Knowledge and Information Systems (2021) 63:867-903
https://doi.org/10.1007/s10115-021-01545-9

REGULAR PAPER

®

Check for
updates

Towards metrics-driven ontology engineering

Alba Fernandez-lzquierdo'® - Maria Poveda-Villalén'® -
Asuncion Gomez-Pérez! (- Ratl Garcia-Castro’

Received: 21 February 2019 / Revised: 4 December 2020 / Accepted: 30 December 2020 /
Published online: 23 February 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Abstract

The software engineering field is continuously making an effort to improve the effectiveness
of the software development process. This improvement is performed by developing quan-
titative measures that can be used to enhance the quality of software products and to more
accurately describe, better understand and manage the software development life cycle. Even
if the ontology engineering field is constantly adopting practices from software engineering,
it has not yet reached a state in which metrics are an integral part of ontology engineering
processes and support making evidence-based decisions over the process and its outputs. Up
to now, ontology metrics are mainly focused on the ontology implementation and do not take
into account the development process or other artefacts that can help assessing the quality of
the ontology, e.g. its requirements. This work envisions the need for a metrics-driven ontol-
ogy engineering process and, as a first step, presents a set of metrics for ontology engineering
which are obtained from artefacts generated during the ontology development process and
from the process itself. The approach is validated by measuring the ontology engineering
process carried out in a research project and by showing how the proposed metrics can be
used to improve the efficiency of the process by making predictions, such as the effort needed
to implement an ontology, or assessments, such as the coverage of the ontology according to
its requirements.

Keywords Metrics - Ontology engineering - Requirements - Ontology development

B<X Alba Fernandez-Izquierdo
albafernandez @fi.upm.es

Maria Poveda-Villalon
mpoveda@fi.upm.es

Asuncién Gomez-Pérez
asun@fi.upm.es

Rail Garcia-Castro
rgarcia@fi.upm.es

Ontology Engineering Group, Escuela Técnica Superior de Ingenieros Informdticos, Universidad
Politécnica de Madrid, Madrid, Spain

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-021-01545-9&domain=pdf
http://orcid.org/0000-0003-2011-3654
https://orcid.org/0000-0003-3587-0367
https://orcid.org/0000-0002-3037-0331
https://orcid.org/0000-0002-0421-452X

868 A.Fernédndez-Izquierdo et al.

1 Introduction

Software metrics play an important role in the software engineering field, supporting both
development and managerial decision-making during the software life cycle. These software
metrics are not only related to the source code itself, but also to other artefacts that are part of
the software main product (e.g. requirements, documentation and tests) and to the activities
needed to obtain such artefacts. This diversity of metrics enables software engineers to have
enough information to make different types of predictions, assessments and trade-offs, such
as effort and time predictions or software quality analysis [15].

Similarly, in the ontology engineering field different metrics exist which try to assess the
quality of ontologies by measuring reliability, reusability or cohesion, among other aspects.
However, the metrics proposed until now are mostly focused on the ontology implementation,
and they do not take into account other artefacts produced during the ontology development
process or even the development process itself. Moreover, they only consider the structure
of the ontology [55].

There are some works that are sceptical about the use of metrics [34], which claim that
people expect too much from them as a management tool and that the importance associated
to a metric leads to the risk of chasing the metric rather than focusing on producing good
products. However, several works and projects (e.g. [15,45,56]) defend that appropriate met-
rics can help to identify potential problematic areas that may lead to issues or errors in fields
such as software engineering. In any case, to ascertain if a project or product is healthy, i.e.
if it is maintainable, readable, stable and simple, some measures of its health are needed.
Therefore, having specific metrics to control the ontology development process and the arte-
facts generated from it can lead to evidence-based decision-making and to an improvement
in the efficiency of the development process.

In fact, in real-world projects it is necessary to be aware of the status of the development
process in order to be able to plan and manage it in an efficient way. In the ontology engi-
neering field, metrics should provide information about the resources and the development
time needed to implement the ontology, which is important for the manager of the project
to be able to control the costs of the development and to estimate the effort needed for
future development tasks. This required effort can also be influenced by the complexity of
the ontology requirements that need to be implemented and, because of that, it is also useful
to provide measures that indicate how complex a requirement is. As an example, a simple
ontological requirement that states “What is a sensor?” usually leads to a solely new class
in the ontology, but a complex one such as “Users can have different roles in the organisa-
tion” includes several properties. Thus, it is probable that this latter one will require more
effort to be conceptualised and implemented. Metrics should also provide information about
some aspects of ontology coverage, such as the number of requirements implemented by the
ontology, which are important for the ontology developers to be able to know whether the
ontology is complete.

Taking into account that ontologies are being increasingly adopted in information systems,
it can be considered that ontology development processes may benefit from the application
of common software engineering practices in order to be aligned with software development
and to ease the integration between software and ontologies. Therefore, inspired by software
engineering practices and metrics, where metrics are widely integrated in the software devel-
opment process, this paper defines ontology engineering metrics that go beyond the ontology
implementation and take into account the ontology development process and other artefacts

@ Springer

Towards metrics-driven ontology engineering 869

generated from it, such as the requirements specification document or the test suite generated
from it.

This work aims to address the following research question: “Does the use of metrics allow
extracting information that supports taking decisions during ontology development?”. To
address this research question, a set of hypotheses has been defined to analyse the effect of
the different artefacts involved in the development process. This set of hypotheses does not
cover the whole question, but it allows to identify the information that could be extracted
from metrics in several situations:

H1. The number of requirements influences the number of defined tests.
H2. The number of requirements influences the development time of the ontology.
H3. The number of requirements influences the size of the ontology.
H5. The complexity of requirements influences the number of defined tests.
H6. The complexity of requirements influences the development time of the ontology.
H7. The complexity of requirements influences the size of the ontology.
HS8. The volatility of requirements influences the volatility of the ontology.
H9. The number of tests influences the number of tested terms.
H10. The number of tested terms influences the coverage of the ontology.

To validate these hypotheses, the metrics have been applied in a real use case allowing the
actors involved in the development process to know the status of the process, the ontology
and how both the process and the ontology evolve over time.

This paper is organised as follows. Section 2 presents the state of the art in software and
ontology engineering metrics. Section 3 presents the methodology carried out in order to
propose the set of metrics, while such metrics are described in Sect. 4. Finally, Sect. 5 shows
the validation of the hypotheses in a real-world scenario, Sect. 6 presents the discussion
related to the metrics and the obtained results, and Sect. 7 presents the conclusions obtained
and gives an outlook into future work.

2 State of the art

This section presents a summary of metrics for software and ontology engineering. The
criteria followed for including metrics in this section were based on the availability of the
metrics and the specific formulas to calculate them, as well as on the avoidance of duplicated
metrics.

Software metrics, widely used to assess the quality of software engineering products and
the efficiency of the development process, are used in this work as inspiration to improve the
ontology metrics defined in the literature so far.

2.1 Software engineering metrics

In software engineering, metrics have been of interest for years both from the research
perspective and in the industrial practice, providing several benefits to software development,
such as defect prediction [33] or quality assessment [24]. However, the most significant
benefit of these metrics is the ability to provide information to support managerial decision
making during software development and testing. In fact, the long-term goal of software
measurement is to use measures to make judgements about software quality, which may
influence managerial decision making. For example, managers can use process measurements

@ Springer

870 A.Fernédndez-Izquierdo et al.

to decide if process changes should be made and product metrics to help estimate the effort
required to make software changes [47].

The first software metric dates back to the mid-1960s when the Lines of Code metric (LOC
or KLOC, for thousands of lines of code) was used as the basis for measuring programming
productivity and effort [15]. In the late 1960s, LOC was also used as the basis for measuring
program quality; it was used to calculate derived metrics such as the number of defects per
KLOC. The critical assumption of this metrics is that it considers the size of the program as
the key aspect to measure quality and effort.

From the 1970s, new measurement techniques were developed, starting with measures
for software complexity, such as the Cyclomatic complexity [32], and measures of functional
size, such as the Functional points metric [1].

Nowadays, software metrics are divided into two categories, namely product metrics,
which are used to measure internal attributes of a software system, and process metrics
which are used to obtain measurements about the software process [47]. Product metrics can
be related to the different artefacts produced in the software development process, such as
the source code, the requirements specification or the user documentation. Process metrics
are usually related to the software life cycle, although there are also process metrics which
are associated to different artefacts, such as the requirements specification.

Regarding source code product metrics, the work presented by Fenton [14] includes
the COCOMO 2.0 model [4] for predicting project cost, effort and calendar time. COCOMO
2.0 provides different effort estimating models based on the stage of the development of the
project. As inputs, COCOMO 2.0 requires the level of information available to the user at
that time. Thus, during the earliest conceptual stages of a project, the models uses object
points, e.g. screens, reports and modules of the language, to compute effort. During the early
design stages, it uses as input the unadjusted function points, which represent the functional
size of the software implementation based on the logical view of an application. Finally, once
an architecture has been selected, LOC is the input to the COCOMO model.

Dealing with the same topic, Kan’s work [24] includes the Changed source instructions
metric (CSI), which counts the new and changed source instructions in a software implemen-
tation. Another product metric presented in this collection is the Problems per user month
(PUM), which represents the total number of problems that customers reported for a time
period in addition to the total number of license-months of the software during the period.
In addition to this, Sommerville [47] describes the Fan-in, Fan-out and Depth of conditional
nesting metrics. Fan-in is a measure of the number of functions or methods that call another
function or method and Fan-out is the number of functions or methods that are called by a
given function or method. Depth of conditional nesting measures the depth of nesting of “if”
statements in a program.

Concerning requirements specification product metrics, Fenton and Bieman [14] points
out that the length of the requirements specification might be related to the complexity of
the code and, therefore, it is useful to measure it. An example of this type of metrics is the
Specification weight, formerly the Bang metrics [12], that involves two metrics: Function
bang metric, which is based on the number of functional primitives in any data flow diagram,
and Data bang metric, which measures the number of entities in the entity relationship
model. Costello and Liu [6] present a collection of metrics which includes Requirements fault
density and Requirements completeness. Requirements fault density indicates the number of
requirement faults that are initially detected during test execution or during the analysis of
the tests after being executed and Requirements completeness indicates the completeness of
all sections of requirement specifications and the degree of decomposition of allocated higher
level requirements.

@ Springer

Towards metrics-driven ontology engineering 871

Davis et al. [7] define a set of 18 product metrics to measure the software requirements
specification (SRS) quality, which are associated to attributes of the requirements specifica-
tion document. The authors provide formulas for the following metrics: (1) Unambiguity,
which measures the percentage of requirements that have been interpreted in an unique
manner by all of its reviewers; (2) Completeness, which measures different aspects related
to the completeness of a SRS; (3) SRS correctness, which calculates the percentage of the
requirements specification that has been validated; (4) Understandability, which measures
the percentage of requirements for which all reviewers thought they understood; (5) SRS
verifiability, which considers the cost and time necessary to verify a requirement; (6) SRS
internal consistency, which calculates the percentage of requirements that are not in conflict;
(7) SRS external consistency, which measures the percentage of requirements that are con-
sistent with all other documents; (8) SRS conciseness, which counts the number of pages in
the requirement specification document; (9) SRS design independence, which measures the
percentage of possible solution systems that are eliminated by adding the overly constraining
requirements; (10) SRS annotated with relative importance, which calculates the percentage
of requirements that are annotated with their importance; (11) Non-redundant SRS, which
calculates the percentage of requirements that are stated more than once; and (12) Traced,
which measures the percentage of requirements that are traced.

Lastly, Igbal et al. [23] introduce a set of 9 requirements specification product and process
metrics, among which are the Unigueness, the Modifiable, the Misinterpreted requirements,
the Requirement testing and the SRS quality metrics.

