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Abstract
In the current worldwide situation, pedestrian detection has reemerged as a pivotal tool for
intelligent video-based systems aiming to solve tasks such as pedestrian tracking, social dis-
tancing monitoring or pedestrian mass counting. Pedestrian detection methods, even the top
performing ones, are highly sensitive to occlusions among pedestrians, which dramatically
degrades their performance in crowded scenarios. The generalization of multi-camera setups
permits to better confront occlusions by combining information from different viewpoints.
In this paper, we present a multi-camera approach to globally combine pedestrian detections
leveraging automatically extracted scene context. Contrarily to the majority of the meth-
ods of the state-of-the-art, the proposed approach is scene-agnostic, not requiring a tailored
adaptation to the target scenario–e.g., via fine-tuning. This noteworthy attribute does not
require ad hoc training with labeled data, expediting the deployment of the proposed method
in real-world situations. Context information, obtained via semantic segmentation, is used
(1) to automatically generate a common area of interest for the scene and all the cameras,
avoiding the usual need of manually defining it, and (2) to obtain detections for each camera
by solving a global optimization problem that maximizes coherence of detections both in
each 2D image and in the 3D scene. This process yields tightly fitted bounding boxes that
circumvent occlusions or miss detections. The experimental results on five publicly avail-
able datasets show that the proposed approach outperforms state-of-the-art multi-camera
pedestrian detectors, even some specifically trained on the target scenario, signifying the
versatility and robustness of the proposed method without requiring ad hoc annotations nor
human-guided configuration.
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1 Introduction

In the current worldwide situation, pedestrian detection has reemerged as a pivotal tool for
intelligent video-based systems aiming to solve tasks such as pedestrian tracking, social
distancing monitoring or pedestrian mass counting. Automatic people detection is generally
considered a solid and mature technology able to operate with nearly human accuracy in
generic scenarios [10, 16, 30]. However, the handling of severe occlusions is still a major
challenge [28]. Occlusions occur due to the projection of the 3D objects onto a 2D image
plane. Although recent deep-learning-basedmethods are able to cope with partial occlusions,
the detection process fails when only a small part or no part of the person is visible. To cope
with severe occlusions, a potential solution is the use of additional cameras: If they are
adequately positioned, the different points of view might allow for disambiguation.

Disambiguation is generally achieved by projecting every camera’s detections on a com-
mon reference plane. The ground plane is usually the preferred option as it constitutes a
common reference in which people’s height can be disregarded. Per-camera detections can
then be combined on the ground plane to refine and complete pedestrian detection. However,
there are several challenges to be addressed during this combination or fusion process.Among
the striking ones are: the convenience to define common visibility areaswhere cameras’ views
overlap, and how to cope with camera calibration errors and persons’ self-occlusions. See
Fig. 1 for visual examples of these challenges, which we detail below:

In multi-camera approaches a common strategy is to define an operational area or area of
interest AOI on the ground plane. This area represents the overlapping field-of-view of all
the involved cameras. It can be used to reduce the impact of calibration errors in the process
and to generally ease the fusion of per-camera detections. This area is generally manually
defined for each scenario, precluding the automation of the process.

Scene calibration is a well-known task [17] which can be performed either manually or
using automatic calibration methods based on image cues. In both cases, small perturbations
in the calibration process may cause uncertainty in the fusion of the detections on the ground
plane. The impact of calibration errors increases with the distance to the camera: Generally,
calibration is more accurate for pixels belonging to objects close to the camera.

Self-occlusions are caused by the intrinsic three-dimensional nature of people, resulting
in the occlusion of some human parts by some others. If the visible parts are different for
different cameras and these are used to project a person location on the ground plane, the
cameras’ projections will diverge, hindering their fusion.

To copewith these challenges, in this paperwe present amulti-camera pedestrian detection
method which is driven by semantic information automatically extracted from the 2D images
and transferred to the 3D ground plane and includes the following novel contributions:

1. A novel approach to globally combine pedestrian detections in a multi-camera scenario
by creating connected components in a graph representation of detections.

2. An height-adaptive optimization algorithmwhich uses semantic cues to globally refine the
location and size of people detections by aggregating information from all the cameras.

The proposed method is applied over an operational area in the ground plane, which is
automatically defined by an adaptation of the method described in [26].
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Area of Interest
challenge

Self-occlusions and
Calibration challenge

Fig. 1 Common challenges of people detection in multi-camera scenarios. First row: Per-camera people
detection by Faster-RCNN [32] (solid bounding boxes) with superimposed—in pink, manually annotated
area of interest (AOI) from [29]. Second row: Reference ground plane with projected AOI and detections
(color dots). Area of interest challenge: one projected detection lays outside of the AOI and is filtered-out.
Self-occlusions and Calibration challenges: projected detections from different camera views diverge in the
common plane due to self-occlusions and calibration errors. The back-projection of a detection from Camera 1
ontoCamera 2 creates amiss-aligned bounding box (dotted line). Fourth row: qualitative results of the proposed
multi-camera pedestrian detection method using the whole imaged floor asAOI and aligned back-projected
detections. Better viewed in color (Color figure online)

The experimental results on public datasets (PETS 2009 [12], EPFL RLC [3, 6], EPFL
Terrace [13, 14] and EPFL Wildtrack [4, 5]) prove that the proposed method: (1) outper-
forms state-of-the-art monocular pedestrian detectors [31, 32], (2) outperforms state-of-the
art scene-agnostic multi-camera detection approaches and (3) results in a performance com-
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parable, and even better, to deep-learning multi-camera detection approaches trained and
fine-tuned to the target scenario, while not requiring neither a manually annotated opera-
tional area nor a specific training on that scenario.

The rest of the paper is organized as follows: Sect. 2 reviews the state of the art, Sect. 3
describes the proposed method, Sect. 4 presents and discusses experimental results and Sect.
5 concludes the paper.

