reproducibility in the feature selection problem has
promoted research in the matter. Such research has been carried out mainly through the as-
sessment of the reproducibility of the outcomes of the feature selection algorithms. Specif-
ically, such assessment is generally conducted through the measurement of the stability of
the outcomes of the feature selection algorithms, a stability that can be defined as the sensi-
tivity of the feature selection outcomes to (small) variations in the datasets [8,19,20,29,30,
32,34].

The related work is divided into five subsections. Subsections 2.2.1, 2.2.2, 2.2.3 and
2.2.4 briefly describe the most relevant research lines regarding the work we pose in this
paper. Subsection 2.2.5 describes Kuncheva’s consistency index due to its central role in
this work. For a more general view on the feature selection problems and on the stability of
feature selection algorithms, we refer the reader to [6,7,24] and [3,17,22], respectively.

2.2.1 Stability measures

One research line within the area of reproducibility in feature selection consists of the study
and development of stability measures for the outcomes of the feature selection algorithms.
Kalousis et al. [19,20] analyzed the behavior of different stability measures using several
feature selection algorithms in different biomedical problems. In the context of stability
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measures that deal with the outcomes of feature subset selection algorithms, Nogueira &
Brown [29,30] studied the desirable properties that such stability measures should have.
They also analyzed popular stability measures used in feature subset selection, such as the
Jaccard-Tanimoto index [11], the adjusted stability measure of Lustgarten [26], Kuncheva’s
consistency index [23] and many others. That analysis was conducted by identifying which
properties (e.g., correction for chance) would be desirable in a feature selection measure,
and by later checking which properties were satisfied by each measure among those that
were analyzed. Nogueira et al. [32] studied the properties of Spearman’s rho as a stability
measure for rankings of features, and provided insights on its properties. Chelvan & Peru-
mal [8] conducted an experimental comparison of stability measures for feature selection
algorithms, testing them on different datasets. Alelyani et al. [2] analyzed the sensibility of
several feature selection stability measures to the variability of the incoming datasets. They
also proposed a technique so as to assess the stability of feature selection algorithms while
taking into account the variability of the incoming datasets.

2.2.2 Ensemble methods

Another attractive research line within the same field is the study and development of en-
semble methods so as to increase the stability and in order to observe the stability under
controlled circumstances. Guyon & Elisseeff [14] described a procedure to achieve stable
feature selection based on the union of subsets of features selected in several bootstraps of
a given dataset under analysis. Dunne et al. [12] proposed an ensemble solution in order to
increase the stability of the feature subsets selected by wrapper-based approaches, which
they tested in biomedical problems and object recognition problems. Saeys et al. [34] de-
signed ensemble versions of different feature selection algorithms seeking to improve the
stability of their single versions while maintaining a similar performance. Therefore, they
conducted experiments using biomedical data and compared single and ensemble versions
of different feature selection algorithms not only in terms of stability, but also in terms of
performance. Abeel et al. [1] conducted an extensive analysis of ensemble feature selection
within a framework they designed to analyze the stability of feature selection algorithms.
Haury et al. [16] compared the single version and different ensemble versions of feature
selection algorithms in terms of their influence on both performance and stability in breast
cancer prognosis problems. They assessed the influence on performance in terms of the per-
formances achieved by several supervised classification algorithms trained on the features
selected by the feature selection algorithms. In contrast, to assess the influence on stability
they measured the consistency between subsets of selected features derived from different
samples.

2.2.3 Comparison of the stability of different feature selection algorithms

Another interesting research line within the same area consists of the observation and com-
parison of the stabilities achieved by different feature selection algorithms in a set of prob-
lems, thus allowing for the retrieval of information such as an assessment of which method
best suits which problem. Kalousis et al. [19,20] also analyzed the behavior of different fea-
ture selection algorithms using several stability measures in different biomedical problems.
Haury et al. [16] compared several filter and wrapper methods in terms of their stability (and
performance), following the same procedure they used to compare the single version and dif-
ferent ensemble versions of feature selection algorithms as previously mentioned. Shanab et
al. [36] compared the stabilities of many RFSS algorithms in several cancer datasets while
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using different sampling techniques. Dernoncourt et al. [9] studied in biomedical problems
how and to which extent the stability of the results of feature selection algorithms was af-
fected by different parameters of the datasets.

2.2.4 Reproducibility models

In addition to the aforementioned research lines, it is worth mentioning the work of Li et al.
[25] because it is that which is most closely related to our work. In their work, they develop
a model which is fitted to a reproducibility measure in order to extract, from that fitting,
further information of interest. Specifically, Li et al. [25] assessed the reproducibility across
two replicates through curves they defined and which they referred to as correspondence
curves. They also explained how to fit a copula mixture model to those curves and derived
from the fitted model a reproducibility score that they called Irreproducible Discovery Rate
(IDR), which is supposed to be analogous to the False Discovery Rate (FDR).

In fact, it is appropriate to point out that our work shares some similarities with the work
of Li et al. [25] in terms of the purpose. To start with, both works share the following two
assumptions that support them. First, both papers “assume that each putative signal has been
assigned a score that relates to the strength of the evidence for the signal to be real on the
corresponding replicate by some data analysis method” [25]. Secondly, both papers made
the “assumption that genuine signals are reproducible and noise is irreproducible” [25]. In
summary, they assume that the method, in general, fulfills its duty. Moreover, both works
use curves, which although different, aim to assess the reproducibility of the outcomes of
the feature selection algorithms. In addition, in later steps both works propose models that
are fitted to the corresponding curves. However, the models have little to do with each other.
On one hand, as aforementioned, they proposed a copula mixture model to infer the repro-
ducibility of the features while considering two types of features, in which the scores of one
of the types are conceived as more reproducible than the scores of the other type. On the
other hand, our model is based on the conception of each ranking of features as a complete
sequence of extractions of balls from an urn with two types of balls, one type representing
relevant features and the other one representing irrelevant features. In addition, the corre-
spondence curves to which the model of Li et al. [25] is able to fit to are not corrected for
chance (unlike the curves our model fits to). This may lead to biases of the estimation of
the reproducibility due to the cardinality of the selected feature subsets. Furthermore, al-
though the two models assess the reproducibility, they assess it through different measures
of different magnitudes, a circumstance that allows them to complement each other in such
an aspect, and under which a comparison between them can hardly be made. Moreover, Li
et al. [25] concluded with the computation of the irreproducible discovery rate, while our
work concludes with the gathering of information regarding the true Receiver Operating
Characteristic (ROC) curve through its Area Under the Curve (AUC), in terms of the capa-
bility of a given feature selection algorithm for selecting relevant features. Specifically, such
information is provided through an AUC derivable from our model.