Fenton and Bieman [14] also describe several test case product metrics, such as Branch
coverage, which finds the set of paths such that every edge lies on at least one path, and Test
effectiveness ratio, which it is obtained by dividing the number of tests exercised at least
once and the total number of tests.

With respect to user documentation product metrics, Sommerville also mentions Fog
index [21], which indicates the average length of words and sentences in documents and
is used in software engineering to measure the readability of the user documentation. The
higher the value of a document’s Fog index, the more difficult the document is to understand.

To conclude, in relation to process metrics Fenton and Bieman [14] describes Productivity
measure, where the size of the output is compared with the amount of effort. Kan [24]
describes a set of process quality metrics which tracks defect arrival during formal machine
testing. These metrics include Defect density during machine testing metric, which measures
the number of defects per LOC or function point, and Defect arrival pattern during machine
testing, which calculates time between failures. Sommerville distinguishes three types of
metrics: (a) the time taken for a particular process to be completed, e.g. the total time devoted
to the software development process, (b) the resources required for a particular process, e.g.
total effort in person-days, and (c) the number of occurrences of a particular event, e.g. the
number of defects discovered during code inspection. Thus, these metrics could be related to
any artefact generated during the development process. Moreover, Rahman and Devanbu [42]
gathered a set of file-based process metrics which can be applied to the code, the requirements,
the tests or the documentation. These metrics include: (1) COMM, which measures the number
of commits made to a file; (2) ADEV, which is the number of developers who changed the
file; (3) DDEV, which is the cumulative number of distinct developers contributed to this
file up to this release; (4) ADD and DEL, which are the normalised (by the total number
of added and deleted lines) added and deleted lines in the file; (5) OWN, which measures
the percentage of the lines authored by the highest contributor of a file; (6) MINOR, which
measures the number of contributors who authored less than 5% of the code in that file; (7)
OEXP, which measures the experience of the highest contributor of that file using the percent

@ Springer

872

A.Fernédndez-Izquierdo et al.

Table 1 Summary of software engineering metrics

Artefacts generated during the development process

Source code Requirements specifica- Tests User docu-
tion mentation
Metrics category
Product metrics
LOC, Cyclomatic complexity, Specification weight, Fault COCOMO, COCOMO,
Function points, density, Unambiguity, Branch Fog
COCOMO, CSI, PUM, Completeness, Correctness, Coverage, index

Depth conditional nesting,
Fan-in/Fan-out

Understandability,
Verifiability, Internal and

Effectiveness
Ratio

external consistency,
Conciseness, Design
independance, Annotation,
Non-Redundant
Requirements Specification,
Uniqueness, Modifiable,
Misinterpreted
requirements, testing

Process metrics

Life cycle (metrics not related to any artefact)

Productivity, Defect density during machine testing,

Defect arrival pattern during machine testing, Time devoted to the process,

Number of occurrences of a particular event, Resources required for a particular process,
Changed requirements

COMM, ADEV, DDEV, ADD, DEL, OWN, MINOR, OEXP, EXP

of lines he authored in the project at a given point in time; and (8) EXP, which measures
the geometric mean of the experiences of all the developers. There are also process metrics
which are related to specific artefacts, such as the Changed requirements metric defined in
the work presented by Igbal et al. [23] which is related to the requirements specification. This
latter metric was also introduced by Costello and Liu [6] as Requirements volatility.

Table 1 summarises the software engineering metrics described in this section according
to the category and to the associated artefact from which each metric is extracted. From this
table, it can be concluded that there are several metrics for each of the category and artefact
generated from the software development process.

2.2 Ontology engineering metrics

In the ontology engineering field, metrics have also been an important research topic due to
the fact that they can help assessing and qualifying ontologies or detecting ontology problems.
Different proposals for ontology metrics have been proposed in the past years, measuring
several aspects of the ontology implementation. This section provides an overview of the
most relevant of those ontology metrics.

The work presented by Duque-Ramos et al. [13] already creates a classification of ontology
metrics; however, their proposed classification is based on the use that is made of the metrics,
e.g. functional adequacy, compatibility or maintenance, among others. Instead, the metrics
presented in this work are classified according to the product from which the metrics are

@ Springer

Towards metrics-driven ontology engineering 873

extracted. Due to the fact that all the metrics in the literature are extracted from the ontology
implementation; the classification presented in the following paragraphs is based on the
different ontology implementation elements needed to calculate them, e.g. ontology classes,
ontology hierarchies, ontology properties and ontology axioms.

Concerning metrics related to ontology classes, Yao et al. [57] propose a set of metrics
which try to measure the relatedness of ontologies. The metrics they propose include Number
of root classes (NoR), which counts the number of classes that have no superclass and Number
of leaf classes (NoL), which counts the number of classes that have no subclass. Yang et
al. [58] also propose a set of metrics related to ontology classes to evaluate the ontology
regarding its complexity; this set of metrics includes Total number of concepts or classes
(TNOC). Another set of ontology class metrics is the one presented by Kang et al. [25],
whose metrics are used to predict reasoning performance. These metrics include Number
of children (NOC), and Expression richness (RCH), which measures the ratio between the
number of anonymous class expressions and the total number of class expressions. Orme et
al. [36] propose three different metrics to measure the level of coupling in ontologies using
ontology classes, namely Number of external classes (NEC) and Number of references to
external classes (REC). Gangemi et al. [19] define a set of metrics related to the ontology
structure which includes Absolute leaf cardinality, which measures the number of leaf nodes
in an ontology and is similar to Number of leaf classes (NoL) already presented by Yao et
al. [57]. There are also tools, such as the ontology editors Protégé' and WebProtégé” which
calculate ontology metrics. These editors calculate, among other metrics, Number of classes
and Max siblings, which displays the maximum number of siblings for any class. The tool
OntoMetrics [29] also provides, besides the metrics already defined in Gangemi et al. [19],
a new metric related to ontology classes named Equivalence ratio.

Regarding metrics related to the ontology hierarchy, Yao et al. [57] propose the Average
depth of inheritance of all leaf nodes (ADIT-LN), which is defined as the sum of depths of
all paths divided by the total number of paths. Gangemi et al. [19] also propose a set of
metrics related to the hierarchy to measure the ontology structure. Some of the ontology
structure metrics proposed by these authors are Tangledness, which is related to the multi-
hierarchical nodes of a graph; Absolute depth, which is related to the cardinality of paths
in a graph; or Absolute breadth, which is related to the levels in a graph. Zhe et al. [58]
propose Total number of paths (TNOP) and Average paths per concept, which is calculated
by dividing TNOP by TNOC. Finally, Kang et al. [25] propose Depth of inheritance (DIT)
and Cyclomatic complexity (CYC), which measures the number of linearly independent paths
in the ontology graph. Protégé also calculates metrics related to ontology hierarchy such as
Max depth, which displays the maximum depth of the ontology hierarchy.

With relation to metrics extracted from the ontology properties, Zhe et al. [58] propose
Total number of relations (TNOR) and Average relations per concept, which is calculated by
dividing TNOR by TNOC. Tartir et al. [S1] provide a set of metrics which evaluates ontology
design and its potential for rich knowledge representation from the ontology properties, such
as Relationship Richness and Attribute Richness. The first metric reflects the diversity and
placement of relations in the ontology, while the second one measures the number of attributes
for each class. OntoMetrics [29] also calculates metrics related to ontology properties, such
as Class/Relation ratio or Inverse relations ratio, among others. Finally, DOGMA-MESS
[9] proposes a score based on ontology alignment in order to rank ontologies. Such score is

U https://protege.stanford.edu/.
2 https://webprotege.stanford.edu/.

@ Springer

https://protege.stanford.edu/
https://webprotege.stanford.edu/

874 A.Fernédndez-Izquierdo et al.

calculated by checking if the relevance relations defined by the community are included in
the definition of the ontology to be measured.

Regarding metrics extracted from ontology individuals, Tartir et al. [51] provide a set of
metrics which evaluates the placement of instance data within the ontology and the effective
usage of the ontology to represent the knowledge modelled in the ontology. This set includes,
among others, Class Richness, which is related to how instances are distributed across classes
and Average Population, which is defined as the number of instances divided by the number
of classes. OntoMetrics [29] provides new metrics related to individuals, such as Class
Importance, which is the percentage of instances that belong to classes at the inheritance
subtree rooted at the current class with respect to the total number of instances, or Class
Fullness, which measures the expected number of instances of each class.

With respect to metrics extracted from ontology axioms, Ma et al. [30] propose a set of
metrics to measure the cohesion of ontologies. They propose Number of ontology partitions
(NOP), which measures the number of semantic partitions of a knowledge base,’ this is,
the number of parts in an ontology that are semantically unrelated to each other, Number of
minimally inconsistent subsets (NMIS), which measures the minimally inconsistent subsets
in a knowledge base, and Average value of axiom inconsistencies (AVAI).

There are also metrics extracted from the ontology metadata. Orme et al. [36] pro-
pose Number of referenced includes (RI), which is the number of includes in the ontology
implementation, and Tartir et al. [51] propose Readability, which indicates the existence of
human-readable descriptions in the ontology such as comments or labels. Additionally, the
tool OntoCheck [44] displays the percentage and absolute number of nodes having exactly,
at least or at most a certain number of selectable metadata elements, parents and children,
direct superclasses, subclasses and class usages.

Table 2 summarises the metrics described in this section according to the artefact from
which they are extracted. The table clearly shows that, even if there is a large amount of
work in ontology engineering related to metrics, the metrics found in the literature only
analyse the ontology implementation when making measurements, leaving aside the others
artefacts obtained during the ontology development process, such as the documentation or
the requirements specification. A detailed analysis on the metrics also shows that, even if the
authors relate the metrics to different aspects, such as coupling or cohesion, they are mainly
focused on the ontology structure, specially on the ontology classes.

It should be mentioned that there are ontology development methodologies, such as DILI-
GENT [38], SAMOD [37], GOSPL [11] or HCOME [28], which deal with the assessment of
ontologies. Furthermore, there are more ontology evaluation approaches and tools, such as
ODEClIean [16] and OOPS! [39]. However, this state of the art only includes those metrics
that are associated to a specific formula for their calculation. Thus, potential metrics that
could be extracted from the information stored in the artefacts considered by these method-
ologies and tools, although such methodologies and tools formally specify how to obtain the
information, are out of scope of this paper.

The work presented in this paper is inspired by the work in software metrics and aims to go
a step forward regarding ontology metrics by defining metrics not only related to the ontology
implementation itself, but also to other artefacts generated during the ontology development
process. Furthermore, having multiple ontology development artefacts will enable defining
new metrics that integrate data extracted from two or more artefacts.

3 The authors of the analysed paper refer to the knowledge base as the set of TBox and Abox.

@ Springer

Towards metrics-driven ontology engineering 875

Table 2 Summary of ontology engineering metric

Artefacts generated during the development process
Ontology implementation Requirements Tests User docu-
specification mentation

Metrics category

Product metrics

Class metrics (e.g. TNOC, NoR, NoL)

Hierarchy metrics (e.g. ADIT-LN, Absolute depth)

Property metrics (e.g. TNOR, Relationship richness, DOGMA- — - -
MESS ranking score)

Individual metrics (e.g. Class Richness, Class Fullness)
Axiom properties metrics (e.g. NOP, AVAI)

Metadata metrics (e.g. RI, Readability, OntoCheck metrics)
Process metrics

Life cycle (metrics not related to any artefact)

3 Methodology

Along this section, the workflow followed to propose the set of ontology metrics and its
classification is described. As shown in Fig. 1, the steps followed during the process were:

1. Roles identification: The different roles involved in the ontology development process,
their needs and their risks regarding ontology metrics were identified. This step is further
described in Sect. 3.1.

2. Artefacts identification: The artefacts generated during the ontology development process
that could be potentially useful in order to support the above-mentioned needs and risks
were identified. As it will be later detailed in Sect. 3.2, these artefacts refer to the ontol-
ogy implementation, the ontology requirements specification document and the ontology
requirements.

