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Abstract

In real-world applications, multi-label feature selection has been widely
attract considerable attention due to the importance of multi-label data.
However, previous methods do not fully consider the relationship between
the feature set and the multi-label set but devote attention to either of
them. In addition, the existence of irrelevant and redundant informa-
tion in the feature set and the multi-label set makes previous methods
obtain inaccurate results. Moreover, traditional multi-label learning uti-
lizes logical labels to estimate the relevance between the feature set and
the label set so that the importance of labels can not be well-reflected.
To deal with these issues, we propose a novel robust multi-label fea-
ture selection method named RLEFS in this paper. RLEFS utilizes a
shared space by mapping patterns to excavate semantic similarity struc-
ture in features and labels. Besides, we reconstruct the label space to
obtain numerical labels by a label enhancement regularization term dur-
ing mining semantic similarity structure process. Furthermore, the local
and global structures are considered to ensure effective information can
be captured as fully as possible during feature selection process. Finally,
we integrate the above terms into one joint learning framework, and
then a simple yet effective optimization method with provable conver-
gence is proposed to solve the above problems. Experimental results on
multiple data sets show that the superiority of the proposed method.

Keywords: Feature selection, Multi-label learning, Label enhancement,
Graph regularization
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1 Introduction

In real-world applications, numerous learning methods are confronting great
challenges with the increase of high-dimensional data, these data lead to
the curse of dimensionality as well. To deal with these issues caused by
high-dimensional data, feature selection is designed to reduce the number of
irrelevant and redundant features, excavate useful information, improve the
classification performance of models simultaneously [1–4]. In light of these, fea-
ture selection is used in many domains, such as communications-electronics,
biomedical, computational chemistry, etc.

Recent years, a large number of researches regarding feature selection meth-
ods are proposed. Generally, feature selection methods are categorized into
several main types based on the selection strategy: filter model, wrapper model,
and sparse coding based model (a.k.a. embedded model). Filter model is inde-
pendent of the learning model while wrapper model is dependent the learning
model. Therefore, the computation cost of wrapper model is higher than that
of filter model. In addition, sparse coding based model utilizes the advantages
of the former two models to embed both feature selection and the subsequent
learning model into a unified framework. We focus on sparse coding based
model for feature selection in this paper.

In the early stage, researchers deal with binary or/and multi-class label
data by previous methods. However, with the explosive growth of data, the
new emerging multi-label data degenerate the performance of the previous
methods. Thus, numerous multi-label learning methods are proposed to han-
dle multi-label data. Most of the existing multi-label learning methods only
consider either the feature set or the multi-label set. However, the relationship
between them is not considered adequately. We know that the latent struc-
tures between feature set and label set is consistent [5]. Therefore, a shared
subspace between them is achieved by mapping patterns to capture the use-
ful semantic similarity structure. Besides, there are a lot of noise information
in the feature set and label set. Ignoring noise information will construct an
inaccurate subspace so that inaccurate label correlations are captured. Fur-
thermore, noise information also degrades the performance of feature selection
model. To this end, we introduce a structured sparsity norm—L2,1-norm that
has been demonstrated to be robust to noise [6]. We impose this norm onto
both feature set term and label set term simultaneously. In addition, tradi-
tional multi-label feature selection methods utilize logical labels to estimate
the relevance between the feature set and label set. However, the importance
of each label is different in real-world multi-label data. Hence, the importance
of labels can not be well-reflected by logical values. To deal with this problem,
we design a label enhancement term to reconstruct label set from logical label
set to numeric label set, so that we can enhance the performance of feature
selection by numerical labels during mining semantic similarity structure pro-
cess. From the instance-level perspective, the local and global structure can
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provide complementary information to improve multi-label learning accord-
ing to previous literature [7, 8]. In our method, we exploit local and global
structures from the label-level perspective simultaneously.

In light of the above analysis, we propose a novel multi-label feature selec-
tion method that integrates the above various terms into one joint learning
framework. This joint learning framework is named Robust multi-label Fea-
ture Selection with shared Label Enhancement (RLEFS). And then, a simple
yet effective optimization method with provable convergence is proposed to
solve the above problems.

In summary, the novelties and contributions of this paper are highlighted
as follows:

1. Extracting the shared space from feature space and label space by double
mapping patterns to capture the useful semantic similarity structure.

2. Reconstructing label set from logical label set to numeric label set by
designing a label enhancement term.

3. Imposing structured sparsity norm onto both feature set term and label set
term simultaneously, to ensure the model is not disturbed by noise.

4. Combining local and global structure of labels to provide complementary
information so as to improve the performance of multi-label feature selection.

5. Designing a joint learning framework that named Robust multi-label Feature
Selection with shared Label Enhancement (RLEFS).

6. Developing an optimization method with provable convergence to solve the
proposed RLEFS framework.

7. Conducting comprehensively evaluation criteria on multiple benchmark data
sets to demonstrate the effectiveness of the proposed framework.

The remainder of the paper is organized as follows. In Section 2, we review
some main related works, such as multi-label learning, feature selection meth-
ods and learning regularizer, etc. In Sections 3 and 4, we propose a joint
learning framework that is named RLEFS and its optimization method with
provable convergence respectively. In Section 5, the comprehensively experi-
mental results on multiple multi-label data sets are described. At the same
time, we analyze these results to verify the effectiveness and efficiency of the
proposed RLEFS. Finally, some concluding remarks and future work are given
in Section 6.

