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Abstract
We focus on the automatic detection of communities in large networks, a challenging prob-
lem in many disciplines (such as sociology, biology, and computer science). Humans tend
to associate to form families, villages, and nations. Similarly, the elements of real-world
networks naturally tend to form highly connected groups. A popular model to represent such
structures is the clique, that is, a set of fully interconnected nodes. However, it has been
observed that cliques are too strict to represent communities in practice. The k-plex relaxes
the notion of clique, by allowing each node to miss up to k connections. Although k-plexes
are more flexible than cliques, finding them is more challenging as their number is greater.
In addition, most of them are small and not significant. In this paper we tackle the problem
of finding only large k-plexes (i.e., comparable in size to the largest clique) and design a
meta-algorithm that can be used on top of known enumeration algorithms to return only
significant k-plexes in a fraction of the time. Our approach relies on: (1) methods for strongly
reducing the search space and (2) decomposition techniques based on the efficient computa-
tion of maximal cliques.We demonstrate experimentally that known enumeration algorithms
equipped with our approach can run orders of magnitude faster than full enumeration.

1 Introduction

One of themost studied problems for the analysis of fundamental properties of large networks
is the automatic detection of communities, that is, groups of highly interconnected nodes [17].

A formal and strict way of defining a community is the clique, a set of nodes in a network
connected by all possible edges among them. However, it has been observed that cliques are
too rigid to use in practice [22]. A more appropriate notion in many practical cases is the
k-plex: a set of nodes such that each of them is linked to all the others, except at most k.
For example, for k = 1, k-plexes are cliques as each node misses only the link to itself, for
k = 2, each node may miss the link to one neighbor (and itself), and so on. Hence, k-plexes
are a simple and intuitive generalization of cliques.

The problem of finding k-plexes arises in several application domains, including social
network analysis [2] and more in general graph-based data mining [5,22,29]. Unfortunately,
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(a) 2-plex, s=6 (b) 7-plex, s=11 (c) 11-plex, s=11

Fig. 1 Let s denote the number of nodes of a k-plex. The 2-plex in a displays high density and small diameter
like typical communities. The 7-plex in b and the 11-plex in c display higher diameter and lower density, and
thus cannot yielding any meaningful community in practice

the detection of all maximal k-plexes in a network is not practical, being hindered by three
main problems:

– maximal k-plexes are even more numerous than maximal cliques;
– most k-plexes are small and not significant;
– state-of-the-art algorithms for computing maximal k-plexes (such as [5]) are far more

inefficient than the available algorithms to compute cliques (such as [24]).

In this paper we propose a solution to the three problems above. Namely, we show that if
we restrict the search to large k-plexes, which are the most meaningful in practice, we can
devise efficient algorithms to detect them.

Indeed, computing all maximal k-plexes produces too many insignificant results when the
purpose is that of detecting communities. In this respect, it is useful to focus on the relationship
between s, the size of a k-plex, and k itself. Starting from k = 1, which corresponds to cliques,
by increasing the value of k, we obtain progressively sparser communities that are clearly
less interesting in practice, as it can be observed in Fig. 1. In addition, there is a dramatic
effect on small k-plexes: it is trivial that if s ≤ k a k-plex can be composed of isolated nodes,
but, as we discuss in Sect. 6, even if s < 2k the k-plex can be disconnected (Corollary 1). In
these cases, small k-plexes do not correspond to communities. In particular, in order to avoid
finding the degenerate k-plexes mentioned above, it is natural to impose at least that s ≥ 2k.
On the other hand, using an enumeration algorithm and then filtering small k-plexes implies
long waiting times.

In this context, our strategy for finding large k-plexes relies on two main observations.
First, the complexity of the problem can be efficiently reduced in the vast majority of cases on
the basis of certain properties of large k-plexes. This allows us to filter out a large portion of the
network before starting the search. The second consideration is that we can find all k-plexes
of size at leastm, wherem is a user-defined threshold, by looking just in the neighborhood of
cliques of a size that depends on k and m. Hence, it turns out that the knowledge of maximal
cliques in a network provides a hint for finding all the significant k-plexes. We note that the
state-of-the-art techniques to compute all maximal cliques are able to scale up to millions of
nodes [7,10].

In sum, our contributions are the following.

– We identify three criteria, which we call cliqueness, coreness and overlapping-
Cliques to filter out portions of the network that cannot contain k-plexes. These criteria,
introduced in the conference version of this paper [11], have inspired recent algorithms
for enumerating or searching k-plexes in large graphs [15,18].

– We propose a decomposition strategy of the network into overlapping blocks that can be
processed independently. This decomposition is based on maximal cliques, which can
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Ameta-algorithm for finding large k-plexes 1747

be efficiently computed, and is, to the best of our knowledge, the first decomposition
proposed for k-plex detection.

– Based on the above ingredients, we present a technique to efficiently detect all maximal
k-plexes whose size is at least a given threshold.

– As an application of the detection technique, we devise an algorithm to efficiently find
the maximum k-plex of a network.

– We provide an experimental analysis on real-world networks. In particular: (1) We con-
sider different clique size distributions and show the effectiveness of our filtering criteria;
(2) We show the superiority of our filtering technique over a variant in [15]; (3) We study
the sensitivity of our approach with respect to the number of k-plexes; (4) We finally
compare our technique to the full enumeration approach. It turns out that the techniques
introduced in this paper are able to speed up the computation with respect to the state of
the art, increasing the size of the networks for which computing maximal k-plexes is a
feasible task by several orders of magnitude.

Outline. The rest of this paper is organized as follows. Section 2 contains an overview of
our approach and results. Sections 3 to 5 describe in detail our approach to find all largest
k-plexes in the network and all the most significant k-plexes, respectively. Section 6 contains
the theoretical basis of our algorithms. The efficiency of our algorithms is experimentally
measured in Sect. 7. Finally, Sections 8 and 9 contain related work and our concluding
remarks.

2 Overview

Asmentioned in the introduction, our approach is based on twomain ideas: (1) before starting
the search for k-plexes, we can filter out a relevant portion of the network in which necessary
conditions for the presence of large k-plexes do not hold, and (2) in large networks, cliques
can drive the search for k-plexes. While the first point provides an effective way to simplify
the problem at hand, the second can lead to an efficient strategy for finding k-plexes.

As we noted in the introduction, an exhaustive search of all k-plexes does not make
much sense, since very small k-plexes are not significant, to the point that they may even be
disconnected (if their size is less than 2k) or composed by a set of isolated nodes (if their
size is less than k + 1).
Global filtering criteria. Consider, for instance, the network in Fig. 2, which we will use as
a running example in this section. Let us focus on the problem of finding all k-plexes of size
at least m = 5, with k = 2. Assume that we have computed all the maximal cliques of the
network. It turns out that two global filtering criteria can be applied.