Finally, it is convenient to recall that except for the work of Li et al. [25] presented
in this subsection, the rest of the papers described within Subsection 2.2 do not propose
any model for the feature selection process from which to derive additional information
regarding reproducibility. Moreover, they do not focus on ranking based feature selection
as much as on subset based feature selection. Besides, as mentioned, the model proposed
by Li et al. [25] and our model are quite different and complimentary, our model having
the advantage of being intuitive and easy to interpret. Consequently, all those facts present
aresearch gap in which our research takes place.
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2.2.5 Kuncheva’s consistency index

Kuncheva’s consistency index is a feature selection stability measure that enables the as-
sessment of the consistency between pairs of subsets of features. Specifically, given a set
X whose cardinality is [X| = n and two subsets A € X and B € X whose cardinalities are
|A| = |B| = i, where 0 < i < n, Kuncheva’s consistency index [23] between those two sub-
sets is defined as follows:

2
|ANB|— %
712n 60
i—E
n

r,-(A,B) =

Briefly, Kuncheva’s consistency index measures the proportion of features present both
in A and B, |ANB|/i, and it introduces a correction for chance (the —i*/n terms at both
sides of the quotient). This correction for chance has an advantage with respect to other
alternatives since it ensures that the expected value of a random feature selection algorithm
is constant (0), independently of the sizes of A, B and X.

In fact, Kuncheva’s consistency index is a very popular metric due to its advantageous
properties that are critical for the interpretation and comparison of stability values [29-31]:

— Strict monotonicity: This property states that the stability measure is an increasing func-
tion of the average pairwise intersection size.

— Bounded quantity: This is a bounded measure in the interval [-1,1], and the bounds do
not depend on the number of features. Its maximum value (1) is obtained when the sets
are equal, A = B.

— Correction for chance: As explained previously, this is a measure corrected for chance.

Kuncheva’s consistency index is defined for feature subsets of the same cardinality
(|A| = |B]). In this work, we propose the use of reproducibility curves, the extension of
Kuncheva’s consistency index to rankings of features.

3 Empirical analysis of the reproducibility

Generally, when a RFSS algorithm ranks a set of n features, the algorithm tends to rank
each feature according to its relevance. Namely, the more relevant a feature is, the closer
to the top of the ranking it will tend to be placed by the algorithm. That is why our anal-
ysis of the reproducibility is based on the assessment of the similarity of two top feature
subsets of size i, which are derived from the rankings obtained for two different replicates,
fori e {1,...,n}, when a given RFSS algorithm is applied. For each possible subset size i,
we have chosen to use Kuncheva’s consistency index to assess the similarity between pairs
of top feature subsets of the same size i. We selected this stability measure for two rea-
sons. First, its previously mentioned advantages enable a straightforward interpretation and
comparison of the stability values. Secondly, in our work we aim to assess the stability of
subsets of features that have the same cardinality. Note that the resulting vector of n con-
sistency indexes of Kuncheva, each being associated to a different size i of the subsets of
top-ranked features, together with the sequence 1,...,n can be represented graphically as a
curve [23], a curve which we refer to as a “reproducibility curve”. It is worth noting that
one of the rankings represents the ranking derived from an original study, while the other
represents the ranking derived from a reproduction attempt. Consequently, a measurement
of the similarity of the two rankings, through the stability of the feature selection, indicates
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how similar the reproduction attempt and the original study are in terms of the results of the
feature selection.

3.1 Formalizing the reproducibility curves

Let us assume that we have a set of features X = (Xj,...,X,) and a class C which takes bi-
nary values ¢ € {+,—}, where (X,C) is distributed according to some unknown probability
distribution p. Let us have a dataset D of N i.i.d. samples according to p. Formally, a RFSS
method can be seen as a function f that, given a dataset D, maps a set of n elements (fea-
tures) into an element (permutation) of the symmetric group S, that represents an ordering
of the features:

f(D)=o, )
where o; = j denotes that feature X is ranked as the i-th most relevant feature according
to the permutation 6 = (01, ..., 0,). For the sake of simplicity, we also refer to an ordering

o as ranking o, given that for any ordering ¢ the calculation of its associated ranking is
straightforward. From here on we will denote by 6<; the set formed by the first i elements
of o, O<;= {O'],...,O'i}.

Next, we define in Equation 3 the function /; that given two orderings 6 and ¢’ obtains
the intersection of the associated two top-i sets, 6<; and ;.

li(6,6') =|o<no6l. 3

We denote this function simply as /; when it is clear from the context. Let L; be the
random variable associated to /; for a RFSS method f, where ¢ = f(D) and ¢’ = f(D’),
and D and D’ are i.i.d according to p.

We denote as r; the function that measures Kuncheva’s consistency index for the top-i
sets of two orderings ¢ and 0"

iy “
i

Again, we denote this function simply as r; when it is clear from the context. Let
R; be the random variable associated to r; for a RFSS method f, where 6 = f(D) and
6’ = f(D'), and D and D’ are i.i.d according to p. We call reproducibility curve to a par-
ticular realization r = (ry,...,r,) of (Ry,...,R,) for a given pair of orderings. Specifically,
a reproducibility curve r = (ry,...,r,) is graphically represented as the sequence of points
(070)7 (17r1),(2,r2),.. .,(n,rn).

We denote as p; the expected value of R;, i.e., p; = E,[R;]. Besides, we call expected re-
producibility curve (ERC), or simply reproducibility curve when it is clear from the context,

to the sequence p = (P1,.-., Pu)-

[N]

ri(6,0') =

3.2 Estimating the expected reproducibility curve from data

Unfortunately, in real situations the probability distribution p underlying the data is un-
known, and thus we have to estimate the ERC p, an estimation to which we refer as p,
using the available data. To that end, we propose two different sampling strategies for esti-
mating the ERC. Both procedures generate pairs of datasets, and for each pair of datasets
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an estimated reproducibility curve is calculated. Therefore, by generating a set of pairs of
datasets a set of estimated reproducibility curves is calculated, and the ERC is estimated by
averaging them.

