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Abstract
With more and more news articles appearing on the Internet, discovering causal relations
between news articles is very important for people to understand the development of news.
Extracting the causal relations between news articles is an inter-document relation extraction
task. Existing works on relation extraction cannot solve it well because of the following
two reasons: (1) most relation extraction models are intra-document models, which focus
on relation extraction between entities. However, news articles are many times longer and
more complex than entities, which makes the inter-document relation extraction task harder
than intra-document. (2) Existing inter-document relation extraction models rely on simi-
larity information between news articles, which could limit the performance of extraction
methods. In this paper, we propose an inter-document model based on storytree information
to extract causal relations between news articles. We adopt storytree information to integer
linear programming (ILP) and design the storytree constraints for the ILP objective function.
Experimental results show that all the constraints are effective and the proposed method out-
performs widely used machine learning models and a state-of-the-art deep learning model,
with F1 improved by more than 5% on three different datasets. Further analysis shows that
five constraints in our model improve the results to varying degrees and the effects on the
three datasets are different. The experiment about link features also suggests the positive
influence of link information.

Keywords Relation classification · News article · Causal relation · Constraint

1 Introduction

News keeps people informed about events happening around the world. With the increase in
the amount of information, the amount of newsonnewswebsites has exploded.Understanding
the relation between various news articles allows us to better sort out the development of
events and has a deeper understanding of various news. Therefore, it is meaningful and
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necessary to extract the relation between news articles. In recent years, there has been more
research on news analysis [18, 20, 37, 42].

Relation extraction (RE) is an important natural language processing task of identifying
the relation between entities. The extracted relations can be used as entity links to build
entity graphs or networks, which are fundamental for many downstream tasks, such as entity
graph analysis [47], graph-based question-answering [6], and decision support system [24].
In recent years, more and more attention has been devoted to the extraction of the causal
relation, and many methods are proposed for this task. Extracting causal relation helps to
identify cause-effect entity pairs which provide essential information for natural language
understanding.

Unlike the intra-document task identifying the relations of trivial events, the inter-
document RE task focuses on the relation of documents, the documents can be academic
papers, news articles, etc. For inter-document RE tasks, the intra-document RE model is
difficult to work is because for the following reasons: (1) Documents are much more com-
plicated than entities. Taking news articles as an example, a 500-word news article is dozens
of times longer than an intra-document task data. If we use the intra-document task model
based on word embedding, the complexity of the model will become higher and difficult to
converge, which makes the model difficult to train. (2) In the intra-document task, there will
be connectives between entities or sentences (such as ‘because’ and ’so’). The connectives
can help the model determine the relation between entities. But in the inter-document task,
there is no direct connection between articles. Therefore, the intra-document taskmodelswith
connectives as an important feature are difficult to be effective. In this study, we focus on the
causal relation between news articles. The usual inter-document RE methods use classifiers
to determine the relation based on the similarity between two documents [13, 21], so the
performance of these methods heavily relies on the accuracy of similarity. In two news arti-
cles with causal relation, their characters, entities, and other elements are similar. However,
it is also possible that two similar news articles are not causally related. For example, news
articles Da and Db describe two cases committed by one murderer in the same place, which
are not causally related. News article Dc describes the arrest of this murderer, apparently
causally related to both Da and Db. But the similarity between Da and Db is higher than the
similarity between Da and Dc. In real data, there are many similar examples, so the classifier
is likely to misclassify.

Some previous relation extraction models [32, 45] organize events into a storyline. The
storyline is useful for temporal relations because of its linear structure, but it is not suitable
to demonstrate complex causal relations between events. In recent studies, the storytree [19]
structure is successfully employed to extract events from news text. The storytree is a tree
structure to visualize the news corpora, and each document belongs to a story that is a node
in the storytree. When news documents are organized and clustered into several stories, the
storytrees are used to show the evolution of the stories. Intuitively, the tree structure could
provide features that benefit our causal relation extraction. Therefore, we use the relative
position of nodes to identify the relation between two events in this paper. The storytree not
only clusters and organizes news events into stories, but also provides extra features of story
links and positions for causal relation extraction, which is why the storytree is effective in
our research.

