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Abstract
Existing well-investigated Predictive Process Monitoring techniques typically construct a
predictive model based on past process executions and then use this model to predict the
future of new ongoing cases, without the possibility of updating it with new cases when they
complete their execution. This can make Predictive Process Monitoring too rigid to deal with
the variability of processes working in real environments that continuously evolve and/or
exhibit new variant behaviours over time. As a solution to this problem, we evaluate the use
of three different strategies that allow the periodic rediscovery or incremental construction
of the predictive model so as to exploit new available data. The evaluation focuses on the
performance of the new learned predictive models, in terms of accuracy and time, against the
original one, and uses a number of real and synthetic datasets with and without explicit Con-
cept Drift. The results provide an evidence of the potential of incremental learning algorithms
for predicting process monitoring in real environments.
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1 Introduction

Predictive Process Monitoring Maggi et al. [25] is a research topic aiming at developing
techniques that use the abundant availability of event logs extracted from information systems
in order to predict how ongoing (uncompleted) process executions (a.k.a. cases) will unfold
up to their completion. In turn, these techniques can be embeddedwithin information systems
to enhance their ability to manage business processes. For example, an information system
can exploit a predictive monitoring technique to predict the remaining execution time of each
ongoing case of a process Rogge-Solti andWeske [35], the next activity that will be executed
in each case Evermann et al. [15], or the final outcome of a case w.r.t. a set of possible
outcomes Maggi et al. [25] Metzger et al. [27], Metzger et al. [28].

Existing Predictive ProcessMonitoring techniques first construct a predictivemodel based
on data coming from past process executions. Then, they use this model to predict the future
of an ongoing case (e.g. outcome, remaining time, or next activity). However, when the
predictive model has been constructed, it won’t automatically take into account new cases
when they complete their execution. This is a limitation in the usage of predictive techniques
in the area of Business Process Monitoring: well-known characteristics of real processes are,
in fact, their complexity, variability, and lack of steady state. Due to changing circumstances,
processes (and thus their executions) evolve and increase their variability, and systems need
to adapt in a timely manner.

While a rough answer to this problem would be the one of re-building new predictive
models from thewider available set of data, one could observe that building predictivemodels
has a cost and this option should therefore be well understood before embracing it; moreover,
preliminary studies such as the one of Maisenbacher andWeidlich [26] investigate the usage
of incremental techniques Gepperth and Hammer [19] in the presence of Concept Drift
phenomena, thus suggesting a diverse strategy of updating a Predictive Process Monitoring
model.

In this paper, we tackle the problem of updating Predictive Process Monitoring models
in the presence of new process execution data in a principled manner by investigating, in
a comparative and empirically driven manner, how different strategies to keep predictive
models up-to-date work. In particular, given an event log T R0, and a set of new traces T R1,
we focus on four diverse strategies to update a predictive modelM0 built using the traces of
T R0, to also take into account the set of new traces T R1:

– Do nothing. In this case, M0 is never updated and does not take into account T R1 in
any way. This strategy acts also as a baseline against which to compare all the other
strategies.

– Re-train with no hyperopt. In this case, a new predictive model M1 is built using
T R0 ∪ T R1 as train set but no optimisation of the hyperparameters is performed and
the ones of M0 are used;

– Full re-train. In this case, a new predictive modelM2 is built using T R0 ∪ T R1 as the
train set and a new optimisation of the hyperparameters is performed;

– Incremental update. In this case, a new predictive modelM3 is built starting fromM0

using the cases contained in T R1 in an incremental manner (that is, using incremental
learning algorithms).

The evaluation aims at investigating two main aspects of these update strategies: first,
their impact on the quality1 of the prediction in event logs that exhibit/do not exhibit Concept

1 We measure the prediction quality using different metrics precisely defined later in the paper.
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Drift; second, their impact on the time spent for building the predictive modelM0 and their
updates.

The reason why we provide two different strategies for re-training the model, i.e. with
no optimisation and with an optimisation of the hyperparameters, is because the two costly
activities when building a predictive model are the actual training of the model w.r.t. a train
set and the optimisation of the hyperparameters for the constructed model. Therefore, when
evaluating the impact of re-training on an extended set of data, we aim at investigating the
impact of building a new predictive model and the impact of optimising the hyperparameter
in a separate manner.

The problem upon which we investigate these four strategies is the one of outcome pre-
dictions, where the outcomes are expressed by using either Linear Temporal Logic (LTL)
formulae Pnueli [32], in line with several works such as Di Francescomarino et al. [12],
Maggi et al. [25], or case duration properties. The four different strategies are evaluated in
a broad experimental setting that considers different real and synthetic datasets. Since we
focus on outcome predictions, we have decided to centre our evaluation on Random Forest.
This algorithm was chosen as it was experimentally proven to be one of the best perform-
ing techniques on the outcome prediction problem—see Teinemaa et al. [40] for a rigorous
review—and is therefore widely used on event log data usually used in Predictive Process
Monitoring.

Perhaps not surprisingly, the results show that the do-nothing strategy is not a viable
strategy (and therefore the issue of updating a Predictive Process Monitoring model is a real
issue) and that full re-training and incremental updates are the best strategy in terms of quality
of the updated predictive model. Nonetheless, the incremental update is able to keep up with
the re-training strategy and deliver a properly fitted model almost in real time, whereas the
full re-training might take hours and in some cases even days, suggesting that the potential
of incremental models is under-appreciated, and clever solutions could be applied to deliver
more stable performance while retaining the positive side of the update functions.

The rest of the paper is structured as follows: Section 2 provides the necessary background
onPredictive ProcessMonitoring and incremental learning; Sect. 3 presents two exemplifying
scenarios of process variability and explicit Concept Drift; Sect. 5 illustrates the data and
procedure we use to evaluate the proposed update strategies, while Sect. 6 presents and
discusses the results. We finally provide some related work (Sect. 7) and concluding remarks
(Sect. 8).

2 Background

In this section, we provide an overview of the four main building blocks that compose our
research effort: Predictive ProcessMonitoring,RandomForest, hyperparameter optimisation,
and Concept Drift.

2.1 Predictive Process Monitoring

Predictive Process Monitoring Maggi et al. [25] is a branch of Process Mining that aims at
predicting at runtime and as early as possible the future development of ongoing cases of a
process given their uncompleted traces. In the last few years, awide literature about Predictive
Process Monitoring techniques has become available—see Di Francescomarino, Ghidini ,
Maggi and Milani [13] for a survey—mostly based on Machine Learning techniques. The
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main dimension that is typically used to classify Predictive Process Monitoring techniques
is the type of prediction, which can belong to one of the three macro-categories: numeric
predictions (e.g. time or cost predictions); categorical predictions (e.g. risk predictions or
specific categorical outcome predictions such as the fulfilment of a certain property); next
activities predictions (e.g. the sequence of the future activities, possibly with their attributes).

Frameworks such as Nirdizati Rizzi et al. [34], Jorbina et al. [21] collect a set of
Machine Learning techniques that can be instantiated and used for providing different types
of predictions to the user. In detail, these frameworks take as input a set of past executions
and use them to train predictive models, which can then be stored to be used at runtime to
continuously supply predictions to the user. Moreover, the computed predictions can be used
to compute accuracy scores for specific configurations. Within these frameworks, we can
identify two main modules: one for the case encoding, and one for the supervised learning.
Each of them can be instantiated with different techniques. Examples of case encodings
are index-based encodings presented in Leontjeva et al. [22]. Supervised learning techniques
instead vary and can also depend on the type of prediction a user is interested in, ranging from
Decision Tree and Random Forest, to regression methods and Recurrent Neural Networks.

2.2 Random forest

Random Forest [20] is an ensemble learning method used for classification and regression.
The goal is to create a model composed of a multitude of Decision Trees Quinlan [33].
In a Decision Tree, each tree interior node corresponds to one of the input variables and
each leaf node to a possible classification or decision. Each different path from the root
to the leaf represents a different configuration of input variables. A tree can be “learned”
by bootstrapping the source set into subsets based on an attribute value test. This process
is repeated on each derived subset in a recursive manner called recursive partitioning. The
result is a tree in which each selected variable will contribute to the labelling of the relative
example. When an example needs to be labelled, it is run through all the Decision Trees. The
output of each Decision Tree is counted. The most occurring label will be the output of the
model.