The proposed methods for generating several pairs of datasets (D) and D)) from the
available data (D) are: i) random splitting (in disjoint halves) of the available data, and ii)
bootstrap sampling (i.e., generate datasets of the size of the available data by using uniform
random sampling with replacement). In order to reduce the variance of the estimated ERCs,
we recommend the use of stratified splitting and sampling (i.e., maintain the class proportion
of the original dataset in the generated pairs of datasets). Figure 1 illustrates how to estimate
the reproducibility curve using the (stratified) random splitting strategy. Then, by repeating
this process and averaging the obtained reproducibility curves, the expectation is estimated.
The complete procedure is presented in Algorithm 1: for each iteration of the algorithm (line
2) areproducibility curve is computed. First, a pair of datasets is obtained by using a random
sampling strategy, e.g., random splitting or bootstrapping (line 3). Then, by applying the
RFSS algorithm f on the pair of datasets, two rankings of features are obtained (line 4). The
two rankings are used to compute the reproducibility curve of the k-th iteration by means of
Equations 3 and 4 (line 5). The estimated ERC is computed as the average of the 7 obtained
reproducibility curves (line 7).

The proposed sampling strategies have been selected because, on average, by using the
random splitting and bootstrap procedures, we will obtain lower and upper bounds to the
ERC. Intuitively, on the one hand, the random splitting generates pairs of datasets of smaller
size (N /2 instances) that do not share any instance which, on average, leads to pessimistic
estimates of the ERC. On the other hand, bootstrap sampling obtains pairs of overlapping
datasets of the same size (N) which, on average, leads to optimistic estimates (see [33] for
further details on pessimistic and optimistic estimates).

Algorithm 1 The pseudo-code of the algorithm used for estimating the expected repro-
ducibility curve p. Depending on the random sampling procedure used to generate the pair
of datasets, e.g., random splitting or bootstrapping, different estimates can be implemented
(line 3).
1: procedure ESTIMATING p
Input: Dataset D, RFSS algorithm f, number of repetitions ?.
Output: Estimated expected reproducibility curve p.
fork=1tot do
Generate DUY) and D from D by a random sampling strategy.
Apply f to D(Y) and D) to get the rankings of features ¢(!) and ¢(®.
Using Equations 3 and 4 with o and 6@ compute the reproducibility curve r¥.
end for
return the average of the reproducibility curves r fork = 1,...,z.
end procedure

S A A

Finally, seeking to further illustrate the two explained sampling procedures and their
outcomes, the following subsection exposes its application to a real dataset as an example.
3.3 An illustrative example

In this example, we have computed p for two classical statistical tests, the t-test and the
Wilcoxon rank sum test in a real-life biomedical dataset. Please note that how adequate
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Fig. 1 This figure illustrates the computation of a reproducibility curve using the available
data by using the (stratified) random splitting strategy, where there are N* and N~ samples
from the positive and negative classes, respectively

the selected methods are to rank the candidates is irrelevant for our purpose of showing
how our statistical approach to the reproducibility problem works. The reason why these
methods have been selected is because they are classical approaches to the feature subset
selection problem. The dataset consists of ovarian cancer cases and controls [38] which
have their Deoxyribonucleic Acid (DNA) methylation values measured over 27000 candi-
date biomarkers. This dataset is available at the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo, where the ovarian cancer dataset has accession number
GSE19711). In order to enhance the quality of the data provided by that database, we carried
out a preprocessing of the data (see supplementary material) based on that done by Wang et
al [40].

Figure 2 shows the different p corresponding to the t-test and the Wilcoxon test applied
to the real dataset mentioned (with ¢t = 10). Specifically, in Subfigures 2a and 2b, both esti-
mated ERCs start by rising steeply until they flatten out and then each reaches a peak. Then
they start decreasing and getting closer to the straight line of a uniform random selection,
and finally they meet the same consistency index value (0) when the top-n reproducibility
is computed. These results seem to match a scenario in which the methods consistently as-
sess a few candidate biomarkers as more relevant than the rest of the candidate biomarkers.
Consequently, they tend to appear in the first positions of the rankings consistently, while
the orders of the rest of candidate biomarkers are frequently interchanged by the tests.
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Fig. 2 Reproducibility plots for the ovarian cancer database when the t-test is applied (2a)
and when the Wilcoxon test is applied (2b)

In addition to what has been aforementioned regarding how interesting each position i
of a reproducibility curve is, it should be noted that the top-i at which the mentioned peak is
reached is interesting. It is interesting because, under the assumption that there are two types
of features (biomarkers and non-biomarkers), such a peak serves as a heuristic that provides
hints regarding the size of each of those two subsets of features.

4 Modeling the reproducibility curves

In this section, we present a simple and intuitive statistical model for the ERCs. This model
will allow us to analyze the reproducibility of a RFSS algorithm when it deals with real data
(see Section 5 for further details).

The proposed model is based on an urn with z balls representing the n features. A com-
plete sequential extraction of the balls in the urn represents a ranking of the features and it
is denoted by a permutation, ©.

In the feature selection problem, the goal is to select the most relevant features following
a given criterion. In this sense, the proposed model assumes that features are divided into
relevant features (the most relevant ones) and irrelevant features (the less relevant ones).
This simplification reduces the problem of feature subset selection to the problem of detect-
ing the relevant features while discarding the irrelevant ones. That assumption leads to an
interpretable model from a feature subset selection problem point of view.

As a way of simplifying the model, we will assume that, in any extraction, the amount
of relevant balls in any top-i random ranking O <; is the same and we will denote it as a;,
for i € {1,...,n}. In concordance, the sequence of the amounts of relevant balls extracted
is denoted as @ = (ay,...,a,). Taking by convention that ¢y = 0, due to the nature of the
process, a; must be equal to or greater by one than a;_; fori € {1,...,n}. Figure 3 shows a
scheme of the process with two extractions, representing the relevant balls as white balls and
representing the irrelevant balls as black balls. In order to clarify the content of this figure,
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Fig. 3 From the urn with two types of balls to r

remember that ¢ and 6’ are two rankings obtained from two different datasets as explained
in Section 3, that a is the sequence of amounts of relevant balls extracted, that ] =1y,...,1[, is
the coincidences vector (see Equation 3), and that r = ry, ..., r, is the reproducibility vector
(see Equation 4).