2 Related work

2.1 Preliminaries

In this subsection, some definitions of the notations used are introduced.
Matrices are denoted by italicized uppercase letters, such as A. For matrix
A ∈ R

n×m, Ai· and A·j denote i-th row and j-th column of A. In addition, vec-
tors can be also denoted by rows or columns of the matrix, or bold italicized
lowercase letters, such as a. Scalars are denoted by lowercase letters, such as a.
Functions can be represented by calligraphic letters. AT and Tr(A) denote the



Springer Nature 2021 LATEX template

4 Robust multi-label feature selection with shared label enhancement

transpose and the trace of A respectively, where A in Tr(A) is a square matrix.

The Frobenius norm of A is defined as ‖A‖F =
√

∑n
i=1

∑m
j=1 A

2
ij . The L2,1-

norm of A is defined as ‖A‖2,1 =
∑n

i=1

√

∑m
j=1 A

2
ij , where Aij denotes the

(i, j)-th entry of matrix A. In this paper, we suppose that the feature matrix
X ∈ R

n×d has n instances in d-dimensional space. The label matrix Y ∈ R
n×c

has c column class labels. Generally, the value of Yij is 1 if the i-th instance is
related with the j-th label, and Yij as 0 otherwise.

2.2 Related work

In this subsection, we review some related works, such as multi-label learning,
feature selection methods and several regularizers, etc.

In the past decade, many well-established multi-label learning methods
have been widely applied to different fields. Generally, multi-label learning
methods are categorized into three categories based on the label correlation
strategy: first-order strategy, second-order strategy as well as high-order strat-
egy [9]. In the first strategy, some researchers utilize single-label learning
method to deal with multi-label data. This strategy ignores the label correla-
tions, such as Binary Relevance (BR) [10]. In the second strategy, the pairwise
label correlations have caused extensive concern. Calibrated Label Ranking
(CLR) is a representative second-order method [11]. For the third strategy,
the correlations of all labels or a subset of all labels are taken into account,
such as LLSF-DL [12]. However, the last strategy consumes too much calcula-
tion cost and time cost. Consequently, we choose the second strategy to utilize
label correlations. However, most of previous methods that adopt the above
strategies assume the importance of labels are equivalent. That is, traditional
multi-label learning utilizes logical labels to estimate the relevance between
the feature set and label set so that the importance of labels can not be well-
reflected. To this end, some researchers study how to transform logical labels
into numerical labels for the importance of labels can be well-reflected [13–15].

By investigating numerous literature [16, 17], we find that most multi-
label feature selection methods are mainly divided into two categories: problem
transformation and algorithm adaption. The former category is to transforms
multi-label problem into several single-label problems, such as Pruned Problem
Transformation (PPT) [18]. In order to improve the classification performance,
Doquire et al propose PPT+MI that is a multi-label feature selection method
based on PPT. Besides, PPT+CHI that uses X 2 statistic method is developed
to select the important features according to PPT as well. However, these
above methods still may be lead to information loss of multi-label data. Con-
sequently, algorithm adaption method is proposed. Next, we introduce some
algorithm adaption methods.

We know that it is more difficult to excavate the useful information from
multi-label data than from single-label data by traditional feature selection
(problem transformation). In order to better excavate the useful information,
researchers design many multi-label feature selection methods by different
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criteria that have been widely used in multi-label data applications, such
as mutual-information-based and sparse-learning-based methods. We briefly
review these criteria by several representative multi-label feature selection
methods in this subsection.

Jian et al propose a sparse-learning-based method named Multi-label
Informed Feature Selection (MIFS). MIFS uses matrix factorization to obtain
a low-rank latent label matrix that preserves the local geometrical struc-
ture of labels from the instance-level perspective. By the above operations,
MIFS eliminates irrelevant and redundant information of label matrix. MIFS
is constructed as follows:

min
W,V,B

‖XW − V ‖2F + α‖Y − V B‖2F + β Tr(V TLV ) + γ‖W‖2,1 (1)

where X ∈ R
n×d and Y ∈ R

n×c denote the feature matrix and the label matrix
respectively. W ∈ R

d×c, V ∈ R
n×k and B ∈ R

k×c are regarded as the weight
matrix, the latent label matrix and the basis matrix respectively. L ∈ R

n×n

denotes Laplacian matrix. α, β and γ are three hyper-parameters of MIFS.
Besides, Cai et al also design a feature selection method based on the

sparse theory. This method imposes L2,0-norm onto the weight matrix and then
uses the Augmented Lagrangian Multiplier method to optimize the following
objective function. It is named RALM-FS:

min
W,V,B

‖Y −XW − 1bT ‖2,1 s.t. ‖W‖2,0 = k (2)

where X, Y and W have the same structure as X, Y and W of MIFS. b and
1 denote the bias term and the all-one-element vector respectively. k denotes
the number of the selected features.