1. Coreness Our first intuition follows from the very definition of k-plex: all the nodes of
a k-plex of size s must have degree at least s − k. If we search for k-plexes with size
at least m, this means that we can iteratively filter out every node that has degree lower
than m − k. This corresponds to computing the coreness of all the nodes of the network
(Lemma 2), a process that can be executed in linear time [3]. In our example, we can
filter out the three nodes {u, v, z} at the top of the picture since they have coreness 2,
which is less than m − k = 5 − 2 = 3. In larger networks we show that this criterion
allows us to filter out even 97% of the nodes.

2. Cliqueness The second intuition is that any node of a k-plex of size s must be included
in a clique of a size that depends on s. This is confirmed by Corollary 3, which states
that any node of a k-plex larger than or equal to s is included in a clique of size at least
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Fig. 2 An example network,
where we search for all 2-plexes
of size greater than or equal to 5.
Nodes {g, h, i, l,m} have
coreness = 4 and cliqueness = 5.
Nodes {a, b, c, d, e, f } have
coreness = 4 and cliqueness = 3.
Orange nodes have coreness = 2
and cliqueness=3. Nodes {u, v, z}
have coreness = 2 and
cliqueness = 3. Hence, they are
filtered out based on the coreness
criterion. Finally, the two nodes
{x, y} in the bottom of the picture
are filtered out because of the
cliqueness criterion

�s/k�. Then, if we search for k-plexes of size at least m, we can filter out all nodes that
do not belong to any clique of size at least �m/k�. Regarding complexity, this operation
requires to compute the cliques of the network, a process that may require exponential
time but that can be executed efficiently in real-world networks [6].
In our example, we can filter out all nodes that do not belong to cliques of size at least
�m/k� = �5/2� = 3, that is, the nodes {x, y} in the bottom of the network. We will show
in Sect. 7 that in larger instances this criterion can be tested efficiently and is able to cut
up even 80% of the nodes.

Even if some nodes can be filtered out because of both their low cliqueness and low
coreness, the network in Fig. 2 shows that the two filtering criteria are indeed independent.
When both criteria are used, the size of the network can be reduced by several orders of
magnitude and standard techniques for finding k-plexes can be efficiently applied (e.g. full
enumeration techniques). These techniques are described in Sect. 3.
Block decomposition and advanced filtering.Asmentioned above, our idea is to start from
cliques (which are k-plexes but not necessarily maximal) and possibly enlarge them to find
maximal k-plexes.

The cliqueness criterion guarantees that each node in a k-plex C of size at least s belongs
to a clique K of size at least �s/k� included in the k-plex. If we set m ≥ k2, we have that
|K | ≥ �s/k� > k, which implies that any other node of C must be adjacent to at least one
node of K (in other words, K is a dominating set ofC). Hence, we can search forC restricting
to a block including K and all its adjacent nodes. Each block can be separately processed,
possibly in a distributed environment.

We also show that a k-plex can be obtained by considering only nodes belonging to a
clique K of size at least �s/k� and to other cliques of size at least �s/k� intersecting with
K (Lemma 5). This gives rise to an advanced filtering technique and an efficient search
algorithm that decompose the network into blocks each composed of one clique as the core,
and all intersecting cliques as the boundary. These techniques are described in Section 4.
Finding k-plexes. Our filtering and decomposition strategies can be applied on top of any
known enumeration algorithm to find all the k-plexes larger than a user-specified threshold
m more efficiently. We describe the resulting enumeration meta-algorithms in Section 5.
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Ameta-algorithm for finding large k-plexes 1749

3 Global filtering criteria

Our target is the enumeration of the large k-plexes of the input graphG, that is, of all k-plexes
with size not smaller than a user-chosen thresholdm. One ingredient of our approach is that of
restricting the search to a suitable sub-graph of G, that we refer to as H . Clearly, the smaller
H is with respect to G, the faster solving the problem is. Ideally, H consists exclusively of
the nodes of the k-plexes we are looking for. Precisely, we aim at extracting a sub-graph H
out of G, that is:

1. Small enough to make the enumeration fast;
2. Large enough to capture all k-plexes of G of size at least m.

We design two different global filtering criteria, dubbed coreness and cliqueness. Our
criteria are of the form “all the k-plexes of size at least m consist of nodes with property P”,
and fulfill the above desiderata for a choice of m.

We now describe our coreness and cliqueness criteria, and how to use them for extract-
ing the sub-graph H out of G.

Our first criterion is the simplest, and it is based on the intuition that all the nodes of a
k-plex C , with |C | ≥ m have degree at least m − k. Clearly, we do not know a priori what
are the nodes of C . However, we can recursively filter out any node that has degree lower
than m − k. Formally, this is equivalent to searching for the (m − k)-cores of G. We define
this concept in the following:

Definition 1 An h-core of G is a maximal connected subgraph of G in which all nodes have
degree at least h. A node u has coreness h if it belongs to a h-core, but not to any (h+1)-core.

An h-core is one of the connected components of the sub-graph ofG formed by repeatedly
deleting all nodes of degree less than h. We are now ready to state our coreness criterion:

Filtering Criterion 1 (Coreness)All the k-plexes of G of size at least m consist of nodes having
coreness at least m − k.

Our second criterion is based on the intuition that all the nodes of a k-plexC , with |C | ≥ m,
form smaller cliques with other nodes ofC . Informally speaking, if we try to “draw” a k-plex
by adding one edge at a time, we soon realize that there are no ways of placing edges without
forming progressively larger cliques here and there. Lemma 3 in Section 6 proves that every
node of C participates in a clique of size at least m

k . Therefore, we can filter out any node
that only participates in smaller cliques. Formally:

Definition 2 A node u has cliqueness h if it belongs to a clique of size h, but not to any clique
of size h + 1.

We are now ready to state our cliqueness criterion:

Filtering Criterion 2 (Cliqueness) All the k-plexes of G of size at least m consist of nodes
having cliqueness at least m

k .

Computing the sub-graph. Let m be the minimum size of the searched k-plexes specified
by the user. The procedure Prune(G, k,m) shown in Algorithm 1, returns the sub-graph
H resulting from deleting nodes of G according to the coreness and cliqueness criteria.
We first compute the (m − k)-cores (line 2), and then we filter out all the nodes with low
cliqueness in the cores (line 3). Note that the two criteria can be applied sequentially, in any
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Algorithm1Prune(G, k,m) algorithm that computes a sub-graph ofG according to filtering
Criterion 1 and 2.
1: procedure Prune(G, k,m)
2: G′ ← {v ∈ G : G.coreness(v) ≥ m − k}
3: H ← {v ∈ G′ : G′.cliqueness(v) ≥ m

k }
4: return H
5: end procedure

(a) (b)

Fig. 3 An example network, where we search for all 2-plexes of size at least 5. Nodes of K are shown with
black letters. Nodes {a, b, e} participate in a single maximal 2-plex C = {a, b, c, d, e, f }

Algorithm 2 Algorithms for decomposition.
1: procedure Block(K )
2: B ← K ∪ {u ∈ V : u is adjacent to K }
3: return B
4: end procedure

order. Since computing coreness is easy [3], we chose to apply coreness first and compute
cliqueness on the smaller graph G ′ (line 3). At this point, one could re-apply coreness, then
cliqueness and so on, until the graph does not change anymore. In practice, however, we
observed that this yields marginal to no gain.