In this study, we propose a causal relation extraction model. First, we crawled news
reports separately from the three news websites. Each news article is saved as a file. The
relevant information of the news, including the release time and content, is stored. We use
data augmentation technology to enlarge the datasets and label the data. We end up with
three datasets containing over 1000 news articles. We employ EventX [19] to cluster the

123



A storytree-based model for inter-document causal... 829

news articles and generate the storytree of each dataset and use Integer Linear Programming
(ILP) to model the causal relation between two news articles by designing constraints and
adjusting the objective function. We also take storytree information into the ILP framework
to formulate constraint learning. This not only improves the base classifier of our model by
more than 20%, but our model also outperforms the widely used classification models by
more than 5%.

The contributions of our model can be summarized as follows:

1. We propose a novel inter-document causal relation extraction model for news articles.
Our task is different from the intra-document RE task because news articles are longer
and more complex than the entities in the intra-document RE task. So extracting the
causal relation between news articles is a new and meaningful task. Our model uses
advanced data processing methods and models and achieves good performance.

2. We are the first to use the storytree information in the causal relation extractionmodel and
achieve good performance. We use the storytree information to design five constraints
in the Integer Linear Programming model and prove the effectiveness of each constraint
through an ablation experiment.
The rest of this article is organized as follows. First, Sect. 2 gives an overview of the
related work about relation extraction and timeline generation. Next, Sect. 3 introduces
the formal definition of this task. Section 4 describes the structure and detail of ourmodel.
The datasets and experimental results are presented in Sect. 5. Section 6 analyzes and
discusses the results further. Finally, we end up with conclusions in Sect. 7.

2 Related work

Intra-document relation extraction is to extract various relations between entities in a docu-
ment. It can be divided into sentence-level RE, document-level RE, etc. In the last decade,
many intra-document relation extraction approaches have been proposed. Some methods
are about sentence-level RE, which is extracting relational facts from a single sentence.
With the development of neural models, various models have been proposed to encode rela-
tional patterns of sentence-level entities. Despite the state-of-the-art performance [8, 16, 31],
sentence-level RE ignores the entity relations in multiple sentences. Therefore, in recent
years, more studies focus on document-level RE [41]. The new dataset constructed from
Wikipedia and Wikidata called DocRed [46] lays a good foundation for document-level RE.
BERT-based models are proposed and achieve good performance on DocRED [14, 26]. Hier-
archical Inference Network (HIN) is proposed to make full use of the abundant information
and achieves state-of-the-art performance on DocRED [40].

Inter-document RE is the study of moremacroscopic events, and events are represented by
the whole document. Previous work has dealt with inter-document relations in two ways. The
first way is to use feature-based models. A semi-supervised classification algorithm learns
from dissimilarity and similarity information on labeled and unlabeled data; this approach
uses a novel graph-based encoding of dissimilarity and can handle both binary and multi-
class relation classification [13]. Social relations and text similarities are incorporated into
building microblog-microblog relations [21]. MuReX is a complete system to discern salient
connections and facts from a set of related documents [37]; ILP is used to ensure the relevance
of user queries to facts, but this study focuses on information extraction and visualization.
HINT [5] introduces the shared ‘anchor texts’ to connect the comparative news, and then, two
similarity matrices, as well as a transition matrix for cross-text-source knowledge transfer,
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are constructed for clustering the news to get ‘comparative’ information between news. Some
researches focus on Improving the Quality of features. A feature-based model of two parts
is proposed, and the first part is an extension of a hierarchical topic model that induces back-
ground, relation specific, and argument-pair-specific feature distributions. The second part is
a perceptron trained to match an objective function that enforces constraints semantics and
noises [35]. The second way is to use deep learning methods. Shallow and deep learning are
both used for event-relatedness classification [15]; they compare the performance of shallow
learning methods and deep learning approaches based on long short-term memory (LSTM)
recurrent neural network. Other studies are mainly about the implicit relation of discourse
(IDRR), which is shorter than news data. The causal relation is one of the implicit relations
between discourses. A stacking neural network model is proposed in which a convolutional
neural network (CNN) is utilized for sentence modeling and a collaborative gated neural net-
work (CGNN) is for feature transformation [30]. A hierarchical multi-task neural network
with a conditional random field layer (HierMTN-CRF) is proposed for multi-level IDRR
[44] and achieves significantly better and more consistent results over several competitive
baselines on multi-level IDRR. In our study, the news document is much longer than the
discourse, which greatly increases the training cost of the deep learning model, so we use a
feature-based method to solve the causal relation extraction of news documents.

