Skip to main content
Log in

Generalising combinatorial discriminant analysis through conditioning truncated Rayleigh flow

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Fisher’s Linear Discriminant Analysis (LDA) has been widely used for linear classification, feature selection, and metrics learning in multivariate data analytics. To ensure high classification accuracy while optimally discovering predictive features from the data, this paper studied \(\mathbf {CDA}\), namely Combinatorial Discriminant Analysis that intends to combinatorially select a subset of features and assign weights to them optimally. \(\mathbf {CDA}\) extents the Truncated Rayleigh Flow algorithm (Tan et al. in J R Stat Soc: Ser B (Stat Methodol) 80(5):1057–1086, 2018) and improves LDA estimation under k-sparsity constraint. The experimental results based on the synthesized and real-world datasets demonstrate that our algorithm outperforms other LDA baselines and downstream classifiers. The empirical analysis shows that our algorithm can recover the combinatorial structure of optimal LDA with empirical consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tan KM, Wang Z, Liu H, Zhang T (2018) Sparse generalized eigenvalue problem: optimal statistical rates via truncated Rayleigh flow. J R Stat Soc: Ser B (Stat Methodol) 80(5):1057–1086

    Article  MathSciNet  Google Scholar 

  2. RA Fisher (1936) The use of multiple measurements in taxonomic problems. Ann Hum Genet 7(2), 179–188

    Google Scholar 

  3. R.O. Duda, P.E. Hart, D.G. Stork (2001) Pattern classification, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  4. Alipanahi B, Biggs M, Ghodsi A et al (2008) Distance metric learning vs. fisher discriminant analysis. In: Proceedings of the 23rd national conference on artificial intelligence, vol 2, pp 598–603

  5. B Kulis et al. (2013) Metric learning: a survey. Found Trends Mach Learn 5(4), 287–364

    Article  MathSciNet  Google Scholar 

  6. R Peck, J Van Ness (1982) The use of shrinkage estimators in linear discriminant analysis. IEEE Trans Pattern Anal Mach Intell 5:530–537

    Article  Google Scholar 

  7. Buhlmann P, Van De Geer S (2011) Statistics for high-dimensional data: methods, theory and applications. Springer, Berlin

    Book  Google Scholar 

  8. KM Amin (2012) Combinatorial regression and improved basis pursuit for sparse estimation. California Institute of Technology, Pasadena

    Google Scholar 

  9. Witten DM, Tibshirani R. (2009) Covariance-regularized regression and classification for high dimensional problems. J R Stat Soc: Ser B (Stat Methodol) 71(3):615–636

    Article  MathSciNet  Google Scholar 

  10. Cai T, Liu W (2011) A direct estimation approach to sparse linear discriminant analysis. J Am Stat Assoc 106(496), 1566–1577

    Article  MathSciNet  Google Scholar 

  11. Clemmensen L, Hastie T, Witten D, Ersboll B (2011) Sparse discriminant analysis. Technometrics 53(4)

  12. Shao J, Wang Y, Deng X, Wang S et al. (2011) Sparse linear discriminant analysis by thresholding for high dimensional data. Ann Stat 39(2), 1241–1265

    Article  MathSciNet  Google Scholar 

  13. Li Y, Jia J et al. (2017) L1 least squares for sparse high-dimensional LDA. Electron J Stat 11(1), 2499–2518

    Article  MathSciNet  Google Scholar 

  14. Baraniuk RG. (2007) Compressive sensing. IEEE Signal Process Mag 24(4)

  15. Javanmard A, Montanari A (2014) Confidence intervals and hypothesis testing for high-dimensional regression. J Mach Learn Res 15(1), 2869–2909

    MathSciNet  MATH  Google Scholar 

  16. Jankova J, Geer S et al (2015) Confidence intervals for high-dimensional inverse covariance estimation. Electron J Stat 9(1):1205–1229

    Article  MathSciNet  Google Scholar 

  17. TT Cai, L Wang. (2011) Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans Inf Theory 57(7), 4680–4688

    Article  MathSciNet  Google Scholar 

  18. Krzanowski WJ, Jonathan P, McCarthy WV, Thomas MR (1995) Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data. Appl Stat 44:101–115

    Article  Google Scholar 

  19. Ye J (2007) Least squares linear discriminant analysis. In: Proceedings of the 24th international conference on machine learning, pp 1087–1093. ACM

  20. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441

    Article  Google Scholar 

  21. Anderson TW (1962) An introduction to multivariate statistical analysis. Technical report, Wiley, New York

  22. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12), 4655–4666

    Article  MathSciNet  Google Scholar 

  23. Globerson A, Roweis ST (2006) Metric learning by collapsing classes. In: Advances in neural information processing systems, pp 451–458

  24. Cai TT, Ren Z, Zhou HH. et al. (2016) Estimating structured high-dimensional covariance and precision matrices: optimal rates and adaptive estimation. Electron J Stat 10(1), 1–59

    MathSciNet  MATH  Google Scholar 

  25. Rothman AJ, Bickel PJ, Levina E, Zhu J. et al. (2008) Sparse permutation invariant covariance estimation. Electron J Stat 2:494–515

    Article  MathSciNet  Google Scholar 

  26. Witten DM, Friedman JH, Simon N. (2011) New insights and faster computations for the graphical lasso. J Comput Graph Stat 20(4), 892–900

    Article  MathSciNet  Google Scholar 

  27. Yu Y, Wang T, Samworth RJ (2014) A useful variant of the Davis–Kahan theorem for statisticians. Biometrika 102(2):315–323

    Article  MathSciNet  Google Scholar 

  28. Lin C-J (2017) Libsvm data: classification (binary class)

  29. Tibshirani R, Hastie T, Narasimhan B, Chu G. (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci 99(10), 6567–6572

    Article  Google Scholar 

  30. Yang D, Zhang D, Chen L, Qu B. (2015) Nationtelescope: monitoring and visualizing large-scale collective behavior in lbsns. J Netw Comput Appl 55:170–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Licheng Wang or Zeyi Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 219 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Xiong, H., Hu, D. et al. Generalising combinatorial discriminant analysis through conditioning truncated Rayleigh flow. Knowl Inf Syst 63, 2189–2208 (2021). https://doi.org/10.1007/s10115-021-01587-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-021-01587-z

Navigation