2 RelatedWork

Multi-camera people detection faces the combination, fusion and refinement of visual cues
from several individual cameras to obtain more people locations. A common pathway in
existing approaches starts by defining an operational area, either manually or, as we propose,
based on a semantic segmentation. Then, approaches combining detections using a common
reference plane, usually follow a three-stage strategy: (1) extract detections on each camera
frame, (2) project detections onto the common plane and (3) combine detections and back-
project them to the individual views to obtain per-camera people detections. Finally, obtained
detections are sometimes post-processed to further refine their localization.

2.1 Definition of the operational area

Some approaches [29, 37] rely on manually annotated operational areas where evaluation is
performed.An advantage of theseadhoc areas is that the impact of camera calibration errors is
limited and controlled. Besides, these areas are defined to maximize the overlapping between
the field of viewof the involved cameras.However, themanual annotation of these operational
areas hinders the generalization of people detection approaches. Our previous work in this
domain [26] resulted in an automatic method for the cooperative extraction of operational
areas in scenarios recordedwithmultiplemoving cameras: Semantic evidences fromdifferent
junctures, cameras and points-of-view are spatiotemporally aligned on a common ground
plane and are used to automatically define an operational area or Area of Interest (AOI).

2.2 Semantic segmentation

Semantic segmentation is the task of assigning a unique object label to every pixel of an image.
During the last years, top performing strategies evolved from the seminal fully convolutional
network scheme [24] and the use of dilated convolutions [40]. For instance, Zhao et al.
[42] proposed to implicitly use contextual information by including relationships between
different labels—e.g., an airplane is likely to be on a runway or flying in the sky but not on the
water. These relationships reduce the inner complexity of datasets with large sets of labels,
generally improving performance. Lately, the development and use of new backbones for
feature extraction has benefited the task. Zhang et al. [41] proposed a newResNetmodification
calledResNeSt that uses channel-wise attention to capture cross-feature interactions and learn
diverse object representations. Similarly, Tao et al. [36] proposed the use of a hierarchical
attention to combine multi-scale predictions, increasing the performance on the small object
instances, as those in PASCAL VOC dataset [11].
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2.3 Monocular people detection

As stated in Sect. 1, automatic monocular pedestrian detection is considered a mature tech-
nology able to obtain accurate results in a broad range of scenarios. Well established object
detectors based on CNNs as Faster-RCNN [32] and YOLOv3 [31] have demonstrated their
reliability during the last years. Adapting their core schemes, recent approaches have further
increased their performance. Specifically, YOLOv3 has been improved by both decreasing
the complexity of the model through new architecture designs [25] and by efficient model
scaling [38].

Alternatively, novel detectors—also based on CNNs, have been proposed. Tan et al. [35]
proposed a weighted bidirectional feature pyramid network allowing easy and fast multi-
scale feature fusion and obtaining a new family of detectors called EfficientDet that achieved
a new state-of-the-art performance in the COCO dataset [23]. Alternatively, Zhu et al. [44]
proposed to use attention in the form of deformable transformers to also obtain the state-of-
the-art results.

Nevertheless, even though the most recent works have demonstrated really high perfor-
mances, in scenarios with severe occlusions the performance of these algorithms decreases.

2.4 Projection of per-camera detections

Multi-camera pedestrian detection is fundamentally based on the projection of monocular
detections onto a common reference plane. Projection is typically achieved either by using
calibrated camera models that relate any 2D image point with a corresponding referenced 3D
world direction [37] or by relying on homographic transformations that project image pixels
to a specific 3D plane [29]. In both cases, the ground plane, where people is usually standing
on, is chosen as reference for simplicity reasons.

2.5 Fusion and refinement of per-camera detections

Fusion and refinement approaches can be mainly divided into three different groups depend-
ing onhowglobal detections are obtained. Thefirst group encompassesgeometricalmethods,
which combine detections based on the geometrical intersections between image cues. The
second group embraces probabilistic methods that combine detections via optimization
frameworks and statistical modeling of the image cues. The third group is composed of solu-
tions based on the ability of deep learning architectures to model occlusions and achieve
accurate pedestrian detection at scene level.

Regarding geometricalmethods, detections are combined by projecting foregroundmasks
to the ground plane in a multi-view scenario: The intersection of foreground regions leads to
pedestrian detection [1]. Accuracy can be increased by projecting the middle vertical axis of
pedestrians, leading to a more accurate intersection on the ground plane and, therefore, to a
better estimation of the pedestrian’s position [21]. Following the same hypothesis, the use of
a space occupancy grid to combine silhouette cues has been proposed: Each ground pixel is
considered as an occupancy sensor and observations are then used to infer pedestrian detection
[15]. All of these approaches outperform single-camera pedestrian detection algorithms by
the use of ground plane homography projections. Nevertheless, the evaluation of foreground
intersections in crowded spaces may lead to the appearance of phantoms or false detections.
To handle this problem, the general multi-camera homography framework has been extended
by using additional parallel planes to the ground plane [8, 20]. The intersection of the image
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cues with these parallel planes is expected to suppress these phantoms. Similarly, parallel
planes can be also used to create a full 3D reconstruction of pedestrians that can then be
back-projected to each of the camera views, improving monocular pedestrian detection [2].
Finally, Lima et al. [22] replicates a preliminar version of the method proposed in this paper,
which is available as a preprint [27], with the addition of people re-identification features to
guide the fusion of per-camera detections.

Among probabilistic methods, an interesting example is the use of a multi-view model
shaped by aBayesian network tomodel the relationships between occlusions [29]. Detections
are here assumed to be images of either pedestrians or phantoms, the former differentiated
from the latter by inference on the network.