In recent years, constrained conditional models (CCMs) [7] are proposed to augment the
learning of conditionalmodelswith declarative constraints. Integer linear programming (ILP)
is used as the inference framework of CCM in RE tasks [12, 27]. In this paper, ILP is also
used to optimize the classification model by designing constraints related to the storyline
information in the data.

Storyline extraction is aimed at summarizing the development of certain related events.
Many studies of storyline extraction are from text. Yang et al. [45] combine the similarity
information of events, the distance of events, temporal sequence, and the distribution of
documents along the timeline to score the relation of two events; they use a directed acyclic
graph (DAG) to model the evolution of events. Ls et al. [22] construct an Event-Oriented
Similarity Graph to represent the relationship among retrieved event news documents and
develop a community detection algorithm to segment sub-events which are consequently
chained into a cohesive event line. Radinsky and Horvitz [32] clusters text and uses entity
entropy to generate storylines. Besides, an approach is based on discrete dynamic topic
modeling and Hidden Markov Model for event detection and tracking; then, the events that
would persist in the next time slice are predicted [23]. To improve the clustering accuracy,
more multi-stage clustering models are proposed. Shahaf et al. [36] propose a two-stage
clustering process and use word clustering to retain most of the mutual information between
words and documents. Another two-stage approach consisting of date selection and date
summarization is proposed to build timelines [39]. Story Forest [19] is proposed to cluster
documents into events. It connected related events in growing trees to tell evolving stories.
The two-layer clustering approach called EventX is based on both keyword graphs and
document graphs. Story Forest accurately identifies events and organizes news text into a
logical structure. In this paper, we used EventX to cluster the data and build the storytree of
the data.
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3 Task definition

In this study, the objective is to extract the correct causal relation news article pair from the
datasets.Wemodel inter-document causal relation extraction as a binary classification task of
the triplet. Therefore, the inter-document causal relation extraction task is defined as follows:
given a set of news articles D = {d1, d2, . . . , dn}. The model aims to correctly output a set
of triples Y that indicate whether there is a causal relation between two news articles:

Y = {(di , d j , r)|di , d j ∈ D, r ∈ {0, 1}} (1)

where r = 1 means that there is a causal relation between news article di and d j . Note that
(di , d j , r) = (d j , di , r), because we consider that causal relation between two news article
is undirected, the news article occurs earlier is the source and the other is the target.

In this task, each news article is a full news report, and each article is associated with
a template that consists of basic information about the news, such as ID, type, time, etc.
Some information is mandatory, e.g. ID, type, content, time, and others are optional, e.g., the
location of the link contained in the news report. According to Wikipedia’s definition of the
causal relation1, causality is influenced by which one event, process, state, or object (a cause)
contributes to the production of another event, process, state, or object (an effect) where the
cause is partly responsible for the effect, and the effect is partly dependent on the cause.
Taking news articles as an example, news articles a have a causal relationship with news
articles b, which means that the generation of a leads to the generation of b (or vice versa),
one happens before and the other happens in Behind. What happens in front is "cause", what
happens behind is "effect". If the "cause" does not happen, then the "effect" does not happen
either. Figure 1 provides some examples of causality in news articles. Article and news article
have the same meaning in the following text.

At present, there is little research on the task of inter-document causal relation extraction.
We have given a clear task definition and proposed a new model based on the storytree for
this task.

4 Model

The structure of the model is shown in Fig. 2. We first preprocess the news articles by
removing the stop words and punctuations and building the vocabulary list of each article.
Then, we extract the keywords of each article. All the keywords are fed into the storytree
generation part; we cluster the keywords through the EventX algorithm and then build the
storytree. In addition, we extract the features of each article and use Logistic Regression (LR)
as the model classifier. In the ILP model, storytree information is used to design constraints.
We design 2 basic constraints and 5 types of constraints based on storytrees.