We remark that Algorithm 1 corresponds to the filtering criteria used in the preliminary
version of this paper [11]. In the next section we describe some additional filtering criteria
which allow further pruning.

4 Block decomposition and advanced filtering

As mentioned in Sect. 2, our approach leverages on a decomposition of the network into
blocks that can be processed independently, that is, we guarantee that any k-plex is entirely
contained in some block of the decomposition.

Our decomposition exploits the cliqueness criterion. Namely, let C be a k-plex of size at
least m. Consider any maximal clique K ∈ C . We know from the cliqueness criterion that
|K | ≥ m

k , that is, every node of C must participate in a clique at least as large as m
k . Observe

that a k-plex is dominated by any set of k nodes of the k-plex, since every other node can miss
up to k − 1 neighbors. Therefore, if m ≥ k2, then |K | ≥ m

k = k and the clique K dominates
C . It follows that, in order to find C , it suffices to search in the neighborhood of K .

For example, suppose you are searching for all maximal 2-plexes of size at least 5 in the
network of Fig. 3a. Consider any clique of size at least �s/k� = �5/2� = 3, for example the
clique K = {a, b, e} (light gray nodes in Fig. 3a). The nodes of any k-plex of size at least 5
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Ameta-algorithm for finding large k-plexes 1751

containing K are either (1) in K or (2) adjacent to K (circled nodes in Fig. 3a). This allows
us to target our search for large k-plexes to the neighborhood of each clique K .

In Algorithm 2 we show the Block(K ) method for returning a block of nodes that can
be processed independently to find all the k-plexes including a given clique K . The method
returns K together with its neighborhood and it can be called multiple times during enumer-
ation, as discussed in the next section (Sect. 5).

Algorithm 3 Filter(G, k,m) algorithm that computes a sub-graph of G according to
Prune() strategy (Algorithm 1) and decomposition into blocks.
1: procedure Filter_Edges(G,k,m)
2: S ← ∅
3: for K ∈ K s.t. |K | > m

k do � Cliques of G
4: for (u, v) ∈ K .edges() do
5: S ← S ∪ (u, v)

6: end for
7: end for
8: G′ ← G.remove_edges(S)
9: return G′
10: end procedure

11: procedure Filter(G, k,m)
12: K ← AllCliques(G)
13: H ← Prune(G, k,m)
14: H ← Filter_Edges(H ,k,m)
15: H ′ ← ∅
16: for K ∈ AllCliques(H ) do
17: B ← Block(K )
18: H ′ ← H ′∪ Prune(H [B], k,m) � H [B] is the subgraph of H induced by B ⊆ V
19: end for
20: return H ′
21: end procedure

Advanced filtering. Consider again the network in Fig. 3, where we search for 2-plexes of
size at leastm = 5, such asC = {a, b, c, d, e, f }. Let K = {a, b, e}. As shown in Fig. 3b, all
the nodes ofC not in K participate in cliques overlapping with K , that is, sharing at least one
node with K , for instance {a, b, c}, {b, c, d} and {a, e, f }. Note that, edge (a, g) is included
in the neighborhood of K but is not needed to find C nor any other 2-plex larger than m.

This enables us to state a new filtering criterion, that we refer to as overlappingCliques.
We state the criterion as follows and provide a proof of its correctness in Lemma 5.

Filtering Criterion 3 (OverlappingCliques) All the k-plexes of G with size m ≥ k2 consist of
nodes (and edges) either belonging to a clique K s.t. |K | ≥ m

k , or to overlapping cliques K
′,

s.t. |K ′| ≥ m
k and K ∩ K ′ �= ∅.

We implement this criterion via the Filter_Edges(G) method in Algorithm 3, which
filters away all the edges that do not participate in at least one clique larger than m

k : indeed
any such edge cannot belong to either K , or any of the overlapping cliques. Observe that
the method Filter_Edges(G) can be called just once on the input graph, rather than when
computing each block.

For example, method Filter_Edges(G) launched on the graph of Fig. 3a yields the graph
in Fig. 3b, filtering out the edge (a, g). When calling the method Block(K ) on the latter
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graph, only nodes in overlapping cliques with K are returned (represented as colored circles
in Fig. 3b).

Algorithm 3 also shows our final filtering strategy, that we refer to as Filter(). Such
strategy providing a more effective approach than the procedure Prune() (Algorithm 1) at
a reasonable efficiency cost. In a nutshell, Filter() starts by calling Prune() (line 13) and
Filter_Edges() (line 14). Then, it enumerates all the maximal cliques of the resulting sub-
graph H (line 16). Such set of cliques (line 16) is used to construct all the blocks with the
method Block() in Algorithm 2 (line 17). Since blocks can be processed independently, we
can re-apply coreness and cliqueness individually on each block (line 18) without missing
any k-plex and we can further reduce the size of H . Specifically, Filter() collects all the
nodes and edges surviving the application of Prune() on each block (line 18) and returns their
union H ′ (line 20) for subsequent processing. Our experiments show that further pruning at
line 18 can provide on some instances a substantial reduction of the surviving nodes, with
respect to the result of line 13.

5 Finding large k-plexes

In this section, we discuss how to apply our filtering criteria and block decomposition to find
all the k-plexes larger than a user-specified threshold m.

5.1 Enumerating all large k-plexes

Algorithm 4 describes our approach for the enumeration of large k-plexes that exploits state-
of-the-art algorithms for the exhaustive enumeration of cliques and k-plexes. In particular,
the procedure LargePlexes() leveragesAllCliques() and AllPlexes(), implemented for
instance as in [6,10] and in [5], respectively. Further, LargePlexes() uses the auxiliary
methods Block() and Filter(), that are detailed in Algorithm 2 and Algorithm 3 of Sect. 4,
respectively.