3. Existing ontology metric analysis: In order to carry out this step, the current state of the
art in ontology metrics was analysed, leading to the identification of already existing
ontology metrics that could be useful to support part of the identified needs. This review
of the state-of-the-art metrics for ontologies was detailed in Sect. 2.2.

4. Ontology metrics proposal: The set of new metrics proposed was developed taking into
account: a) the existing ontology metrics in the literature; b) the needs of the different
actors involved in the ontology development process; and c) the artefacts generated during
the ontology development process. These metrics are also classified according to whether
they are product or process metrics. In the case of the product metrics, they are also
classified according to whether they are base or calculated metrics. The proposed metrics
are described in Sect. 4.

3.1 Roles involved in the ontology development process

In order to define the set of ontology engineering metrics, first the roles that should be involved
in any ontology development process were identified, along with what they want to monitor

@ Springer

876 A.Fernédndez-Izquierdo et al.

1. Identification of roles involved in the development
process and their needs

v

2. |dentification of the artefacts from which
the metrics should be extrated

3. Analysis metrics in the state of the art

v

]

4. Proposal and classification of metrics to 1
support the information needs

Classified metrics|

Legend

! | >
{Existing resource] | Generated resource input/output

Fig.1 Activity workflow followed to generate the proposed set of metrics

during this process. Bearing in mind the similarities between the development of ontologies
and the development of software, and the fact that the ontology engineering field is facing
similar challenges to those seen in software engineering, this role identification was based on
the software engineering state of the art [40]. Accordingly, the role identification proposed
in the software engineering field was applied to ontology engineering practices. Moreover,
different ontology engineering methodologies, such as NeOn [49], SAMOD [37] and UPON
[10] were also considered, as well as the goals of the roles involved in their development
processes. As a result, the following roles were identified:

— Team leaders. People in charge of monitoring and managing the development process
and of diagnosing technical and organisational issues. These actors have the following
needs:

— To organise the development tasks.
— To detect issues that can hinder the development process.

— Ontology developers. People responsible of creating the ontologies and all the needed
resources to publish and document them. These actors have the following needs:

@ Springer

Towards metrics-driven ontology engineering 877

— To be aware of whether the ontology they are generating is correct.
— To be aware of whether the ontology they are generating is complete.

— Stakeholders. Customers, users and domain experts who specify the requirements for the
ontology to be created. These actors have the following needs:

— To be aware of whether the ontology they are generating is correct.

— To be aware of whether the ontology they are generating is complete.

— Tobe aware of whether all the requirements they propose are satisfied by the ontology.

— If they are customers, they need to be aware about the status of the ontology devel-
opment process.

Also inspired by software engineering, this work takes into account that there are risks that
can be monitored using metrics during the development process, such as those mentioned
by Pressman [40], namely: (1) Performance risk, i.e. the degree of uncertainty that the
product will meet its requirements and be fit for its intended use; or (2) Schedule risk, i.e.
the degree of uncertainty that the project schedule will be maintained and that the product
will be delivered on time. The former risk should be monitored by the developers, while the
latter one should be monitored by the team leaders.

3.2 Artefacts in the ontology engineering process

The purpose of this work is to show the benefits for ontological engineering of having metrics
that go beyond the ontology implementation and extract information from additional ontology
engineering artefacts. In this sense, three artefacts are needed to calculate the ontology metrics
proposed in this paper, namely:

— The ontology requirements specification document (ORSD), which is the product
resultant from the ontology requirements specification activity [49]. In this document,
the purpose, requirements and users of the ontology are identified.

— The ontology implementation, which is the product resultant from the ontology imple-
mentation activity.

— The ontology requirements test suite (ORTS), which is the product generated during
the ontology testing process.

These artefacts can be generated iteratively due to the fact that, following ontology devel-
opment methodologies (e.g. eXtreme design [41], SAMOD [37], NeOn [49], GOSPL [11]
and UPON [10]), there can be several versions of an ontology implementation.

Several tools for ontology development can be used to manage these artefacts, including
their generation and maintenance. These tools include not only ontology editors, such as
Protégé, but also platforms for storing and versioning resources, such as GitHub,* and for
editing and sharing the requirements specification document, such as online spreadsheets. In
the following sections each of these artefacts is further described.

3.2.1 Ontology requirements specification document
The ontology requirements specification document (ORSD) [48] is built to define the purpose

of the ontology, the intended users and the requirements the ontology should be able to fulfil
[49]. It is usually generated before the implementation of the ontology during the ontology

4 https://github.com/.

@ Springer

https://github.com/

878 A.Fernédndez-Izquierdo et al.

requirements specification activity. This document should include information related to the
requirement identifier and the associated competency questions [52]. A competency question
is anatural language sentence that expresses a question expected to be answered by the system
using the ontology, therefore either the ontology should answer such a question or provide the
model supporting the system to answer it. In any case, using competency questions is a well-
known and adopted technique for specifying ontological requirements. The ORSD could
also include, in order to obtain more metrics, the status of the requirements (e.g. rejected,
deprecated or accepted). In case that the ontology development process follows an iterative
approach, it could also include the development iteration or sprint in which the requirement
is planned to be implemented.

3.2.2 Ontology implementation

The main artefact from which ontology metrics can be extracted is the ontology code itself.
The ontology implementation contains the axioms and metadata of the ontology and should
be encoded through a formal language such as RDF Schema [5] or OWL [22].

3.2.3 Ontology requirements test suite

An ontology requirements test suite (ORTS) is a collection of test cases that are intended
to be used to test a product [31]. The ontology requirements test suite introduced in this
paper represents a resource which stores a set of test cases to test the ontology. In case
this testing activity is focused on ontology verification, the test suite will verify the ontology
against the requirements identified in the ontology requirements specification document [50].
In this verification scenario, the test cases should include the requirements translated into
a formal language (e.g. SPARQL?) and the identifier of the associated requirement in the
ORSD. The implementation of these test cases into a formal language which includes an
identifier to associate each test case with an ontology requirement will allow identifying
classes and properties defined in the test suite as well as providing traceability between the
ontology requirements, the tests cases and the ontology implementation. Additionally, each
test case should include its competency question formalised [43] and the expected result of
the competency question.

There are several methodologies which deal with this testing activity, such as the work
presented by Blomqvist et al. [3] or OntologyTest [20]. Having the requirements formalised
allows for a system to automatically check if the ontology implementation meets them [53].

This artefact can be generated before the implementation of the ontology in order to follow
a test-driven development approach [26], or after the implementation of the ontology in order
to follow a cascade development approach [17].

4 Proposed ontology metrics

Inspired by the software engineering classification of metrics [47], the ontology metrics
presented in this paper are also divided into two categories, i.e. product metrics and process
metrics. In the ontology engineering context, product metrics are used to measure different
internal attributes of the resultant ontologies, such as size or complexity of the ontology

5 https://www.w3.org/TR/rdf-sparql-query/.

@ Springer

https://www.w3.org/TR/rdf-sparql-query/

Towards metrics-driven ontology engineering 879

implementation. Besides, process metrics are used to measure different attributes of the
ontology development process, such as time, changes or resources, and enable ontology
engineers to assess project status, track potential risks, adjust work-flow, and predict personnel
effort.

This section proposes a set of product and process metrics related to each of the artefacts
described in Sect. 3.2, i.e. the ORSD, the ontology implementation, and the ORTS. The
product metrics are related to a concrete version of these artefacts, while the process metrics
are related to two or more versions. In the case that more than one of the mentioned artefacts
are available, it is possible to combine the data extracted from them by generating multi-
artefact metrics, which are also defined in this section.

To define these metrics, several principles were also followed. First, the work presented
here reuses existing metric definitions. In such cases, the reference to the existing bibli-
ographic resource is shown along with the metric. In addition, the work presented here
provides metrics related to artefacts that are not analysed in the state of the art so far. Finally,
the data extracted from these artefacts was combined to extract measurements with the aim
of covering several aspects in the ontology development process, e.g. the analysis of the
requirements coverage or the effort needed to develop an ontology. Thus, the objective of
this section is to describe metrics based on the needs of the actors identified in Sect. 3.1 and
on the integration of data from several of the artefacts presented in Sect. 3.2 rather than to
provide an exhaustive analysis about all the feasible ontology metrics that can be extracted
from them.

The next subsections describe the proposed metrics. The metrics are organised into tables
which include four fields, namely: (a) the artefact or artefacts from which each metric is
extracted, (b) the code to identify the metric, (c) the name and definition of each metric, and
(d) the formula needed to calculate it. In order to ease readability the product metrics are
grouped by base metrics (Table 3), which represent raw data, and calculated metrics (Table
4), which are derived from base metrics.

4.1 Base product metrics

Table 3 describes the proposed set of base product metrics related to the ORSD, the ORTS
and the ontology implementation. It shows by means of the symbol “X” which artefact or
artefacts are needed to calculate each metric. These metrics are going to be used to obtain
calculated metrics, which are described in the next subsection. These base metrics can be
extracted from one or more of the identified artefacts.

4.2 Calculated product metrics

Table 4 describes the proposed set of calculated product metrics related to the three artefacts,
i.e. the ORSD, the ORTS and the ontology implementation. This table shows by means of the
symbol “X” which artefacts are needed to calculate each metric. These metrics are calculated
using several base metrics, which are described in the previous subsection, and are extracted
from more than one of the identified artefacts. As an example of calculated metric, the metric
CovReqP1tc is obtained by using the base metrics NCovReq and NReq, and is extracted from
the ORSD and the ontology implementation artefacts.

@ Springer

880

A.Fernédndez-Izquierdo et al.

Table 3 Base product metrics and artefacts from which they are extracted

Name and definition

How to calculate

Artefacts Code
ORSD ORTS Impl.
X NReq
X NPendingReq
X NT
X NTests
X X NPassedTests
X X TestFaultDensity
X X NTestedT
X X ReqCompleteness
X X xReqFaultDensity

Number of Requirements. Num-
ber of Requirements defined in the
ORSD. To increase its granular-
ity, this metric can be subdivided
into Number of added require-
ments (NAddedReq), Number of
rejected requirements (NRejecte-
dReq) and Number of accepted
requirements (NAcceptedReq)

Number of Pending Requirements.
Number of pending to implement
requirements after a development
iteration

Number of vocabulary Terms.
Number of terms that are included
in a particular implementation of
an ontology. To increase its gran-
ularity, this metric can be subdi-
vided into Number of classes [58]
and Number of properties [58]

Number of Test cases. Number of
tests cases defined based on the
ORSD

Number of Passed Tests. Number
of test cases in the test suite which
are passed by the ontology imple-
mentation

Tests Fault Density. Number of
test cases in the test suite that are
not passed by the ontology imple-
mentation. Inspired by Costello
and Liu [6]

Number of Tested vocabulary
Terms. To increase its granular-
ity, this metric can be subdivided
into Number of tested classes and
Number of tested properties

Requirements Completeness.
Number of requirements covered
by the ontology. Inspired by
Costello and Liu [6]

Requirements Fault Density.
Number of requirements faults.
Inspired by Costello and Liu [6]

Obtained by counting
the number of require-
ments in a given ver-
sion of the ORSD

Obtained by counting
the number of pend-
ing requirements in a
given version of the
ORSD

Obtained by count-
ing terms (i.e. classes
and properties) in an
ontology implementa-
tion version

Obtained by counting
tests in a given ver-
sion of the ontology
requirements test suite

Obtained by counting
the number of tests that
are passed by a given
version of the ontology
implementation

Obtained by counting
the number of tests that
are not passed by a
given version of the
ontology implementa-
tion

Obtained by count-
ing unduplicated terms
(i.e. classes and rop-
erties) in a given ver-
sion of the ontology
test suite

Obtained by counting
the number of require-
ments that are cov-
ered by a given version
of the ontology imple-
mentation