4.1 Preprocessing

For each news article, the length of the text is very long and the content is complex, so
preprocessing is very important. First, we clean the text to remove punctuation, symbols, etc.,
in the text. Then, we performword segmentation, entity extraction and other operations on the
text through the spaCy toolkit. SpaCy is a library for advanced Natural Language Processing
in Python; it features state-of-the-art speed and neural network models for tagging, parsing,

1 https://en.m.wikipedia.org/wiki/Causality.
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document A

ID 3
TIME ‘January 27, 2020’
TITLE ‘Kobe Bryant Killed in Helicopter Crash at 41’
TEXT ‘Kobe Bryant was killed in a helicopter crash in Calabasas Sunday morning, a 

source confirms to PEOPLE. The NBA legend, 41, was reportedly traveling with 
at least three other people in his private helicopter when it went down, according 
to ...’

...

document B

ID 8
TIME ‘February 28, 2020’
TITLE ‘Kemba Walker explains keeping No. 8 to honor Kobe Bryant: 'We want to keep 

his legacy going'
TEXT ‘Whenever Kemba Walker looks down at the No. 8 on his jersey, he'll be reminded 

of the Mamba Mentality. While others in the NBA switched their jersey numbers 
in the wake of Kobe Bryant's tragic death, Walker instead decided to...’

...

document C

ID 24
TIME ‘March 12, 2020’
TITLE ‘State Department warns Americans to reconsider traveling abroad due to 

coronavirus'
TEXT ‘The U.S. State Department warned Americans late Wednesday to avoid traveling 

abroad, in response to a coronavirus outbreak that's reached pandemic 
status.Also Wednesday, the...’

...

Fig. 1 Examples of causal relations. The occurrence of document A (the death of Kobe) led to the occurrence
of document B (the tribute to Kobe), A is the "cause," and B is the "effect." Both A and B have no causal
relation with document C because C does not describe the same story with A and B
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named entity recognition, and text classification. We obtain all entities in the news article d
through entity extraction and count the occurrence frequency of the entities. Then, we filter
out the entity set En = {e1, e2, ..., en} whose entity occurrence frequency is greater than 1,
where ei is the i th entity in the text. Additionally, we obtain the vocabulary list V of document
d and compute the TF-IDF value for each word in the vocabulary. TF-IDF [38] is used to
assess the importance of a word to a document set or a document in a corpus. TF-IDF is
the product of two statistics, term frequency, and inverse document frequency. The TF-IDF
value for word v is calculated by:

tfidfv = fv
∑

vi∈V fvi
∗ log

|D|
|{d ∈ D : v ∈ d}| , (2)

where V is the vocabulary list of document d , D represents the set of documents, and fv
refers to the frequency of v in document d . The first part of the equation is the term frequency
(TF), and the second part is the inverse document frequency (IDF). We take the top m words
with the highest TFIDF value in each article as Kw = {v1, v2, ..., vm}. Finally, we merge the
entity set En with the Kw as the keyword set Kd for document d , where Kd = En ∪ Kw.

4.2 Storytree generation

Storytree generation consists of two parts. The first part is to perform 2-layer clustering with
the EventX algorithm. The second part is building the storytree.

EventX EventX is a 2-layer clustering algorithm based on keyword graphs and document
graphs [19]. At the beginning of the algorithm, a keyword co-occurrence graph G = (V , E)

is first constructed for the news article corpus D. Each node in G is a keyword extracted by
Sect. 4.1. The edges is E = {ei j | f (ki , k j , D) > δe,Pr(ki | k j ) > δp,Pr(k j | ki ) > δp},
where ki is the keyword of a news article in corpus D, f (ki , k j , D) indicates the times of
co-occurrence of ki and k j in one news article, Pr(ki | k j ) is calculated by Eq. 3, which
refers to the conditional probabilities of the occurrence of ki and k j , DFi, j represents the
number of news articles that contain both keyword ki and k j , and DFj is j is the document
frequency of keyword k j . δe (we set δe = 2 in out experiments) and δp (we use 0.05) are the
thresholds.

Pr(ki | k j ) = DFi, j
DF j

. (3)

In the first layer of clustering, keywords in all news articles are used to form a keyword
graph and segment the graph. For each keyword subgraph, a subset of the corpus that is
highly relevant is retrieved. In the second layer, news articles under each keyword subgraph
form an article graph, and the connected edges represent two articles telling about the same
event. Community detection is performed on the article graph. Each news article subgraph
community represents an event. The details of the algorithm are shown in Algorithm 1.
EventX gathers relevant news articles into one category through the two-layer clustering,
and each news article community can be understood as a story. Based on these stories, we
can construct storytrees for them.