Under the proposed model, for the sake of simplicity, it is assumed that the probability
of extracting any specific relevant ball is the same for each of the remaining relevant balls
in the urn; an analogous assumption is made regarding the extraction of irrelevant balls.
Namely, for each type of feature, relevant and irrelevant, it is assumed that the goodness of
the features of the same type in terms of the score being used (derived by using f) is the
same on average, i.e., that they have the same relevance according to f. When a is known,
that assumption makes it easy to derive theoretically the ERC p = {py,...,p,} from a.
Specifically, bearing in mind Equation 4, p; can be expressed fori € {1,...,n} as:

pi=—5" ®

where 4; is the expected amount of coincidences between any two top-i ranks. In order
to derive A; from a, first we decompose it as the sum of the expected amount of coincident
relevant balls, which we denote as ll-“, and the expected amount of coincident irrelevant
balls, which we denote as A”. Namely:

pi= ’7’27 (6)

In fact, the random variable L?, whose expectation is A?, follows a hypergeometric dis-
tribution, L{ ~ Hypergeometric(an,a;,a;), where the three parameters represent the popu-
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lation size (the total amount of relevant balls), the amount of successes in the population
(the relevant balls extracted in the first sequence until the first i extractions are made) and
the amount of draws (the relevant balls extracted in the second sequence until the first i
extractions are made), respectively. Consequently, the expected value is:

<o

A’ia = i (7)
An
An analogous procedure can be performed with A7: L? ~ Hypergeometric((n —ay), (i —
a;), (i —a;)) and, thus:

s . 2
ap = ) ®)

n—ap
Finally, replacing in Equation 6 the terms A¢ and A” with their expressions of Equations

7 and 8 respectively, the expected top-i reproducibility p; under the model represented by a
can be calculated as:

a | (i~ 2
e + — L L
pr= e T ©)
2
n

Note that the expected top-i reproducibility under the proposed model for i € {1,...,n}
is symmetric regarding the relative amount of relevant and irrelevant balls (i.e., switching
the labels has no effect in the model). However, in many practical scenarios, such as the
biomarker selection, the relevant features (relevant balls, a,,) are far less than the irrelevant
ones (irrelevant balls, n — ay,).

5 Fitting the model to empirical data

This section is divided into three subsections. In the first one, given an estimated ERC from
a given RFSS algorithm, a procedure based on dynamic programming to find the sequence
a that best fits a given estimated ERC p is described. In the second one, a procedure is
presented to estimate quantitatively how often the relevant balls tend to be ranked closer
to the top than the irrelevant balls. Finally, using the model, we show how to estimate the
quality of the orderings produced by the RFSS algorithm.

5.1 Fitting a to empirical data

The main motivation for fitting the model to a given estimated reproducibility curve p is
to analyze the parameters of the fitted model in order to derive information of interest. For
instance, the estimation of the amount of relevant balls a, can be interpreted as the amount
of features that present differences detectable by the given method when dealing with the
given dataset.

Before explaining the fitting process, it is convenient to recall the set of constraints that
any given sequence a must satisfy so as to be feasible according to our model. A given
sequence a belongs to the set A of all the feasible sequences if and only if @; —a;_; € {0, 1}
fori e {1,...,n}, assuming by convention that agp = 0. With those restrictions in mind, from
here on we only deal with feasible sequences, unless explicitly stated otherwise.
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In order to begin the fitting of the proposed model, we define a cumulative error function
E. This cumulative error function E can assess the difference between a given estimated
reproducibility curve p and the ERC given a particular a (see Equation 9):

-

E(paa) = ei(ﬁivai7an)7 (10)

i=1

where ¢; is the quadratic difference between the estimated top-i reproducibility p; and

the expected top-i reproducibility p; given a (expressed in Equation 9). Consequently, we
have:

2 .

P

ei(piyaian) = (pi— ") an

Now, given the estimated reproducibility curve p, the problem consists of finding the
feasible sequence a that minimizes the cumulative error function E, which we denote as a*:

a* =argminE(p,a). (12)
acA

In order to solve this problem, first we divide it into n 4 1 subproblems, in each of
which a,, has a fixed, different value. Secondly, each subproblem is solved by using dynamic
programming through the following recursive function:

E} () = ei(pi,ai,an) +min(E, " (), EL " (D)), (13)

departing from E}; (p), where E,ﬁi (p) = o when i < a; or when a; < 0 and EJ(p) = 0.
When the n+ 1 subproblems are solved, n+ 1 cumulative error values are available. Hence,
the sequence a* that minimizes the cumulative error can be found by searching for the
a sequence whose associated cumulative error is the minimum among the n + 1 computed
ones. Note that while each subproblem is being resolved, it is possible to gather the sequence
a that solves it by noting the choices made in every step of the recursion in Equation 13.

In order to complement the explanation given for the fitting process that enables the
calculation of a* for a given p, i.e., the problem posed in Equation 12, we present the
pseudo-code of that process in Algorithm 2.

Next, we provide a brief description of Algorithm 2 (a detailed explanation can be found
in the supplementary material):

— The variables: n stores the amount of balls, S stores in its columns the best solutions
for the different subproblems, e stores the errors of the best solutions for the different
subproblems, E,, stores the cumulative errors described in Equation 13 for the m-th
subproblem, P,, store the paths that enable the retrieval of the best solution a for the
m-th subproblem, and a* stores the best solution for the whole problem.

— The loops: Algorithm 2 solves the problem using three nested loops: The outer one
iterates through different subproblems, the middle one through different positions of the
sequences of the amounts of relevant balls, and the inner one through different amounts
of relevant balls. The outer loop only needs to cover half of the subproblems due to the
aforementioned symmetry regarding the relative amount of relevant and irrelevant balls.

— The steps:

— n, S and e are initialized.
— Inside the outer loop, in each iteration:
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Algorithm 2 The pseudo-code of the algorithm used for computing the sequence of the
amounts of relevant balls a* of minimum error.

1: procedure COMPUTING a*

Input: Estimated expected reproducibility curve p.

Output: Sequence of the amounts of relevant balls @* that minimizes the cumulative error function.
2 n = length(p)
3 S = Zeros(n, [n/2] +1)
4: e =Zeros(|[n/2]+1)
5: form=0to [n/2| do
6.
7
8

E,, = Infinites(n+ 1,m+1)

E,[0,00=0
: P,, =Zeros(n+1,m+1)
9: fori=1tondo
10: for j =0 to min(i,m) do
11: if j =0 then
12: E i, j] = Enli—1, j]+ei(pi, j,m)
13: Pulijl=j
14: end if
15: if j =i then
16: E,.[i,j]=E,[i—1,j—1]+ei(pi,j,m)
17: P,li,jl=j-1
18: end if
19: if j # 0 and j # i then
20: ifE,[i—1,j] <Epli—1,j—1] then
21: Em[i'/.j]:Eln[i717j]+ei(ﬁi7jﬂm)
2: Pulij]=J
23: else
24: Em[i-,j]:Em[i_lvj_1]+€i<ﬁivjvm)
25: Pyli,jl=j—-1
26: end if
27: end if
28: end for
29: end for
30: e[m] = E,,[m,n]
31 S|[.,m] = get_subproblem_best_solution(P,, )
32: end for
33: a* = get_problem _best_solution(S, e)
34: return a*

35: end procedure

E,, and P,, are initialized.

The middle and inner loops are executed to solve the m-th subproblem, filling

E,, and P, accordingly (considering Equation 13).