Algorithm 4 LargePlexes(G, k,m) meta-algorithm.
1: procedure LargePlexes(G, k,m)
2: H ← Filter(G, k,m)
3: K ← AllCliques(H )
4: for K ∈ K do
5: B ← Block(K )
6: C ← AllPlexes(H [B], k)

� H [B] is the subgraph of H induced by B ⊆ V
7: for C ∈ C do
8: if |C | ≥ m ∧ IsNotDuplicate(C, H , K ) then
9: yield C
10: end if
11: end for
12: end for
13: end procedure

14: procedure IsNotDuplicate(C ,H ,K )
15: parent_clique ← complete(complete({min(C)},C), H)

16: return parent_clique is equal to K
17: end procedure
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Algorithm LargePlexes() first calls the advanced Filter() procedure (line 2) to extract
a sub-graph H based on our filtering criteria and on the input threshold m. In fact, it is
guaranteed (see Sect. 3) that the removed nodes and edges do not participate in any k-plex of
size larger than or equal to m. Second, LargePlexes() enumerates all the maximal cliques
of the sub-graph H (line 3). The resulting set K only consists of those cliques that are larger
than m

k (because of the constructive process of H ) and that can be used as “seeds” from
which large k-plexes can be derived. Then, the LargePlexes() algorithm iterates over K
(lines 4–12) and for each clique constructs a block by adding its neighborhood (line 5). Let
B be the current set of nodes returned by Block()1. We first enumerate all the maximal
k-plexes of the sub-graph of H induced by B, denoted by H [B] (line 6). Observe that the
same k-plex C may be found in multiple blocks. Therefore, we rely on a “de-duplication”
method to return only one copy of each k-plex of size at least m (lines 7–11).
De-duplication. Let C be any k-plex computed by AllPlexes(H [B], k). We introduce the
concept of “parent clique” of C , and return C only when the clique that generated the current
block is equal to its parent clique. Specifically, let min(C) be the node u in C with smallest
id2 and let complete(X , Y ) be a method that iteratively adds to the clique X the node in Y
that is adjacent to all the nodes in X and has the minimum id, if any exists. The method stops
when there is no node left in Y adjacent to all nodes in X . The parent clique of C is defined
by construction as follows.

complete(complete({min(C)},C), H) (1)

Specifically, we start from the node u inC with smallest id. Then, the process of construction
has two phases. We first extend u into a clique inside C , we then keep extending the clique
by selecting nodes from the whole H . Both operations are performed by taking nodes in
increasing order of id. It is apparent that each k-plex C is contained into at least one block,
and in particular we prove that C is contained into the block B built starting from its parent
clique P (see Lemma 6 in Section 6). Conversely, there cannot be two blocks for which the
procedure IsNotDuplicate returns true. This guarantees that each k-plex is produced by
exactly one block.

We remark that the graph H computed at line 2 of Algorithm 4 can be empty if the user
specifies a very high threshold m. In this case, LargePlexes() terminates without yielding
any k-plex. Also, it may happen that H consists of a single clique. In this case, there is no
need to execute lines 3–11: the enumeration procedure returns H and terminates.

5.2 Finding themaximum k-plex

While community detection algorithms typically aim at finding several communities, an
important problem is also that of finding the largest, most relevant, one. The techniques
of Sect. 5.1 can be used in this direction as well, to produce an algorithm for finding the
maximum k-plex.

Let ω be the size of the maximum clique in G. Since the maximum clique is also the
maximum 1-plex and the size of the maximum k-plex is lower-bounded by the size of the
maximum k − 1-plex, ω can be though of as a lower-bound for any maximum k-plex of G.
This strategy, which we refer to as MaxPlex(), is illustrated in Algorithm 5 and proceeds
as follows. We first enumerate all the maximal cliques of G (line 1) and then use ω + 1 as

1 Observe that, it would be possible, in principle, to launch the Filter() procedure on the sub-graph induced
by each block. We measured experimentally that this does not reduce significantly the size of the blocks.
2 For instance, with respect to the lexicographic ordering.
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Algorithm 5MaxPlex(G, k) algorithm.
1: K ← AllCliques(G)
2: KM ← argmaxK∈K|K |
3: ω ← |KM |
4: C ← LargePlexes(G, k, ω + 1,K) � Re-use cliques computed at line 1
5: CM ← argmaxC∈C |C |
6: if |CM | > |KM | then
7: return CM
8: else
9: return KM
10: end if

the threshold m for LargePlexes() (lines 2–4). Observe that the set of maximal cliques K
computed at line 1 can be passed as an optional parameter to LargePlexes(), in order to
avoid their computation twice. Finally, we consider all the maximal k-plexes in C, and return
the maximum one (lines 5–10). If there are no k-plexes found, we return KM (line 9).3

We observe that one might want to apply a binary search approach, by starting from a
large threshold, until CM �= ∅ We observed experimentally that this approach yields better
performances than theMaxPlex() in Algorithm 5 approach only when the maximum k-plex
is order of magnitudes larger than ω. However this is rarely the case in real-world graphs. We
discuss more in detail the effectiveness of such a binary search algorithm for finding largest
k-plex in [11].

In Sect. 7 we experimentally investigate the effectiveness of Algorithm 5.

6 Theoretical basis

In this sectionwe consider a k-plex C = (V , E)with |C | = s nodes. For the sake of simplicity
C may refer to both the set of nodes it contains and to the induced graph. We recall that if C
is a k-plex then each of its nodes is adjacent to all nodes in C except at most k, thus a clique
can be thought of as a 1-plex. We also observe that any subset of a k-plex is also a k-plex, and
any k-plex is also a k + 1-plex. We now need to prove the correctness of Criteria 1, 2, and 3
dubbed coreness, cliqueness and overlappingCliques, respectively, and described in
the previous sections.

6.1 Coreness criterion

Criterion 1 states that all the k-plexes of a graph G of size larger than or equal tom consist of
nodes having coreness at least m − k. To prove this claim we need some preliminary results.

Let C be a k-plex of size s. Denote �(C) the diameter of C , that is, the largest number of
edges which must be traversed in order to travel from one node to another. While a clique,
or a 1-plex, has diameter equal to 1, k-plexes with k > 1 come in a variety of forms and can
have arbitrarily high diameters (which is not a desirable property for a community, as shown
in Fig. 1). However, for k ≤ s

2 – which means that every node is adjacent to more than half
of the nodes in C – the diameter is at most 2. This is proven in the following.

3 Note that in the classic “max k-plex” application scenario the goal is to find just one largest k-plex, rather
than enumerating all of them.
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Lemma 1 Let C be a k-plex of size s. If s ≥ 2k then �(C) ≤ 2.

Proof Assume, by contradiction, that C has diameter larger than 2. Then, there are at least
two nodes u and v at distance more than 2. Since u is missing at most k edges, it has at
least |N (u)| ≥ s − k neighbors. However, neither u nor its neighbors are connected to v

and therefore v is missing at least |N (u) ∪ {u}| ≥ s − k + 1 edges. Since s ≥ 2k, we have
s − k + 1 ≥ k + 1, so v violates the k-plex requirement – a contradiction. ��
Corollary 1 If s ≥ 2k then C is connected.

We are now ready for proving the coreness criterion.

Lemma 2 (Coreness) Every node of C has coreness at least s − k in C.

Proof Let |N (u)| denote the number of nodes of C adjacent to u. By the definition of k-plex
every node c ∈ C has |N (c)| ≥ s−k. Hence,C is unchanged by recursively removing nodes
of degree less than s − k, that is, every node in C has coreness s − k [27]. ��

Since the coreness does not decrease when considering a supergraph of C , we have the
following.