Obtained by counting
the number of require-
ments faults in an
ORSD

@ Springer

881

Towards metrics-driven ontology engineering

SUWIOTXE PAIIPISUOD JO JoquInu

ay syuesardar (20)y pue dSYO 2y}

JO UOISIAA © ur sjuswaxinbar oy syuasardax

Tbay qSworxe A30[01U0 JO IoquINU [)0)
(*0)y sapnputjou fhay y1
(70) Yy sopnjout fbay yi |

= ((*0) Yy *fbay)worxy svy ar0ym

("o)y
((“0) 1y *fbayyworxy soy 1=

oYy ST u

001 x

Sworxe A30[0ju0

JO Ioquinu [e10) 9y}

pue juswaanbar yora
0] poje[aI SJONISU0d
2SAAY PUe AQY “1MO
9’1 ‘swiorxe A3o[ojuo
JO JoqUINU Y} USdMIOq
oney “A1xapduio)

= (%0 ‘hay)oryboy woIxy sjuawanbayy oDvboy X X
ASYO 2y} JO UOISIAA Y}
'bay pue pasAeur 9q 0) uonejuawdwr
KSo[01u0 9y} Jo uorsiaa) syuasaidar 1
(!bay)boy N s)[ney syuowarmbar Jo
a1yM 001 X ——— - 2 28,
(Y0 Ry Krsuaq vy bay 93vIUdId{ 23DJUIIUIJ
= (0 ‘'y)o1g1mv .y bay nMny suwWaInbay agnegbay X X
ASYO 2y} JO UOISIdA Y}
!bay pue pasAeue oq 0) uonejuawdwr
K30[01U0 3} JO UOISIAA) sjuasaidax A3o10ju0 o) Aq
R (*bay)boy N PaI19A0 sjuawRINbal Jo
QUM O] X —————————— o
(*0 By)bayaono N ERlichl R RER I TERYES
= (Y0 ‘Ny)21d bayao)H SIUW2AINDIY Pa1200) 21dbaya0) X X
1wy SINO asJio
9Je[No[ed 0) MOH uonIuyop pue dweN apoD S10BJOMY

PAIOBNXI a1k AU YOTYM WOIJ S)ovJolIe pue sommaw jonpoid paje[nofe) i aqel

pringer

Qs

A.Fernédndez-Izquierdo et al.

882

uonejuawdur

£30[0ju0 Y} JO UOISIAA Y} () pue

syuawaNnbal pazifewio) Ay sa101s YoIgm

9)1NS 159) AY) JO UOISIAA © o) sjudsardar
(‘s)sisaN

(0 *Is)is2 Lpasspd N

I atoym o1 x

uonejuawa[dur
K3o1ojuo oy £q passed
$159) JO aFejuadIog

= (Y0 ‘1§)214 152 [passvd "28DIUIIAD] 1SI] PSSV 9IS passed X X
UOISIaA A)INs 1531 Ay syuasaidar /g pue
hay pua g pojred syuawaarnbar Surpuad
M UOISIOA (JSYO Y3 UT SjuowraImbar
Surpuad jo Jequinu [)0) Y ST
N1hay pua g spnpour jou seop [1
u Nhay puag sepnput fg ju | Q)Ins 359) Ay} Ul papn[oul
P Apeaife are yorym
= (15 “1bay puaq)papnjoul 213y sjuowaainbax Surpuad jo
bay Suipuag N P
001 X 5 — 98eIURdId{ 23DIUIIUIJ
(Ys “Mbay pua g)papnpour =1 spuawambay
= (‘s *!bay puad)214 b2y 4 puad pazipuiio] Supuad 91dbaydpuad X X
ASYO 2y} JO UOISIdA Y}
'bay pue pasATeur oq 0] uonejudwadwr [L] Te 10 staeQ
£30[01U0 2} JO UOISIAA) SudsaIdar Aq paxdsuy 301yU0d
(!bay)bay N ur aIe Jey)
10 A19YM 00T X ——— o ' Y ﬂmmo
("y)sbay juajsisuoouy Q) ur syuduwraInbar jo
= (By)Louaysisuon a8eyuadie “Kouajsisuo) Koudysisuo) X X
qduwy SI¥O asio
9Je[NOEd 01 MOH UONIUYp pue SWeN apo) S10BJOMY

panunuod 3jqeL

pringer

Ns

883

19sn 2y} Jo spaau Ay uo Jurpuadap aFueyd ued S1Y) 1AMOY “Jouorun pue Auradoigoanisuel], ‘A112doIgoInaWmAS ‘WOIJSAN[BAWOS ‘JOUO0 ‘AJ[eurpre)uiw ‘A)jeurpre)Xew
‘JO9sIaAul ‘A11adoidreuonounJasioAu] ‘JOuUonddsidul ‘anfeAsey ‘Auadoidreuonoun, ‘Airadoigiudrearnba ‘sse[djuarearnba ‘qippiurofsip Joyuswedwos ‘Ayrjeurpieds :ore MO
WO1J PAIOPISUOD SWOIXE A, ‘33Ul pue urewop ‘JOAudoigqns JOsse[oqns :ore S WOolj PIdpISuod swolxe Y, -odA) :s1 oLaw sIy) ur J WOlJ PAISPISUOD WOIXE YL,

pasAreue 2q 03 A30[03u0 2y}
2 pue s 1591 Ay syussaidar g aroym

—~

Towards metrics-driven ontology engineering

uoIsIaA uoneyuawadur
K3o1oju0 ue £q

passed pue 91ns 159) Y}
Ul POZI[eULIO] 9J€ YOoIym
ASYO =2y3 ut pagnuaspt

. 001 syuowarmbai jo
S v0)o1d 152 [passvd x (Y0)o1d bayao) Erjalichiel gEr I IERYER
= (fg2p)o1g baypaisa] sjuawa11nbay] paisay X X
[¥1] vewarg
pue uojua, Aq paidsug
*9JINS 1S9) Ay} UT pauyop
20 uors1aa £3o70ju0 are yorym ‘santedord
A} 03 PAJEIOOSSE sjudINbal pasieuLIo) pue sasse[o Surpnjour
A} $210)S YOTYM I)INS ISI) A} SyudsaIdar ‘sur1o) uonejuowordur
o I !
s aroym o1 x __CounN A3ojojuo
A\ S) Lp21sa LN) Jo a3eIuadIed
= (20 f)onvy ffq159L “0UDY SSIUAIIYJT 152, X
uonejuawardwr
£30[0IU0 3} JO UOISIAA AY) () pue
sjuoweIInbal PasIEUIO] Y} SI0IS YOrym
9)INS 159} Ay} JO UOISIOA Y] sjuasaidar vonmuswadur
r : :
Ig aroum oo x ——SIIOLN ABojomuo ayy £q passed
(0 *1§)1s2 [passvd N 10U $159) JO 93LIUA0I0]
= (20 f§)orgimv.gisax 280U JINDA] ISAT X
SLI0 dsdo
QJe[Noed 01 MOH UONIUYp pue SWeN S10BJOMY

panunuod 3jqeL

pringer

Qs

884 A.Fernédndez-Izquierdo et al.

Table 5 Process metrics

Code Name and definition How to calculate

DevTime Version Development Time. Time taken to Obtained by measuring the time of
implement a given version of the ontology. the different activities while
This time includes the time taken to carry developing a version of the
out all the activities in the development ontology. This time can be
process, e.g. requirements elicitation and calculated in minutes, hours or
evaluation days, depending on the available

granularity
ReqDevTime Requirement Development Time.

Implementation time taken of each
individual requirement in the ontology

TestDevTime Test case Development Time. Development
time taken for each test case in the test suite

VDevEffort Version Development Effort. Effort taken to Obtained by measuring the effort
implement a given version of the ontology. required for the different activities
This effort includes the time taken to carry while developing a version of the
out all the activities in the development ontology. This effort can be
process, e.g. requirements elicitation and calculated in Persons-Month
evaluation

ReqDevEffort Requirement Development Effort. Effort
taken to generate the specification of the

requirements

TestDevEffort Test case Development Effort. Effort taken to
generate each test case in the test suite

ReqVolatility Requirements volatility. Number of Obtained by counting the number of
requirements that changed during the requirements that have undergone
development process some change during the

development process

4.3 Process metrics

In addition to the metrics described in the previous subsections, this paper also describes
a set of process metrics which are not extracted from any artefact. These process metrics
are related to (1) the time taken for a particular process to be completed; (2) the resources
required for a particular process; and (3) the number of occurrences of a particular event.

The proposed process metrics, which are summarised in Table 5, are extracted from
the software infrastructure which supports the generation and versioning of the mentioned
artefacts. Manual calculation of these metrics is unfeasible, since it would require ontology
engineers to keep track of the time spent in each activity.

5 Metrics validation

To provide an assessment of the feasibility of the metrics and to validate the set of hypotheses
stated in Sect. 1, an empirical analysis has been carried out in a concrete use case. To perform
such assessment, data needs to be collected from different ontologies. There are projects,
such as Wikidata [54] or the OBO Foundry [46], which provide their users with a set of
metrics that are related, mostly, with counting different terms in their models. However,
due to the fact that the only the ontology implementations are openly available and, to the

@ Springer

Towards metrics-driven ontology engineering 885

authors’ knowledge, no other artefacts are being generated such as ontology requirements or
test suites, the validation of the metrics proposed in this paper has been carried out using five
ontologies of different sizes which have been developed in the VICINITY European project.®

The five ontologies to be analyzed in the project, i.e. the VICINITY Core’ (Core), the Web
of Things® (WoT), the WoT mappings (Mappings),” the VICINITY Adapters (Adapters),'”
and the Datatypes (Datatypes) ontologies,!! belong to the VICINITY ontology network and
aim to provide interoperability in the IoT domain. The Core ontology represents the informa-
tion needed to exchange loT descriptor data between peers through the VICINITY platform;
this ontology has been created by following a cross-domain approach and implements require-
ments from different domain experts. The WoT ontology aims to model the Web of Things
domain according to the W3C WoT Working Group'? descriptions. The Mappings ontology
represents the mechanism for accessing the values provided by web things in the VICINITY
platform. The Adapters ontology aims to model all the different types of devices and proper-
ties that can be defined in the VICINITY platform. It should be mentioned that the Adapters
ontologies was created by extracting a module from the core ontology and continuing its
development independently as a new ontology from sprint 6. That is, in the first versions of
the ontology network, the information about devices and their properties were part of the core
module. Finally, the Datatypes ontology aims to model the required and provided datatypes
that are used in the interaction patterns of the platform.

To build these ontologies, an agile and iterative development process was followed. For
the Core and Adapters ontologies, the team involved in the development process included 15
domain experts, 2 ontology developers and 1 team leader. In the case of the WoT, Mappings
and Datatypes ontologies, the team involved 5 domain experts, 2 ontology developers and
1 team leader. The domain experts are the participants in charge of providing the ontology
requirements, while the ontology developers design and implement the ontology, and the
team leader is in charge of the development process management. One person had the role of
team leader but also ontology developer dedicated to the project at 20% of effort. The other
ontology developer was dedicated at 50% of effort. Finally, the domain experts dedicated
a high percentage of their time at the moment of providing requirements and afterwards
acting as consultancy, with minimum participation in the ontology development tasks, when
needed. They had high dedication to the project but oriented to software development tasks.

The ontology requirements are prioritised, in order to plan and schedule the development
of the ontologies in sprints. The ontology developers are also in charge of creating the test
suite from the requirements. For each of the ontologies, the three artefacts mentioned in Sect.
3.2 were generated and are available in the VICINITY ontology portal.!3

In this particular case, the ORSD was stored in online spreadsheets to facilitate sharing,
edition and version control. This ORSD stores the requirements that were identified by
domain experts and written in the form of competency questions and statements. The ontology
requirements test suite generated to test this use case was aimed at ontology verification
against the ORSD; therefore, the identified requirements were formalised into test cases. To

6 http://vicinity2020.eu/vicinity/.