Recent approaches are focused on deep learning methods. The combination of CNNs
and conditional random fields (CRF) can be used to explicitly model ambiguities in crowded
scenes [3]. High-order CRF terms are used to model potential occlusions, providing robust
pedestrian detection. Alternatively, multi-view detection can be handled by an end-to-end
deep learningmethod based on an occlusion-awaremodel formonocular pedestrian detection
and a multi-view fusion architecture [7].

2.6 Improving detection’s localization

Algorithms in all of these groups require accurate scene calibration: Small calibration errors
can produce inaccurate projections and back-projections which may contravene key assump-
tions of the methods. These errors may lead to misaligned detections, hindering their later
use. To cope with this problematic, one can rely on an height-adaptive projection (HAP) pro-
cedure in which a gradient descent process is used to find both the optimal pedestrian’s height
and location on the ground plane by maximizing the alignment of their back-projections with
foreground masks on each camera [29].

3 Proposed pedestrian detectionmethod

The proposed method is depicted in Fig. 2. First, state-of-the-art algorithms for monocular
pedestrian detection and semantic segmentation are used to extract people detections and the
semantic cues for each camera, respectively. These cues drive the automatic definition of the
AOI, and detections outside this area are discarded. Surviving per-camera detections are
combined to obtain global 3D detections by establishing rules and constraints on a discon-
nected graph. These detections are back-projected to their original camera views in order to
further refine their location and height estimates.

3.1 Preliminaries

Monocular Pedestrian Detection: is performed using a state-of-the-art detector. In order to
avoid a potential height-bias, we ignore the height and width of the detected bounding boxes,
i.e., the j th pedestrian detection at camera k is just represented by the middle point of the
base of its bounding box: p j,k = (x, y, 1)T , in homogeneous coordinates.1

1 we use common notation, upper case to denote 3D points/coordinates and lower case to denote 2D camera
plane points/coordinates.
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(a)

(b)

Fig. 2 Overall pedestrian detection method. Top a: processing starts performing both a semantic segmentation
and a pedestrian detection over a set of cameras (four, in the illustration) with overlapping fields of view. The
segmentation, the detections and the camera calibration parameters feed the multi-camera pedestrian detection
modulewhich is described in detail in bottom b: detections are projected onto a 3D reference plane; a pedestrian
semantic filtering module is used to remove detections located out of the automatically generated AOI; the
remaining detections are combined, based on a disconnected graph, to obtain global detections. The so-obtained
global detections are back-projected to the camera views, and the semantic-driven back-projection module
globally refines the location of these detections by also using semantic cues. Better viewed in color

Semantic Segmentation: is performed using a state-of-the-art semantic segmentation algo-
rithm. The method is used to label each image pixel pk for every camera k and every frame n:
ln(pk) = si, where si is one of the L pre-trained semantic classes: S = {si}, where i ∈ [1, L],
i.e., floor, building, wall... Fig. 3 depicts examples of semantic labels for selected camera
frames of the Terrace Dataset [13, 14].

Projection of People Detections: LetHk be the homography matrix that transforms points
from the image plane of camera k to the world ground plane. The j th detection of camera k,
p j,k = (x, y, 1)′ is projected onto the ground plane by:

P j,k = Hk × p j,k = (X,Y,T)′, (1)

which corresponds to a (X = X/T , Y = Y/T , Z = 0)′ 3D point of the ground plane.

3.2 Pedestrian semantic filtering

Automatic definition of theAOI

To obtain a semantic partition of the ground plane, an adaptation of [26] for static-camera
scenarios is carried out. We first project every image pixel pk via Hk . Every projected point
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Fig. 3 Top row represents RGB frames from the Terrace Dataset [13, 14]. Bottom row represents the cor-
respondent semantic labels obtained by the PSP-Net algorithm [42]. Columns from left to right represent
cameras 1 to 4 of this dataset. The bottom legend indicates the detected semantic classes. Better viewed in
color

Pk inherits the semantic label assigned to pk :

ln(Pk) = ln(pk) = si ∈ S. (2)

Thereby, a semantic locus—a ground plane semantic partition, is obtained for each camera.
The extent of each locus is defined by the image support, and missing points inside the locus
are completed by nearest neighbor interpolation.

In order to globally reduce the impact of moving objects and segmentation errors, we
propose to temporally aggregate each locus along several frames. In a set of T loci obtained
for T consecutive frames, a given point on the ground plane Pk is labeled with T semantic
labels, which may be different owing to inaccuracies in the semantic segmentation or to the
presence of moving objects. A single temporally smoothed label l̄n(Pk) is obtained as the
mode value of this set. Examples of these per-camera obtained smoothed loci are included
in the first four columns of Fig. 4.

We propose to combine these loci to define the AOI. The definition of the AOI is
scenario-dependent but can be generalized by defining a set G of ground-related semantic
classes: floor, grass, pavement, etc. The operational area AOI is obtained as the union of
the projected pixels from any camera which are labeled with any class in G:

AOI =
K⋃

k

Pk, s.t . l̄n(Pk) ∈ G. (3)

An example of a so-obtained AOI is included in the right most column of Fig. 4.

Detection filtering

Projected detections P j,k lying outside the operational area, P j,k /∈ AOI, are filtered out
and so, discarded for forthcoming stages.
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Fig. 4 Temporally smoothed projected loci for each camera (columns 1 to 4) of the Terrace Dataset [13, 14],
both in the RGB domain (top) and the semantic labels domain (bottom). The last column depicts, again in both
domains, the resultingAOI which, in the example, consists of the combined floor class of the four smoothed
loci. Better viewed in color

3.3 Fusion of multi-camera detections

Wepropose a geometrical approach to combine detections on the groundplane. Every camera
single detection is considered a vertex of a disconnected graph located in the reference plane.
Vertices are then joined generating connected components Cm , each representing a joint 3D
global detection. The whole fusion process is summarized in Fig. 5. The conditions that shall
be satisfied to join two vertices or detections, P j,k and P j ′,k′ , are:

1. That vertices in a connected component are close enough. The l2-norm between any two
vertices in Cm shall be smaller than a predefined distance R1: ‖P j,k,P j ′,k′ ‖2 ≤ R1 (Fig.
5a). R1 may be fixed in the interval between 2.5 and 3.5 with no influence in the results.
We experimentally set R1 = 3 meters to: 1) reduce the computational cost of the final
stage (see below) assuming that vertices separated R1 do not belong to the same object
and 2) protect against calibration errors, assuming that they are not larger than R1.