Corollary 2 Every node of C has coreness at least s − k in G.

Corollary 2 justifies the filtering based on Criterion 1 used in Section 3.

6.2 Other criteria

Wegive the technical lemmabelow, thatwe use for deriving the cliqueness and decomposition
criteria, and the advanced filtering principle.

Lemma 3 Every clique X ⊆ C, s.t. |X | < s
k , is included in a larger clique Xbig, s.t. |Xbig| ≥

s
k .

Proof Let X ⊆ C be any clique of C , s.t. |X | < s
k . Let N ⊆ C be the set of nodes which

are not adjacent to all nodes of X , that is, that are adjacent to only h nodes of X , with
0 ≤ h ≤ |X | − 1. It is obvious that by picking any node u′ ∈ C\(X ∪ N ) (provided such a
node u′ exists) we have that X ′ = X ∪ {u′} is a clique of size |X | + 1. Since every u ∈ X
can miss at most k neighbors including itself, |N ∪ X | ≤ |X |(k − 1) + |X | = k|X |. This
means that at most k|X | nodes are excluded for the selection of u′. Let N ′ be the nodes
not adjacent to all nodes of X ′. We can repeat the process and grow X ′, by picking any
node u′′ ∈ C\(X ′ ∪ N ′), until we run out of nodes. Note that the newly-excluded nodes for
selecting u′′ are u′ and its missing neighbors, which are at most k−1. Such a clique-growing
process can be thought of as an iterative process starting from a node and growing a clique
– as if X itself were grown after |X | steps of the process – and excluding at most k nodes at
a time. Therefore, the process will run at least s

k steps, after which X has been grown to s
k

nodes. ��
Note that, in case s

k is not integer, the proof yields |Xbig| ≥ � s
k �. This directly implies

the cliqueness criterion.. Precisely, the corollary below follows from the clique-growing
argument given in the proof of Lemma 3, by starting from a single node.

Corollary 3 (cliqueness) Every node in C has cliqueness at least � s
k �.
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We now give the lemma below for proving the correctness of our block decomposition
strategy.

Lemma 4 Consider a clique X ⊆ C, s.t. |X | ≥ s
k . If s ≥ k2, every node in C either belongs

to X or has a neighbor in X.

Proof We know that such a clique always exists from Lemma 3. Since its size is at least k by
assumption, then every u ∈ C\X has to be adjacent to at least one node in X . ��

Our last criterion is a stricter form of the above lemma, which we formalize as follows
and which justifies the Filter_Edges() procedure in Algorithm 3.

Lemma 5 [OverlappingCliques] Consider a clique X ⊆ C, s.t. |X | ≥ s
k . If s ≥ k2, every

node in C either belongs to X or to an overlapping clique X ′, s.t. |X ′| ≥ s
k and X ∩ X ′ �= ∅.

Proof Let u be any node of C\X . We know from Lemma 4 that exists a node v ∈ X adjacent
to u. Since {u, v} is a clique of size 2, we can apply Lemma 3 and conclude that both nodes
belong to a clique X ′ of size at least s

k . Finally, v ∈ X ∪ X ′. ��
Finally, we demonstrate the correctness of our duplication check for Algorithm 4.

Lemma 6 (Duplication check) Any k-plex C is contained into the block B generated by its
parent clique P.

Proof Let P ′ = C∩P denote the portion of the parent clique that is insideC . By construction,
P ′ is maximal within C and thus from Lemma 3 it follows that |P ′| ≥ s

k . Since s ≥ m ≥ k2,
by Lemma 4 we have that all nodes of C are either in P or neighbors of a node in P . It
follows that C is contained into B. ��

7 Experiments

In this section we experimentally verify the effectiveness and efficiency of the approaches
described in the paper.

7.1 Experimental set-up

Wenowdescribe our experimental set-up. The code for our experiments is publicly available.4

Test environment. Our experiments were performed on a machine with 32 CPU Intel Xeon
E5-520 units, running at 2.26GHz, with 8MB of cache and 32GB RAM. The operating
system was Linux CentOS 6.7, with kernel version 2.6.32, Java Virtual Machine version
1.8.0_111 (64-Bit) and Python version 2.6.6 (64-Bit). All our executions have a 12 hours
timeout, after which they are interrupted. In the tables of this section, the symbol ∗ denotes
that the execution was interrupted due to timeout. All the running times are averaged over 3
runs.

Datasets. As shown in Table 1, we consider six real-world networks from the Stanford
Large Network Dataset Collection5 with different sizes and different clique size distribution.

4 https://github.com/ddfir/kplexes-meta.git.
5 http://snap.stanford.edu/data/index.html.
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Table 1 Datasets considered in
our experiments. ω is the largest
clique size

Graph Nodes Edges ω

cagrqc 5241 14, 484 44

hepth 9877 25, 973 32

hepph 12, 005 118, 488 239

coAuthorsCiteseer 227, 320 814, 134 87

coAuthorsDBLP 299, 067 977, 676 115

citationCiteseer 268, 495 1, 156, 64 13

The size ω of the largest clique for each network is shown in Table 1, while the clique
size distributions are shown in Fig. 4. In the experiments, we show that with traditional
methods even the smallest networks can incur in timeout. Our algorithms, instead, can process
networks up to hundreds of thousands of nodes.

Variants and Baseline. We use the algorithm described in [5], denoted by AllPlexes(),
as the k-plex enumeration method in the algorithm described in Sect. 5. We use the algo-
rithm in [24] as the maximal cliques enumeration method, denoted by AllCliques(), in the
filtering and search algorithms. We have implemented coreness criterion with the method
in [3] for computing k-cores, and the cliqueness criterion with the already mentioned algo-
rithm in [24] for computing cliques. We consider the following variants of our enumeration
methods:

1. Filter&BlockEnum, corresponding to running Filter() followed by AllPlexes()
over individual blocks of the filtered graph (as in the LargePlexes procedure in Algo-
rithm 4);

2. Filter&Baseline, corresponding to running Filter() followed by AllPlexes() over
the filtered graph as a whole;

3. BlockEnum, corresponding to runningAllPlexes() over individual blocks of the orig-
inal (i.e., unfiltered) graph;

4. Baseline, corresponding to runningAllPlexes() [5] over the original (unfiltered) graph
as a whole, as described in [5].

In the variants Filter&BlockEnum and BlockEnum the enumeration method is executed
over each block in parallel.We demonstrate the efficiency and effectiveness of our techniques
for different values of k and the threshold sizem. For comparison,we also consider thefiltering
method in [15], that is a variant of our coreness technique described in Sect. 3. We denote
this method as KDD18.

7.2 Impact of the filtering techniques

In the following we demonstrate the benefit of our filteringmethods, bymeasuring howmany
nodes of real-world networks can be filtered out, and comparing them with the technique
KDD18 in [15].