7 http://iot.linkeddata.es/def/core/.

8 http://iot.linkeddata.es/def/wot/.

9 http://iot.linkeddata.es/def/wot-mappings/.
10 http://iot.linkeddata.es/def/adapters/.

1 http://iot.linkeddata.es/def/datatypes/.

12 hitps://www.w3.org/ WoT/WG/.

13 http://vicinity.iot.linkeddata.es.

@ Springer

http://vicinity2020.eu/vicinity/
http://iot.linkeddata.es/def/core/
http://iot.linkeddata.es/def/wot/
http://iot.linkeddata.es/def/wot-mappings/
http://iot.linkeddata.es/def/adapters/
http://iot.linkeddata.es/def/datatypes/
https://www.w3.org/WoT/WG/
http://vicinity.iot.linkeddata.es

886 A.Fernédndez-Izquierdo et al.

Table 6 Analysed ontologies and their sprints

Ontology Sprints Team

Core ontology 6 sprints 15 domain experts, 2 ontology developers and 1 team leader
WoT ontology 4 sprints 5 domain experts, 2 ontology developers and 1 team leader
Mappings ontology 2 sprints 5 domain experts, 2 ontology developers and 1 team leader
Adapters ontology 1 sprint 15 domain experts, 2 ontology developers and 1 team leader
Datatypes ontology 1 sprint 5 domain experts, 2 ontology developers and 1 team leader

validate the requirements on the ontologies, these tests cases are executed on a given version
of the ontology implementation. Each ontology implementation was stored in a GitHub
repository.!4

Figure 6 summarises the details of each ontology. More information about these ontologies
is available in the VICINITY ontology network portal, including the GitHub repository where
each ontology is stored, their ontology requirements and their associated test suite. During
each sprint, a set of requirements was planned to be implemented in each ontology.

The following subsections describe the results obtained after gathering the metrics
described in Sect. 4 on the five ontologies, with the aim of validating the hypotheses exposed
in Sect. 1. Such hypotheses analyse the relation between two metrics, e.g. number of tests
and number of requirements. Thus, to validate the hypotheses, the correlation coefficient [27]
between the metrics is calculated to determine the strength of the association between them.
The formula used to calculate such coefficient is the following:

Cov(X,Y)

P = s Ovar (D)

The correlation coefficient has a value between — 1 and 1, where 1 is total positive linear
correlation, 0 is no linear correlation, and — 1 is total negative linear correlation. The relation-
ship between two variables is generally considered strong when their correlation coefficient
value is larger than 0.6 (positive correlation) or lower than — 0.6 (negative correlation).

The metrics are calculated automatically from the three artefacts described in the previous
section and from the software tools which support their generation and storage. Based on the
previous identification of actors in the development process, Fig. 2 shows potential interests
of each actor and the proposed metrics. As an example, ontology developers can be interested
in only the product metrics, while team leaders can be interested in both product and process
metrics. This figure is not exhaustive, and more relations between actors and metrics could
be added.

The following sections are organised according to the interests of the roles involved in the
development process and the hypotheses to be validated. To conclude, the limitations found
during the analysis are described.

14 The link to all the Github repositories are indicated in the VICINITY ontology portal: http://vicinity.iot.
linkeddata.es/ which due to its version control allows the ontology engineers to be aware of the evolution
of the artefacts during the development iterations. Test suites are also stored in the GitHub repository of its
associated ontology.

@ Springer

http://vicinity.iot.linkeddata.es/
http://vicinity.iot.linkeddata.es/

Towards metrics-driven ontology engineering 887

Process metrics

VDevTime :: VDevEffort : ‘TestDevEffort ReqDevTime

/? 7 TestDevTime | ‘ReqDevEffort: | ReqVolatility : \
A i Yo

Team leader Product metrics

ORSD & ORTS

PendFRegPtc

ORTS & Impl

[NPassedTests_|

I
J
1
|

PassedTestPtc n
[TestFaultPtc | 4
TestFaultPte ORSD & ORTS & Impl | | %

,
m impl TestEffRatio TestedReqPtc NN
p oyl | L NT_____ § Stakeholder
z O“/{Q ORSD & Impl
R |

Ol

Ontology engineer

Y.

[Reg
CovReqgPtc

ity 1

Legend

Artefacts* "Process metric 02
| Base product metric 1 {A
[Calculated product metric] Actor

—_—
*Possible values: has interest in metric(s)
ORSD: Ontology Requirements Specification Document
ORTS: Ontology Requirements Test Suite
Impl: Ontology Implementation

Fig.2 Ontology engineering metrics and interested actors

5.1 Team leader and Ontology developers: analysis of number of requirements

Ontological requirements can provide team leaders and developers with insights about the
development process, since they represent what should be added to an ontology. The number
of requirements (NReq) metric was used to determine the number of requirements defined
for the five ontologies in each sprint, which are summarised in Table 7.

To analyse the possible effects in the development process that could be extracted from
the number of requirements, this metric was compared with the number of defined tests, the
development time, the size and the expressivity of the five ontologies.

First, the number of tests defined for each ontology was determined and summarised in
Table 7. In this project, the tests were generated to verify the requirements and, thus, for the
majority of ontologies there is the same number of requirements and tests. Moreover, in those
cases where the number of requirements does not coincide with the number of tests, the latter
is higher; although there was defined at least one test per requirement, some requirements
needed more than one test to be verified. Furthermore, the correlation coefficient between

@ Springer

A.Fernédndez-Izquierdo et al.

888

14! 11 - - - - - - - - - - sadAyereq

ILT 1L1 - - - - - - - - - - s1oidepy

- - - - - - - - S1 S1 €1 €1 ssuiddey

- - - - L1 14! ¥C ¥C [43 [43 €€ €€ Lom

L9 L9 €LI €L1 ¥S1 ¥S1 9¢S1 9¢S1 €SI €Sl 911 911 alop
SISO # boy# SISQL# boy# SISQL# boy# SISOL# boy# SISQL# boy# SISQL# boy#
9 undg ¢ jundg ¥ jundg ¢ juudg 7 wudg 1 yurdg

sjurds 9y} JO MIIAIOAQ [d|qe]

pringer

as

Towards metrics-driven ontology engineering 889

40

30

20

10

Requirement development time (days)

4.23

2.71
1.24 L, %
3 0.5 0.55
o 0.02%0.08 I 033 I 0 0.01 055
I 2 3 1 5 6
Sprint

’ ﬂ]]m Core E WoT Mappings Adapters S Datatypes

Fig.3 Requirement development average time for each ontology version

these two metrics is 0.99. Thus, it can be stated that the number of requirements influences
the number of defined tests and, consequently, hypothesis H1 is validated.

To calculate the development time spent in the five mentioned ontologies and to check
whether the number of requirements influences their development time, the information about
the commits done by the ontology developers in the GitHub repositories and the information
stored in the spreadsheets with the ontology requirements were retrieved. In this project, the
developers only used the master branch of the GitHub repository to develop the ontology and
the online spreadsheets store the modifications done over the ORSD during the development
iterations. Therefore, each sprint starts when the spreadsheet is modified to indicate which
are the requirements planned for the sprint, and ends with the commit that releases a new
version of the ontology. Due to the fact that these software tools calculate the spent time and
they can only calculate it in days, the precision of the results is not as accurate as it would
be if it had been calculated in hours. Figure 3 shows the total time spent per requirement and
sprint (VReqTime) for each ontology version.

In addition to the development time, it was also calculated the effort spent in each ontology
during the sprints. Thus, the number of commits that modify the ontologies has been extracted
from the GitHub repository. Figure 4 shows the total effort spent per sprint (VDevEffort) to
develop each ontology, where the requirements are implemented. Moreover, Fig. 4 also
illustrates the effort spent during the maintenance phase of the ontology, where bugs were
corrected and small changes were proposed.

From the comparison between Table 7, Figs. 3 and 4, it could be concluded that the num-
ber of requirements does not influence directly the time of development. The ontology
developers implemented 171 requirements for the Adapters ontology in only one sprint, while
for the 33 initial requirements of the WoT ontology they needed 4 sprints. The reason for this
is that the requirements defined for the Adapters ontology were easier to implement or they
were already implemented in other ontology as already mentioned, due to the fact that part
of the Adapters ontology was taken from previous Core module. However, with the gathered

@ Springer

A.Fernédndez-Izquierdo et al.

24
22
» 20
=18
Z
k
8 12
= 12} oLl
10
3 8 8
Z 6 i 5 B 5
Z: 4 T
2 Hioo QQDQ EQééQééQE
RS ST SSSS T EEEE EE
B T T TITIT
e A L
ESEEERZACSASESRE ERERS2AS
Months of development
% Sprint 1 Sprint QSprim 3
@ Sprint 4 DSprint 5%5}&111‘5 6
Ontology maintenance

(@) Core ontology

29 22
=z 20
= 18
Z 16
3 14
3 12
o 12 10
10 9
z 8 é I 7
El
= 4 3 3
Z 52 @ 2
2 1 11 1
= Hddoodooomoll
BRI e STy ety ey ey ey
R VNI
E2 g0 RSO SL RE
SREESSZASZA02A8E252
Months of development
% Sprint 1 Sprint 2
Sprint 3 @Spriut 4
[:| Ontology maintenance

(b) WoT ontology

o

=3

S

Number of commits
=

=

8
27
26
5 g5 &
4 N
2 a3 3 33
£3 7 2 2
2 E2 V) .
ARNRE
o B H| ",BE ovoololboelo hon
I~ ~ I~ I~ I~ ~ I~ 00 00 00 00 00 00 [cells ol erRerNerNer) DD D
- B B S SR R S S S S S S S S
= = = = = = 5_‘0 "—45'-4:),5‘:_:“':% z L e8¢k E'_':E‘Dil*:
e = =z = 2 5z SZZESZRS285E ERZES

Months of development

E Sprint 12/} Sprint 2[4 Ontology maintenance
(¢) Mappings ontology

Months of development

E Sprint 6 Ontology maintenance
(d) Adapters ontology

10

Number of commits
(=2}

0

V)
Mar-18 L]]]]}l\?

1
=

|
o
=%

=

Months of development

Bsrint ¢

(€) Datatypes ontology

Fig.4 Distribution of the required effort in each ontology

information related to the development time and effort, the correlation coefficient between
these two metrics is -0.33 and, therefore, hypothesis H2 is rejected.

The size of the ontologies during the sprints was also calculated in order to be compared
with the number of requirements. Figures 5 and 6 illustrate the evolution of the size of the
ontologies during their development process. The former indicates the size without con-

@ Springer

Towards metrics-driven ontology engineering 891

1,400

1,200

*

1,000

800

600

Number of axioms (NA)

400

200

|

—
N}
w
IS
S
=

Sprint

—o— Core —— WoT —e— Mappings —— Adapters —— Datatypes

Fig.5 Size of the ontologies during their development process not including imported ontologies

3,500

3,000

*

2,500

2,000

1,500

Number of axioms (NA)

1,000

500

i

—
N}
w
IS
o

Sprint

—eo— Core —— WoT —e— Mappings —— Adapters —— Datatypes

Fig. 6 Size of the ontologies during their development process including imported ontologies

sidering the imported ontologies, while the latter indicates the size including the imported
ontologies.