The best error achieved in the m-th subproblem is stored in e.

From the filled matrix of paths P, the sequence a that is the best solution for

subproblem m is derived and stored in the m-th column of §.

— Given e, the best solution for the whole problem, a*, can be found within the solu-
tions stored in S.

Regarding the computational complexity, in order to find @*, [n/2] dynamic program-
ming problems are solved, one for each possible value of a, (considering the aforementioned
symmetry). In addition, to solve each of these, n recursions are performed. In the worst cases
each dynamic programming problem is solved in & (nz) and, thus, the whole search for a*
has a computational complexity of &' (n3).
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5.2 Modeling the differences between types of balls

So far we have modeled the empirical data as a sequence of extractions. With the aim of
gathering further information about the reproducibility, we will model the sequence a* us-
ing the process underlying the non-central hypergeometric distribution of Wallenius [39].
Therefore, the a* computed in the previous subsection becomes an input for the process
carried out in this subsection, which uses a* to derive further data of interest.

In this process we have an urn with relevant and irrelevant balls, but each type has an
associated weight that biases the extraction. The balls are extracted sequentially and, at each
step, the probability of extracting a relevant ball will be the total weight of the remaining
relevant balls divided by the total weight of all the remaining balls. As any common factor
between both weights does not affect the probabilities, we will assume, without loss of
generality, that the weight of each irrelevant ball is 1 and the weight of each relevant ball (or
simply referred to as the weight) is w.

Therefore, in this second stage we see a given a as a summary of the outcome of a
complete sequence of draws that follows the process described above. Consequently, the
likelihood of a given w can be seen as the product of the probabilities of obtaining a relevant
or an irrelevant ball at each step of the sequence of extractions given w. That is, the likelihood
of a given w can be expressed as:

n

B (ai—ai—1) -w-(an—ai-1)
Z(alw) *Ew_ (an—ai—))+n—(i—1—a_1)

(I—(ai—ai-1))-(n—(i—1—ai1))

w-(an—ai—1)+n—(i—1—a;_1)

(14)

where a; — a;_; determines, whether in extraction i, a relevant ball is extracted or not.

Given an a, all the parameters except w are fixed and, as we can compute the likelihood
of a given a certain w, we can search in the interval (0,c0) of proper values of w for the w
that maximizes the likelihood of a, which we denote as w*. This piece of information is very
important due to its interpretation: For a fixed a,, the more reproducible the outcomes of the
method, the higher the value of its w. The weight also summarizes in a single scalar value
the degree of mixing of the relevant and irrelevant balls in the sequence of extractions, with
w becoming further away from 1 as the mixing decreases.

Unfortunately, there is no analytical solution to Equation 14, but an approximate value
of w* can be calculated through a search based on numerical analysis, such as, for instance,
Brent’s method [5]. We choose to use Brent’s method because it is an efficient method that
behaves well when dealing with the problem under analysis. Besides, an approximation of
w* can be very quickly obtained compared with the search for a* of the previous stage of
the fitting process.

5.3 Deriving information from a*

Now we explore a simple yet potentially useful idea which aims to obtain information about
the performance of the method under analysis through the outcomes of the fitted model.

To start with, it is convenient to remember that feature subset selection algorithms can
be seen as classifiers that assess as interesting the features they select and the rest of them
as non-interesting. Specifically, the rankings produced by RFSS methods can be seen as
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orderings of the features according to the feature selection methods. At least in dichotomous
problems, that concept enables us to assess the performance of feature selection algorithms
in terms of the AUC regarding the capability of a given feature selection algorithm for
selecting relevant features, as long as we know which are relevant and which are not. For
instance, let us have a given ranking o of a set of dichotomous features in terms of their
relevance (relevant/irrelevant) and let us know which are relevant and which are not. Note
that ranking o can be cut into two parts at every interstice of it. For a given cut, the topmost
features can be predicted to be relevant while the bottommost features can be predicted to
be irrelevant. Then, contrasting such predictions with the true conditions of the features of
ranking ¢ enables the calculation of a true positive rate and of a false positive rate for each
cut. Therefore, we can use this procedure to derive a ROC curve and to compute its AUC
(data AUC).

In order to seek information about the data AUC of a given method, we use the sequence
a* estimated in our model to derive an AUC from the model (model AUC). The process to
derive a model AUC from a* is similar to the aforementioned process to derive a data AUC
from ©. Specifically, this time, the “true condition” (according to the model) of the top-i
feature is considered to be relevant if &} —a} | = 1 and irrelevant otherwise, fori € {1,...,n}
and assuming that by convention a; = 0.

Unfortunately, in real life situations, we do not know which features are relevant and
which are not and, hence, there is no way to obtain the data AUC. However, through the
analysis of the reproducibility based on our proposal, we can obtain the model AUC. Evi-
dently, we cannot trivially assume that it is an estimation of the true AUC (data AUC), but
through experimentation with synthetic data, we have observed that they are correlated.

It should be noted that the reproducibility curves (to which the model is fitted) are de-
rived from the outcomes of the feature ranking algorithm (after applying Kuncheva’s consis-
tency index). Consequently, the reliability of a given model AUC is as good as the capability
of the feature ranking algorithm to fulfill its duty (to rank the relevant features before the
irrelevant ones). However, let us recall that the two previously mentioned assumptions that
this work shares with the work of Li et al [25] limit the impact of such an issue: First, it
is assumed that “each putative signal has been assigned a score that relates to the strength
of the evidence for the signal to be real on the corresponding replicate by some data anal-
ysis method”. Secondly, it is assumed that “genuine signals are reproducible and noise is
irreproducible”.

6 Experimentation

This section is divided into three subsections. In the first two subsections, in order to illus-
trate the model and its use, the proposed model is fitted to the estimated ERC p, using both
synthetic and real world datasets. Finally, in the last subsection a discussion of the results
obtained from the experimentation is carried out.

6.1 Experimentation with synthetic data

Fitting the model to synthetic data enables the appropriateness of the model to be checked
in controlled scenarios. Besides, the relationship between the AUC of a* (model AUC) and
the AUCs of ¢ and ¢’ (data AUCs) can also be assessed through the experimentation with
synthetic data.



18 Ari Urkullu et al.

The synthetic data used in the experimentation belong to a supervised classification
problem with a binary class variable, C € {+,—}. Each problem consists of 1000 features.
Specifically, we have two types of features: the irrelevant ones whose distribution is inde-
pendent from the class variable, and the relevant ones whose distribution is not independent
from the class variable. In order to approximate real world scenarios, the number of relevant
and irrelevant features is unbalanced: 50 relevant features and 950 irrelevant features. For
the sake of simplicity, we have assumed that features are conditionally independent given
the class and that the features conditioned to each class value are distributed according to a
normal density function. In order to estimate the relevance curve from data, we have gener-
ated pairs of datasets, D and D’ i.i.d. according to p. Specifically, 100 samples are generated
for each of the 2 groups and for each of the 1000 features per dataset.