2. That vertices in a connected component come from different cameras. This condition
prevents the joining of two different detections from the same camera which are near in
the ground plane. (Fig. 5b)

To avoid ambiguities, the creation of connected components is performed in order, according
to the spatial position of the detections: Those with a lower module are combined first.

The outcome of the fusion process for K cameras is a set of M connected components
{Cm, m = 1, . . . , M}, each containing Km detections: | Cm |= Km ≤ K , where Km < K
when a person is occluded or not detected in one or more cameras.

As each connected component is assumed to represent a single person, an initial ground-
position of the person PG

m = (Xm, Ym, Zm = 0)T is obtained by simply computing the
arithmetic mean of all the detections in the Cm connected components (Fig. 5c).

3.4 Semantic-driven back-projection

To obtain correctly positioned detections, i.e., visually precise detections, in each camera,
ground plane detections need to be back-projected to each camera and 2D bounding boxes
enclosing pedestrians need to be outlined based on these projections.
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(a)

(b)

(c)

Fig. 5 Fusion of multi-camera detections in the ground plane. a The distance R1, depicted here as circumfer-
ences around detections, defines neighbors for each detection P j ,k . b Connected components Cm are defined
for detections: (i) which l2-norm is lower than R1 and (ii) that are projected from different cameras. Connected
components fulfilling (i) but not (ii) are represented by dashed lines crossed out. c The ground plane detection
PGm is obtained as the arithmetic mean of all the detections in a connected component Cm . Better viewed in
color

The problem of back-projecting 3D detections

Let Pm be an orthogonal line segment to the ground plane which represents the detected
pedestrian and extends from the detection PG

m to a 3D point hm meters above. Using the
camera calibration parameters, the segment Pm can be back-projected onto camera k. This
back-projection defines a 2D line segment pm,k , which extends between pm,k and pm,k +
(see Fig. 6a).

We propose to create 2D bounding boxes around these back-projected 2D line segments.
To this aim, each segment is used as the verticalmiddle axis of its associated 2Dbounding-box
bm,k . For simplicity, the width of bm,k is made proportional to its height. Due to pedestrian
self-occlusion, calibration errors and the uncertainty on the pedestrians’ height, this back-
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(a) (b)

Fig. 6 a Back-projecting global segment Pm results in misaligned bounding boxes due to pedestrian self-
occlusion, calibration errors and the uncertainty on the pedestrians’ height. b The proposed optimization
process results in the best-aligned segments Pm,k for each camera. Better viewed in color

projection process results in misaligned bounding-boxes (see Fig. 6a), hindering their later
use and degrading camera-wise performance.

To handle this problematic, we define an iterative method which aims to globally optimize
the alignment between all 3D detections and their respective views or back-projections in all
cameras. This method is based on the idea proposed in [29]. While the referenced method
is guided by a foreground-segmentation, we instead propose to use a cost-function driven
by the set of pedestrian-labeled pixels Ωk from the semantic segmentation (e.g., see person
label in Fig. 3). Next, we detail the full process for the sake of reproducibility.

Method overview

As a 3D detection Pm , with height hm , inevitably results in misaligned back-projected 2D
detections, the proposed method tries to adapt the 3D detection segment to each camera,
generating a set of 3D detection segments, Pm,k , for each 3D detection and iteratively mod-
ifying their positions and height to maximize 2D detections’ alignment with the semantic
segmentation masks, while constraining all the segments to have the same final height h′

m
(as they are all projections of a same pedestrian) and to be located sufficiently close to each
other. This process is not performed independently for each 3D detection but jointly and
iteratively for all 3D detections. Observe that the joint nature of the optimization problem
for all 3D detections is a key step as pedestrian pixels Ωk may contain segmentations from
more than one pedestrian.

For each 3D segment Pm , the method starts by initializing (i.e., iteration i = 0) the
per-camera adapted segments:

P
(i=0)
m,k = Pm , k = 1...K . (4)
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Iterative steepest ascent algorithm

For each 3D segment, let P(i)
k = {P(i)

m,k, m = 1...M} be the set of adapted detections to

camera k at iteration i , and let P(i) = {P(i)
k , k = 1...K } be the set of camera-adapted

segments for all cameras at the same iteration.
The optimization process aims to find P

∗, the solution to the constrained optimization
problem:

P
∗ = arg maxP Ψ (P), s.t ‖Pm,Pm,k‖2 ≤ R2 ∀(m, k), (5)

where R2 defines themaximumdistance between 3Dprojections of a single pedestrian, which
we set to twice the average width of the human body, i.e., 1 meter, to forestall the effect of
nearby pedestrians in the image plane. Performed experiments suggest that variations in R2

value have no significant influence on the results.
Ψ (P) is defined as the cost function to maximize and is based on the alignment of the

back-projected bounding boxes with the set of pedestrian-labeled pixels in each camera: Ωk .
The cost function considers the information from all the cameras.

Ψ (P(i)) = −
K∑

k=1

∑
p γ (p,Ωk)Φ(p,P(i))

|Fk | , (6)

where γ (p,Ωk) is a weight for pixel p: ω for pedestrian and ω/3 for non pedestrian pixels,
ω = 1 in our setup, |Fk | is the number of pixels in the camera image plane and Φ(p,P) is
the loss function of pixel p with respect to P:

Φ(p,P{i}) =

⎧
⎪⎪⎨

⎪⎪⎩

∏
m|p∈b(i)

m,k
(1 − 1/dm,k)) , if lk(p) ∈ Ωk

1 − ∏
m|p∈b(i)

m,k
(1 − 1/dm,k)) , if lk(p) /∈ Ωk,

(7)

where dm,k is the distance from p to the vertical middle axis p(i)
m,k of the back-projected

bounding box b(i)
m,k .