In this work, we use non-incremental and incremental versions of Random Forest. In
a nutshell, the non-incremental version builds a predictive model once and for all using a
specific set of training data in a single training phase. Instead, in addition to the step of
building a predictive model during the training phase, the incremental learning versions are
able to update such a model whenever needed through an update function. The specific
implementation used in this work incrementally updates the starting model by adding new
decision trees as soon as new data are available.

As alreadymentioned in Introduction, RandomForest was chosen as it was experimentally
proven to be one of the best performing techniques on the outcome prediction problem in
Predictive Process Monitoring. The interested reader is referred to Teinemaa et al. [40] for a
rigorous review.

2.3 Hyperparameter optimisation

Machine Learning techniques are known to use model parameters and hyperparameters.
Model parameters are automatically learned during the training phase so as to fit the data.
Instead, hyperparameters are set outside the training procedure and used for controlling how
flexible the model is in fitting the data. While the values of hyperparameters can influence the

123



How do I update my model? On the resilience... 1389

performance of the predictivemodels in a relevantmanner, their optimal values highly depend
on the specific dataset under examination, thus making their setting rather burdensome. To
support and automatise this onerous but important task, several hyperparameter optimisation
techniques have been developed in the literature Bergstra and Bengio [4], Bergstra et al. [3]
also for Predictive Process Monitoring models—see, for example, Teinemaa et al. [40], Di
Francescomarino, Dumas, Federici, Ghidini, Maggi, Rizzi and Simonetto [11], Teinemaa
et al. [41]. While in Teinemaa et al. [40], Di Francescomarino, Dumas, Federici, Ghidini,
Maggi, Rizzi and Simonetto [11], the Tree Parser Estimator (TPE) has been used for outcome-
oriented Predictive Process Monitoring solutions, in Teinemaa et al. [41], Random Search
has been used for hyperparameter optimisation in a comparative analysis focusing on how
stable outcome-oriented predictions are along time. Although hyperparameter optimisation
techniques for Predictive Process Monitoring have shown their ability to identify accurate
and reliable framework configurations, they are also an expensive task and we have hence
decided to evaluate the role of hyperparameter tuning in our update strategies.

2.4 Concept drift

In Machine Learning, Concept drift refers to a change over time, in unforeseen ways, of
the statistical properties of a target variable a learned model is trying to predict. This drift
is often due to changes in the target data w.r.t. the one that was used in the training phase.
These changes are problematic as they cause the predictions to become less accurate as time
passes. Depending on the type of change (e.g. gradual, recurring, or abrupt), different types
of techniques have been proposed in the literature to detect and handle them Gama et al.
[18], Widmer and Kubat [17], Schlimmer and Granger [37,49].

Business processes are subject to change due to, for example, changes in their normative,
or organisational context, and so are their executions. Processes and executions can hence be
subject to Concept Drifts, which may involve several process dimensions such as its control-
flow dependencies and data handling. For instance, an organisational change might affect
how a certain procedure is managed by employees in a Public Administration scenario (e.g.
a further approval by a new manager is required for closing the procedure), or a normative
changemight affect either theway inwhich patients aremanaged in an emergency department
(e.g. patients have to be tested for COVID-19 before they can be visited) or the age of the
customers who are allowed to submit a loan request procedure in a bank process. TheConcept
Drift phenomenon has originated few works that focus on drift detection and localisation in
procedural and in declarative business processes—see Bose et al. [6], Carmona and Gavaldà
[10] and Maggi et al. [24], respectively—as well as on attempts to deal with it in the context
of Predictive Process Monitoring Maisenbacher and Weidlich [26], Pauwels and Calders
[31].

3 Two descriptive scenarios

We aim at assessing the benefits of incremental learning techniques in scenarios characterised
by process variability and/or explicit Concept Drift phenomena. In this section, we introduce
two typical scenarios, which refer to some of the datasets used in the evaluation described in
Sect. 5.

Scenario 1 (Dealing with Process Variability) Information systems are widely used in health-
care and several scenarios of predictive analytics can be provided in this domain. Indeed, the
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exploitation of predictive techniques in healthcare is described as one of the promising big
data trends in this domain Bughin et al. [8], Munoz-Gama et al. [30].

Despite some successful evaluation of Predictive Process Monitoring techniques using
healthcare data Maggi et al. [25], predictive monitoring needs to consider a well-known
feature of healthcare processes, that is, their variability Rojas et al. [36], i.e. the variety
of different alternative paths characterising the executions of a process. Whether they refer
to non-elective care (e.g. medical emergencies), or elective care (e.g. scheduled standard,
routine and non-routine procedures), healthcare processes often exhibit characteristics of high
variability and instability. For instance, the treatment processes related to different patients
can be quite different due to allergies or comorbidities or other specific characteristics of
a patient. In fact, when attempting to discover process model from data related to these
processes, they are often spaghetti-like, i.e. cumbersome models in which it is difficult to
distil a stable procedure. Moreover, small changes in the organisational structure (e.g. new
personnel in charge of a task, unforeseen seasonal variations due to holidays or diseases) may
originate subtle variability not detectable in terms of stable Concept Drifts, but nonetheless
relevant in terms of predictive data analytics.

In such a complex environment, an important challenge concerns the emergence of new
behaviours: regardless of how much data we consider, an environment highly dependent on
the human factor is likely to exhibit new variants that may not be captured when stopping
the training at a specific time. Similarly, some variants may become obsolete, thus making
the forgetting of data equally important.

Thus, a way for adapting the predictions to these changes and an investigation of which
update strategies are especially suited to highly variable and realistic process executions
would be of great impact.

Scenario 2 (Dealing with explicit Concept Drift) The presence of Concept Drift in business
processes, due to, for example, changes in the organisational structures, legal regulations,
and technological infrastructures, has been acknowledged in the Process Mining manifesto
van der Aalst and et al. [44] and literature Maggi et al. [24], together with some preliminary
studies on its relation with Predictive Process Monitoring Gepperth and Hammer [19].

Such a sudden and abrupt variation in the data provides a clear challenge to the process
owners: theymust be ready to copewith a Predictive ProcessMonitoringmodelwith degraded
performance on the drifted data, or to perform an update that allows the Predictive Process
Monitoring technique to support both the non-drifted and the drifted trends of the data (as
ongoing executions may still concern the non-drifted cases).

Similarly to the above, an investigation of which update strategies are especially suited to
realistic process executions that exhibit an explicit Concept Drift would provide a concrete
support for the maintenance of Predictive Process Monitoring models.

4 Update strategies

Predictive Process Monitoring provides a set of techniques that use the availability of exe-
cution traces (or cases) extracted from information systems in order to predict how ongoing
(uncompleted) executions will unfold up to their completion.

Thus, assume that an organisation was able to exploit a set of process executions T R0,
collected within a period of time that we will call “Period A” to obtain a predictive model
M0, and that it starts to exploitM0 to perform predictions upon new incomplete traces (see
Fig. 1 for an illustration of this scenario). As soon as the new incomplete traces terminate,
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T R0
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M0

Period B

T R1
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Fig. 1 The general idea
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Fig. 2 Four strategies to produceM′

they become new data, potentially available to be exploited for building a newmodelM′, that
in turn can be used to provide predictions on new incomplete traces. The need for exploiting
new execution traces and building such an updated M′ could be due to several reasons,
among which the evolution of the process at hand (and thus of its executions) to which the
system needs to adapt in a timely manner.

In this paper, we provide 4 different strategies for computingM′, by exploiting a new set
of process executions T R1, collected in a period of time “Period B” subsequent to “Period
A”, along with the original set T R0. The strategies are summarised in Fig. 2. The figure
represents, on the left hand side, model M0 and, on the right hand side, the operations
performed starting from M0 to obtain model M′ according to the four update strategies.

The first strategy, S0, is a do nothing strategy. This strategy simply disregards that new
traces are produced in “PeriodB” and continues to useM0 as a predictivemodel. This strategy
may prove to be useful when the processes remain stable and it acts also as a baseline against
which to compare all the other strategies.

The second strategy, S1, exploits the new traces in T R1 produced in “Period B” for
training but not for the optimisation of the hyperparameters. In this re-trainwithnohyperopt
strategy, M0 is replaced by a new predictive model M1 built from scratch by using T R0 ∪
T R1 as train set. No optimisation of the hyperparameters is made in the construction ofM1

and the values of the ones computed forM0 are instead used. This strategy aims at exploiting
the new data in T R1 still avoiding the costly steps needed for hyperparameter optimisation.