Effectiveness. Table 2 shows the impact of the filtering techniques on the largest graphs of
our dataset for a threshold equal to 10, 50, and 100. In particular, column Filter() shows the
number of nodes of the networks surviving our advanced filtering method (see Algorithm 3)
when searching for k-plexes with k equal to 2 and 3 (the two sections of the table). It is
apparent that the percentage of nodes filtered out by Filter() if very large, reducing the size
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Table 2 Effectiveness of our filtering criteria for different settings of m and k

Graph m coreness cliqueness Prune()† KDD18 Filter()

k = 2

cagrqc 10 405 1238 404 405 400

50 0 124 0 0 0

100 0 0 0 0 0

hepth 10 285 2,068 273 185 159

50 0 32 0 0 0

100 0 0 0 0 0

hepph 10 3306 5506 3231 3198 2828

50 894 1677 894 893 884

100 297 864 297 297 297

coAuthorsCiteseer 10 34,624 104,151 34,584 34,188 33,382

50 887 19,162 887 887 887

100 0 778 0 0 0

coAuthorsDBLP 10 31,126 119,125 30,761 29,796 24,960

50 359 1957 359 359 359

100 217 310 217 217 217

citationCiteseer 10 49,559 34,090 24,037 42,710 4603

50 0 0 0 0 0

100 0 0 0 0 0

k = 3

cagrqc 10 455 3855 455 455 452

50 0 244 0 0 0

100 0 0 0 0 0

hepth 10 598 7435 598 494 350

50 0 96 0 0 0

100 0 0 0 0 0

hepph 10 3881 10,359 3881 3766 3277

50 896 2165 896 896 894

100 297 1270 297 297 297

coAuthorsCiteseer 10 44,253 196,714 44,253 43,600 42,222

50 950 11,146 950 950 950

100 0 2399 0 0 0

coAuthorsDBLP 10 43,791 253,024 43,791 42,408 35,869

50 455 5303 455 455 455

100 217 949 217 217 217

citationCiteseer 10 68,198 175,480 67,680 61,561 28,048

50 0 0 0 0 0

100 0 0 0 0 0

Values show the number of surviving nodes, thus, lower is better. The smallest figure of the last two columns
is highlighted in bold, or underlined in case of ties. (†) Algorithm Prune() was introduced in the preliminary
version of this paper [11]
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(a) cagrqc (b) hepth

(c) hepph (d) coAuthorsCiteseer

(e) coAuthorsDBLP (f) citationCiteseer

Fig. 4 Clique size distributions of graphs considered in our experiments. The red vertical bars at clique size =
50 correspond to the clique size threshold for m = 100 and k = 2

of the graphs by orders of magnitude. Increasing the value of m yields less surviving nodes,
depending on the distribution of k-plexes in the input graph. We observe that, for values of
the threshold that are higher than the maximum k-plex, there might be no surviving node at
all, allowing us to immediately recognize that no such k-plex exists. Note also that increasing
the value of k decreases the effectiveness of the filtering. These values justify the reduced
computation times that we will have on the filtered networks with respect to the original ones.
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Table 3 Efficiency of our filtering methods compared to the processing time required by AllPlexes() [5].
Running times are expressed in seconds unless specified. Times refer to the same settings of m as in Table 2
and for k = 2

Graph coreness cliqueness Filter(G,m, 2) AllPlexes

10 50 100

Cagrqc < 1 < 1 1 < 1 < 1 4 h

Hepth < 1 < 1 2 < 1 < 1 *

Hepph < 1 2 1.25 h 24 min 5 *

CoAuthorsCiteseer 3 8 2.2 min 22 12 *

CoAuthorsDBLP 6 11 3.6 min 18 17 *

CitationCiteseer 7 12 8.4 min 22 23 *

Columns Coreness and Cliqueness show the impact of the two filtering criteria if they
were applied separately. In most of the cases Coreness is more effective than Cliqueness,
however, it is not obvious when one technique is preferable to the other. Hence, it is advisable
to use both as in Algorithm 1 (while in most of the cases the advantage of using both criteria
is limited, in some cases yields a much smaller networks). Although it is not shown in
Table 2, we also tested the repeated application of the two criteria multiple times, obtaining a
negligible gain. We remark that the Cliqueness criterion is more sensitive to the parameter
k than the Coreness one and becomes quickly less effective as k increases. As a frame of
comparison, we show in Fig. 4 the clique distribution of the networks in Table 2. The graphs
confirm the intuition that when the distribution is skewed (i.e., there are few large cliques
and a long tail of smaller ones) the cliqueness criterion is most effective. We remark that
having a skewed distribution is a property that can be expected in a scale-free network.

Back to Table 2, column [15] shows the impact of the filtering technique described in [15],
that is a variant of our Coreness technique described in Sect. 3. The technique in [15] is
comparable to coreness alone. For the sake of completeness we also show the impact of the
Prune() method alone, that corresponds to the filtering technique described in [11]. These
experiments prove that the filtering criteria described in this paper are extremely effective,
which is also confirmed by the fact that, after the introduction of these techniques in a
preliminary version of this paper [11], they have inspired several works on the enumeration
or on the search of k-plexes in large graphs, such as [15,18].

Efficiency of the filtering. Table 3 shows the preprocessing overhead. We measured the
time needed to apply the two criteria coreness and cliqueness separately. (obviously, the
total time of the filtering procedure in Algorithm 1 is equal to the sum of the two times).
We also measured the running time of the Filter() procedure, for different values of m and
for k = 2. We observe that, as expected, coreness is faster to compute than cliqueness,
although the order of magnitude is the same. For comparison, we report in the same Table 3
the computation time of the exhaustive enumeration of k-plexes (Algorithm AllPlexes()
described in [5]). Thedifference between the largest time for computingFilter() (24minutes)
and the corresponding enumeration time (more than 12 h) suggests that filtering times are
acceptable. Similar observations could be done for larger values of k.
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7.3 Enumeration of large k-plexes

In this Section, we demonstrate the efficiency and effectiveness of the techniques in Sect. 5
for finding the larger k-plexes in a fraction of the time required by the method AllPlexes()
in [5].

Enumerating all large k-plexes. Table 4 shows the running time of our large k-plexes
enumeration strategy on different networks in our dataset, for different values of k and
m, and for the variants presented in the experimental set-up section (Sect. 7.1). For this
experiment, we set m to different fractions of the largest clique size (ω) in order to ensure
that the number of large k-plexes found (|C|) is at least one. Indeed, values of m larger
than ω do not yield any k-plex in our experiments while values of m smaller than 0.5ω
can yield thousands of k-plexes, which is almost analogous to exhaustive enumeration. The
time required for enumerating all k-plexes (column AllPlexes) of such networks is always
larger than our timeout (12 hours), except for the smallest network and k = 2. The table
also shows the number of k-plexes returned (column |C|). All the networks considered,
except for cagrqc, contain less than a hundred k-plexes of size at least 0.5ω, which can
be quickly found by our filtering-based strategies, showing output-semsitive properties. In
order to demonstrate the benefit of our block decomposition method, we show the running
time of the exhaustive enumeration strategy (that is, without filtering) by processing blocks
in parallel (column BlockEnum). Our results show that as long as the network size is small
enough to make exhaustive enumeration feasible, block decomposition can decrease running
time by orders of magnitude, by completing the task in less than 1 hour, as opposite of more
than 12 hours required for the traditional strategy with no decomposition. After filtering,
in the networks considered in our experiments, we are left with at most a dozen blocks,
except for citationCiteseer, and therefore the impact of block decomposition (column
Filter&BlockEnum) is less evident. Nonetheless, with more than 10 blocks, running time
can be boosted up to 2.4x.