Figure 5 shows that while the size of the WoT ontology and the Mappings ontology have
small variations, the size of the Core ontology increases from sprint 2. All these results
concur with the values obtained from Fig. 4, because the effort spent in the WoT ontology
and the Mappings ontology is insignificant compared to the effort spent in the Core ontology.
This is due to the fact that the Core ontology, considering that several domain experts from
different domains are involved in the development process, receives more requirements than

@ Springer

892 A.Fernédndez-Izquierdo et al.

Table 8 DL expressivity of the ontologies during each sprint

Ontology Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6
Core SRIF(D) SRIF(D) SRIF(D) SRIF(D) SRIQ(D) SRIQ(D)
WoT ALCHIF(D) ALCHIF(D) ALCHIF(D) ALCHIF(D) - -
Mappings SRIQ(D) SRIQ(D) - - - -
Adapters - - - - - SRIQ(D)
Datatypes - - - - - ALF(D)

the other ontologies during the sprints. Moreover, in the last sprint the ontology that has more
defined requirements is the Adapters ontology, which is also the largest ontology. Therefore,
with the information obtained from Fig. 5 and Table 7, the correlation coefficient is 0.73.
Thus, hypothesis H3 is validated since the number of requirements affects the size of
the ontologies. It should be mentioned that in this situation the imported ontologies are not
included in the analysis, since only the axioms that were added by the developers involved
in the project were taken into account.

Nevertheless, Fig. 6 illustrates the size the ontologies considering their imports. In this
figure, it can be observed that the Mappings ontology has increased its size, since it imports
several ontologies (due to the needs of the application using it) even though it is not indicated
in the requirements. The evolution of the rest of the ontologies remains similar, and the
Adapters ontology is still the largest one.

Finally, the DL expressivity [2] of the ontologies during the sprints was calculated and
is summarised in Table 8. The comparison between Table 7 and Table 8 concluded that the
number of requirements does not affect the expressivity of the ontology. The Mappings
ontology, which has only 13 and 15 requirements in Sprint 1 and 2, has the same expressivity as
Adapters, which has 171 requirements. This occurs because the Mappings ontology imports,
among others, the Core ontology, increasing its DL expressivity. The correlation coefficient
between these two metrics is 0.53 and, thus, hypothesis H4 is rejected.

5.2 Team leader and Ontology developers: analysis of requirements complexity

The analysis of the complexity of the requirements may help team leaders along with ontology
developers in estimating the effort needed to implement a requirement. The more complex a
requirement is, the more complex may be to implement it in the ontology. The Requirements
Axiom Complexity (RegACo) metric was used to obtain the requirements complexity for
the five ontologies, due to the fact that it measures the axioms needed to implement each
requirement. The number of axioms was obtained by counting the number of axioms to be
added to the corresponding ontology for each requirement.

Figure 7 shows the distribution of the requirements axiom complexity in the last sprint of
the five analysed ontologies, where the requirements are up to date and, as a consequence,
are valuable to make effort estimations. For the sake of clarity, the graphs in Fig. 7 consider a
maximum of 50% ReqACo, which represents that the requirement includes 11 axioms out of
the 22 considered in the metric as stated in Sect. 4. As an example of the information that can
be retrieved from Fig. 7, the figure shows that the Mappings ontology has 12 requirements
with a ReqACo between 15 and 20% (e.g. 4 axioms out of 22), 1 requirement with a ReqACo
between 25 and 30% (e.g. 6 axioms out of 22), 1 requirement with a ReqACo between 35

@ Springer

Towards metrics-driven ontology engineering 893

e 6
35
£ 30 £5
g g
g 2 g4
3 3
£20 g3
: u
‘Q:J 10 § 2
| £ |
Z 5 — z!
o - . |
(=] [in] (=] el o el (=1 il (=1 il f=3 (=] n (=] il < 0 (=1 [ind =1) (=2
— — N [a] o o =t =t \:’D» — — o™ ™~ o o = =t [I=] If:?
Requirement Axiom Complexity (ReqACo) Requirement Axiom Complexity (ReqACo)
(a) Core ontology (b) WoT ontology
12 160 i
E £ 140
10 E
C § 120
ES ES 100
Z 6 2 80
S} SR
g4 g %
= = 40
= 2 §
Z Zz 20
0 0 rm—
(=] [in] (=] il (=] el (=1 [l (=1 il f=3 < n f=] n j=] 0 j=3 n < n (=1
— — (] (] o o = =t l;’i — — o™ o™ [3r) [3e) <t <t I%
Requirement Axiom Complexity (ReqACo) Requirement Axiom Complexity (ReqACo)
(C) Mappings ontology (d) Adapters ontology

o

= N

Number of requirements
o

o n o 0w 2 1 92 10 2 1 O
- A QA ®» o F F D

Requirement Axiom Complexity (ReqACo)

(e) Datatypes ontology

Fig.7 Distribution of the axiom complexity in each ontology in the last sprint

and 40% (e.g. 8 axioms out of 22) and 1 requirement with more than 50% (e.g. 11 axioms
out of 22).

To analyse the effect of the complexity of requirements regarding other aspects of the
development process, it was compared with the number of defined tests, the development
time and the size of the ontologies during the sprints.

First, the complexity of the requirements was compared with the number of tests defined
for each ontology in order to determine whether the complexity of requirements influences the
number of defined tests. However, from the information gathered from Fig. 7 and in Table 7, it
can be deduced that the complexity of requirements does not influence the number of tests,
since the most complex requirements are associated with the Core ontology, but no additional
tests were defined. Additionally, the Datatypes ontology, which has simple requirements, is

@ Springer

894 A.Fernédndez-Izquierdo et al.

the ontology with most additional tests. Furthermore, the correlation coefficient between the
average complexity of requirements and the average tests defined during the development
process for each ontology is -0.5. Thus, hypothesis H4 is rejected.

The complexity of requirements was also compared with the time and effort spent in the
development process. Figure 7 illustrates that the ontology with the most complex require-
ments is the WoT ontology while the ontology with the highest required effort (Fig. 4) was
the Core ontology. The correlation coefficient between the average of complexity of require-
ments and the average time spent per requirement is — 0.7. Therefore, the complexity of
requirements influences negatively the development time of ontologies, i.e. the higher the
requirement complexity, the lower the development time per requirement. The hypothesis H5
is validated since the complexity of requirements influences the development time of the
ontology. These results sound counter-intuitive, establishing that the higher the complexity,
the lower the development time. Therefore, intending to analyse whether other factors affect
this relationship, the complexity of requirements results were joined with the number of
requirements to determine whether its combination affects the development time.

If this complexity of requirements result is joined with Table 7, it can be observed that the
number of defined requirements in the Core ontology outnumbered the defined requirements
of the almost the rest of ontologies. Moreover, the Core ontology have also requirements
with significant complexity. Therefore, the joined information obtained by the complexity
and the number of requirements also influences the development time of the ontology.

Finally, the complexity of requirements was also compared with the size of the ontologies,
which are shown in Fig. 5. This figure shows that the size of both the Core ontology and
the Adapters ontology exceed the size of the other ontologies. However, from Fig. 7 it can
be noticed that the WoT ontology is the ontology with most complex requirements. The
correlation coefficient between the average of complexity of requirements and the average
size of each ontology is -0.4. Thus, with all this information hypothesis H7 is rejected since
the complexity of the requirements does not influence the size of the ontology.

5.3 Team leader and Ontology developers: analysis of the volatility

Volatility of the ORSD refers to the modifications, additions or deletions of the requirements
over time. Figure 8 presents the number of additions of requirements (NAddedReq), the
number of rejections of requirements (NRejectedReq) and the number of acceptances of
requirements(NAcceptedReq) for the five ontologies during their development iterations.

Figure 8 illustrates that in the WoT and Mappings ontologies the majority of the require-
ments were identified at the beginning of the development process, even though several of
them were rejected during the development. Nevertheless, in the Core ontology the require-
ments changed over time, adding or deleting at least one requirement in each iteration. In
the case of the Adapters and the Datatypes ontologies, no additional information could be
extracted since they were created in a single sprint.

If these results are compared with Figs. 5 or 6, it can be observed that the ontology with
more volatility in their requirements is the Core ontology, which is also the ontology with
more volatility in the size of the ontology. Figure 5 shows that the Core ontology starts
with 151 axioms and ends with 678 axioms, reaching 968 in the fifth sprint. Therefore, it
can be concluded that the volatility of the requirements influences the volatility of the
ontologies. Moreover, the correlation coefficient between the changes in the requirements
and in the ontologies is 0.64 and, therefore, hypothesis HS is validated.

@ Springer

Towards metrics-driven ontology engineering 895
g g
= 200 2
= 173 = 32
] % 156 154 S . I
= 150 . 153 5 = 30
s 117 116 - 24 24
é 100 67 g 2
5 50 37 g 5
& . 19
I Bobl 30l 8 14 g0k 0 il £ 10
ol -1 v jal
£ i 7 £ 1 0 1
< 50 ? S 0 5 7 ==
= & -
2 —100 78 8 %
g —106 = —10 -
z 1 2 3 1 5 6 z 2 3 1
Sprint Sprint
=S Added requirements =S Added requirements
I Rejected requirements I Rejected requirements
[Total accepted requirements [Total accepted requirements
(a) Core ontology (b) ‘WoT ontology
2 2
g 8
% 15 15 = 11 171
< 13 13 *: 150
g 10 E
g g 100
EN E!
g 3 £ 50
s k]
5o =% 2 0
Z 1 2 z 6
Sprint Sprint
= Added requirements = Added requirements
Rejected requirements A Rejected requirements
ETotal accepted requirements ETotal accepted requirements
(C) Mappings ontology (d) Adapters ontology
2
£12
<10
@
8
o
£ 6
jé‘ 4
B 2
g
< 0
z 6
Sprint
=] Added requirements

[Rejected requirements
[Total accepted requirements

(e) Datatypes ontology

Fig. 8 Distribution of the volatility of the requirements in each ontology in the last sprint

5.4 Team leader, ontology developers and stakeholders: analysis of the defined

tests

Team leaders and ontology developers need to analyse the ontology coverage, in order to
be aware of the requirements planned for each iteration and to determine whether they are
satisfied by the ontology or if the generated tests cover all the requirements. Stakeholders
also make use of this information in order to be aware of whether the ontologies satisfy
their needs. In this project, a set of tests have been defined in order to verify whether the

@ Springer

896 A.Fernédndez-Izquierdo et al.

ontological requirements are satisfied by the analysed ontologies. Table 7 summarises the
number of defined tests (NTests) per sprint. As it can be observed, the defined tests for the
Core and the Adapters ontologies outnumber the tests defined for the rest of the ontologies.

To analyse the effect of the number of defined tests in the development process, it has
been compared with the number of tested terms and the coverage of the ontologies during
their sprints.

Figure 9 shows the number of tested terms (7estEffRatio) during the sprints for each
analysed ontology. Only the Adapters ontology has the 100% of its terms tested, while the
values in the Core and the WoT ontologies do not exceed 53%. These results are normal
due to the fact that there are terms that are not defined in the requirements. These terms can
be created from the addition of ontology design patterns [18], the creation of hierarchies,
the creation of n-ary relations [35], or the reuse of terms from other ontologies. However,
a high value of TestEffRatio shows that the ontology is generated almost directly from the
requirements, without many modelling decisions of the ontology engineers. In the case of
Mappings, Fig. 9 shows that the TestEffRatio values are extremely low. After analysing the
cause of these results, it was deduced that the Mappings ontology imports the WoT and Core
ontologies, but their terms are not tested in the Mappings test suite because they are not
identified in the requirements.

As mentioned before, the ontologies with the highest number of tests are the Core and
the Adapters ontologies, with 173 defined tests in Sprint 5 and 171 defined tests in Sprint 6,
respectively. However, their TestEffRatio metric differs significantly, being 49% for the Core
ontology and 100% for the Adapters ontology. Thus, with all these results and a correlation
coefficient of 0.36, it can be concluded that the number of tests does not influence the
tested terms in the ontology. Thus, hypothesis H9 is rejected.