Growing stories After event clustering is obtained, the different event nodes are inserted
into the existing storytree or form new stories to form the storytree. We identify the related
storytree of each event node by calculating the average similarities of news articles in the
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Algorithm 1 EventX Clustering Algorithm
Input: A set of news articles D = {d1, d2, ..., d|D|}, with extracted keywords described in Sect. 4.1.
Output: A set of events E = {E1, E2, ..., E|E |}.
1: Construct a keyword co-occurrence graph G of D based on all news articles’ keywords.
2: Split G into a set of strongly connected keyword communities C = {C1,C2, ...,C|C |} by a community

detection algorithm[29].
3: for each keyword community Ci , i = 1, ..., |C | do
4: Calculate the cosine similarity between the TF-IDF vector of each news article and the keyword com-

munity, compare it to a threshold δ. The news articles subset Di that is highly relevant to the keyword
community is retrieved.

5: Connect news article pairs in Di with the similarity between news articles to form a document relation-
ship graph Gd

i .

6: Based on the community detection algorithm, Gd
i , is split into a set of news article communities Cd

i =
{Cd

i,1,C
d
i,2, ...,C

d
i,|C |}.

7: end for

event node and existing storytrees. The different event nodes are inserted into the existing
storytree or form new stories to form the storytree.

The storytrees generated by two-layer clustering sort out the logical relation of news
articles and help us understand the position of each article in the story, so the storytree infor-
mation is significant for our model. Storytree information is employed to design constraints
in the ILP model.

4.3 Similarity measurement

The similarity between news articles is an important feature; cosine similarity, best match
25 (BM25) [17, 34] and Jaccard similarity are widely used in existing bag-of-words (BoW)
inter-document similarity measures. In this paper, we use a new measure for inter-document
similarity measurement called Sp [1]. The similarity of two news articles a and b can be
formulated by Eq. 4:

ssp(a, b) = 1
|Ta∪Tb|

∑

ti∈Ta∩Tb
log N

|{c∈D:min(ai ,bi )≤ci≤max(ai ,bi )}| (4)

where Ta , Tb is the set of keywords in news article a and b, D is the collection of news
articles, N is the number of news articles in D, ai , bi and ci represents the occurrence
frequency of keyword ki in news article a, b and c, respectively. This measure does not
need term weighting, and we can also know from the formula that it is related to traditional
Jaccard similarity and IDF term weighting. In [1], they identify the shortcomings of the
underlying assumptions of term weighting in the inter-document similarity measurement
task. In their paper, some examples were shown to prove that only judging the importance
of the weight of terms in the BoW vector of one article can be counter-productive in inter-
document similarity measurements. In inter-document similarity measurement experiments,
Sp has the best performance over BM25, cosine similarity, and Jaccard similarity, so we use
Sp in the feature extraction part and the second layer clustering of events clustering part to
measure the similarity of news articles in this paper.
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4.4 Feature extraction

We have extracted the keywords from the news articles before we build the feature set. In
our model, the keyword set is like a summary of the news described in the article, so the
keyword set should contain named entities and verbs. We have used spaCy to extract the
named entities in the article and put the entities mentioned more than once into the keyword
set. The verbs with high TF-IDF values in the article have also been put into the keyword
set. The keyword sets are used to calculate the similarity between news articles. We use the
same set of features for training all the classifiers.

Keyword features According to Sect. 4.1, the keywords of each news article have been
extracted. A simple way to get the keyword level similarity information is to get the number
of common keywords between news articles. We obtain the keyword features by calculating
the number of words in the intersection of the two article keyword sets.

Lexical features We first use Sp to calculate the similarity of each pair of news articles.
The headlines and first sentences of news articles tend to generalize the news and are used
as features in document-level classifiers [19]. To capture more information about the simi-
larity between news articles, we calculate the TF-IDF similarity of the title and the TF-IDF
similarity of the first sentence.

Semantic features We train a Latent Dirichlet Allocation (LDA) [3] model based on the
content of the article to get the LDA feature vector. Then, we calculate the LDA cosine
similarity of two news articles as the semantic feature of our model.