The third strategy, S2, completely replaces the old modelM0 with a new predictive model
M2 built from scratch using both T R0 and T R1. This strategy aims at performing a full
re-train, thus exploiting to the outmost all the available data. Also, the comparison between
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S1 and S2 enables us to investigate the specific role of the hyperparameter tuning in the
predictions.

The final strategy, S3, exploits the new traces in T R1 produced in “Period B” for training
the predictive model in an incremental manner. Differently from S1, the data of T R1 are
added as training data in a continuous manner by means of incremental Machine Learning
algorithms, to extend the existing knowledge ofmodelM0. The incremental update strategy
is chosen as an example of dynamic technique, which can be applied when training data
become available gradually over time or the size of the training data is too large to store or
process it all at once. Similarly to S1, the value of the hyperparameters does not change when
adding new training data.

5 Empirical evaluation

The evaluation reported in this paper aims at understanding the characteristics of the four
different update strategies introduced in the previous section in terms of accuracy and time.
We aim at evaluating these strategies with two types of real-life event log data: event logs
without an explicit Concept Drift and event logs with an explicit Concept Drift. As such, we
have selected four real-life datasets,2 two for the first scenario and two for the second one. To
consolidate the evaluation on the Concept Drift scenario, we also expanded the evaluation to
include a synthetic event log with explicit Concept Drifts introduced in Maaradji et al. [23].

In this section, we introduce the research questions, the datasets, the metrics used to
evaluate the effectiveness of the four update strategies described in Sect. 4, the procedure,
and the tool settings. The results are instead reported in Sect. 6.

5.1 Research questions

Our evaluation is guided by the following research questions:

RQ1 How do the four update strategies do nothing, re-train with no hyperopt, full re-
train, and incremental update compare to one another in terms of accuracy?

RQ2 How do the four update strategies do nothing, re-train with no hyperopt, full re-
train, and incremental update compare to one another in terms of time performance?

RQ1 aims at evaluating the quality of the predictions returned by the four update strate-
gies, while RQ2 investigates the time required to build the predictive models in the four
scenarios and, in particular, aims at assessing the difference between the complete periodic
rediscovery (full re-train) and the other two update strategies re-train with no hyperopt
and incremental update.

5.2 Datasets

The four update strategies are evaluated using five datasets. Three of them are real-life
event logs provided for a Business Process Intelligence (BPI) Challenge, in different years,
without an explicit Concept Drift: the BPI Challenges 2011 3TU Data Center [1], 2012 van
Dongen [45], and 2015 vanDongen; [46]. They are examples of event logs exhibiting Process
Variability as described in the first scenario in Sect. 3. The remaining two datasets are instead

2 From the repository available at https://data.4tu.nl/.
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examples of logs with explicit Concept Drift as described in the second scenario in Sect. 3.
Our aim was to evaluate the four strategies on real-life event logs, but, to the best of our
knowledge, the only publicly available event log which contains an explicit concept drift is
the BPI Challenge 2018 van Dongen and Borchert [47]. Therefore, we decided to augment
the evaluation considering also one of the synthetic event logs introduced in Maaradji et
al. [23]. Here, we report the main characteristics of each dataset, while the outcomes to be
predicted for each dataset are contained in Table 1.3

The first dataset, originally provided for the BPI Challenge 2011, contains the treat-
ment history of patients diagnosed with cancer in a Dutch academic hospital. The log
contains 1,140 cases and 149,730 events referring to 623 different activities. Each case
in this log records the events related to a particular patient. For instance, the first labelling
(φ11), for this dataset, is such that the positive traces are all the ones for which if activity
CEA - tumour marker using meia occurs, then it is followed by an occurrence of activity
squamous cell carcinoma using eia.

The second dataset, originally provided for theBPIChallenge 2012, contains the execution
history of a loan application process in a Dutch financial institution. It is composed of 4,685
cases and 186,693 events referring to 36 different activities. Each case in this log records the
events related to a particular loan application. For instance, the first labelling (φ21), for this
dataset, is such that the positive traces are all the ones inwhich eventAccept Loan Application
occurs.

The third dataset, originally provided for theBPIChallenge 2015, concerns the application
process for construction permits in five Dutch municipalities. We consider the log pertaining
to the first municipality, which is composed of 1,199 cases and 52,217 events referring to
398 different activities.

The fourth dataset, originally provided for the BPI Challenge 2018, concerns an event
log from the European Agricultural Guarantee Fund pertaining to an application process for
EU direct payments for German farmers from the European Agricultural Guarantee Fund.
Depending on the document types, different branches of the workflow are performed. The
event log used in this evaluation is composed of 29,302 cases and 1,661,656 events referring
to 40 different activities.

The fifth and the sixth datasets, hereafter called DriftRIO1 and DriftRIO2, are synthetic
event logs that use a “textbook” example of a business process for assessing loan applica-
tions Weber et al. [48]. The DriftRIO event logs introduced in Maaradji et al. [23] have
been built by alternating traces executing the original “base” model and traces modified so
as to exhibit complex Concept Drifts obtained by composing simple log changes, namely,
re-sequentialisation of process model activities (R), insertion of a new activity (I) and option-
alisation of one activity (O)4 DriftRIO1 is composed of 3,994 cases and 47,776 events related
to 19 activities. DriftRIO2 is composed, instead, of 2,000 cases and 21,279 events referring
to 19 different activities. The outcomes to be predicted for each dataset are expressed by
using LTL formulae for the four BPI Challenges Di Francescomarino et al. [12], Maggi et

3 We assume that events occurring during the process execution fall in the set of atomic propositions. LTL
rules are constructed from these atoms by applying the temporal operators in addition to the usual Boolean
connectives. Given a formula ϕ, Fϕ indicates that ϕ is true sometimes in the future. Gϕ means that ϕ is true
always in the future. ϕUψ indicates that ϕ has to hold at least until ψ holds and ψ must hold in the current or
in a future time instant.
4 The logs used in Maaradji et al. [23] have been slightly modified (i) by further strengthening the introduced
Concept Drift with the increase in the time duration of two activities, as well as (ii) by considering only the first
parts of the event logs, so as to have a single occurrence of the Concept Drift rather than multiple occurrences
as in the original event logs.
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al. [25] and by using the case duration property of being a fast case for DriftRIO5 (see Table
1).

5.3 Metrics

In order to answer the research questions, we use two metrics, one for accuracy and one for
time. The one for accuracy is used to evaluate RQ1, whereas the time measure is used to
evaluate RQ2.

The accuracy metric. In thiswork,we exploit a typical evaluationmetric for calculating the
performance of a classification model, that is AUC-ROC (hereafter
only AUC). The ROC curve is a graphical plot that illustrates the
diagnostic ability of a binary classifier system as its discrimination
threshold is varied. The curve is created by plotting the true posi-
tive rate (TPR) against the false positive rate (FPR) using various
threshold settings. In formulae,TPR = TP

TP+FN
, andFPR = FP

FP+TN
,

where TP , TN , FP , and FN are the true-positives (positive outcomes
correctly predicted), the true-negatives (negative outcomes cor-
rectly predicted), the false-positives (negative outcomes predicted
as positive), and the false-negatives (positive outcomes predicted as
negative), respectively. In our case, the AUC is the area under the
ROC curve and, when using normalised units, it can be intuitively
interpreted as the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative
one. As usual, TP , TN , FP , and FN are obtained by comparing
the predictions produced by the predictive models against a gold
standard that indicates the correct labelling of each case. In our
experiments, we have built the gold standard by evaluating the out-
come of each completed case in the test set6

The time metric. We measure the time spent to build the predictive model in terms
of execution time. The execution time indicates the time required
to create and update (in the case of incremental algorithms) the
predictive models. We remark here that the execution time does not
include the time spent to load and pre-process the data, but only the
bare processing time.

5.4 Experimental procedure

We adopt the classical Machine Learning Train/Validate/Test experimental procedure and
configure it for the four different strategies we want to compare. The procedure consists of
the following main steps: (1) dataset preparation; (2) classifier training and validation; (3)
classifier testing and metrics collection.