Finally, the TestEffRatio metric was also compared with the coverage of the ontology
(CovReqPtc). Figure 9 depicts the CovRegPtc for the ontologies in each sprint. It can be
observed that the Core and the WoT ontology, even though the tested terms do not exceed
the 53%, reach the 100% of the coverage of the ontology. Similarly, the Adapters ontology
has the 100% of its terms tested and also reaches the 100% of the coverage of the ontology.
This could occur because due to modelling decisions or ODPs new terms were added to
the ontology but avoided in the requirements. Moreover, the correlation coefficient between
these two metrics is 0.002. Thus, it was concluded that the number of tested terms does
not influence the coverage of the ontology and hypothesis H10 is rejected.

6 Discussion

This paper proposes a set of metrics related to different artefacts produced during the devel-
opment process to provide information about the status of the ontology and the process itself.
For doing so, a literature review was performed, reusing existing metrics where possible.
However, this literature review focused on metrics that can be directly adopted within the
development process, e.g. the Number of classes metric described by Zhe and colleagues
[58]. Metrics that could be potentially obtained from formulas presented in ontology engi-
neering approaches were not considered in this paper. As an example, a new metric could
be extracted from the identification of conflicts described in DOGMA-MESS [8] to indicate
the number of concepts with conflicts, or from the list of pitfalls gathered by OOPS! [39]
to indicate the total number of pitfalls in an ontology. Although these approaches indeed
presented metrics that could be extracted, they are not considered in this analysis.

@ Springer

Towards metrics-driven ontology engineering 897

100 | s 05 100 l:r.):u 100!:0.(:) 10 10013{) 100 mﬂ 100 :\.n:n 100 100 100 100
Sk S g 3
- © 78
2 60 . 0
& & .
s o
o 40 o) ? RS
40 <
20 - -:-
=1 /A
1 2 3 4 5 6 2 3 4
Sprint Sprint
= Tested Term Percentage (TestEffRatio) = Tested Term Percentage (TestEffRatio)
7 Covered Requirement Percentage (CovReqPtc) 7 Covered Requirement Percentage (CovReqPtc)
[Tested Requirement Percentage (TestedReqPtc) [Tested Requirement Percentage (TestedReqPtc)
(a) Core ontology (b) WoT ontology
100 1°° 100 e
= 80 555 ~ 80
Sl A H
& 60 :1: g 60
& o
5] :1: 40
Z 40 ;:; 3
© :f: © 9
00, '3: 10
= 0
0 -:- I
5
Sprint Sprint
=] Tested Term Percentage (TestEffRatio) = Tested Term Percentage (TestEffRatio)
FA Covered Requirement Percentage (CovReqPtc) EA Covered Requirement Percentage (CovReqPtc)
[Tested Requirement Percentage (TestedReqPtc) [ZITested Requirement, Percentage (TestedReqgPtc)
(C) Mappings ontology (d) Adapters ontology
100 P
)
o 90
20
&
g 8
3
© 80
75

Sprint

= Tested Term Percentage (TestEffRatio)
A Covered Requirement Percentage (CovReqPtc)
ETested Requirement Percentage (TestedReqPtc)

(e) Datatypes ontology

Fig.9 Distribution of the coverage in each ontology in the last sprint

Besides, during the use case analysis several limitations have been found, which are
crucial to understand the results presented in Sect. 5. The following paragraphs describe
such limitations and their effects.

Firstly, it should be considered that the information about development time and effort
depends on a third-party tool, i.e. GitHub. Moreover, the developers only used the master
branch to submit their work, and they were not asked to measure the time or effort spent,
since the tool does not allow to do that. Consequently, the results regarding the development
time are approximated values. Moreover, the time could only be calculated in days and, thus,
the precision of the results was not as accurate as expected. However, the results are still
valuable for the analysis of the metrics in the use case.

@ Springer

898 A.Fernédndez-Izquierdo et al.

With regards to the project context, in this use case all the sprints have the same goal: to
implement a set of planned requirements. Additional effort that could appear during the first
sprint in the development process to set up the ontology has not be considered, since it could
not be obtained from the tools used in the project.

Finally, it should be mentioned that the methodology followed in this use case does not
allow to have an automated way to calculate several metrics, such as the Pending Formalised
Requirements Percentage (PendFReqPtc) metric, which would measure the percentage of
pending to implemented requirements in the ORSD that are already included in the test suite
and implemented in the ontology. To be able to automate this calculation, it is needed to have
in every sprint all the requirements formalised in the test suite. In this particular case, the
formalisation is iterative based on the schedule of the requirements, formalising only those
that are planned to be implemented.

7 Conclusions and future work

This paper introduces a set of 25 metrics for ontology engineering related not only to the
ontology implementation but also to the ontology development process and other artefacts
generated from it, i.e. the requirements specification document and the ontology requirements
test suite. These metrics include the combination of the data extracted from two or more of
these artefacts. Team leaders, ontology developers and stakeholders are expected to be able
to analyse the status of the development process and of ontology verification by means of
gathering information extracted from the presented metrics. The metrics were applied in a
real use case with the aim of validating the hypotheses stated in Sect. 1.

During the application of the metrics in the use case, it has been observed that computing
the metrics is time consuming and requires ontology developers to keep track of the time
and effort spent in each activity. Therefore, it is essential to have software that supports
the automatic generation of metrics. In addition to this, ontology developers need to invest
time to provide an accurate ontology requirement specification document and to generate the
ontology test suite to extract the metrics. Nevertheless, this investment of time is worth in an
scenario where ontology development involves several roles, e.g. different domain experts
and ontology developers, working in collaboration with software developers, and where the
ontology is a critical component of a broader project.

If more metrics could be calculated from the presented use case (TestDevTime and Pend-
FReqPtc could not be calculated with the information obtained from the use case) and their
granularity could be increased, then these metrics could be used to answer research questions
such as “What factors influence the quality of the ontology?” or “What factors influence the
complexity of the requirements?”, since the effect of more variables in the development pro-
cess, such as the development time of tests or requirements, could be analysed and compared.
These research questions could lead to more research insights.

In this work, the proposed metrics were demonstrated in a real use case, providing the
information needed for each actor involved in the development process in order to be able
to monitor it. The use case was also used to compare the effects of different metrics in the
development process. Although some of the hypotheses were rejected, the metrics calculated
in the use case provided insights about the development process of the analysed ontologies. As
an example, it was found that the number of requirements or the complexity of requirements
do not influence individually the time of the development; however, they do it jointly. If the

@ Springer

Towards metrics-driven ontology engineering 899

complexity and the number of requirements is high, then the time increases. However, if the
number of requirements is high, then the time is not influenced.

It is worth noting that the interpretation of the metrics depends on the use case in which
they are used. As an example, the interpretation of the size of the ontology can vary depending
on the aspect to be analysed: in the case of completeness the more axioms the better, while
in the case of understandability the less axioms the better. Additionally, during the validation
of the metrics, it was found that the quality of the requirements is essential for the metrics.
The more accuracy in the definition of ontological requirements, the more accuracy in the
metrics.

Future work will be directed to define a unique metric which combines data obtained from
the available artefacts with the aim of providing ontology developers with a measurement
of the health condition of the ontology development process, i.e. the quality of the process
considering all these different artefacts. Anideal situation in an ontology development process
includes a low number of pending requirements, a high level of formalised requirements
coverage and a high level of test coverage. This ideal situation indicates that in a particular
sprint, the ontology is complete (or almost complete) regarding the requirements defined by
the domain experts, that the ontology test suite covers a high percentage of the requirements
identified in the ORSD, and that the ontology implementation passed a high percentage of
the tests cases defined in the test suite. In addition, future work will also be directed to the
implementation of a tool to support computing these metrics in any ontology development
project. Moreover, the analysis between more variables in other projects could be also carried
out, in order to extract more insights about the development process.

Finally, new metrics which take into account ontology instances or datasets should be
defined in future work. New metrics related to the user documentation should be considered,
due to the fact that there are still no metrics related to such artefact. Moreover, a deeper
analysis of ontology engineering methodologies should be performed to identify metrics that
could be extracted from the information provided by such methodologies.

Acknowledgements This work is partially supported by the H2020 project VICINITY: Open virtual neigh-
bourhood network to connect intelligent buildings and smart objects (H2020-688467) and by a Predoctoral
grant from the [+D+i program of the Universidad Politécnica de Madrid. We are very grateful to Maria
Navas-Loro for her formula revisions and comments.

References

1. Albrecht AJ (1979) Measuring application development productivity. In: Proceedings of the joint
SHARE/GUIDE/IBM application development symposium, pp 83-92

2. Baader F, Horrocks I, Sattler U (2008) Description logics. Found Artif Intell 3:135-179

3. Blomgqvist E, Sepour AS, Presutti V (2012) Ontology testing-methodology and tool. In: Proceedings of
the 18th international conference on knowledge engineering and knowledge management, Galway City,
Ireland, October 8—12. Springer, Berlin, pp 216-226

4. Boehm B, Clark B, Horowitz E, Westland C, Madachy R, Selby R (1995) Cost models for future software
life cycle processes: COCOMO 2.0. Ann Softw Eng 1(1):57-94

5. Brickley D, Guha RV, McBride B (2014) RDF Schema 1.1. W3C Recommendation 25 February 2014.
Available at https://www.w3.org/TR/rdf-schema/

6. Costello RJ, Liu DB (1995) Metrics for requirements engineering. J Syst Softw 29(1):39-63

7. Davis A, Overmyer S, Jordan K, Caruso J, Dandashi F, Dinh A, Kincaid G, Ledeboer G, Reynolds P,
Sitaram P, Ta A, Theofanos M (1993) Identifying and measuring quality in a software requirements
specification. In: Proceedings of the 1st international software metrics symposium, Baltimore, MD, USA,
May 21-22. IEEE, pp 141-152

@ Springer

https://www.w3.org/TR/rdf-schema/

900

A.Fernédndez-Izquierdo et al.

12.
13.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

33.

De Leenheer P, Debruyne C (2008) DOGMA-MESS: a tool for fact-oriented collaborative ontology
evolution. In: Proceedings of the 2008 international conference on On the move to meaningful internet
systems: OTM 2008 Workshops, Monterrey, Mexico, November 9-14. Springer, Berlin, pp 797-806
De Moor A, De Leenheer P, Meersman R (2006) DOGMA-MESS: a meaning evolution support system
for interorganizational ontology engineering. In: Proceedings of the 14th international conference on
conceptual structures, Aalborg, Denmark, July 16-21. Springer, Berlin, pp 189-202

De Nicola A, Missikoff M, Navigli R (2005) A proposal for a unified process for ontology building:
Upon. In: Proceedings of the 16th international conference on database and expert systems applications,
Copenhagen, Denmark, August 22-26. Springer, Berlin, pp 655-664

. Debruyne C, Tran TK, Meersman R (2013) Grounding ontologies with social processes and natural

language. J Data Semant 2(2-3):89-118

DeMarco T (1979) Structured analysis and system specification. Yourdon Press, Berlin

Duque-Ramos A, Fernandez-Breis JT, Iniesta M, Dumontier M, Aranguren ME, Schulz S, Aussenac-
Gilles N, Stevens R (2013) Evaluation of the OQuaRE framework for ontology quality. Expert Syst Appl
40(7):2696-2703

Fenton N, Bieman J (1997) Software metrics: a rigorous and practical approach. PWS Publishing Com-
pany, Boston

. Fenton NE, Neil M (2000) Software metrics: roadmap. In: Proceedings of the conference on the future

of software engineering, Limerick, Ireland, June 04-11. ACM, pp 357-370

Fernandez-Lépez M, Gomez-Pérez A (2002) The integration of OntoClean in WebODE. In: Proceed-
ings of the OntoWeb-SIG3 workshop at the 13th international conference on knowledge engineering and
knowledge management, Siguenza, Spain, 30th September. CEUR-WS.org, CEUR Workshop Proceed-
ings, vol 62, pp 38-52