At each iteration i , the set of camera-adapted segments is moved toward the direction of
maximum increment:

P
(i) = P

(i−1) + τi
−→∇ Ψ (P(i−1)), (8)

where τi ∈ R+ is the gradient step that makes P(i) ≥ P
(i−1). This gradient step is initialized,

τ0 = 5, and updated following a decrease schedule of 50% every 3 iterations, to ease con-
vergence. The gradient

−→∇ Ψ (P(i)) in the i-th iteration is approximated by forward difference
approximation:

−→∇ Ψ (P(i)) = Ψ (P(i)) − Ψ (P(i) − ε)

ε
. (9)

The algorithm continues until convergence is reached or the R2-constrain is violated.
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4 Results

This section addresses the evaluation of the proposedmethod. To this aim,wefirst describe the
evaluation framework; then, in the ablation studies, we measure the performance improve-
ment of each of the method’s stages; finally, we finish by comparing our approach with
alternative state-of-the-art approaches in classic and recent multi-camera datasets.

4.1 Evaluation framework

Datasets

The results are obtained by evaluating the proposedmethod over five scenarios extracted from
four publicly available multi-camera datasets in which cameras are calibrated and temporally
synchronized:

– EPFL Terrace [13, 14]: Generally used in the state of the art to evaluate multi-camera
approaches. It consists of a 5000 frames sequence per camera showing up to eight people
walking on a terrace captured by four different cameras. All the cameras record a close-up
view of the scene.

– EPFL RLC [3, 6]: consists of an indoor sequence of 2000 frames per camera recorded in
the EPFL Rolex Learning Center using three static HD cameras with overlapping field
of views. All these cameras represent close-up views of the scene.

– EPFL Wildtrack [4, 5]: A challenging multi-camera dataset which has been explicitly
designed to evaluate deep learning approaches. It has been recorded with 7 HD cameras
with overlapping fields of view. Pedestrian annotations for 400 frames are provided. All
of them are used to define the evaluation set used in this paper.

– PETS 2009 [12]: The most used video sequences from this widely used benchmark
dataset have been chosen.

– PETS 2009 S2 L1, which contains 795 frames recorded by eight different cameras
of a medium density crowd—in this evaluation, we have just selected 4 of these
cameras: view 1 (far field view) and views 5, 6 and 8 (close-up views).

– PETS 2009 City Center (CC), recorded only using two far-field view cameras with
around 1 minute of annotated recording (400 frames per camera).

Table 1 contains a comparative description of these datasets including the type of data and
annotations provided, as well as a subjective indication of their complexity for the pedestrian
detection task.

Performance indicators

To obtain quantitative performance statistics according to an experiment-based evaluation
criterion the following state-of-the-art performance indicators have been selected: Precision
(P), Recall (R), F-Score (F-S), Area Under the Curve (AUC), N-MODA (N-A) and N-MODP
(N-P) [9, 33]. To globally assess performance, a single value for each statistic and each
configuration is provided by averaging per-camera ones.
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4.2 System setup

A common setup has been used for all the presented results. Faster-RCNN [32], YOLOv3
[31] and EfficientDet-D7 [35] are used as baseline algorithms to obtain monocular pedestrian
detections. The three object detectors are pre-trained on the COCO dataset [23] and we do
not fine-tune nor adapt them to any of the faced scenarios. For the semantic segmentation, the
Pyramid Scene Parsing Network (PSP-Net) [42], pre-trained on the ADE20K dataset [43]
(L = 150, has been selected considering a trade-off between performance and efficiency.

In the pedestrian semantic filtering stage, all frames in each sequence are used for temporal
and spatial semantic aggregation, i.e. T = N . For the semantic-driven back-projection stage,
the initial height estimation hm has been set to an average pedestrian height of 1.7m. Besides,
for all the datasets, convergence in the iterative steepest ascent algorithm has been reached
before or at the 8th iteration.

4.3 Results overview

The evaluation has been performed carrying out two different studies:
– The ablation studies aim to gauge the impact of the different stages in the performance

of the proposed approach. To this end, the following versions of the proposed method
are compared:

1. “Baseline (Faster-RCNN,YOLOv3andEfficientDet-D7)”, provides reference results
of monocamera pedestrian detectors.

2. “Baseline + Filtering (Filt)” is a simplified version of our method which aims to inde-
pendently evaluate the effect of the proposed automatic AOI computation obtained
by the “Pedestrian Semantic Filtering" stage.

3. “Baseline + Filtering (Filt) + Fusion (Fus) + Back-Projection (BP)” is the full version
of the proposed method, which additionally evaluates the “Fusion of Multi-Camera
Detections” and “Semantic-Driven Back-Projection” stages.

Ablation Studies are conducted on four of the described datasets: Terrace, PETS 2009
S2 L1, PETS 2009 CC and RLC.

– State-of-the-art comparison results analyze the proposed method with respect to several
non-deep-learning state-of-the-art multi-camera pedestrian detectors on the same four
scenarios used in the ablation studies. Additionally, the method is compared with novel
deep-learning methods on the Wildtrack dataset.

4.4 Ablation studies

Evaluation criterion

The availability of bounding-box annotations permits to use the classic performance criterion
[16]: A detection is considered a TP one if the Intersection Over Union (IoU) with a ground-
truth bounding box is higher than 0.5.