5 Specifically, the property defines fast a case with a cycle time lower than the average cycle time of the event
log.
6 To avoid biases related to the chosen metric, in our experiments we have also measured accuracy in terms

of average F-measure and accuracy defined as TP+TN
TP+TN+FP+FN

, and the results remain consistent. We have,
therefore, decided to focus only on AUC for the sake of simplicity and readability of the results.
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Fig. 3 The experimental settings used to build the predictive models

Table 2 Dataset entropy

Dataset Trace Entropy Global Block Entropy

T R ∪ T E T R0 ∪ T E T R1 ∪ T E T R ∪ T E T R0 ∪ T E T R1 ∪ T E
0–100% 0–40%– 40–80%– 0–100% 0–40%– 40–80%–

80–100% 80–100% 80–100% 80–100%

BPIC11 9.62 9.08 8.97 24.71 23.73 24.13

BPIC12 11.65 11.05 11.08 16.18 15.9 16.08

BPIC15 10.16 9.4 9.48 18.96 18.55 18.4

BPIC18 12.88 12.7 11.56 20.72 20.54 19.74

DriftRIO1 4.66 4.71 4.29 8.52 8.54 8.38

DriftRIO2 4.27 4.29 4.1 8.41 8.41 8.37

In the dataset preparation phase, the execution traces are first ordered according to their
starting date-time so as to be able to meaningfully identify those referring to “Period A” (that
is, T R0), those referring to the subsequent “Period B” (that is, T R1), and those referring to
the test set T E , which here represents themost recent set of traceswhere the actual predictions
are made. The predictions are tested using the four different modelsM0-M3 corresponding
to the different strategies S0-S3 described in Sect. 4.

The actual splits between train, hyperparameter validation, and test sets used for evaluating
the four strategies are illustrated in Fig. 3. Following a common practice inMachine Learning,
we have decided to use 80% of the data for training/validation and 20% for testing.

To test whether the performance of the different strategies was connected to different
sizes of T R0 and T R1, we devised two experimental settings to supply the train data to the
learning algorithms. The first experimental setting divides the train set unequally in T R0

(10%) and T R1 (70%); the second experimental setting divides the train set equally in T R0

(40%) and T R1 (40%). These two settings do not concern the construction of M2, which
is always built using the entire set of available train data. The hyperparameter validation set
is extracted from the train set through a randomised sampling procedure. It amounts to 20%
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Table 3 Dataset label distribution

Dataset Formula T R0 T R T E Total

0–10% 0–40% 0–80% 80–100% 0–100%

True False True False True False True False True False

BPIC11 φ11 50 64 156 300 359 663 109 119 458 682

φ12 96 18 391 65 742 170 151 77 893 247

φ13 20 94 79 377 161 639 180 732 259 881

BPIC12 φ21 227 241 904 970 1761 1987 482 455 2243 2442

φ22 163 305 663 1211 1366 2382 274 663 1640 3045

φ23 78 390 307 1567 621 3127 181 756 802 3883

BPIC15 φ31 6 90 7 472 59 900 63 178 122 1078

φ32 33 63 110 369 223 736 110 131 333 867

φ33 33 63 124 355 215 744 83 158 298 902

BPIC18 φ41 1994 936 7787 3933 16351 7090 4384 1477 20735 8567

DriftRIO1 φ51 25 272 132 1081 989 1987 582 436 1571 2423

DriftRIO2 φ61 83 117 398 402 834 766 229 171 1063 937

of the train set, which corresponds to 2% of the dataset for the train set at 10%, 8% for the
train set at 40%, and 16% for the train set at 80% (see Fig. 3).

The variability of the log behaviour of each dataset can be measured through the trace
entropy and theGlobal block entropymetrics Back et al. [2] (Table 2). While the first metric
mainly focuses on the number of variants in an event log, the latter also takes into account
the internal structure of the traces. Note that the BPI Challenge 2018 and DriftRIO datasets
contain a Concept Drift in T R1 in both settings (it affects the last 30% of data in T R, when
ordered according to their starting date-time) and, for these datasets, the difference between
the entropy value of the split 0%-40%–80%–100% is higher than the entropy value of the
split 40%–80%–80%–100% for both entropy metrics. Comparing the behaviour variability
of the splits 0%–10%–80%–100% and 10%–80%–80%–100% is instead less useful since
the two sets of traces have different sizes and the smaller set has obviously a lower entropy
w.r.t. the larger one for all datasets. Finally, the entropy on the complete datasets (column
0%–100%) is useful to understand what type of input is provided when evaluating strategy
S2 that uses the full dataset to train the predictive model.

Additional information about the input logs used in our experiments is reported in Table 3
that shows, for each dataset and for each setting, the distribution of the labels on both the
train and the test sets, thus providing an idea of how much balanced the datasets are.

Once the data are prepared, training and validation start by extracting execution prefixes
and by encoding them using the complex index encoding introduced by Leontjeva et al. [22].7

In the complex index encoding, the data related to a process execution are divided into static
and dynamic information. Static information is the same for all the events in the sequence
(e.g. the age of a patient), while dynamic information changes for different events occurring in
the process execution (e.g. the name of the activity, the pressure value of a patient associated

7 Wehave decided to use the complex index encoding as it is the one providing better performance in Predictive
Process Monitoring – see Leontjeva et al. [22].
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Table 4 Model hyperparameters

Dataset Formula 0–10% 0–40% 0–80%
M0,M1,M3 M0,M1,M3 M2

# est max_d max_f # est max_d max_f # est max_d max_f

BPIC11 φ11 163 4 log2(n) 537 8 sqrt(n) 397 15 auto

φ12 273 9 log2(n) 155 7 auto 991 7 n

φ13 395 28 n 865 12 n 203 7 n

BPIC12 φ21 157 16 sqrt(n) 427 14 sqrt(n) 206 9 auto

φ22 700 6 auto 558 9 sqrt(n) 536 6 auto

φ23 180 7 log2(n) 163 20 auto 587 27 log2(n)

BPIC15 φ31 725 15 log2(n) 377 19 n 563 16 sqrt(n)

φ32 977 13 auto 937 8 sqrt(n) 417 14 sqrt(n)

φ33 374 29 auto 374 29 auto 161 13 sqrt(n)

BPIC18 φ41 990 8 n 650 26 sqrt(n) 165 24 n

DriftRIO1 φ51 913 4 log2(n) 971 9 n 293 4 log2(n)

DriftRIO2 φ61 998 23 n 151 4 sqrt(n) 178 5 auto

with an event aimed at measuring the patient’s pressure). We encode static information as
attribute-value pairs, while, for dynamic information, the order in which events (and the
related attributes) occur in the sequence is also taken into account.

The hyperparameter optimisation function uses the Tree of Parzen Estimators (TPE)8 to
retrieve the hyperparameter configuration (see Sect. 2.3), with a maximum of 1000 iterations,
and the AUC as objective evaluation measure to maximise. ModelsM0-M3 are produced at
the end of this phase. The specific hyperparameters used by themodels are reported in Table 4.
The table shows that indeed differences exist in the optimised hyperparameters computed
starting from different train sets, i.e. 10% of the datasets, 40% of the datasets (both used for
M0, M1, and M3) and 80% of the datasets (used for M2).

After the training and validation procedures are completed, we test the resulting model
with the test set, and we collect the scoredmetrics (see Sect. 5.3) and store them in a database.
Concerning time, we have decided to measure here the time spent to build the initial model
M0, plus the time needed to update it according to the four different strategies. Thus, for S0,
this will coincide with the time spent for building M0 (as, in this case, no further action is
taken for updating the model); for S1, we compute the time spent for building M0 plus the
time spent for the re-training over T R (no hyperopt); for S2, we compute the time spent for
building M0 plus the time needed for the re-training over T R (with hyperopt); and, finally,
for S3, we compute the time spent for buildingM0 plus the time needed for updating it with
the data in T R1.

8 TPE has been shown to be a good solution for complex hyperparameter optimisation problems Bergstra et
al. [3] and is traditionally used for outcome-oriented Predictive Process Monitoring solutions Teinemaa et al.
[40].
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5.5 Experimental settings

The tool used for the experimentation is Nirdizati Rizzi et al. [34]. The experimental
evaluation was performed on a workstation Dell Precision 7820 with the following config-
uration: (i) 314GB DDR4 2666MHz RDIMM ECC of RAM; (ii) double Intel Xeon Gold
6136 3.0GHz, 3.7GHz Turbo, 12C, 10.4GT/s 3UPI, 24.75MB Cache, HT (150W) CPU; and
(iii) one 2.5" 256GB SATA Class 20 Solid State Drive. We assumed to have only 1 CPU
for training the predictive models, i.e. we did not parallelise the training of the base learners
of the Random Forests. We also ensured that there was no racing condition over the disk
and no starvation over the RAM usage by actively monitoring the resources through Net-
data Tsaousis [42]. Each experiment was allowed to run for at most 100 hours. No other
experiment or interaction with the workstation was performed other than the monitoring of
the used resources.