In particular, we have designed two different scenarios for synthetic data. In one of the
scenarios, the relevant features show differences in location among groups, while in the
other one the relevant features show differences both in location and spread. Finally, each
scenario is composed of 21 different configurations. In each of those, the relevant features
show increasing degrees of differences among groups. Consequently, different configura-
tions within the same scenario pose problems with different difficulties. In particular, the 21
different difficulties aim to cover a wide range of situations. Namely, they range from situ-
ations in which the relevant features can be distinguished with ease from irrelevant ones to
situations in which the relevant features are virtually indistinguishable from irrelevant ones.

In each configuration, the 950 non-relevant features are drawn from the normal distribu-
tion tagged in Figure 4 as “Difficulty 21" for both groups. The remaining 50 relevant features
are drawn from the normal distribution tagged as “Difficulty 21" for one group, and from
the normal distribution whose tag matches the difficulty of the given configuration for the
other group (see further details in the supplementary material, including the specific param-
eter values of all these distributions). For each configuration of synthetic data, the estimated
ERC p has been calculated as explained in Section 3.1 (with = 32).

Regarding the AUC, for each configuration, on one hand, the model AUC of a* is com-
puted, while, on the other hand, the average of the data AUCs of 6 and ¢’ is calculated. It
is convenient to recall that 6 and 6’ are permutations in which the indexes of the features
appear in the order in which they are ranked. Besides, given those permutations and given
that it is known which features are relevant and which are not, a data AUC can be derived
for each permutation. Consequently, the average of the data AUCs derived from ¢ and 6’
is an average of 64 data AUC values in each configuration, since ¢ = 32 and since in each
run two data AUCs can be obtained from the two rankings generated within that run. After
all these calculations, for each configuration a pair of values is obtained, the AUC derived
from the model (a*) and the AUC derived from the data (¢ and 6"), thus obtaining 21 pairs
of AUC values for each scenario and each method. Finally, in each combination of scenario
and method, the Kendall rank correlation coefficient between the 21 AUC values derived
from the model and the 21 AUC values derived from the data is calculated as an assessment
of the relationship between them. We chose to use the Kendall rank correlation coefficient
because the kind of correlation both measures might keep is unknown and because it is ap-
propriate to deal with correlated quantities that might present tied cases, through the 7 —b
statistic [21].

As regards the ranking methods used during the experimentation with synthetic data,
two different ranking methods are used. The first one is based on the t-test while the second
one is based on the Wilcoxon rank sum test.

In order to display the results of the experimentation with synthetic data, different types
of plots have been generated:
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Table 1 Weights for the different combinations of methods, problems and difficulties when
dealing with synthetic data

Problem Difficulty w*
T-test Wilcoxon test
Location 1 11.518 5.849
Location 8 5.345 3.016
Location 15 1.036 0.980
Location & spread 1 122.460 12.492
Location & spread 8 4.110 4.742
Location & spread 15 1.024 1.211

— Error plots (Subfigures 5a, 5b, 5c, 6a, 6b and 6¢): They display in their abscissa axis the
total amount of relevant balls (a,) that correspond to different dynamic programming
problems. The ordinate axis shows the cumulative errors of the optimum solution for
each of these problems. The vertical dashed and dotted lines mark the a,, values with the
minimum cumulative errors. In addition, in the case of synthetic data, since the true a,
value is known, a vertical solid line marks where that value is located.

— Reproducibility plots (Subfigures 5d, Se, 5f, 6d, 6e and 6f): They have already been pre-
sented in Section 3.2 in Figure 2. This time, both the reproducibility curves derived from
the data and the reproducibility curves derived from the model (from a*) are shown. Re-
garding the reproducibility curves derived from the model, it is important to clarify that,
the more mixed the two types of features (relevant/irrelevant) in a* are, the flatter and
more similar to a random reproducibility curve the reproducibility curve associated to
a* will be. Besides, the more separated the two types of features in a* are, the more
peaky the reproducibility curve associated to @* will be. Specifically, it will likely have
a single peak that will tend to reach 1 at the top-i equal to the amount of relevant balls
ina*.

— Weight plots (Subfigures 5g, 5h, 5i, 6g, 6h and 6i): They display in their abscissa axis
the different possible values of w while showing in the ordinate axis the log-likelihood
of the sequence a* given w. The vertical lines are used to show the locations of the w
for which the log-likelihoods of a* are maximum, namely, w*. In addition, the values
of these w* are displayed in the legends. Let us clarify that the weight w* reflects and
assesses quantitatively the degree of mixing of the two different types of features (rel-
evant/irrelevant) in @a*. Namely, the more separated the two types of features are in a*,
the more distant from 1 the value of w* will tend to be. Conversely, the more mixed the
two types of features are in a*, the closer to 1 the value of w* will tend to be.

— Correlation plots (Subfigures 7a 7c, 7b and 7d): They display for a combination of
method and synthetic scenario the 21 pairs of AUC values (derived from the model
and from the data).

The results of the experimentation with synthetic data are shown in Figures 5, 6 and 7,
and in Tables 1 and 2. Notice that, due to space limitations, only a representative subset of
the results of the experimentation with synthetic data has been displayed (difficulties 1, 8
and 15), while the remaining plots are available in the supplementary material along with
further details of the experimentation conducted.
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Fig. 4 Distributions used in the scenario of differences in location (4a) and in the scenario
of differences in both location and spread (4b)
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Fig. 5 Error plots (5a, 5b, 5c¢), reproducibility plots (5d, Se, 5f) and weight plots (5g, 5h,
5i) for different difficulty configurations, 1 (5a, 5d, 5g), 8 (5b, Se, S5h) and 15 (5c, 5f, 5i)
respectively, in the differences in location scenario
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Fig. 6 Error plots (6a, 6b, 6¢), reproducibility plots (6d, 6e, 6f) and weight plots (6g, 6h,
61) for different difficulty configurations, 1 (6a, 6d, 6g), 8 (6b, 6e, 6h) and 15 (6¢, 6f, 61)
respectively, in the differences both in location and spread scenario
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Fig. 7 Correlation plots for the (7a and 7¢) t-test and the (7b and 7d) Wilcoxon rank sum test
in the scenario of differences in location (7a and 7b) and in the scenario of both differences

in both location and spread (7c and 7d)

Table 2 Kendall correlations for the different combinations of methods and problems when

dealing with synthetic data

Problem T—>b
T-test  Wilcoxon test
Location 0.905 0.905
Location & spread ~ 0.905 0.876

6.2 Experimentation with real data

In the experimentation with real data, four different ranking methods are used. Apart from
the t-test and the Wilcoxon rank sum test, a ranking method based on the mutual information
and a ranking method based on the coefficients of a linear SVM are also used. Specifically,
the last two methods have been frequently used in the literature to tackle the feature selection

within supervised classification problems.