Alternatively, Lin et al design a multi-label feature selection method named
Max-Dependency and Min-Redundancy (MDMR). This method utilizes fea-
ture dependency and feature redundancy to conduct feature selection. Besides,
Zhang et al propose a novel multi-label feature selection method by using label
redundancy (LRFS). LRFS considers a new feature relevance term based on
the conditional mutual information. LRFS has the following form:

J(fk) = LR(fk; Y )−
1

| S |

∑

fj∈S

I(fk; fj)

=
∑

yi∈Y







∑

yi 6=yj ,yj∈Y

I(fk; yj | yi)−
1

| S |

∑

fj∈S

I(fk; fj)







(3)

where LR(fk; Y ) and I(fk; fj) is regarded as the relevance term and the
redundancy term of features respectively. fk denotes a candidate feature from
the full feature set F . yi and yj are two labels from the full label set Y . To
balance the magnitude between LR(fk; Y ) and I(fk; fj), I(fk; fj) is divided
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over the | S | of the selected feature subset S. Both MDMR and LRFS belong
to multi-label feature selection methods based on mutual-information.

In addition, the various regularization term is used in numerous machine
learning algorithms, such as local learning regularizer and sparsity regularizer.
In local learning regularizer, an intuitive assumption is adopted, that is, if two
data points Xi· and Xj· in a high-dimensional ambient space are close, then Yi·

and Yj· in a low-dimensional space should be similar. Generally, we use graph
Laplacian that is a discrete Laplace operator to achieve the above assumption.
The following calculation method is obtained:

1

2

n
∑

i=1

n
∑

j=1

Sij‖Yi· − Yj·‖
2
2

=
1

2

n
∑

i=1

n
∑

j=1

Sij(Yi· − Yj·)(Yi· − Yj·)
T

=

n
∑

i=1

Yi·Y
T
i· Aii −

n
∑

i=1

n
∑

j=1

Yi·Y
T
j· Sij

= Tr(Y T (A− S)Y )

= Tr(Y TLY )

(4)

where L = A − S denotes a graph Laplacian matrix of matrix X. S and A

denote the symmetric affinity matrix and the degree matrix, respectively. For
sparsity regularizer, it can lead to a global structured learning [7, 19] when we
take the following form:

min
W
‖X −XW‖2F + α‖W‖2F (5)

where ‖X − XW‖2F = Tr(XT (I − W )T (I − W )X) = Tr(XTMX), M =
(I − W )T (I − W ). This is similar to the above the result of (4), However,
function (5) can preserve global structure by adjusting W.

3 The proposed framework

In this section, we propose a novel robust multi-label feature selection method
named RLEFS. RLEFS achieves a shared space by mapping patterns to exca-
vate semantic similarity structure between features and labels. Besides, we
reconstruct the label space to obtain numerical labels by label enhancement
regularization term, local and global regularization term during mining seman-
tic similarity structure process, which have provided excellent guidance for
feature selection process.

Generally, the least square regression model is utilized to learn the weight
matrix W . However, this model is very sensitive to noise. In order to make the
model more robust, we impose L2,1-norm onto the learning model, where this
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norm has been confirmed to be robust to noise [20]. Therefore, the following
learning model is given:

min
W
‖XW − Y ‖2,1 (6)

where W ∈ R
d×c denotes the feature weight matrix which can measure the

importance of each feature. That is, if the value of ‖Wi·‖2 is larger, then the
i-th feature of matrix X has greater contribution. In addition, Hu [21] and
Shang [22] motivate us to consider the local geometric structure of label set
from label-level perspective. It is vital to preserve the local structure of labels
due to label correlations in multi-label data. Moreover, the weight matrix W

is a mapping matrix from a high-dimension feature space to low-dimension
label space. If Wij = 0 (1 ≤ i ≤ d), then the i-th feature has no contribution
for distinguishing the j-th label Y·j . Otherwise, it indicates the i-th feature
has contribution to the j-th label. The larger the value is, the greater the
contribution is. Thus, W can measure the relevance between labels by the
following form:

1

2

c
∑

i=1

c
∑

j=1

Sij‖W·i −W·j‖
2
2

=
1

2

c
∑

i=1

c
∑

j=1

Sij(W·i −W·j)(W·i −W·j)
T

=

c
∑

i=1

W·iW
T
·i Aii −

c
∑

i=1

c
∑

j=1

W·iW
T
·j Sij

= Tr(W (A− S)WT )

= Tr(WLWT )

(7)

We incorporate (7) into (6) to obtain the following function:

min
W
‖XW − Y ‖2,1 + αTr(WLWT ) (8)

where L = A− S denotes a graph Laplacian matrix of label set. α is a trade-
off parameter between loss function and label graph regularization term. In
particular, we need to measure the correlations between X and Y by the
weight matrix. However, traditional methods utilize logical labels to estimate
the relevance between the feature set and label set so that the importance
of labels can not be well-reflected. Therefore, we transform logical labels into
numerical labels by a label enhancement regularization term during mining
semantic similarity structure process. We obtain the following form:

min
W,F,B

‖XW − F‖2,1 + αTr(WLWT ) + β‖F − Y B‖2,1 (9)

where β denotes a regularization parameter that adjusts the contribution of
the third term. F ∈ R

n×c denotes a co-embedding space between the feature
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space and label space. Moreover, we use F to capture numerical labels of label
matrix Y . This reconstruction process is similar to the construction of the
shared subspace. However, F is not a low-dimensional embedding subspace
for label matrix Y . Besides, we impose L2,1-norm onto both loss function and
label enhancement regularization term so that the impact of outliers in feature
set and label set can be reduced. Similar to the sparse regularizer mentioned in
related work, the designed label enhancement regularization term can preserve
the global structure as well. Hence, F in the third term is globally consistent
with matrix Y , while F preserves local geometric structure by using the first
two terms. Next, we impose L2,1-norm onto W , which ensures not only the row
sparsity of W but also can automatically select features during the multi-label
learning. Therefore, we reformulate the following function:

min
W,F,B

‖XW − F‖2,1 + αTr(WLWT ) + β‖F − Y B‖2,1 + γ‖W‖2,1 (10)

where γ denotes a regularization parameter that controls the sparsity of the
objective function. However, the row-sparse property of W is not always guar-
anteed by L2,1-norm [23]. Consequently, we impose the non-negative constraint
on W so that the row-sparse property is further enhanced. We also apply non-
negative constraints onto F and B, which can ensure the consistency of F and
Y , because Y has only non-negative logical values, 0 and 1. Note that, if the
elements of F are zero, the above function always leads to a trivial solution.
Consequently, we impose an orthogonality constraint on F . This orthogonal
constraint can ensure the minimum redundancy as well. Therefore, the final
objective function is reformulated as follows:

min
W,F,B

‖XW − F‖2,1 + αTr(WLWT ) + β‖F − Y B‖2,1 + γ‖W‖2,1

s.t.{W,F,B} ≥ 0, FTF = I
(11)

Next, we develop a simple yet effective optimization method for our objec-
tive function, to guarantee the convergence of function (11). This optimization
method with provable convergence will be described in detail in the next
section.

4 Optimization of RLEFS model

4.1 Optimization Schemes

In this section, we propose an efficient optimization method to solve the pro-
posed objective function in Section 3. we observe that the objective function
(11) is joint not-convex. That is, the Hessian matrix that is composed of
the second partial derivative of the multivariate function is not a positive
semi-definite matrix. In addition, the objective function is non-smooth due to
L2,1-norm. To solve these problems, we transform the objective function into
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several sub-solution processes, that is, a variable is updated and other vari-
ables are fixed. At the same time, a relaxed approach is introduced to solve
the non-smooth problem. Therefore, the objective function (11) is equivalent
to as follows:

Θ(W,F,B) =2Tr
[

(XW − F )TD1(XW − F )
]

+ αTr
(

WLWT
)

+ 2β Tr
[

(F − Y B)TD2(F − Y B)
]

+ 2γ Tr
(

WTD3W
)

s.t. {W,F,B} ≥ 0, FTF = I

(12)

where Θ(W,F,B) denotes the objective function (12) with respect to variables
W , F and B. D1, D2 and D3 are defined as follows:











D1ii =
1

2‖(XW−F )i·‖2+ǫ

D2ii =
1

2‖(F−Y B)i·‖2+ǫ

D3ii =
1

2‖Wi··‖2+ǫ

(13)

where D1ii , D2ii and D3ii denote the i-th diagonal element of D1, D2 and
D3 respectively. ǫ is a non-negative small constant. By integrating non-
negative and orthogonal constraints into function (12), we obtain the following
Lagrangian function:

L(W,F,B) =2Tr
[

(XW − F )TD1(XW − F )
]

+ αTr
(

WLWT
)

+ 2β Tr
[

(F − Y B)TD2(F − Y B)
]

+ 2γ Tr
(

WTD3W
)

+
λ

2

∥

∥FTF − I
∥

∥

2

F
− Tr

(

ΦWT
)

− Tr
(

ΨFT
)

− Tr
(

ΩBT
)

(14)

where Φ ∈ Rd×c
+ , Ψ ∈ Rn×c

+ and Ω ∈ Rc×c
+ denote the Lagrangian multiplier. λ

denotes the regularization parameter of orthogonal constraint. By taking the
derivative of function (14) w.r.t W , F and B respectively, we obtain:







∂L
∂W

= 2XTD1W − 2XTD1F + 2αWL+ 2γD3W − Φ
∂L
∂F

= −2D1XW + 2D1F + 2βD2F − 2βD2Y B + 2λFFTF − 2λF −Ψ
∂L
∂B

= −2βY TD2F + 2βY TD2Y B − Ω
(15)

We know that ΦijWij = 0, ΨijFij = 0 and ΩijBij = 0 according to
Karush-Kuhn-Tucker conditions. Therefore, we get the following functions:











(

XTD1W −XTD1F + αWL+ γD3W
)

ij
Wij = 0

(

−D1XW +D1F + βD2F − βD2Y B + λFFTF − λF
)

ij
Fij = 0

(

−βY TD2F + βY TD2Y B
)

ij
Bij = 0

(16)
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According to the above functions, we obtain the following update rules:























W t+1
ij ←W t

ij

(XTD1+αWS)
ij

(XTD1XW+αWA+γD3W )
ij

F t+1
ij ← F t

ij

(D1XW+βD2Y B+λF )
ij

(D1F+βD2F+λFFTF )
ij

Bt+1
ij ← Bt

ij

(Y TD2F)
ij

(Y TD2Y B)
ij

(17)

where t denotes the counter. L is a graph Laplacian matrix with mixed sign,
thus we decompose L into two non-negative parts, i.e., L = A − S. Besides,
some elements in the denominator will become zero during the update process.
To solve this issue, we add a very small constant to the denominator. Then,
we obtain the top-k features during feature selection process. The pseudo-code
of the proposed method is described in Algorithm 1.

Algorithm 1 RLEFS

Input:

1: The input feature matrix X ∈ R
n×d and the output matrix Y ∈ R

n×c;
2: Regularization parameters α, β, γ and λ.