Link features On news sites, we often see text with hyperlinks that redirect to other news
articles. These links represent relations between news articles directly and accurately, so we
consider them to be a feature of classifiers. Locations of texts with links are saved when we
collected the news. We define lwa is the word set of link text in article a, wb is the keyword
set of article b, a occurs later than b. The link characteristics of two articles are calculated
by |lwa ∩ wb|.

4.5 Logistic regression

The logistic regression (LR) model is the base classifier of our model using all the features.
Compared with other classifiers, logistic regression is more suitable for binary classification,
and the training speed is fast. In addition, the output of the model is a probability value, which
is very convenient for the access of the following integer linear programming model. In LR
model, the parameters of each feature are obtained by the gradient ascent method. For the
binary classification problem coded by y ∈ {0, 1}, we use the sigmoid function to calculate
the probability that each example is a positive example: P(y = 1|x) = exp(β0 + βT xi )(1+
exp(β0 + βT xi )), where β

′
s are the parameters and x represents the features. The output of

the LR model is input to the ILP system.

4.6 Storytree based causal RE using ILP

Integer linear programming (ILP) is a type of linear programming in which all decision
variables are integers. In our research, the decision variable x ∈ {0, 1} is because our task is a
binary classification problem. The ILP system performs global inference through constraints
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for resolving the causal relation between news articles. We first design two basic constraints
based on news articles and then design five types of constraints based on the information of
nodes and links. We define pi j as the confidence score of the causal relation between article
i and j obtained by the classifier, D is the set of news articles, and Dp represents the set of
news article pairs. xi j ∈ {0, 1} represents the decision variable of the news article pair i and
j in the ILP model. After the integer linear programming problem is solved, xi j is the final
classification result of the news article pair i and j .

Basic constraints One of the two basic constraints is that the system discourages causal
relations between two news articles occurring at the same time. The other is that the system
discourages causal relations between two news articleswith very low similarity. The objective
function is formulated with Eq. 5, and two basic constraints are formulated with Eqs. 6 and
7,

YObj = max
∑

i∈D
∑

j∈D
[xi j pi j+¬xi j(1−pi j )] (5)

∀(i, j) ∈ Dp, xi j ≤ ti j (6)

∀(i, j) ∈ Dp, xi j ≤ si j
kb

(7)

where ti j is the absolute value of the time difference between news articles i and j , si j is
the similarity of article i and j , 0 ≤ kb < 1 is a hyperparameter to reduce the model’s
dependence on similarity.

Same node constraints (SMN) Each node of the storytree represents an event, and an event
may include more than one news article. If two news articles are in the same node, they
are probably about the same topic, and more likely to have a causal relation, so the system
encourages two articles on the same node to have a causal relation. The constraint can be
represented by Eq. 8:

∀(i, j) ∈ Dp, xi j ≥ (1i∈N ∧ 1 j∈N )(ksn − ti j
tm

) (8)

In the above equation, N is a node of the storytree, tm is the maximum of the absolute value
of the time difference between news articles in the dataset, and ksn is the hyperparameter. We
define 1condition = 1 if condition is true, otherwise 1condition = 0. In Eq. 8, 1i∈N ∧1 j∈N means
that this constraint is valid only if news articles i and j are in the same node; otherwise, the
equation is always established and the constraint is invalid.

Root node constraints (RTN) The root node of the storytree is the beginning of the story.
The earliest article of the root node is the root article. If the root article did not occur, the story
might not exist. Therefore, the root article participates in multiple causal links. We extract
the root article from each storytree and design an additional constraint, shown in Eq. 9,

∀(i, j) ∈ Dp, xi j ≥ 1i∈R ∨ 1 j∈R (9)

where R is the root article set of storytrees, the equation shows that the system fully encourages
the root article to participate in causal relations. In [25], they defined the causal relation with
‘the CAUSE event starts before the EFFECT event’. In our paper, the CAUSE event is the
root article, and it is the earliest news article in the storytree, so the root article should
have causal relations with all other news articles in its storytree. For ease of understanding,
R(i, j) = 1i∈R ∨ 1 j∈R is used below to indicate that at least one of i and j is the root node.