Regarding the datasets, we have used 5 different datasets, four obtained from the UCI
Repository [10] and another obtained from the GEO Repository. In Table 3 we display
the amounts of features and instances that each dataset has. For the interested reader, a
description of each dataset and an explanation of the preprocessing applied to each dataset

is provided in the supplementary material.
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Table 3 Amounts of features and instances that each real dataset has

Database Amount of features Amount of instances
Group1l Group2  Total
Breast cancer [27,37] 30 357 212 569
Mice protein expression [18] 77 570 510 1080
SECOM [28] 591 1463 104 1567
Arcene [15] 10000 502 398 900
Ovarian cancer [38] 27578 274 266 540

For each of the real datasets, the two procedures exposed (see Subsection 3.2) to estimate
the ERC and the four ranking methods previously mentioned are applied. Given the amount
of results collected, for the sake of brevity in this paper we will only show a representative
subset of the obtained results when dealing with real data in Figures 8 to 9 and in Tables 4
and 5, leaving the rest of the results in the supplementary material for the interested reader.
Please bear in mind that, unfortunately, since the labels of the real data are unknown, we
cannot compute the data AUC with which to compare the model AUC.

Table 4 w* values for the ranking methods when applied to the real datasets

Database Estimation Mutual information SVM T-test Wilcoxon test
Breast cancer Random split 2.335-107 3.301 60.500 2.335-107
Breast cancer Bootstrap 2.335-10% 6.392 58.182 2.248-10"

Mice Random split 36.834 12.266 25.282 24.479
Mice Bootstrap 54.094  21.697 40.239 42.238
SECOM Random split 153.483  49.718  230.861 238.299
SECOM Bootstrap 280.152 54985  738.401 365.684
Arcene Random split 29.988 5.299 18.776 16.297
Arcene Bootstrap 23.941  11.420 37.650 33.126
Ovarian cancer ~ Random split 25.504 1.451  104.754 43.624
Ovarian cancer Bootstrap 14.767 7.525 26.369 24.236

Table 5 Model AUC values for the ranking methods when applied to the real datasets

Database Estimation Mutual information SVM T-test Wilcoxon test
Breast cancer Random split 1.00000  0.73292  0.99548 1.00000
Breast cancer Bootstrap 1.00000  0.88995  0.99554 1.00000

Mice Random split 0.98554  0.94365 0.97874 0.97846
Mice Bootstrap 0.99417  0.97438  0.99078 0.99158
SECOM Random split 0.99968  0.99520  0.99986 0.99986
SECOM Bootstrap 0.99988  0.99575  0.99998 0.99990
Arcene Random split 0.98496  0.87718  0.96597 0.95932
Arcene Bootstrap 0.98079 0.94586  0.98705 0.98459
Ovarian cancer  Random split 0.96858  0.66808  0.99278 0.98301
Ovarian cancer Bootstrap 0.94793  0.89923  0.97239 0.97071

6.3 Discussion

In this subsection, we briefly discuss the results derived from the experiments with synthetic

and real data.
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Fig. 8 Error plots (8a,8b), reproducibility plots (8c, 8d) and weight plots (8e, 8f) for the mice
protein expression dataset when the mutual information is used as a ranking method (8a, 8c,
8e) and when the SVM is used as a ranking method (8b, 8d, 8f)
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Fig. 9 Error plots (9a,9b), reproducibility plots (9c, 9d) and weight plots (e, 9f) for the
ovarian cancer dataset when the t-test is used as a ranking method (9a, 9c, 9¢) and when the
Wilcoxon test is used as a ranking method (9b, 9d, 9f)
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In the results obtained when dealing with synthetic data, it can be seen (Figures 5 and
6) that the proposed dichotomous model for reproducibility curves fits well to synthetic
data coming from two types of features (with and without differences between groups). It is
worth noting that the model fits well regardless of the assumption that the amount of relevant
balls in the top-i of any sequence of extractions is the same for any i € {1,...,n}. Besides,
it can be appreciated that, as the scenario becomes more difficult from one configuration to
another (columns from left to right in Figures 5 and 6), the difference between the number
of truly relevant features and the number of relevant balls identified by the model tends to
increase. Such an occurrence makes perfect sense, since the increase in the difficulty is a
direct consequence of the two types of features becoming more similar. In fact, as the two
types of features become more similar, it becomes harder for the fitted dichotomous model
to retrieve an accurate estimation of the amount of each type. Moreover, in the extreme case
in which the two types of features are equal, there would not be a way to distinguish them
any longer.

Regarding the weights, although it is necessary to point out that the weight values seem
to be quite sensitive, in general, their values make sense, approaching 1 as the scenario be-
comes more difficult from one configuration to another. Specifically, when the difficulty is
so high that the feature ranking methods are incapable of ranking relevant features before ir-
relevant features consistently, the achieved weight values near 1 appropriately represent that
lack of tendency to rank relevant features before irrelevant features consistently. In sum-
mary, the weights reflect the difficulty to distinguish the relevant features from the irrelevant
ones (the higher the w*, the lower the difficulty). In addition, that occurrence hints that the
weights enable the degree of relevance of the relevant features to be quantitatively assessed
in an intuitive manner.

Regarding the AUC:s, it can be seen qualitatively in Figure 7 and quantitatively in Table
2 that there is a high correlation in terms of the Kendall rank correlation coefficients between
the model AUCs and the data AUCs. Namely, the rankings of the algorithms according to
the model AUCs and the rankings according to the data AUCs are very similar, and, thus, the
estimated model AUC could be used for algorithm comparison purposes. Besides, the model
AUC values provide information regarding the degree of relevance of the relevant features.
In that sense, the model AUC values complement the weights derived from the model. In
addition, a model AUC summarizes a reproducibility curve in a single scalar value, which
eases the comparison of RFSS algorithms from the point of view of their reproducibility.