We conclude discussion of Table 4 by summarizing when to apply the filtering and block
decomposition strategies presented in our framework.

1. Filtering (i.e., the Filter() method in Algorithm 3) is always beneficial. Indeed, it typi-
cally decreases running time by orders of magnitude, and its overhead is negligible with
respect to exhaustive enumeration time (i.e., AllPlexes).

2. The block decomposition strategy is always beneficial when the number of blocks is less
than the number of available processors. Indeed, it can decrease running time more than
2.4x, without overhead.

3. The block decomposition strategy can be beneficial even if the number of blocks
is more than the number of available processors (e.g., BlockEnum(cagrqc)), but
the overhead due to duplicate enumeration (see theory in Sect. 6) can be high
(Filter&BlockEnum(citationCiteseer)). In this case, if we have p processors,
we can reserve one processor for no blocking and p − 1 for blocking.

Finding the maximum k-plex. Finally, table 5 shows the efficiency of the MaxPlex()
method in Algorithm 5, for different values of k. We observe that the method is not only
faster than AllPlexes() (which only terminated before timeout for cagrqc and k = 2) but
it yields similar performances up to k = 6, for all the graphs except citationCiteseer.

123



1762 A. Conte et al.

Ta
bl
e
4

E
ffi
ci
en
cy

of
ou

r
en
um

er
at
io
n
m
et
ho

ds
.F

or
ea
ch

gr
ap
h,
th
e
th
re
sh
ol
d
va
lu
e
m

is
ex
pr
es
se
d
as

a
fr
ac
tio

n
of

its
la
rg
es
tc
liq

ue
si
ze

ω
.T

he
sm

al
le
st
tim

e
fig

ur
e
of

th
e
la
st
4

co
lu
m
ns

is
hi
gh

lig
ht
ed

in
bo

ld
,o
r
un

de
rl
in
ed

in
ca
se

of
tie

s

G
ra
ph

m
|C|

Fi
lt
er

&
B
lo

ck
E
n
u
m

Fi
lt
er

&
B
a
se
li
n
e

B
lo

ck
E
n
u
m

B
a
se
li
n
e

T
im

e
B
lo
ck
s

T
im

e
T
im

e
B
lo
ck
s

T
im

e

k
=

2

ca
gr
qc

50
%

10
8

5
11

9
33

m
in

39
02

4
h

75
%

8
2

6
4

10
0%

4
<

1
3

<
1

he
pt
h

50
%

4
<

1
4

<
1

35
m
in

99
38

∗
75

%
2

<
1

2
<

1

10
0%

1
<

1
1

<
1

he
pp

h
50

%
1

19
1

19
∗

∗
75

%
1

19
1

19

10
0%

1
19

1
19

co
A
ut
ho
rs
C
ite
se
er

50
%

N
.A
.

∗
44

∗
∗

∗
75

%
3

31
7

39

10
0%

1
14

1
14

co
A
ut
ho

rs
D
B
L
P

50
%

53
56

4
61

∗
∗

75
%

2
19

2
23

10
0%

1
19

1
19

ci
ta
tio

nC
ite
se
er

50
%

N
.A
.

∗
17

8
∗

∗
∗

75
%

N
.A
.

∗
46

8
∗

10
0%

38
3.
6
h

2,
01

5
38
.3
m
in

k
=

3

ca
gr
qc

50
%

1,
23

1
2.
8
m
in

12
6.
8
m
in

∗
∗

75
%

6
33

6
41

10
0%

4
<

1
3

<
1

123



Ameta-algorithm for finding large k-plexes 1763

Ta
bl
e
4

co
nt
in
ue
d

G
ra
ph

m
|C|

Fi
lt
er

&
B
lo

ck
E
n
u
m

Fi
lt
er

&
B
a
se
li
n
e

B
lo

ck
E
n
u
m

B
a
se
li
n
e

T
im

e
B
lo
ck
s

T
im

e
T
im

e
B
lo
ck
s

T
im

e

he
pt
h

50
%

1
<

1
4

<
1

∗
∗

75
%

2
<

1
2

<
1

10
0%

4
<

1
1

<
1

he
pp

h
50

%
1

19
1

19
∗

∗
75

%
1

19
1

19

10
0%

1
19

1
19

co
A
ut
ho
rs
C
ite
se
er

50
%

N
.A
.

∗
30

∗
∗

∗
75

%
1

2.
6
h

7
2.
9
h

10
0%

3
15

1
15

co
A
ut
ho

rs
D
B
L
P

50
%

1,
22

8
4
h

4
4.
05

h
∗

∗
75

%
2

20
2

23

10
0%

1
20

1
20

ci
ta
tio

nC
ite
se
er

50
%

N
.A
.

∗
∗

∗
∗

75
%

N
.A
.

∗
∗

10
0%

N
.A
.

∗
∗

123



1764 A. Conte et al.

Table 5 Efficiency of MaxPlex(). Running times are expressed in seconds

Graph k = 2 k = 3 k = 4 k = 5 k = 6

Time Size Time Size Time Size Time Size Time Size

cagrqc < 1 44 < 1 45 < 1 46 < 1 46 < 1 46

hepth < 1 32 < 1 32 < 1 32 < 1 32 < 1 32

hepph 19 239 19 239 19 239 19 239 19 239

coAuthorsCiteseer 15 87 15 87 15 87 16 87 16 87

coAuthorsDBLP 20 115 20 115 20 115 20 115 20 115

citationCiteseer 57 13 ∗ N.A. ∗ N.A. ∗ N.A. ∗ N.A.

8 Related works

In the field of network analysis, dense substructures in graphs (aka dense subgraphs) are
associated with communities, or more in general sets of closely related elements [17,22]. The
problemoffinding these substructures has been extensively studied for decades, and continues
to be the object of cutting edge research. The simplest and most rigorous definition of dense
subgraph is the clique, i.e., a subgraph in which all nodes are pairwise connected. Many
algorithms for finding all maximal cliques have been developed, most of them being inspired
to the Bron-Kerbosh algorithm [6], such as [16,24] or to the more recent paradigm of reverse
search [1], such as [9,14,20]. The definition of clique may be too strict in some instances,
such as in real datasets where data can be noisy and incomplete, so several definitions of
pseudo-clique have been produced [22], such as the k-plex [23].