6 Results

In this section,we present the results of our experiments, reported in Tables 5, 6, 7, and discuss
how they allow us to answer the two research questions introduced before. We also provide a
discussion about the four update strategies with a cost-effectiveness analysis and an analysis
of the validity threats. To ensure reproducibility, the datasets used, the configurations, and
the detailed results are available at http://bit.ly/how_do_I_update_my_model.

6.1 Discussion

Answering RQ1. The AUC of all models, for the two experimental settings 10%–70% and
40%–40%, for all datasets, is reported in Tables 5a and 5b. The best result for each dataset
and labelling is emphasised in italic9. Since, in many cases, different models have very close
accuracy, we have emphasised in bold the results that differ from the best ones for less than
0.01. Tables 6a and 6b report, for the two experimental settings 10%–70% and 40%–40%,
the percentage of gain/loss ofM1,M2, andM3 w.r.t.M0. The percentage of gain or loss10

is reported together with an histogram of gains and losses. In order to ease the comparison,
M2 is reported in both tables.

By looking at the tables, we can immediately see that M2 and M3 are the clear best
performers, especially in the first setting 10%–70%, and that M0 is almost consistently the
worst performer, often with a significant difference in terms of accuracy. This highlights
that the need to update the predictive models is a real issue in typical Predictive Process
Monitoring settings. The only exception to this finding is provided by the results obtained
for the BPIC15 dataset, where the performance of M0 is comparable to that of the other
models for almost all the outcome formulae. This is due to the fact that, for this dataset, there
is a high homogeneity of the process behaviour over time. This is confirmed by the entropy
values, provided in Table 2, that remain quite stable across the entire log. Moreover, we can
observe that BPIC12 with labelling φ23 has overall the lowest accuracy for all the four update
strategies. This is possibly due to the high label unbalance characterising this dataset (see
Table 3).

9 We indicate in italic the best result, which may be due to digits smaller than the third decimal one reported
in the paper.
10 Computed as Mi−M0M0

, i ∈ {1, 2, 3}.
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Table 5 The accuracy results Dataset φ M0 M1 M2 M3

(a)Setting 10–70%

BPIC11 φ11 0.673 0.885 0.919 0.833

φ12 0.745 0.887 0.964 0.883

φ13 0.843 0.916 0.921 0.926

BPIC12 φ21 0.576 0.648 0.702 0.671

φ22 0.672 0.733 0.740 0.676

φ23 0.517 0.504 0.514 0.561

BPIC15 φ31 0.908 0.916 0.935 0.993

φ32 0.928 0.911 0.923 0.972

φ33 0.961 0.976 0.988 0.995

BPIC18 φ41 0.532 0.999 0.991 0.999

DriftRIO1 φ51 0.603 0.964 0.965 0.964

DriftRIO2 φ61 0.761 0.856 0.854 0.857

Dataset φ M0 M1 M2 M3

(b)Setting 40–40%

BPIC11 φ11 0.781 0.935 0.919 0.902

φ12 0.811 0.909 0.964 0.930

φ13 0.894 0.918 0.921 0.920

BPIC12 φ21 0.631 0.671 0.702 0.682

φ22 0.674 0.672 0.740 0.702

φ23 0.509 0.511 0.514 0.560

BPIC15 φ31 0.779 0.991 0.935 0.944

φ32 0.895 0.907 0.923 0.953

φ33 0.972 0.994 0.988 0.987

BPIC18 φ41 0.543 1.000 0.991 1.000

DriftRIO1 φ51 0.559 0.964 0.965 0.969

DriftRIO2 φ61 0.805 0.698 0.854 0.841

The performance of all the evaluated strategies is overall higher in the 40%–40% setting,
and this is likely related to the higher amount of data used for hyperparameter optimisation.
Nonetheless, the lower performance of M0 also in the 40%–40% setting indicates the need
to update the models with new data at regular intervals. Concerning the possible differences
between the results obtained using datasets with and without an explicit Concept Drift, our
experiments did not find any striking variation in the different strategies, thus consolidating
the finding that devising update strategies is important in general, also in scenarios where the
process changes over time are not so definite. Nonetheless, if we look at Tables 6a and 6b,
it is easy to see that the experiments with an explicit Concept Drift are the ones with the
greatest difference between M0 and all the other models, thus confirming that an explicit
Concept Drift can have a significant negative influence on the performance of a Predictive
Process Monitoring model, if it is not updated. This is especially true for BPIC18, in which
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Table 6 Accuracy improvement
against M0

Dataset φ M1 M2 M3

(a) Setting 10–70%

BPIC11 φ11 0.31 0.36 0.23

φ12 0.19 0.29 0.18

φ13 0.08 0.09 0.09

BPIC12 φ21 0.12 0.21 0.16

φ22 0.09 0.10 0.00

φ23 −0.02 0.00 0.08

BPIC15 φ31 0.01 0.03 0.09

φ32 −0.01 0.00 0.04

φ33 0.01 0.02 0.03

BPIC18 φ41 0.87 0.86 0.87

DriftRIO1 φ51 0.59 0.59 0.59

DriftRIO2 φ61 0.12 0.12 0.12

Dataset φ M1 M2 M3

(b) Setting 40–40%

BPIC11 φ11 0.19 0.17 0.15

φ12 0.12 0.18 0.14

φ13 0.02 0.03 0.03

BPIC12 φ21 0.06 0.11 0.08

φ22 −0.00 0.09 0.04

φ23 0.00 0.01 0.10

BPIC15 φ31 0.27 0.20 0.21

φ32 0.01 0.03 0.06

φ33 0.02 0.01 0.01

BPIC18 φ41 0.84 0.82 0.84

DriftRIO1 φ51 0.72 0.72 0.73

DriftRIO2 φ61 −0.13 0.06 0.04

the Concept Drift highly affects the entropy measure (Table 2) in a way that the difference
between the entropy value of the split 0%–40%–80%–100% is higher than the entropy value
of the split 40%–80%–80%–100% for both entropy metrics.

Tables 6a and 6b show also another interesting aspect of our evaluation: while M2 and
M3 tend to always gain against M0 (or to be stable in very few cases), the same cannot be
said for M1. In fact, if we look at BPIC12 with labelling φ23 and BPIC15 with labelling
φ32 in Table 6a, and, particularly, at DriftRIO with labelling φ52 in Table 6b, we can see a
decrease in the accuracy. By carrying out a deeper analysis of the chosen hyperparameters, we
found that the lower accuracy ofM1 is due to the inappropriateness of the hyperparameters
derived from T R0 to the new data used to build M1. While this aspect may need to be
better investigated, we can conclude that while re-train with no hyperopt is usually a viable
solution, it is nonetheless riskier than full re-train or incremental update.
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The general findings and trends derived from the results obtained using Random Forest
as classifier are further confirmed, with few exceptions, by the results obtained by using
Perceptron Minsky and Papert [29] as predictive model in the analysis of the four update
strategies. The perceptron results are reported in Appendix A.

To sum up, concerning RQ1, our evaluation shows that full re-train and incremental
update are the best performing update strategies in terms of accuracy, followed by re-train
with no hyperopt. With the exception of BPIC15 in the 10%–70% setting, do nothing is,
often by far, the worst strategy, indicating the importance of updating the predictive models
with new data, when it becomes available.
Answering RQ2

The time spent for creating the four models, for the two experimental settings 10%–
70% and 40%–40%, for all datasets, is reported in Tables 7a and 7b using the “hh:mm:ss”
format. The best results for each dataset and labelling (that is the lower execution times)
are emphasised in italic, while execution times that differ for less than 60 seconds from
the best ones are indicated in bold. The last two rows of each table report the average time
(and standard deviation) necessary to train a model for a given strategy. In order to ease the
comparison, M2 is reported in both tables. M0 and M2 are self-contained models that are
“built from scratch” and, therefore, the time reported in the tables for these models is the time
spent to train them. Differently, M1 and M3 are built in a two-steps fashion that includes a
training phase but also the usage of the hyperparameters used to build M0. Therefore, their
construction time is measured by summing up the time spent for the training phase and the
time spent for building M0.