However, the fittings to the real data give results that are not as good as the results
achieved with synthetic data. Nonetheless, the fitted model can still provide sensible out-
comes (e.g., 9c, 9d) despite its constraints (e.g., only two different types of features, relevant
and irrelevant). In fact, it seems that the further a given real dataset is from having just two
types of features, the worse the fit of the model (conversely, the closer, the better). In partic-
ular, apparently the model for reproducibility curves tends to issue a total amount of relevant
balls a,, at a point of equilibrium for several cases (e.g., Subfigures 8c, 8d). Namely, in such
cases, it seems that if a, was smaller, then the reproducibility curve would rise faster in the
first tops. However, after peaking, it would fall earlier than it does because it would run out
of relevant balls to extract. Similarly, it seems that if a, was bigger, then the reproducibility
curve would not decrease so fast after the peak, but it would not rise as fast before the peak
as it actually does.

When dealing with real data, the different weights obtained serve as a quantitative
heuristic that eases the assessment of the degree of separation of the different types of
features according to a*. Namely, although in sequence a* the degree of mixing between
the different types of features can be observed, the weights summarize that information in
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a single scalar value. Specifically, it is consistent to obtain the highest weights when the
mutual information and Wilcoxon test are used on the breast cancer dataset, given that, ac-
cording to the reproducibility curves derived from the model, there is a complete separation
between the two different types of features identified (see supplementary material). Besides,
it is consistent to obtain the lowest weights when the SVM is used in the ovarian cancer
dataset while performing random split sampling since the modeled reproducibility curve is
the closest one to the reproducibility curve of the randomness.

Regarding the model AUCs derived when dealing with real datasets, all of them are
above 0.9, except for half of the cases when the SVM method is applied. Such an occurrence
suggests that, in general, each method truly discriminates between the two supposed types
of features, although the SVM runs into difficulties in some cases.

7 Conclusions

Paying attention to the reproducibility of the methods used in scientific studies is essential
to ensure sound conclusions. Motivated by this concern, we have presented a statistical
approach to analyze the reproducibility of RFSS algorithms. Specifically, the approach starts
with the use of a given RFSS algorithm in different subsamplings and resamplings of a
given experimental dataset. Next, the expected Kuncheva’s consistency index for each of the
subsets of different size of the top-ranked features is computed to build what we refer to as
a “reproducibility curve”. Then, a novel urn-based model in which an ordering of features is
conceived as a full sequence of extractions of balls from the urn is posed. In particular, in the
model there are conceived relevant and irrelevant balls, each with different weights related
to how likely they are to be drawn. The fitting of the model is composed of two sequential
steps. The first step is the identification of the sequence a* of relevant and irrelevant balls
that minimizes an error function regarding the expected Kuncheva’s consistency indexes
previously calculated. The second step is the search of the weight w* of the relevant balls
that maximizes the likelihood of the identified sequence of balls.

Once the model is fitted to data, it provides practical, intuitive and easy to interpret
information regarding the reproducibility and the performance of the given RFSS algorithm.
To start with, the computed reproducibility curve estimates the expected reproducibility for
each different possible size i of the subset of top-ranked features. The sequence a* provides
an estimate of how many relevant and irrelevant features may be found for each different
possible size i of the subset of top-ranked features. The weight w* assesses the tendency to
rank relevant features before irrelevant features and summarizes it in a single scalar value.
From the sequence a*, a model ROC curve can be derived, thus enabling us to gather a
True Positive Rate (TPR) and a False Positive Rate (FPR) for each different possible size
of the subset of top-ranked features. Consequently, the model AUC of that curve can be
computed. That model AUC is related to the true data AUC in terms of detection of relevant
features, thus providing useful information about it. In summary, the proposed model gathers
information regarding both reproducibility and performance of a given RFSS algorithm.

In order to illustrate the behavior of the model for analyzing RFSS algorithms, we have
conducted experiments both with synthetic data and real data. The experimentation with
synthetic data enables us to test our proposal under controlled circumstances. Briefly, in the
experimentation with synthetic data, each feature follows a known distribution and, conse-
quently, we know which features are relevant and which are not. Namely, the experimenta-
tion with synthetic data allows us to compare the obtained reproducibility and performance
measures with the true values. For the experimentation with real data, we selected several
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datasets, some of them belonging to the problem of biomarker selection, so that they can
serve as an example of a feature selection problem within biomedical research. We chose
some of the datasets to belong to the biomarker selection problem because its concerns re-
garding reproducibility are particularly strong, since some of its usual characteristics (far
fewer individuals than features and far fewer true biomarkers than candidate biomarkers)
hinder the achievement of reproducible results. In summary, the results of the experimenta-
tion with synthetic data and real data show that the proposed model can be used to analyze
RFSS algorithms in terms of their reproducibility and their performance.

Regarding the results of the experimentation with synthetic data, apart from the sensi-
tivity of the weights, the model can be well fitted to the reproducibility curves. On one hand,
the lesser the difficulty of the problem, the more similar the amount of relevant features
identified by the fitted model and the amount of truly relevant features. On the other hand,
the true data AUCs of the methods and the model AUCs are highly correlated. This last
fact suggests that the model AUCs can retrieve useful information for the selection of RFSS
algorithms.

Concerning the results of the experimentation with real data, the proposed model man-
ages to achieve a sensible and logical outcome, reaching a compromise solution. In the fea-
ture selection problem, both the identification of as many relevant features as possible and
the efficient assignment of the possibly limited resources (time, effort, money, ...) are usu-
ally desired. Dealing with that trade-off and deciding the size i of the subset of top-ranked
features that is worth researching are two problems that can be eased with our proposal,
through the provision of a notion of how many relevant features may be found among the i
top-ranked features in terms of the measure of relevance used.

Our research opens several future work lines. One interesting way to proceed consists
of the extension of the model to more than just two types of balls, which most likely will
increase the goodness of the fittings in real data at the cost of increasing the computational
complexity. As an approach to this, we could first fit the model considering two types of
balls and then use its minimum error solution as a departing point for the fitting of a model
considering three types of balls, for instance. This extension can easily be incorporated to
the model AUC through the use of the distance 7 of Kendall, which, in fact, can be seen as a
generalization of the AUC to multipermutations (permutations with repeated elements) that
are not just dichotomous.

Another important line to follow is the estimation of the ERC. At this point we have
offered an underestimation (random split) and an overestimation (bootstrap) of the ERC.
However, it would be interesting to achieve narrower practical bounds through other ap-
proaches to the estimation of the ERC. Also, it would be interesting to associate to practical
bounds a probability of the ERC to fall within those bounds.

8 Online resources
8.1 Online resource 1 — Online resource 1: Supplementary material
A Portable Document Format (PDF) file which contains supplementary material. It includes

details of the fitting process and of the experimentation carried out, and can be found at the
following URL.: https://github.com/isg-ehu/ari.urkullu
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