To the best of our knowledge, ourwork provides the firstmeta-algorithm for detecting large
k-plexes. The closest works to our are full enumeration k-plexes algorithms, such as [5,8].
The search space reduction mechanisms in [15,18] are inspired by our filtering criteria (in
particular, by coreness), which have been described originally in [11]. These and other
related works are discussed next.

We point out that this is an extended version of the paper appeared in [11]. With respect to
our earlier work [11,12], we have: (1) largely improved the filtering algorithm, now referred
to as Filter, (2) extensively extended the related works considering more recent literature,
(3) presented a more thorough and extensive experiment campaign, including executions on
a parallel architecture, and (4) introduced new practical discussion on how to configure the
proposed techniques in real-world applications.

Full enumeration. Cohen et al. [8] give a generic framework for enumerating all maximal
subgraphs with respect to hereditary and connected hereditary graph properties, i.e., prop-
erties that are closed with respect to induced subgraphs and connected induced subgraphs,
respectively. Berlowitz et al. [5] apply the framework in [8], together with insights on the
k-plex problem, to produce efficient algorithms for the enumeration of maximal k-plexes and
maximal connected k-plexes, which are, respectively, hereditary and connected hereditary.
An important property of this algorithm is that it is output-sensitive for small values of k, that
is, the total running timewill be a function of the size of the graph and the number of maximal
k-plexes. The algorithm for connected k-plexes in [5] outperformed the current state of the
art enumeration algorithms, such as the recursive one by Wu et al. [28], and constitutes our
baseline for the experimental evaluation. A noteworthy theoretical result is achieved by Zhou
et al. [30], who are the first to present an algorithm with guaranteed total time significantly
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lower than O(2n): their algorithm runs in O(n2(2 − γ )n) time, for some γ which depends
on k but is strictly larger than 0.

Largest k-plex. McClosky [21] performs a thorough study to devise exact algorithms for
finding the largest k-plex, and heuristics for finding lower upper bounds on its size, exploiting
co-k-plexes (i.e., k-plexes on the complement graph) and graph coloring techniques. The
usability of such algorithm is however limited to small networks, as the running time exceeds
the hour for graphs with hundreds of nodes. We note that, provided with a lower-bound on
the size of largest k-plex, our extraction layer can be also helpful in the extreme scenario
where we want to enumerate only k-plexes ofmaximum size. Indeed, one of the ideas behind
the more recent algorithm in [18] consists in finding a lower-bound on the size of the largest
k-plex and then use coreness for filtering out nodes that can be proven only participating
in k-plexes with smaller size. Such efficient algorithm is more efficient than those provided
by McClosky [21] and can run on larger instances. Recently, a heuristic algorithm for the
maximum k-plex has been proposed in [19], based on the fact that k-plexes correspond to
graphs of degree bounded by k − 1 in the complement graph.

Parallel algorithms. Full enumeration can be slow when processing large instances. To
this end, Wu et al. [28] propose Pemp, a parallel algorithm for enumerating all the k-plexes,
which successfully improves its performancewith the usage ofmultiple cores,whichwas later
improved by Wang et al. [26]. In particular, [15] incorporates a filtering procedure based on
degeneracy that can be optionally turned on to skip small k-plexes during enumeration. Such
filtering criteria, rather than cutting the highest amount of vertices, aims to haveminimal time
spent on pruning in order to take advantage as quickly as possible of a distributed environment.
the result is a computationally lighter pruning procedure which has the same underlying
principle as the coreness criterion, and can provide similar results in practice, as discussed
in Section 7. The k-plex computation step in [15] is then handled via a recursive procedure,
which does not have the output-sensitive properties of [5], but shows good performance on
real networks. Finally, our LargePlexes() algorithm can be implemented effectively in a
distributed environment, as discussed in Section 5.

Efficient clique enumeration. Since the number of cliques can be exponential in the worst
case [24], a great amount effort was dedicated to find efficient algorithms for clique enu-
meration [7,10]. These algorithms can decompose the input graph into smaller sub-graphs
that can be processed independently, allowing efficient in-memory computation of very large
instances. Our Block() method is inspired to the the blocking idea in [10]. Technically, we
leverage a generalization of the principle in [10] that says that every clique is dominated by
any of its nodes, by realizing that every k-plex is dominated by any k of its nodes. In terms of
memory-efficiency, the recent work in [13] describes a shared-nothing distributed algorithm
for the detection of 2-plexes, that is, for the specific case where k = 2.

Other quasi-clique models. Finally, let us observe alternative quasi-clique models studied
in the literature, together with some pros and cons concerning their usability for the purpose
of finding graphs communities.

Uno [25] considers the notion of dense subgraph, defined as a set S of nodes such that
G[S] has density over a desired threshold. Dense subgraphs, however, are challenging to
enumerate and the proposed algorithm enumerates also non-maximal solutions (which may
be exponentially more in number).

A k-club [22] is a set S of nodes such that G[S] has diameter k; this concept relaxes
the adjacency requirement in a clique to distance k in G[S], however they do not have the
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hereditary property (a subset of a k-club may not be a k-club), making their detection elusive,
and indeed an efficient enumeration algorithm is yet unknown.

Behar et al. [4] give an enumeration algorithms for s-cliques, a set S of nodes each at
distance s or less from all others in G. This relaxes the k-club as distances may depend on
connections outside of S, which may result in a less cohesive community, but allows for
efficient enumeration.

A variant of the k-plex can be found in Zhai et al. [29], who add further connectivity
constraints called CLB.

Finally, more models can be found in the survey by Pattillo et al. [22].
Out of all these quasi-cliquemodels, it appears that k-plexes received a larger interest. This

is perhaps due to their structure having strong cohesiveness, despite being more relaxed and
thus noise-tolerant than a clique, while at the same time maintaining the hereditary property
(a subset of a k-plex is a k-plex) and allowing for efficient detection, and thus making them
a suitable model for our study.

9 Conclusions and future works

We have proposed a novel approach for the enumeration of large k-plexes, that are a formal
andmeaningfulway to define interesting communities in real-world networks that generalizes
the notion of clique.Our approach can be implemented efficiently in parallel over a distributed
environment, which meets our goal of making the problem of computing k-plexes in large
real-world networks practically tractable.

Two main clues have driven our solution:

– a relevant portion of the network can be filtered out before starting the detection of large
k-plexes and

– cliques, which are more restricted but can be computed efficiently, can be used as starting
points for the search of k-plexes in the network. The efficiency of the approach over state-
of-the-art algorithms has been confirmed by our experiments.

Finally, we demonstrated the effectiveness of our approach in a parallel setting, by pro-
cessing different blocks of LargePlexes() on different cores with a shared memory.

In the future, we intend to further extend the applicability of our approach and tackle the
problem of computing large k-plexes on real-world networks in a shared-nothing infrastruc-
ture (for any value of k).
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