By looking at Tables 7a and 7b, we can immediately see that, among all the evaluated
strategies,M0 is the clear best performer, especially for the 10%–70% setting, and thatM2

is almost consistently the worst performer, often with a significant difference in terms of
time spent to build the model (with few exceptions in the 40%–40% case that we will discuss
below). As a second general observation, we note that M1 and M3 share almost the same
construction time with M0. This fact is not particularly surprising, as the hyperparameter
optimisation routine is often the most expensive step in the construction of this type of
predictive models. Therefore, the two strategies S1 and S3 that underline the construction of
these models are highly inexpensive, when we consider the time dimension, especially when
M0 is already available.

If we compare the two experimental settings 10%–70% and 40%–40%, we can observe
that while M0 is almost always the best performer in both settings, the difference between
the construction time of M0 (and thus of M1 and M3) and the construction time of M2 is
significantly higher for the 10%–70% setting.While the investigation ofwhen it is convenient
to perform a full re-train is out of the scope of the paper and is left to further investigations,
this finding emphasises the fact that the cost of a full re-train may increase in a significant
manner if the update of the predictive model over-delays and the amount of new data greatly
increases. Interestingly enough, the 40%–40% setting presents two cases in whichM2 is the
fastest model to be built. The case of BPIC11 with labelling φ12 is likely due to an “unfor-
tunate” guess-estimate in the hyperparameter optimisation step for M0, which makes the
training time explode11the case of BPIC15 with labelling φ31, instead, represents a situation
in whichM0 andM2 take almost the same time to be built. Concerning possible differences
between datasets with and without an explicit Concept Drift, our experiments did not find
any striking difference among the evaluated strategies.

11 Note that an explosion of the training time for the same reason affects also model M2 for BPIC11 with
labelling φ13.
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Table 7 The time results

Dataset φ M0 M1 M2 M3

(a) Setting 10–70%

BPIC11 φ11 05:31:49 05:37:18 10:12:42 05:35:53

φ12 06:03:05 06:05:01 09:23:21 06:04:32

φ13 01:00:21 01:00:25 30:43:11 01:00:25

BPIC12 φ21 00:46:59 00:51:00 08:02:32 00:47:02

φ22 00:46:42 00:46:42 09:03:06 00:46:43

φ23 03:38:22 03:38:22 11:37:39 03:38:37

BPIC15 φ31 00:13:10 00:13:11 00:27:31 00:13:11

φ32 00:14:49 00:14:52 00:51:01 00:14:51

φ33 00:13:03 00:13:04 00:52:12 00:13:03

BPIC18 φ41 26:44:03 27:26:00 74:44:03 26:51:24

DriftRIO1 φ51 00:12:38 00:12:39 00:16:17 00:12:39

DriftRIO2 φ61 00:13:19 00:13:21 00:14:22 00:13:21

Average Time 01:43:07 01:44:10 12:52:20 01:43:40

Std deviation 02:14:45 02:15:53 21:06:04 02:15:44

Dataset φ M0 M1 M2 M3

(b) Setting 40%–40%

BPIC11 φ11 05:00:33 05:00:38 10:12:42 05:00:36

φ12 18:53:46 18:54:40 09:23:21 18:54:14

φ13 05:13:21 05:13:38 30:43:11 05:13:29

BPIC12 φ21 03:23:40 03:27:06 08:02:32 03:23:42

φ22 03:40:02 03:40:02 09:03:06 03:40:03

φ23 05:00:07 05:00:08 11:37:39 05:00:25

BPIC15 φ31 00:29:11 00:29:16 00:27:31 00:29:15

φ32 00:31:51 00:31:54 00:51:01 00:31:53

φ33 00:35:26 00:35:27 00:52:12 00:35:26

BPIC18 φ41 55:06:43 55:08:42 74:44:03 55:06:57

DriftRIO1 φ51 00:14:39 00:14:41 00:16:17 00:14:41

DriftRIO2 φ61 00:13:53 00:13:53 00:14:22 00:13:53

Average Time 03:56:03 03:56:29 12:52:20 03:56:09

Std deviation 05:23:12 05:23:24 21:06:04 05:23:20

Finally, our evaluation did not find any fixed correlation between the training times for
all strategies and (i) the size of the dataset and the alphabet of the dataset within the same
settings or (ii) the quality of the predictive model in terms of accuracy (and thus the difficulty
of the prediction problem). As an example of the first, we can observe that BPIC12 contains
four times the cases of BPIC11; nonetheless, most of the prediction models built for BPIC11
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take more time to be constructed than the ones built for BPIC12. Similarly, BPIC15 has an
alphabet with a number of activities that is almost 10 times the one of BPIC2018, but the
prediction models built for BPIC18 take much more time to be constructed than the ones
built for BPIC15. As an example of the second, we can observe, from Table 7a, that the time
needed for building M0 for BPIC11 with labelling φ23 is much greater than the one needed
for building M0 for BPIC11 with labelling φ13, even if the accuracy for the same cases, in
Table 5a, follows the inverse trend.12

To sum up, concerningRQ2, our evaluation shows that onceM0 is available, incremental
update and re-train with no hyperopt are the two most convenient update strategies—as
they can be built in almost no time. This may suggest the possibility to implement an almost
continuous update strategy whenever new data become available. While the investigation
of when it is convenient to perform a full re-train is out of the scope of the paper, our
experiments show that the cost of a full re-train may increase in a significant manner if the
update of the predictivemodel over-delays and the amount of new data increases significantly.
Overall Conclusions. The plots in Figs. 4 and 5 show inaccuracy and time related to the
10%–70% and 40%–40% settings, respectively, for each of the considered datasets. The
closer the item is to the origin, the best is the balance between the time required for training,
re-training, or updating the model and the accuracy of the results. By looking at the plots,
it is clear that the worst choice in terms of balance is given by M0, while, for the other
three models, the choice somehow depends on the dataset and on the labelling. With the only
exception of φ12, φ21, φ22, and φ33 for both settings, as well as of φ11 for the 10%–70%
setting and of φ61 for the 40%–40% setting, for all other datasets and labellings,M1 and/or
M3 are the only non-dominated update strategies, i.e. those strategies for which another
strategy improving both the inaccuracy and the time dimension does not exist.13

To conclude, our evaluation shows that the do-nothing strategy is not a viable strategy
as the accuracy performance of a non-updated model tends to significantly decrease for typ-
ical real-life datasets (with and without explicit Concept Drift), whereas lightweight update
strategies, such as the incremental update and re-train with no hyperopt, are, instead,
often extremely effective in updating the models. Full re-train offers a strategy that almost
always achieves the best accuracy (or an accuracy in line with the best one). Nonetheless,
its training time may increase significantly, especially in the presence of an abundance of
new data. According to our experiments, the incremental update is able to keep up with the
full re-train strategy and deliver a properly fitted model almost in real time, suggesting that
the potential of incremental models is under-appreciated in Predictive Process Monitoring,
and smart Predictive ProcessMonitoring solutions could be developed leveraging this update
strategy.

6.2 Cost-effectiveness analysis

In order to have a better grasp of the cost-effectiveness of the different update strategies,
we also investigated the costs required by the update strategies, when new batches of data
become available along the time. In particular, given a set of batches of train sets T R0, T R1,
…T Rn , and the corresponding batches of test sets T E0, T E1, …T En (where T E0 is the
test set immediately following T R0, T E1 the test set immediately following T R1 in the
temporal timeline), we can define CEM (T R0, T R1, …T Rn , T E0, T E1, …T En)—from

12 This is just one of many samples of an inverse relation between time and accuracy that can be found in the
tables.
13 We did not take into account small differences that cannot be observed with the naked eye in the plots.

123



How do I update my model? On the resilience... 1405

(a) BPIC11 10%. (b) BPIC12 10%.

(c) BPIC15 10%. (d) BPIC18 10%.

(e) DriftRIO 1 10%. (f) DriftRIO 2 10%.

Fig. 4 Inaccuracy versus time plots (10%)

here on shortened as CEM (T R0...n , T E0...n)—as the cost of a model trained with n batches
of arriving data T R0, T R1, …T Rn , and tested with the corresponding batches of test data
T E1, …T En .

In our scenario, the cost-effectiveness of the update strategies is characterised by twomain
aspects: on the one hand, the cost of the time required for building the model and, on the
other, the cost of returning wrong predictions (prediction inaccuracy). We can hence define
CEM(T R0...n , T E0...n) as the sum of (i) CTM(T R0...n , T E0...n), i.e. the cost of the time
required for building, training and, when necessary, re-training themodelM , whenever a new
batch of traces arrives;14 and of (ii) C IM(T R0...n , T E0...n), i.e. the cost of the inaccuracy
due to wrong predictions returned by the trained models on the traces of the test sets. Low
values for a given model indicate a good cost-effectiveness model.