Different branch constrains (DFB) In our paper, we set up the storyline as a tree structure,
each tree represents a whole story, and each branch represents a trend of the story. If two
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articles are not on the same branch, they are not on the same trend of the story. Therefore,
we design the constraint about it to discourage the causal relations between two articles in
different branches in Eq. 10.

∀(i, j) ∈ Dp, xi j ≤ 1Ri⊂R j ∨ 1R j⊂Ri (10)

In Eq. 10, Ri , R j are the routes from the root node to node i and j , respectively . If Ri ⊂ R j

or R j ⊂ Ri , it means that i and j are in the same branch. We denote this by B(i, j) below.

Same branch time constraints (SMBT) In the storytree, there is a problemwith news articles
on the same branch violating the definition of causality: The article near the root node may
occur later than the article away from the root node. We set a constraint to discourage the
causal relations of the news article pair that satisfies this condition. It is shown in Eqs. 11
and 12,

∀(i, j) ∈ Dp, xi j ≤ ¬R(i, j)B(i, j)(|1 − L(i, j) − 1ti<t j | + pi j
ksb

) (11)

L(i, j) = 1Ri⊃R j ∧ 1|Ri |<|R j | (12)

where ti and t j are the time of the news article i and j , respectively. |Ri | and |R j | are the
length of Ri and R j . L(i, j) shows the relative position and time order of article i and j ,
¬R(i, j)B(i, j) means that news articles i and j are in the same branch and neither are in
the root node, we increase pi j by hyperparameter ksb to reducing the impact of pi j on ILP
model.

Same branch M&S constraints (SMBM) Besides, we discourage causal links in the pairs
not have root article. We refer to the first article at each node as the mainline article and
the others as the side articles when two news articles are in the same branch. Therefore,
four scenarios emerge from the combination of different types of news articles and location
relations: MM (A mainline article is closer to the root node than the other), MS (A mainline
article is closer to the root node than a side article), SM (A side article is closer to the root node
than a mainline article) and SS (A side article is closer to the root node than the other). MM
is more likely to have causal relations than the other three cases because there are mainline
events on the same branch, so the constraint should be looser. The constraints are shown in
the following equations:

∀(i, j) ∈ Dp, xi j ≤ ¬R(i, j)B(i, j)(smm+sms+ssm+sss) (13)

smm = (1i∈M ∧ 1 j∈M )
pi j
kmm

(14)

sms = L(i, j)(1i∈M ∧ 1 j∈S)
pi j
kms

(15)

ssm = L(i, j)(1i∈S ∧ 1 j∈M )
pi j
ksm

(16)

sss = (1i∈S ∧ 1 j∈S)
pi j
kss

(17)

where M and S are the set of mainline articles and side articles, respectively,¬R(i, j)B(i, j)
represents that news articles i and j are not in the root node and in the same branch, kmm ,
ksm , kms and kss are hyperparameters. In the above equations, we can find that Eqs. 11
and 13 contain Eq. 10, but in later experiments, we will verify the validity of each type
of constraint, so Eq. 9 is necessary. Moreover, two cases of this type of constraint will be
discussed separately in Sect. 4, because although they belong to the same class, they describe
different problems and may have different effects on the model.
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Of the five constraints we designed, two encourage causal relation among news articles
(SMN,RTN), and the remaining constraints (DFB,SMBT,SMBM)discourage causal relation
among news articles. The SMN constraint describes two news articles about the same node,
it does not conflict with the RTN which also encourages causality, the remaining constraints
describe the relationship between different nodes in the story tree, and therefore do not
conflict with the SMN constraint. The RTN constraint describes the case where there is at
least one news article in the root node, while the DFB constraint describes two news articles
in different branches, so there is no news article in the root node. In the formulas of the SMBT
constraint and the SMBM constraint, ¬R(i, j) indicates that these two constraints will not
conflict with RTN constraints. Therefore, the five constraints in our model do not conflict in
an integer linear programming model.