Results

Table 2 agglutinates the method’s performance on a per-stage basis. Qualitative examples of
automatically generated AOIs and algorithm results are depicted in Figs. 7 and 8, respec-
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Fig. 7 Ablation Studies: Automatically obtainedAOI (superimposed in green) compared to theAOI man-
ually annotated (red box) by the authors of EPFL Terrace [13, 14] (left), EPFL RLC Dataset [3, 6] (middle)
and PETS2009 [12] (right). Better viewed in color (Color figure online)

tively. A visual example of the limitations of the semantic-driven back-projection stage is
included in Fig. 9.

Discussion

Table 2 shows that filtering-out detections using automatically generated AOIs (Baseline +
Filtering) improves the performance of all the baselines for datasets where the ground plane
area does not cover the whole image representation, i.e., datasets containing close-up views
of the scene as EPFL Terrace and RLC. In these datasets, our preciseAOIs reduce phantom
detections obtained by the baseline detectors. Although AOIs are automatically computed,
they are more precise (tighter to real scene edges) than those defined in the dataset.

Overall, in the EPFL Terrace Dataset, the performance of Faster-RCNN + Filtering
improves Faster-RCNN by 2.44% and 2.82% in terms of AUC and N-MODA, respectively.
YOLOv3 + Filtering presents relative increments over YOLOv3 baseline of 1.20% and
1.31% for AUC and N-MODA, respectively. Finally, EfficientDet + Filtering also overcomes
its baseline results by a 7.04% for N-MODA.

For the EPFLRLC dataset with the proposedAOI, Faster-RCNN is improved by a 5.13%
regarding AUC and by a 17.24% concerning N-MODA. For YOLOv3, relative increments
of a 6.25% and a 11.86% in terms of AUC and N-MODA are achieved. EfficientDet gains
relative increments of a 3.65% and a 11.47% for AUC and N-MODA.

The proposed filtering stage does not improve baselines’ performance for those datasets in
which the ground plane dominates the scene, i.e., those recorded with far-field view cameras
as both scenarios from PETS 2009. In these cases, although the baseline pedestrian detectors
may create phantom detections, those lie inside the proposed AOI and no false-pedestrians
are suppressed. However, as depicted in Fig. 7, the automatically obtained AOIs are larger
and more precise than the original operational areas in the datasets, thereby obtaining a
more realistic and exhaustive evaluation. Furthermore, observe how the proposed generation
method effectively handles multi-class ground partitions as in the PETS 2009 dataset, where
the proposed AOI encompasses road, grass, pavement and side-walks classes enabling a
high adaptability to unseen scenarios (see Fig. 7 right).

Table 2 also shows that the complete method (Baseline + Filtering + Fusion + Back-
Projection) notably improves Faster-RCNNbaseline’s performance, mainly in scenarios with
heavy occlusions, i.e., EPFL Terrace and EPFL RLC (See Table 1 for details). Specifically,
for the EPFL Terrace Dataset results are relatively increased a 6.14%, a 7.14% and a 16.90%
in terms of AUC, F-Score, and N-MODA, respectively, whereas relative improvements are of
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(a)

(b)

(c)

(d)

Fig. 8 Ablation Studies: Proposed method qualitative results on selected frames of the EPFL Terrace, PETS
S2 L1, PETS CC and EPFL RLC datasets (Faster-RCNN baseline is here used). From left to right: First
three columns depict a same time frame captured by three available cameras, showing color bounding boxes (a
color per pedestrian) corresponding to the final per-camera detections. Themost-right column depicts obtained
detections—one per pedestrian in the scene—on the ground plane, conserving the identifying colors. Better
viewed in color

a 5.19%—in AUC, a 5.13%—in F-Score terms—and a 20.69% in N-MODA, for the EPFL
RLC dataset.

ForYOLOv3 andEfficientDet detectors a similar analysis arises. In scenarioswhere heavy
occlusions are present–EPFL Terrace and RLC datasets, performance is increased. For the
EPFL Terrace Dataset, relative increments of a 2.38%, a 2.29% and a 11.84% are obtained
when usingYOLOv3 detections in terms of AUC, F-Score andN-MODA, respectively. In the
case of EfficientDet, increments of a 4.87%, a 5.95% and a 16.90% are obtained with respect
to the same metrics. For the EPFL RLC dataset, the improvement increases to a 6.25%, a
6.41% and a 15.25% for YOLOv3, whereas a 1.21%, a 3.75% and a 13.11% relative increase
is obtained for EfficientDet in terms of AUC, F-Score and N-MODA, respectively.

For both PETS scenarios the performance of the EfficientDet mono-camera detector is
saturated (97% F-Score). The specific characteristics of this dataset: low pedestrian density
over a wide space, low level of occlusions and a high point of view due to cameras being
hanged up in streetlights (see Table 1 and Fig. 8), turns it in the least complex dataset among
those analyzed. The generation of new false positive detections and the optimization process
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Fig. 9 Ablation Studies: Semantic-Driven Back-Projection. First row: back-projected bounding boxes at the
initial iteration of the optimization algorithm. Global detections obtained by the multi-camera detection fusion
algorithm are displaced with respect to real pedestrian when back-projected to each camera. Second row: The
semantic-driven optimization algorithm correctly refines locations and heights for the bounding boxes in
Camera 2 and 3. However, when semantic pedestrian cues are highly overlapped some bounding boxes might
be refined to an incorrect location (Camera 1, green bounding-box). Better viewed in color (Color figure
online)

related problems ((Fig. 9)) may lead to a slight decrease when saturated baselines are used
in low complex datasets. Leaving these specific situations aside, the benefits of the proposed
method are evident if one accounts for both performance indicators and qualitative results
(see Table 2 and Fig. 8, respectively): the proposed multi-camera detection approach is able
to cope with partial, severe and complete occlusions by combining detections from all the
cameras through the proposed semantic-guided process leading to an increase of all the
reported metrics.