Defining CTT (T R), CT H
T (T R), and CTU (T R) as the time required for training, training

and optimising the hyperparameters, and incrementally updating a model with the train set
T R, respectively, the time costs related to the four models can be computed as reported in
Eq. 1. The time cost for M0 is given by the only cost required for training and optimising
the hyperparameters on T R0. For M1 (M3), besides the cost for training and optimising
the hyperparameters on T R0, when the i-th train set batch is available, the costs for training
(updating) the model with the union of the train set batches up to the i-th one (with the i-th
train batch), have also to be considered. Finally, the time cost for M2 is given by the cost
required for re-training and optimising the hyperparameters from scratch each time a new

14 We assume that the time cost for providing predictions at runtime, i.e. for testing our model is negligible.
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(a) BPIC11 40%. (b) BPIC12 40%.

(c) BPIC15 40%. (d) BPIC18 40%.

(e) DriftRIO 1 40%. (f) DriftRIO 2 40%.

Fig. 5 Inaccuracy versus time plots (40%)

batch arrives.

CTM0(T R0...n, T E0...n) = CT H
T (T R0)

CTM1(T R0...n, T E0...n) = CT H
T (T R0) +

n−1∑

i=1

CTT (

i⋃

j=1

T Ri )

CTM2(T R0...n, T E0...n) =
n−1∑

i=0

CT H
T (

i⋃

j=0

T Ri )

CTM3(T R0...n, T E0...n) = CT H
T (T R0) +

n−1∑

i=1

CTU (T Ri )

(1)

The inaccuracy costs are instead reported in Eq. 2. For M0, the inaccuracy cost is given
by the sum of the costs obtained by providing predictions using the model trained on the
batchM0 and tested on each new test set batch T E i . For the other three models, instead, the
cost of inaccuracy, at the arrival of the train set batch T Ri , is given by the inaccuracy cost
obtained from models trained, updated and/or optimised on a train set that takes into account
the information on the data of all train set batches up to T Ri , and evaluated on the test set
batch T E i . The inaccuracy cost is given by the sum of the costs for each new training and
test batch T Ri and T E i .
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C IM0 (T R0...n ,T E0...n) =
n−1∑

i=0

C IM0 (T R0,T E i )

C IM1 (T R0...n ,T E0...n) =
n−1∑

i=0

C IM1 (

i⋃

j=0

T R j ,T E i )

C IM2 (T R0...n ,T E0...n) =
n−1∑

i=0

C IM2 (

i⋃

j=0

T R j ,T E i )

C IM3 (T R0...n ,T E0...n) =
n−1∑

i=0

C IM3 (

i⋃

j=0

T R j ,T E i )

(2)

We assume we can approximate the inaccuracy cost of the model M0 tested on the i-th
test set batch T E i—C IM0(T R0, T E i )—with the inaccuracy cost of M0 tested on T E1

plus an extra inaccuracy cost δ
M0
i , i.e. C IM0(T R0, T E i ) = C IM0 (T R0, T E1) + δ

M0
i .

Similarly, the inaccuracy costs of the other three models—C IM(
⋃i

j=0 T R j , T E i )—can be
approximated with the inaccuracy cost computed on the first test set plus an extra inaccuracy
cost δMi , i.e. C IM(

⋃i
j=0 T R j , T E i )=C IM(

⋃i
j=0 T R j ,T E1)+δMi .

Defining ct as the time hourly cost and ce as the unary prediction error cost, we can
compute the time cost and the inaccuracy cost of a modelM starting from the time required
for training and updating the model TM and from the number of prediction errors (i.e. false
positive + false negatives) EM as:

CTM(T R, T E) = ct ∗ TM
C IM(T R, T E) = ce ∗ EM

(3)

In order to have an estimate of the costs in our scenario, we instantiated such a cost-
effectiveness framework. In detail, we set the extra-inaccuracy costs to 0 (δMi = 0) and
chose a couple of sample configurations for the prediction error unitary costs and for the
hourly unitary cost (ct = 0.1, ce = 100 and ct = 100, ce = 0.1), as well as for the number
of batches n (n = 1 and n = 5). Table 8 reports the obtained results using as reference values
the ones of the experimental setting 40%-40%. The best result among the four strategies for
each outcome is emphasised in italic, while the results that differ from the best ones for less
than 1 are emphasised in bold.

The results in the table show that, depending on the unitary costs of time and prediction
errors, differences can exist in the choice of the cheapest model. In both settings,M3 seems
to be the cheapest model for most of the labellings and for different numbers of batches. In
the setting in which ct = 0.1 and ce = 100, due to the low hourly unitary cost, M2 is the
cheapest model for some of the labellings. Moreover, no significant differences exist in terms
of costs when more and more data batches arrive (at least for the specific assumptions made
for this cost-effectiveness framework). In the other setting, i.e. when the time cost is much
higher than the error cost (ct = 100 and ce = 0.1), S2 is always the most expensive update
strategy, due to its substantial training time. Moreover, in this setting, the cheapest update
strategy can change when the number of arriving data batches increases. Indeed, while with
only one batch of data, for some of the labellings (e.g. φ12), M1 is slightly cheaper than or
has the same cost as M3, in the long run, M3 is cheaper than M1.

To sum up, this instantiation of the cost-effectiveness framework confirms the results of
the plots reported in Fig. 5, i.e. that overall S1 and S3 are the strategies providing the best
balance between time and accuracy and hence the cheapest update strategies. Moreover, the
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analysis suggests that, based on the unitary costs of time and errors, as well as on the number
of available data batches, differences can exist related to the best update strategy, although
M3 seems to be consistently cheaper for most of the tested settings.

6.3 Threats to validity

The main threats affecting the validity of the evaluation carried out are external validity
threats, limiting the generalisability of the results. Indeed, although we investigated the usage
of different update strategies on different types of labellings, we limited the investigation to
outcome predictions and to classification techniques typically used with this type of predic-
tions. We plan to inspect other types of predictions, i.e. numeric and sequence predictions,
together with typical techniques used with them, i.e. regression and deep learning techniques,
for future work.

Finally, the lack of an exhaustive investigation of the hyperparameter values affects the
construction validity of our experimentation. We limited this threat by using standard tech-
niques for hyperparameter optimisation Bergstra et al. [5].

7 Related work

To the best of our knowledge, no other work exists on the comparison of update strategies for
Predictive Process Monitoring models with the exception of the two by Pauwels and Calders
[31] and Maisenbacher and Weidlich Pauwels and Calders [26]. We hence first position our
work within the Predictive Process Monitoring field and then address a specific comparison
with [31] and Maisenbacher and Weidlich [26].

We can classify Predictive Process Monitoring works based on the types of predictions
they provide. A first group of approaches deals with numeric predictions, and, in particular,
predictions related to time van der Aalst et al. [43], Folino et al. [16], Rogge-Solti and
Weske [35]. A second group of approaches focuses on the prediction of next activities. These
approaches mainly use deep learning techniques—specifically techniques based on LSTM
neural networks Tax et al. [38], Di Francescomarino et al. [14], Camargo et al. [9], Brunk
et al. [7], Taymouri et al. [39]. These studies have shown that when the datasets are large,
deep learning techniques can outperform techniques based on classical Machine Learning
techniques. A third group of approaches deals with outcome predictions Teinemaa et al. [40],
Maggi et al. [25], Di Francescomarino et al. [12], Leontjeva et al. [22], which are the ones
we focus on. A key difference between these works and the work presented in this paper is
that we do not aim at proposing/supporting a specific outcome prediction method, rather we
aim at evaluating different update strategies.