Output:

3: Return the selected top-k selected features index set.
4: Initialize W ∈ R

d×c
+ , F ∈ R

n×c and B ∈ R
c×c
+ randomly;

5: t = 0;
6: Compute the degree matrix A and the affinity matrix S of the label

matrix Y ;
7: Repeat

8: Update the diagonal matrixD1,D2 andD3 by











D1ii =
1

2‖(XW−F )i·‖2+ǫ

D2ii =
1

2‖(F−Y B)i·‖2+ǫ

D3ii =
1

2‖Wi··‖2+ǫ

;

9: Update























W t+1
ij ←W t

ij

(XTD1+αWS)
ij

(XTD1XW+αWA+γD3W )
ij

F t+1
ij ← F t

ij

(D1XW+βD2Y B+λF )
ij

(D1F+βD2F+λFFTF )
ij

Bt+1
ij ← Bt

ij

(Y TD2F)
ij

(Y TD2Y B)
ij

;

10: t = t+ 1;
11: Until Convergence criterion is satisfied; Sort all features by ‖Wi·‖2, where

i=1,2,3,...,d, and select the top-k features.

4.2 Proof of convergence

In this subsection, we prove the convergence of the proposed optimization
method. First, we introduce the conventional gradient descent method to
deduce the updating rules in this paper. Then, the proposed optimization
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method is proved. Taking variable W as an example, we give the following
formula:

W t+1
ij ←W t

ij − η

(

∂Θ

∂Wt

)

ij

(18)

where the learning rate η is a small positive constant. To ensure non-negative
constraints and obtain a data-adaptive learning rate, we set:

η =
W t

ij

2 (XTD1XW + αWA+ γD3W )ij
(19)

We take (19) into (18), then the following result is obtained:

W t+1
ij ←W t

ij −
W t

ij

2 (XTD1XW + αWA+ γD3W )ij

(

∂Θ

∂Wt

)

ij

⇐⇒W t+1
ij ←W t

ij

(

XTD1 + αWS
)

ij

(XTD1XW + αWA+ γD3W )ij

(20)

Accordingly, we can obtain the above update rule that is a special case of
the gradient descent method. The convergence of the optimization method is
proved below. First, some related concepts are given [24, 25].

Definition 1. If G(ω, ω′) ≥ F(ω) and G(ω, ω′) = F(ω) are satisfied, then
G(ω, ω′) is considered to be an auxiliary function of F(ω).

Lemma 1 .If G(ω, ω′) is considered to be an auxiliary function of F(ω),
then F(ω) is a non-increasing function according to:

ωt+1 = argmin
ω
G(ω.ωt) (21)

Proof of Lemma 1: According to Definition 1 and function (21), we can
deduce that:

F(ωt+1) ≤ G(ωt+1, ωt) ≤ G(ωt, ωt) = F(ωt) (22)

where w denotes any elements of W . Next, we prove the convergence of RLEFS
w.r.t. W by a proper auxiliary function G(ω, ω′). Considering that the update
rule happen always on an element-by-element basis, we use Wij to denote the
(i, j)-th element of W . And Fij denotes the part of Θ(W ), which is relevant to
Wij . Therefore, the first-order and second-order partial derivatives of F(Wij)
are obtained:

F ′
ij =

(

2XTD1W − 2XTD1F + 2αWL+ 2γD3W
)

ij
(23)

F ′′
ij = 2

(

XTD1X
)

ii
+ 2α(L)jj + 2γ (D3)ii (24)
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According to the above process, we obtain the Taylor function of F(Wij):

Fij (Wij) = Fij

(

W t
ij

)

+ F ′
ij

(

W t
ij

) (

Wij −W t
ij

)

+
1

2
F ′′

ij

(

W t
ij

) (

Wij −W t
ij

)2

(25)
Inspired by NMF methods [26, 27], we set the following auxiliary function

about F(Wij):

G
(

Wij ,W
t
ij

)

=Fij

(

W t
ij

)

+ F ′
ij

(

W t
ij

) (

Wij −W t
ij

)

+

(

XTD1XW + αWA+ γD3W
)

ij

W t
ij

(

Wij −W t
ij

)2 (26)

Proof : If Wij = W t
ij in (26), then G(Wij ,W

t
ij) = Fij(W

t
ij). For another con-

dition G(Wij ,W
t
ij) ≥ F(Wij) in Definition 1, we need to prove the following

inequality:

(

XTD1XW + αWA+ γD3W
)

ij

W t
ij

≥
(

XTD1X
)

ii
+ α(L)jj + γ (D3)ii (27)

It is obvious that (27) is equivalent to the following form:

(XTD1XW+γD3W )ij =

d
∑

l=1

(XTD1X + γD3)ilW
t
lj

≥ (XTD1X + γD3)iiW
t
ij

(28a)

α(WA)ij = α

c
∑

l=1

W t
il(A)lj ≥ αW t

ij(A)jj

≥ αW t
ij(A− S)jj = αW t

ij(L)jj

(28b)

Therefore, G(Wij ,W
t
ij) is proved to be an auxiliary function of Fij(Wij). This

auxiliary function is brought into (21), then we obtain the update rule of W

by
∂G(Wij ,W

t
ij)

∂Wij
= 0:

W t+1
ij = W t

ij −W t
ij

F ′
ij

(

W t
ij

)

2 (XTD1XW + αWA+ γD3W )ij

= W t
ij

(

XTD1 + αWS
)

ij

(XTD1XW + αWA+ γD3W )ij

(29)

Finally, we prove the convergence of the proposed optimization method.
The converge proof of other variables (F and B) are similar to the above
process.
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5 Experimental study

In this section, we use ten multi-label benchmark data sets and six state-of-
the-art compared methods to conduct experiments, where all experiments are
performed on a 3.4GHz Intel Core (TM) i7-6700 machine with 16 GB main
memory.