Focusing specifically on the semantic-driven back-projection process, the results in Fig.
8 depict highly tight pedestrian bounding boxes, independently from people’s height, self-
occlusions and calibration problems, suggesting that the optimization process is able to
automatically adapt bounding boxes by jointly estimating pedestrian heights and world posi-
tions. The results in Table 2 corroborate this observation. Semantic-driven back-projection
leads to a higher overlap between detections and ground-truth annotations: In terms of the
N-MODPmetric, the proposed method achieves relative improvements of a 4.05% for EPFL
Terrace, a 3.95% for both PETS 2009 S2 L1 and PETS 2009 CC and a 1.45% for the RLC
dataset when Faster-RCNN is used as the baseline detector. When YOLOv3 is used as the
baseline detector, our method achieves a N-MOPD increment of a 4.10% for EPFL Terrace
whereas the N-MODP metric remains stable for PETS 2009 S2 L1, PETS 2009 CC and
RLC datasets, suggesting that YOLOv3 individual performance for these datasets is already
heaped. A similar result arises when using EfficientDet detector which by default is highly
tight to pedestrians. The results are increased only for PETS CC dataset by a 13.63% while
maintained for the rest of the datasets. It is important to remind that even tough the N-MODP
metrics are sometimes slightly reduced or maintained, without the proposed semantic-driven
back-projection process the back-projected bounding boxes and ground-truth would be mis-
aligned (see Fig. 6) decreasing the performance in terms of all the accuracy metrics of the
proposed method.

Nevertheless, the optimization cost function aims to maximize the 2D detections’ align-
ment with the semantic segmentation masks, leading to a bias toward wider pedestrians by
design, a situation that may result sometimes into wrong relocations of the back-projected
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bounding-boxes. Figure 9 shows an example of this case: notice the erring behavior inCamera
1 when there is an extreme overlapping.

4.5 State-of-the-art comparison

Evaluation criterion

The same criterion used in the ablation studies applies for the Terrace, PETS and RLC
datasets. However, in the Wildtrack dataset, as the ground truth is provided via detections
on the world ground plane (i.e., no bounding boxes are provided), the evaluation criterion
is different. Specifically, a detection is considered a TP if it lies at most r = 0.5m to a
ground-truth annotated point [4]. This radius roughly corresponds to the average width of
the human body. Due to the absence of bounding-boxes, for this dataset the semantic-driven
back-projection stage is not included.

State-of-the-art algorithms

The following multi-camera algorithms have been selected to carry out the comparison:

– POM [14]. This algorithm proposes to estimate the marginal probabilities of pedestrians
at every location inside an AOI. It is based on a preliminary background subtraction
stage.

– POM-CNN [14]. An upgraded version of POM in which the background subtraction
stage is performed based on an encoder–decoder CNN architecture.

– MvBN+HAP [29]. Relies on a multi-view Bayesian network model (MvBN) to obtain
pedestrian locations on the ground plane. Detections are then refined by a height-adaptive
projectionmethod (HAP)basedon anoptimization framework similar to the oneproposed
in this paper, but driven by background-subtraction cues.

– RCNN-Projected [39]. The bottom of bounding boxes obtained thorough per-camera
CNN detectors are projected onto ground plane, where 3D proximity is used to cluster
detections.

– Deep-Occlusion [3] is an hybridmethodwhich combines a CNN trained on theWildtrack
dataset and a conditional random fields (CRF) method to incorporate information on the
geometry and calibration of the scene.

– DeepMCD [7] is an end-to-end deep learning approach based on different architectures
and training scenarios:

– Pre-DeepMCD: a GoogleNet [34] architecture trained on the PETS dataset.
– Top-DeepMCD: a GoogleNet [34] architecture trained on the Wildtrack dataset.
– ResNet-DeepMCD: a ResNet-18 [18] architecture trained on the Wildtrack dataset.
– DenseNet-DeepMCD: a DenseNet-121 [19] architecture trained on the Wildtrack

dataset.

Results

Table 3 includes performance indicators for the proposed method compared with multi-
camera algorithmsPOM[14] andMvBN+HAP [29] on theTerrace, PETSandRLCscenarios.
(The results for the compared methods are extracted from [29].) Table 4 compares the per-
formance of the proposed approach against deep-learning methods, some of them explicitly
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Table 4 State-of-the-art Comparison: Wildtrack Dataset Comparison Results

Algorithm EPFL Wildtrack

Authors AOI Fine-Tuned F-Score N-MODA N-MODP

Deep-Occlusion [3] � � 0.86 0.74 0.53

ResNet-DeepMCD [5] � � 0.83 0.67 0.64

Ours* (EfficientDet) � 0.81 0.65 0.63

DenseNet-DeepMCD [5] � � 0.79 0.63 0.66

Top-DeepMCD [7] � � 0.79 0.60 0.64

GMC-3D [22] � 0.78 0.56 0.67

Ours (EfficientDet) 0.74 0.48 0.63

Ours (YOLOv3) 0.71 0.42 0.60

Ours (Faster-RCNN) 0.69 0.39 0.55

Pre-DeepMCD [7] � 0.51 0.33 0.52

POM-CNN [14] � 0.63 0.23 0.30

RCNN-Projected [39] � 0.52 0.11 0.18

“Authors-AOI” stands for algorithm performance evaluated using theAOI proposed by the authors. “Fine-
tuned” denotes that the algorithm has been explicitly trained on Wildtrack dataset. Bold values indicate best
results in terms of N-MODA

trained with data from the Wildtrack dataset (which we denote as Fine-Tuned) and others
trainedwith data from other datasets or not even trained (whichwe denote as notFine-Tuned).
Performance indicators for these methods are extracted from [5]. In addition, the qualitative
results for the Wildtrack dataset are presented in Fig. 10, including obtained detections in
camera frames, global detections on the ground plane and the automatically computedAOI.