Thework by Pauwels andCalders [31] leverages deep learningmodels to address the chal-
lenge of next activity prediction in the context of incremental Predictive Process Monitoring.
The goal of their paper is twofold: they explore different strategies to update a model over
time for next-activity prediction, and they investigate the potential of neural networks for the
incremental Predictive Process Monitoring scenario. The goal is reached by (i) identifying
different settings related to the data to use for training, updating, and testing the models, both
in a static and a dynamic scenario; and (ii) showing the positive impact of catastrophic for-
getting of deep learning models for the Predictive Process Monitoring use-case. In our work,
we focus on another type of techniques/predictions, i.e. we aim at investigating the potential
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Table 8 Cost-effectiveness framework instantiation with δMi = 0 and experimental setting 40%–40%

Dataset φ M0 M1 M2 M3

(a) n=1, ce = 100, and ct = 0.1

BPIC11 φ11 7800.5 4600.5 4601.52 4800.5

φ12 5001.89 3401.89 2502.83 4301.89

φ13 4300.52 3900.52 3501.19 4100.52

BPIC12 φ21 46600.34 36500.35 31001.14 10900.34

φ22 14800.37 13400.37 6601.27 5400.37

φ23 20900.5 274000.5 19701.66 20900.5

BPIC15 φ31 5400.05 6000.5 6200.1 2900.05

φ32 3800.05 4100.05 3600.14 3400.05

φ33 2900.06 3300.06 3100.15 300.06

BPIC18 φ41 236200.8 2600.81 20901.08 300.81

DriftRIO1 φ51 58200.02 11000.02 11400.05 11000.02

DriftRIO2 φ61 7900.02 7900.02 7900.05 7900.02

Dataset φ M0 M1 M2 M3

(b) n=5, ce = 100, and ct = 0.1

BPIC11 φ11 39500.5 23000.5 23015.82 24000.5

φ12 25001.89 17001.91 12516 21501.9

φ13 21500.52 19500.53 17510.6 20500.52

BPIC12 φ21 233000.3 182500.4 155012.4 54500.34

φ22 74000.37 67000.37 33024.94 27000.37

φ23 104500.5 137000.5 98517.94 104500.5

BPIC15 φ31 27000.05 30000.05 30500.74 14500.05

φ32 19000.05 20500.05 18001.33 17000.05

φ33 14500.06 16500.06 15501.36 1500.06

BPIC18 φ41 1181001 13000.86 57000.43 1500.813

DriftRIO1 φ51 291000 55000.03 57000.43 55000.02

DriftRIO2 φ61 39500.02 39500.02 39500.38 39500.02

Dataset φ M0 M1 M2 M3

(c) n=1, ce = 0.1, and ct = 100

BPIC11 φ11 508.72 505.66 1526.68 505.8

φ12 1894.61 1894.51 2831.03 1894.69

φ13 526.55 526.65 1197.72 526.6

BPIC12 φ21 386.04 381.67 1174.67 350.4

φ22 381.52 380.12 1278.49 372.15

φ23 521.09 527.59 1682.64 521.59

123



1410 W. Rizzi et al.

Table 8 continued

Dataset φ M0 M1 M2 M3

BPIC15 φ31 54.04 54.78 100.6 51.62

φ32 56.88 57.27 141.71 56.54

φ33 61.96 62.38 149.16 59.38

BPIC18 φ41 1047.42 817.13 1105.54 811.91

DriftRIO1 φ51 82.62 35.47 62.96 35.47

DriftRIO2 φ61 31.04 31.04 54.98 31.04

Dataset φ M0 M1 M2 M3

(d) n=5, ce = 0.1, and ct = 100

BPIC11 φ11 539.92 526 15841.42 525.33

φ12 1914.61 1929.11 15985.86 1915

φ13 543.75 549.25 10619.33 544

BPIC12 φ21 572.44 607.78 12557.78 394.22

φ22 440.72 433.72 13977.22 393.86

φ23 604.69 637.19 18039.94 607.19

BPIC15 φ31 75.64 80.72 767.06 63.56

φ32 72.08 74.83 1346.5 70.36

φ33 73.56 75.97 1379.56 60.69

BPIC18 φ41 1992.22 873.81 5016.97 814.67

DriftRIO1 φ51 315.42 80.25 488.5 79.69

DriftRIO2 φ61 62.64 62.64 421.81 62.64

of classical Machine Learning models in the Predictive Process Monitoring scenario for the
prediction of an outcome.

The work by Maisenbacher andWeidlich [26] is the only one we are aware of that exploits
classical incremental Machine Learning in the context of Predictive Process Monitoring. The
goal of that paper is to show the usefulness of incremental techniques in the presence of
Concept Drift. The goal is proved by performing an evaluation over synthetic logs which
exhibit different types of Concept Drifts. In our work, we aim at comparatively investigating
four different model update strategies (which include the case of the incremental update) both
in terms of accuracy of the results and in terms of time required to update the models. We
carry on our evaluation on real-life and synthetic logs with and without an explicit Concept
Drift.

8 Conclusion

In this paper, we have provided a first investigation of different update strategies for Predictive
ProcessMonitoringmodels in the context of the outcomeprediction problem. In particular,we
have evaluated the performance of four update strategies, namely do nothing, re-train with
nohyperopt, full re-train, and incremental update, applied toRandomForest, the reference
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Table 9 The accuracy results related to the Perceptron model

Dataset φ M0 M1 M2 M3

(a) Setting 10–70%

BPIC11 φ11 0.504 0.536 0.625 0.566

φ12 0.682 0.413 0.867 0.749

φ13 0.676 0.877 0.88 0.863

BPIC12 φ21 0.69 0.633 0.655 0.68

φ22 0.72 0.711 0.686 0.719

φ23 0.515 0.518 0.483 0.5

BPIC15 φ31 0.675 0.725 0.732 0.777

φ32 0.827 0.809 0.832 0.873

φ33 0.745 0.841 0.886 0.788

BPIC18 φ41 0.386 0.392 0.397 0.509

DriftRIO1 φ51 0.369 0.738 0.742 0.747

DriftRIO2 φ61 0.701 0.945 0.961 0.908

Dataset φ M0 M1 M2 M3

(b) Setting 40%–40%

BPIC11 φ11 0.596 0.643 0.625 0.666

φ12 0.802 0.788 0.867 0.807

φ13 0.826 0.873 0.88 0.879

BPIC12 φ21 0.658 0.646 0.655 0.478

φ22 0.682 0.69 0.686 0.574

φ23 0.524 0.501 0.483 0.521

BPIC15 φ31 0.651 0.698 0.732 0.736

φ32 0.854 0.801 0.832 0.836

φ33 0.88 0.864 0.886 0.876

BPIC18 φ41 0.426 0.446 0.397 0.574

DriftRIO1 φ51 0.727 0.747 0.742 0.908

DriftRIO2 φ61 0.594 0.939 0.961 0.839

technique for outcome-oriented predictions, on a number of real and synthetic datasets with
and without explicit Concept Drift. The cost-effectiveness of the different update strategies
has been evaluated in the simple case where only one train and one test set are available,
and in the more complex scenario where new batches of data become continuously available.
The results show that the need to update a Predictive Process Monitoring model is real for
typical real-life event logs (regardless of the presence of an explicit Concept Drift). They also
show the potential of incremental learning strategies for Predictive Process Monitoring in
real environments. An avenue for future work is the extension of our evaluation to different
prediction problems such as remaining time and sequence predictions, which would, in turn,
extend the evaluation to different reference Machine Learning techniques such as regression
and LSTM, respectively. Also, a deeper investigation of the proposed cost-effectiveness
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framework in the context of the proposed update strategies will allow us to come up with
more detailed best practices to guide the user in understanding which strategy is the most
appropriate one under specific contextual conditions.

To conclude, we believe that the potential of incremental models is under-appreciated
in the Predictive Process Monitoring field. To allow researchers to better understand the
usefulness of the update strategies proposed in this paper, we made them readily available in
the latest release of Nirdizati Rizzi et al. [34].
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A. Further Results

We report, in this appendix, the results obtained using Perceptron [29] (rather than Random
Forest) as classifier. Tables 9a and 9b show the results obtained with such a classifier for the
different strategies and for the different considered settings. Also for these experiments, the
best result for each dataset and labelling is emphasised in italic, while the results that differ
from the best ones for less than 0.01 are emphasised in bold.

As for the case of Random Forest, we can observe that the most accurate strategies are
M2 and M3, with the exception of datasets BPIC12 and BPIC15 with labelling φ32 in
the setting 40%–40%, in which the best results are obtained with M0. Moreover, we can
observe a significant difference, in terms of performance, with respect to the Random Forest,
for BPIC18: the accuracy obtained with Perceptron for this dataset is very low for all the
four update strategies. Also with Perceptron, the accuracy is overall better for the 40%–40%
setting w.r.t. 10%–70% and no relevant differences in terms of winning strategies for datasets
with and without explicit Concept Drift can be devised.

Overall, the evaluation with Perceptron confirms that M2 and M3 (i.e. full re-train
and incremental update, respectively) are the best performing update strategies in terms of
accuracy.
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