Fernandez-Lépez M, Gémez-Pérez A, Juristo N (1997) Methontology: from ontological art towards
ontological engineering. In: Proceedings of the ontological engineering AAAI97 spring symposium series.
Stanford University, EEUU, March 24-26. AAAI Press, pp 33-40

Gangemi A, Presutti V (2009) Ontology design patterns. Handbook on ontologies. Springer, Berlin, pp
221-243

Gangemi A, Catenacci C, Ciaramita M, Lehmann J (2006) Modelling ontology evaluation and valida-
tion. In: Proceedings of the 3rd European Semantic Web Conference, Budva, Montenegro, June 11-14.
Springer, Berlin, pp 140-154

Garcia-Ramos S, Otero A, Ferndndez-Lépez M (2009) Ontology Test: A tool to evaluate ontologies through
tests defined by the user. In: Proceedings of the 10th international work-conference on artificial neural
networks on artificial neural networks, Salamanca, Spain, June 10-12. Springer, Berlin, pp 91-98
Gunning R (1952) The technique of clear writing. McGraw-Hill, New York

Hitzler P, Krotzsch M, Parsia B, Patel-Schneider PF, Rudolph S (2009) OWL 2 Web Ontology Language
Primer (Second Edition) W3C Recommendation 11 December 2012. Available at https://www.w3.org/
TR/owl]2-primer/

Igbal S, Naeem M, Khan A (2012) Yet another set of requirement metrics for software projects. Int J
Softw Eng Its Appl 6(1):19-28

Kan SH (2002) Metrics and models in software quality engineering. Addison-Wesley, London

Kang YB, Li YF, Krishnaswamy S (2012) Predicting reasoning performance using ontology metrics. In:
Proceedings of the 11th international semantic web conference, Boston, MA, USA, November 11-15,
Springer, Berlin, pp 198-214

Keet CM, Lawrynowicz A (2016) Test-driven development of ontologies. In: Proceedings of 13th Euro-
pean semantic web conference, Heraklion, Crete, Greece, May 29-June 2. Springer, Berlin, pp 642-657
Kirch W (ed) (2008) Pearson’s correlation coefficient. Springer, Netherlands

Kotis K, Vouros GA, Alonso JP (2004) HCOME: A tool-supported methodology for engineering living
ontologies. In: Proceedings of the 2nd international workshop on semantic web and databases, Toronto,
Canada, August 29-30. Springer, Berlin, pp 155-166

Lantow B (2016) OntoMetrics: application of on-line ontology metric calculation. In: Joint proceedings
of the BIR 2016 workshops and doctoral consortium co-located with 15th international conference on
perspectives in business informatics research, Prague, Czech Republic, September 14-16

Ma Y, Jin B, Feng Y (2010) Semantic oriented ontology cohesion metrics for ontology-based systems. J
Syst Softw 83(1):143-152

Mall R (2014) Fundamentals of software engineering. PHI Learning Pvt Ltd, Delhi

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 4:308-320

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and
static code attributes for defect prediction. In: Proceedings of the 30th international conference on software
engineering, Leipzig, Germany, May 10-18. ACM, pp 181-190

@ Springer

https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-primer/

Towards metrics-driven ontology engineering 901

34.
35.

36.

37.

38.

39.
40.
. Presutti V,Daga E, Gangemi A, Blomqvist E (2009) eXtreme design with content ontology design patterns.
42.

43.

44.
45.
46.
47.
48.
49.

50.

SIL.

52.

53.

54.

55.

57.

58.

Muller JZ (2018) The Tyranny of Metrics. Princeton University Press, Princeton

Noy N, Rector A, Hayes P, Welty C (2006) Defining n-ary relations on the semantic web. W3C working
group note 12(4). Available at https://www.w3.org/TR/swbp-n-aryRelations/

Orme AM, Tao H, Etzkorn LH (2006) Coupling metrics for ontology-based system. IEEE Softw
23(2):102-108

Peroni S (2016) A simplified agile methodology for ontology development. In: Proceedings of the 13th
OWL: experiences and directions workshop and Sth OWL reasoner evaluation workshop, Bologna, Italy,
November 20. Springer, Berlin, pp 55-69

Pinto HS, Staab S, Tempich C (2004) DILIGENT: Towards a fine-grained methodology for Distributed,
Loosely-controlled and evolvInG. In: Proceedings of the 16th European conference on artificial intelli-
gence, Valencia, Spain, August 22-27, vol 110, p 393

Poveda-Villalén M, Gémez-Pérez A, Sudrez-Figueroa MC (2014) OOPS! (OntOlogy Pitfall Scanner!):
an on-line tool for ontology evaluation. Int J Seman Web Inform Syst 10(2):7-34

Pressman RS (2005) Software engineering: a practitioner’s approach. Palgrave Macmillan, London

In: Proceedings of the workshop on ontology patterns, collocated with the 8th international semantic web
conference, Washington DC, USA, 25 October, CEUR Workshop series, pp 83-97

Rahman F, Devanbu P (2013) How, and why, process metrics are better. In: Proceedings of the 35th
international conference on software engineering, San Francisco, USA, May 18-26. IEEE, pp 432441
Ren Y, Parvizi A, Mellish C, Pan JZ, van Deemter K, Stevens R (2014) Towards competency question-
driven ontology authoring. In: Proceedings of the 11th European semantic web conference, Crete, Greece,
May 25-29. Springer, Berlin, pp 752-767

Schober D, Tudose I, Svatek V, Boeker M (2012) OntoCheck: verifying ontology naming conventions
and metadata completeness in protégé 4. J Biomed Semant 3(S-2):S4

Shatnawi R, Li W (2008) The effectiveness of software metrics in identifying error-prone classes in
post-release software evolution process. J Syst Softw 81(11):1868-1882

Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A,
Mungall CJ et al (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical
data integration. Nat Biotechnol 25(11):1251

Sommerville I (2010) Software engineering, 9th edn. Addison-Wesley, London

Sudrez-Figueroa M, Gomez-Pérez A, Villazén-Terrazas B (2009) How to write and use the ontology
requirements specification document. In: Proceedings of the international conference on on the move to
meaningful internet systems, Ilamoura, Portugal, November 1-6. Springer, Berlin, pp 966-982
Sudrez-Figueroa MC, Gémez-Pérez A, Fernandez-Lépez M (2012) The NeOn methodology for ontology
engineering. In: Ontology engineering in a networked world. Springer, Berlin, pp 9-34
Sudrez-Figueroa MC, Aguado de Cea G, Gémez-Pérez A (2013) Lights and shadows in creating a glossary
about ontology engineering. Terminology 19(2):202-236

Tartir S, Arpinar IB, Moore M, Sheth AP, Aleman-Meza B (2005) OntoQA: Metric-based ontology quality
analysis. In: Proceedings of IEEE workshop on knowledge acquisition from distributed, autonomous,
semantically heterogeneous data and knowledge sources at 2005 IEEE international conference on data
mining, Houston, USA, November 27, pp 45-53

Uschold M, Gruninger M (1996) Ontologies: Principles, methods and applications. Knowl Eng Rev
11(2):93-136

Vrandeci¢ D, Gangemi A (2006) Unit tests for ontologies. In: Proceedings of the 2006 international
conference on the move to meaningful internet systems: OTM 2006 workshops, Montpellier, France,
October 29-November 3. Springer, Berlin, pp 1012-1020

Vrandeci¢ D, Krotzsch M (2014) Wikidata: a free collaborative knowledgebase. Commun ACM
57(10):78-85

Vrandeci¢ D, Sure Y (2007) How to design better ontology metrics. Springer, Berlin, pp 311-325
Wilsdon J (2016) The metric tide: independent review of the role of metrics in research assessment and
management. Sage, Thousand Oaks

Yao H, Orme AM, Etzkorn L (2005) Cohesion metrics for ontology design and application. J Comput Sci
1(1):107-113

Zhe Y, Zhang D, Chuan Y (2006) Evaluation metrics for ontology complexity and evolution analysis. In:
Proceedings of the IEEE international conference on e-business engineering, Shanghai, China, October
24-26. IEEE Computer Society, pp 162-170

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://www.w3.org/TR/swbp-n-aryRelations/

902

A. Ferndndez-lzquierdo et al.

@ Springer

Alba Fernandez-lzquierdo is a Ph.D. student at the Artificial Intelli-
gence Department of the Computer Science Faculty of Universidad
Politécnica de Madrid, in the Ontology Engineering Group. Previously
she finished her studies in Computer Science (2015) by Universidade
de Santiago de Compostela, and she holds a Master degree in Artifi-
cial Intelligence Research (2016) from the Universidad Politécnica de
Madrid. Her research activities focus on ontological engineering and
ontology verification.

Maria Poveda-Villalon is an assistant professor in the Artificial Intel-
ligence Department of the Universidad Politécnica de Madrid and
is also part of the Ontology Engineering Group research lab. Her
research activities focus on Ontological Engineering, Ontology Eval-
uation, Knowledge Representation and the Semantic Web. Previously
she finished her studies in Computer Science (2009) by Universi-
dad Politécnica de Madrid. She has worked in the context of Spanish
research projects as well as in European projects such as ETSI STF
for SAREF extensions, BIMERR, VICINITY, READY4SmartCities,
easyTV and NeOn. She has contributed to the organization of the
“Linked Data in Architecture and Construction Workshop” since 2015,
the “13th OWL: Experiences and Directions Workshop and 5th OWL
reasoner evaluation workshop” in 2016, the “Linked Energy Data
Vocamp” in 2015 and the “Catching up with ontological engineering:
To git-commit and beyond” tutorial at EKAW2018.

Asuncion Gomez-Pérez is Vice-Rector for Research, Innovation and
Doctoral Studies (2016-). She is Fellow of the European Academy
of Science (2018) and Full professor on Artificial Intelligence. She
is member of the group of experts advising in the national commit-
tee R&D Spanish Strategy in Artificial Intelligence. She has received
the Award ARITMEL—National Prize of Computer Science 2015,
the Annual Award of Investigation of the UPM (2015), the National
Prize Ada Byron for the Technologist Woman in its second edition
(2015) and the Know Square Prize for her Dissemination trajectory in
Artificial Intelligence (2018). Her research areas include: Ontological
Engineering, Semantic Web, Linked Data, Natural Language Process-
ing, Multilingualism in Information and knowledge management. She
directed significant amount I + D + i research and engineering projects
in Spain and Europe. She acts as reviewer of European projects in the
European Commission (including ERC), and several European, Inter-
national and national agencies.

Towards metrics-driven ontology engineering 903

Raul Garcia-Castro is Associate Professor at the Computer Science
School at Universidad Politécnica de Madrid (UPM), Spain. In 2008
he obtained a Ph.D. in Computer Science and Artificial Intelli-
gence at UPM, which obtained the Ph.D. Extraordinary Award. His
research focuses on ontological engineering, semantic interoperability
and ontology-based data and application integration. He regularly par-
ticipates in standardization bodies and in the program committees of
the conferences and workshops that are most relevant in his field, hav-
ing also organised several international conferences and workshops.

@ Springer

	Towards metrics-driven ontology engineering
	Abstract
	1 Introduction
	2 State of the art
	2.1 Software engineering metrics
	2.2 Ontology engineering metrics

	3 Methodology
	3.1 Roles involved in the ontology development process
	3.2 Artefacts in the ontology engineering process
	3.2.1 Ontology requirements specification document
	3.2.2 Ontology implementation
	3.2.3 Ontology requirements test suite

	4 Proposed ontology metrics
	4.1 Base product metrics
	4.2 Calculated product metrics
	4.3 Process metrics

	5 Metrics validation
	5.1 Team leader and Ontology developers: analysis of number of requirements
	5.2 Team leader and Ontology developers: analysis of requirements complexity
	5.3 Team leader and Ontology developers: analysis of the volatility
	5.4 Team leader, ontology developers and stakeholders: analysis of the defined tests

	6 Discussion
	7 Conclusions and future work
	Acknowledgements
	References