5.1 Experimental data sets

In our experiment, all data sets used are fetched from Mulan Library [28]. We
found that these data sets were adopted in numerous literature about multi-
label learning [29, 30]. Besides, these data sets are collected from different
fields. For instance, the Enron data set is a subset of the Enron e-mail corpus
[31], which comes from text domain. Flags data set is collected from the image
field, it has 194 instances and seven labels that contains red, green and blue,
etc. Several data sets come from yahoo data sets that belong to multi-label
text (web page) categorization. The detailed description of all the data sets is
summarized in Table 1.

Table 1 Description of data set

#Data sets #Instances #Train #Test #Features #Labels

Arts 5000 2000 3000 462 26
Education 5000 2000 3000 550 33
Enron 1702 1123 579 1001 53

Entertain 5000 2000 3000 640 21
Flags 194 129 65 19 7

Reference 5000 2000 3000 793 33
Scene 2407 1211 1196 294 6
Science 5000 2000 3000 743 40
Social 5000 2000 3000 1047 39
Society 5000 2000 3000 636 27

5.2 Experimental settings

To comprehensively verify the classification performance of RLEFS, the fol-
lowing several classical and state-of-the-art feature selection methods are used
as compared methods.

1. PPT+MI [18]: it is a PPT-based multi-label feature selection method that
belongs to problem transformation.

2. PPT+CHI [32]: it is a PPT-based multi-label feature selection method that
uses χ2 statistic to select optimal features from feature set.

3. MIFS [33]: it is a sparse-learning-based multi-label feature selection method
that decomposes the original label matrix into a low-dimensional label space.

4. MDMR [34]: it is a multi-label feature selection method that utilizes max-
dependency and min-redundancy to select the optimal feature subset.
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5. LRFS [35]: it is the latest mutual-information-based multi-label feature
selection method that proposes a novel feature relevance term based on label
redundancy.

6. RALM-FS [36]: it uses the L2,0-norm regularization term to conduct feature
selection based on sparse-learning.

To facilitate experiments, we set some parameters in advance. The heat-
kernel function is adopted during structuring graph Laplacian matrix process,
where the parameters p and σ are set as 5 and 1 respectively. To ensure the fair-
ness, the hyper-parameters of all methods are tuned in {0.01, 0.1, 0.3, 0.5, 0.7,
0.9, 1.0}. We utilize the optimal parameters with respect to classification per-
formance during the training process, where 5-fold cross-validation is adopted.
Besides, a Binary Relevance model (BR) is used to transform multi-label data
into binary classification data so that linear Support Vector Machine (SVM)
and K-Nearest-Neighbors (KNN, K=3) can be used in our experiments, where
C of SVM is tuned in {10−4, 10−3,..., 103, 104}. Next, we adoptMicro−F1 and
Macro−F1 (a.k.a. Micro-average and Macro-average) based on F1−measure

as evaluation criteria to evaluate the proposed method and other compared
methods. Micro− F1 and Macro− F1 have the following form:











Micro-F1 =
∑

m
i=1 2TP i

∑
m
i=1(2TP i+FP i+FNi)

Macro-F1 = 1
m

∑m
i=1

2TP i

2TP i+FP i+FNi

(30)

where m and i represent the number of class labels and the i-th label respec-
tively. TP , FP and FN are composed by T , F , P and N , where T , F , P and
N denote True, False, Positive and Negative respectively. Moreover, the larger
both Micro− F1 (or Macro− F1), the better the performance of the method
is. In addition, we give our experimental framework in Figure 1.

5.3 Experimental results

To evaluate the classification performance of the RLEFS method, we conduct
numerous experiments on ten different multi-label data sets. The experiment
results are described in some tables and figures. First, we use the top 20% of
the total features in each data set to calculate the average result and standard
deviations of different methods (all features of Flags are adopted since it only
contains 19 features).

In Tables 2-5, we record the results of Macro− F1 and Micro− F1 of all
the methods by using SVM and K-NN (K=3) classifier. The best results are
represented by bold fonts in each row of tables. Moreover, the last row “Aver-
age” calculates the average values of all data sets under each feature selection
method. Observing these tables, we conclude that the proposed RLEFS obtains
the best result about the last row “Average”, where these best results are 0.177,
0.386, 0.200 and 0.401 in Table 2-5 respectively. Besides, RLEFS obtains the
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Fig. 1 Experimental framework

best results on most data sets used under all evaluation criteria, and it also
obtains the suboptimal result on several data sets according to Tables 2-5.

To better clearly show the classification performance of all compared meth-
ods. We use Figs. 2-5 to show the experimental results on six representative
data sets, including Arts, Education, Enron, Flags, Reference and Science. In
Figs. 2-5, The X-axis and Y-axis are used to indicate the already-selected fea-
tures and the classification performance of corresponding evaluation criteria,
respectively. The number of already-selected features is varied from top-1% to
top-20% of all features, where the step size is set to 1%. As shown in Figs.
2-5, we observe that RLEFS achieves the best classification performance. In
most cases, the classification performance of RLEFS increases first and then
stabilizes based on we have observed. Overall, the proposed RLEFS method
outperforms other compared methods in experiments.