Discussion

The results in Table 3 show that the proposed approach (Baseline + Filtering + Fusion +
Back-Projection), either with Faster-RCNN, YOLOv3 or EfficentDet baseline, outperforms
the MvBN + HAP and the POM-CNN methods in terms of N-MODA metric. The proposed
method obtains better results in terms of N-MODA which, precisely, measures detection
accuracy along the whole video sequences. Best results are obtained when EfficientDet is
used to extract mono-camera detections. Specifically, N-MODA is increased a 1.21% for
EPFL Terrace and a 1.14% for both PETS 2009 S2 L1 and CC. Moreover, it obtains the
higher performance on the heavily occluded RLC dataset. Besides, N-MODP results, i.e.,
the overlapping between detections and ground-truth, are better than those obtained by the
HAP method [29]. This suggests that our use of semantic segmentation masks instead of
foreground masks (HAP method) benefits the optimization process. Relative increments in
N-MODP performance of a 5.48% for EPFL Terrace, a 3.95% for PETS 2009 S2 L1 and a
1.28% for PETS 2009 CC support this assumption.

The presented results in Table 3 suggest that the proposed method is able to obtain reliable
pedestrian detections in a variety of scenarioswith a variety of pedestrian detection algorithms
in terms of performance.

Finally, the results on the Wildtrack dataset (Table 4) indicate that the proposed method,
operating on detections from a Faster-RCNN, a YOLOv3 or a EfficientDet model, is able
to outperform deep-learning approaches that have not been specifically trained using Wild-
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Fig. 10 State-of-the-art Comparison: Qualitative results from a sample frame on Wildtrack dataset. For rep-
resentation reasons, camera frames depict adapted bounding boxes via the semantic-driven back-projection
stage, although this stage is not used for evaluation in the Wildtrack dataset. In addition, the figure depicts the
automatically obtained AOI superimposed in green and, finally, the manually annotated AOI proposed by
the authors [4, 5] (area delimited by red lines). The last image represents the cameras’ positions, the obtained
detections and the authors’ ground truth and AOI over the ground plane. Pedestrians are identified with
different colors (one per detection) along views and ground plane. Better viewed in color

track data and use manually annotated detection constrains. Our method, using EfficientDet
detections, improves a 45.45% with respect to Pre-DeepMCD—the second ranked, which is
an end-to-end deep learning architecture trained on the PETS dataset. However, algorithms
explicitly trained on data from the Wildtrack dataset, i.e., DenseNet-DeepMCD, ResNet-
DeepMCD, Top-DeepMCD and Deep-Occlusion, outperform the proposed method, in our
opinion for two main reasons:

– First, the qualitative results presented in Fig. 10 suggest that the results in Table 4 are
highly biased by the authors’ manually annotated area. The proposed method obtains a
broaderAOI (Fig. 10, green area) than the one provided by the authors (Fig. 10, red area).
Although the automatically obtained AOI seems to be better fitted to the ground floor
in the scene than the manually annotated one, the performance of our method decreases
because ground-truth data is reported only on the manually annotated area. Thereby, our
true positive detections out of this area result in false positives in the statistics (see Fig.
10, cameras 1 and 4).

– Second, they learn their occlusion modeling and their inference ground occupancy prob-
abilistic models specifically on the Wildtrack scenario using samples from the dataset.
This training, as any fine-tuning procedure in deep neural networks, is highly effective,
as indicated by the increase in performance resulting from the use of the same architec-
ture but adapted for the Wildtrack scenario (compare the results of Pre-DeepMCD and
Top-DeepMCD). This training requires the use of human-annotated detections in each
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scenario, hindering the scalability of these solutions and its application to the real world.
The proposed approach, on the other hand, performs equally without the need of being
adapted for every target scenario reported in this paper.

Respect to the first issue, i.e., the effect of using the proposed automatically extracted
AOI instead of the one provided by the dataset and used by the rest of the methods, in
order to obtain a fairer comparison, we have included in Table 4 the result of the proposed
method evaluated on the authors’AOI using our top ranked method, i.e., using EfficientDet
baseline. As it can be observed, when using the authors’ AOI for evaluation, the proposed
method outperforms TOP-DeepMCD by a 8.33% and DenseNet-DeepMCD by a 3.17%
ranking the third best method on the Wildtrack dataset without requiring a dataset specific
fine-tuning stage as the two above it. In addition, performance with respect to GMC-3D [22],
which replicates the previous version of the proposed method with the addition of person
re-identification features, is increased a 17.85%.

On average, and contrary to state-of-the-art approaches, the proposed method adapts to
different target scenarios without needing a separate training stage for each situation, with the
consequent reduction of computational resources and time, and neither requiring a manually
annotated area of interest.

5 Conclusions

This paper describes a novel approach to perform pedestrian detection in a multi-camera
recorded scenario. First, the adapted strategies for the temporal and spatial aggregation of
semantic cues, along with homography projections, are used to obtain an estimation of the
ground plane. Through this process, a broader, accurate and role-annotated area of inter-
est (AOI) is automatically defined. Per-camera detections, obtained by a state-of-the-art
detector, are projected to the reference plane, and those laying outside the obtained AOI
are filtered-out. A fusion approach based on creating connected components on a graph
representation of the detections is used to combine per-camera detections yielding global
pedestrian detection. Then, a semantic-driven back-projection method handles occlusions
and uses semantic cues to globally refine the location and size of the back-projected detec-
tions by aggregating information from all the cameras. The results on a broad set of scenarios
confirm that the method outperforms every other compared multi-camera not deep-learning
method and also every deep-learningmethodnot adapted to the target dataset, evenwith differ-
ent baseline algorithms. The proposed method performs close to scenario-tailored methods,
but without their training stage, which highly hinders their straight use in new scenarios.
In overall, the results suggest that the proposed approach is able to obtain accurate, robust,
tight-to-object and generic pedestrian detection in varied scenarios, included crowded ones.
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