Table 2 The results of all methods in terms of Macro− F1 (mean±std).

Data set PPT+MI PPT+CHI MIFS MDMR LRFS RALM-FS RLEFS

Flags 0.513±0.037 0.517±0.046 0.57±0.1 0.503±0.053 0.511±0.044 0.487±0.044 0.578±0.091

Scene 0.163±0.098 0.199±0.114 0.295±0.127 0.406±0.092 0.394±0.104 0.463±0.165 0.43±0.163

Enron 0.102±0.035 0.067±0.016 0.074±0.017 0.108±0.032 0.099±0.033 0.074±0.027 0.141±0.048

Arts 0.037±0.022 0.04±0.023 0.055±0.034 0.039±0.022 0.043±0.019 0.039±0.026 0.09±0.033

Education 0.034±0.025 0.034±0.026 0.019±0.017 0.035±0.025 0.048±0.028 0.052±0.014 0.068±0.02

Entertain 0.072±0.033 0.078±0.044 0.097±0.047 0.077±0.032 0.079±0.031 0.081±0.038 0.13±0.047

Reference 0.038±0.019 0.037±0.018 0.063±0.024 0.041±0.02 0.051±0.021 0.063±0.028 0.081±0.021

Science 0.034±0.022 0.032±0.021 0.034±0.016 0.038±0.028 0.039±0.029 0.036±0.02 0.069±0.024

Society 0.048±0.015 0.047±0.014 0.055±0.02 0.049±0.016 0.049±0.015 0.032±0.012 0.075±0.025

Social 0.073±0.03 0.081±0.031 0.031±0.016 0.075±0.031 0.083±0.031 0.014±0.012 0.103±0.039

Average 0.111 0.113 0.129 0.137 0.14 0.134 0.177
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Table 3 The results of all methods in terms of Micro− F1 (mean±std).

Data set PPT+MI PPT+CHI MIFS MDMR LRFS RALM-FS RLEFS

Flags 0.665±0.04 0.663±0.038 0.722±0.05 0.649±0.043 0.666±0.04 0.631±0.048 0.719±0.046

Scene 0.168±0.1 0.205±0.117 0.325±0.135 0.429±0.096 0.415±0.108 0.476±0.164 0.443±0.162

Enron 0.47±0.043 0.353±0.019 0.372±0.027 0.474±0.049 0.446±0.056 0.389±0.059 0.525±0.043

Arts 0.09±0.053 0.098±0.055 0.139±0.078 0.095±0.052 0.104±0.045 0.102±0.061 0.21±0.073

Education 0.124±0.083 0.12±0.085 0.073±0.059 0.127±0.081 0.15±0.081 0.193±0.056 0.228±0.068

Entertain 0.19±0.088 0.183±0.103 0.228±0.112 0.19±0.087 0.184±0.082 0.214±0.1 0.285±0.119

Reference 0.348±0.077 0.355±0.074 0.359±0.105 0.356±0.069 0.377±0.066 0.404±0.132 0.418±0.108

Science 0.115±0.059 0.11±0.055 0.129±0.057 0.127±0.074 0.129±0.078 0.097±0.054 0.194±0.071

Society 0.316±0.033 0.317±0.032 0.3±0.042 0.319±0.017 0.321±0.016 0.223±0.059 0.336±0.067

Social 0.47±0.097 0.445±0.108 0.276±0.136 0.465±0.106 0.465±0.119 0.149±0.112 0.498±0.142

Average 0.296 0.285 0.292 0.323 0.326 0.288 0.386

Table 4 The results of all methods in terms of Macro− F1 (mean±std).

Data set PPT+MI PPT+CHI MIFS MDMR LRFS RALM-FS RLEFS

Flags 0.448±0.011 0.449±0.011 0.527±0.078 0.443±0.018 0.453±0.022 0.439±0.011 0.538±0.084

Scene 0.348±0.069 0.368±0.072 0.498±0.086 0.555±0.075 0.547±0.082 0.581±0.108 0.541±0.117

Enron 0.116±0.019 .074±0.012 0.087±0.014 0.115±0.02 0.109±0.022 0.081±0.026 0.126±0.018

Arts 0.088±0.022 0.091±0.022 0.095±0.033 0.095±0.025 0.101±0.025 0.071±0.025 0.114±0.032

Education 0.082±0.019 0.083±0.022 0.043±0.018 0.082±0.019 0.087±0.02 0.084±0.023 0.089±0.021

Entertain 0.147±0.019 0.151±0.022 0.138±0.042 0.148±0.018 0.145±0.02 0.131±0.04 0.172±0.043

Reference 0.079±0.017 0.076±0.016 0.088±0.024 0.081±0.017 0.085±0.017 0.077±0.026 0.1±0.02

Science 0.065±0.023 0.066±0.022 0.062±0.015 0.067±0.024 0.067±0.023 0.057±0.021 0.099±0.024

Society 0.083±0.015 0.083±0.016 0.089±0.021 0.084±0.014 0.085±0.013 0.053±0.016 0.095±0.022

Social 0.099±0.034 0.107±0.03 0.051±0.017 0.107±0.032 0.111±0.027 0.038±0.012 0.123±0.042

Average 0.156 0.155 0.168 0.178 0.179 0.161 0.2

Table 5 The results of all methods in terms of Micro− F1 (mean±std).

Data set PPT+MI PPT+CHI MIFS MDMR LRFS RALM-FS RLEFS

Flags 0.615±0.011 0.615±0.011 0.662±0.03 0.611±0.017 0.616±0.018 0.606±0.012 0.672±0.036

Scene 0.348±0.067 0.367±0.071 0.493±0.086 0.556±0.075 0.547±0.082 0.577±0.105 0.541±0.116

Enron 0.454±0.013 0.345±0.026 0.41±0.024 0.443±0.044 0.419±0.048 0.365±0.073 0.474±0.041

Arts 0.181±0.037 0.187±0.033 0.202±0.052 0.189±0.034 0.196±0.027 0.182±0.043 0.251±0.037

Education 0.23±0.043 0.227±0.043 0.183±0.055 0.231±0.04 0.243±0.046 0.26±0.05 0.271±0.054

Entertain 0.284±0.03 0.285±0.033 0.276±0.065 0.283±0.03 0.281±0.034 0.273±0.065 0.329±0.074

Reference 0.373±0.044 0.366±0.04 0.382±0.055 0.378±0.044 0.386±0.046 0.386±0.089 0.427±0.059

Science 0.162±0.028 0.162±0.026 0.171±0.037 0.174±0.034 0.177±0.035 0.16±0.048 0.228±0.04

Society 0.317±0.023 0.317±0.026 0.305±0.043 0.312±0.032 0.315±0.028 0.255±0.05 0.328±0.041

Social 0.451±0.052 0.442±0.055 0.338±0.081 0.451±0.058 0.455±0.054 0.315±0.054 0.491±0.081

Average 0.342 0.331 0.342 0.363 0.364 0.338 0.401

5.4 Sensitivity analysis of parameters

Like many other methods, we study the sensitivity of parameters of RLEFS,
where these parameters contain α, β, γ and λ. In this subsection, we take
data set Arts as an experimental subject. First, these parameters are tuned in
{0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. If the traditional gird search is performed,
it could be time-consuming due to four parameters in RLEFS. To this end,
one parameter is tuned while the other three parameters are fixed, where
we set the fixed parameters as 0.5 in this paper. We only use the analysis
result of SVM classifier for convenience. From Fig. 6 (a)-(d), we observe that
the classification performance is sensitive to the values of these parameters.
However, RLEFS achieves better results in 0.3-0.7 in most cases. In addition,
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(a) (b) (c)

(d) (e) (f)

Fig. 2 All compared methods on six data sets using SVM classifier in term of Macro−F1.

(a) (b) (c)

(d) (e) (f)

Fig. 3 All compared methods on six data sets using SVM classifier in term of Micro−F1.

a more large candidate gird set can be employed in real-world applications to
ensure satisfactory classification performance.

5.5 Convergence and complexity analysis

To verify the convergence of the proposed RLEFS method, we use four bench-
mark data sets (Arts, Education, Enron and Science) to conduct convergence
experiments. The results are shown in Fig. 7. We observe that RLEFS tends to
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(a) (b) (c)

(d) (e) (f)

Fig. 4 All compared methods on six data sets using 3NN classifier in term of Macro−F1.

(a) (b) (c)

(d) (e) (f)

Fig. 5 All compared methods on six data sets using 3NN classifier in term of Micro− F1.

converge in several iterations and then stable. We can also observe similar situ-
ations on other data sets. Afterward, the computational complexity of related
methods are analyzed. Suppose one data set has n instances with q features,
and it contains l labels. The number of already-selected features is recorded
as k. The computation complexity of MDMR and LRFS are O(k(n − k))
and O(ql2 + kq) respectively. MIFS requires O(cnq + n2) in each iteration.
The computation complexity of RALM-FS is O(q3) when an inverse matrix
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(a) alpha (b) beta (c) gamma (d) lambda

Fig. 6 Micro-average and Macro-average of RLEFS on Arts w.r.t all parameters (SVM
classifier).

(q ∗ q) is calculated. The computation complexity of the proposed RLEFS is
O(qn2 + nq2) in each iteration.

(a) (b) (c) (d)

Fig. 7 All compared methods on six data sets using 3NN classifier in term of Micro− F1.

6 Conclusions

In this paper, we propose a joint multi-label feature selection framework
RLEFS. RLEFS has the following several appealing characteristics. First,
RLEFS utilizes a shared space by mapping patterns to excavate semantic sim-
ilarity structure in features and labels. It can deal with the problem that
previous methods only devote attention to either of feature set or label set. Sec-
ond, RLEFS reconstructs the label space to obtain numerical labels by a label
enhancement regularization term during mining semantic similarity structure
process. Therefore, RLEFS can better reflect the importance of labels in real-
world applications. Furthermore, the local and global structures are considered
to ensure RLEFS can capture effective information as much as possible dur-
ing feature selection process. To verify the effectiveness of RLFES, we conduct
numerous experiments on ten multi-label data sets. Besides, RLEFS is com-
pared to six classical and state-of-the-art feature selection methods (PPT+MI,
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PPT+CHI, MIFS, MDMR, LRFS and RALM-FS). By analyzing these exper-
imental results, we conduct that the proposed RLEFS method outperforms
other compared methods.

In future work, multi-label feature selection is still our main research
direction. However, we will furthermore study personalized multi-label feature
selection under non-convex optimization due to its broad prospects.
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