5 Experiments

There is no publicly available inter-document causal relation extraction dataset in the existing
research that contains multiple article stories and labeled causal relations. Therefore, we
constructed three datasets by crawling several events from 2018 to August 2020 from Yahoo,
Reuters, and CNN. We save the title, text, time, and link information. These events spanned
more than aweek, withmore than 5 reports. In fact, there are notmany events with continuous
news article coverage, so it is very difficult to manually discover many events that meet the
above conditions. We use EDA [43] to augment data on these events with continuous news
article coverage. EDA is state-of-the-art data augmentation technology for text classification
tasks that consists of four basic operations: synonym replacement, random insertion, random
swap, and random deletion. For a news article d , its keyword set Kd = En ∪ Kw is an
important feature. According to the definition in Sect. 4.1, Kd is the keyword set of news
article d , En is the set of named entities that appear more than once in d , and Kw represents
the words with the highest TF-IDF. We first replaced the named entities in the news articles
with other randomnames, so that the object described in the news article has changed,making
the new news article de different from d . In order to maintain the association between the
news articles, the same-named entities in different news articles are replaced by the same
name. According to EDA, we replace the keywords in the article with synonyms, resulting
in a new news article dw

e , although dw
e has the same structure as d , several news articles

have completely different keywords. Random deletion is not utilized because this may delete
some named entities and keywords. In addition, we collected some noise data Dn that are
not related to existing news articles and that are not correlated with each other. We transform
the dataset D = {d1, d2, ..., d|D|} into Daug = D ∪ Dk

e ∪ Dn through data augmentation and
noisy data collection, where Dk

e = {dk1e, dk2e, ..., dk|D|}. In the end, we got three datasets with
more than 1000 news articles. We labeled the news article pairs according to Wikipedia’s
definition of the causal relation. Table 1 shows the statistics of the datasets. There is no linked
information in the Reuters dataset because the news on the Reuters website does not contain
links.

In order to verify that the model is not affected by event types, we collected different
categories of news. Table 2 shows that our event categories include politics, sport, social,
and finance. Because there is no news labeled as politics in the search pages of Yahoo and
CNN, we did not collect news on the topic of politics when forming these two datasets.
Some events, such as the death of Kobe Bryant, belong to both sport and social categories.
However, we only classify events into major categories to clearly show the distribution of
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events. We randomly selected 20,000 article pairs for training. In order to ensure the number
of positive examples, we randomly selected 90% of the positive examples, and the rest were
supplemented with negative examples.

5.1 Baselinemodels

SVM Support vector machine (SVM) [9, 28] is a kernel method that finds the best separation
hyperplane in the feature space to maximize the interval between positive and negative
samples on the training set. The training data are mapped to a high-dimensional version
through the so-called feature map to find the decision boundary.

GaussianNB GaussianNB [33] is one of the naive Bayes classifiers, which is a series of
simple probabilistic classifiers based on the use of Bayes’ theorem under the assumption of
strong independence between features. GaussianNB deals with continuous data by assuming
that the continuous values associated with each class are distributed according to a normal
(or Gaussian) distribution.

AdaBoost Adaptive Boosting (AdaBoost) [11] is adaptive in the sense that subsequent weak
learners are tweaked in favor of those instances misclassified by previous classifiers. The
AdaBoost method is an iterative algorithm that adds a newweak classifier in each round until
it reaches a predetermined and sufficiently small error rate. In each iteration, AdaBoost can
focus on samples that are more difficult to classify by increasing the weight of samples that
are not correctly classified.

RandomForest RandomForest [4, 28] is a classifier that containsmultiple decision trees, and
its output category is determined by themode of the output category of individual trees. Since

Table 1 Information of datasets from 3 source

Data source #News article #Word #Sentence #Relational fact

Yahoo 1046 333k 24,215 1003

Reuters 1212 197k 12,925 1596

CNN 1190 370k 26,277 1438

The number of relational fact is a two-way relation of calculation: when article pair (i, j) are counted, ( j, i)
are also counted

Table 2 The number of news
articles of different categories

Dataset Category

Politic Sport Social Finance

Yahoo – 250 506 290

Reuters 215 105 522 370

CNN – 255 462 417

The major categories are based on how the news sites classify each arti-
cle. Each story containsmore than 5 articles. The stories include Trump’s
impeachment (politic), the death of Kobe Bryant (sport), Missing of a
boy in Colorado (Social), etc.
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each split is performed on a randomly selected subset of predictions, the tree is decorrelated,
and the algorithm can improve the result by reducing the variance.

DER DER [2] is a neural model augmented by different grained text representations for
implicit discourse relation recognition. The model consists of three parts: word-level mod-
ule, sentence-level module, and pair-level module. The token sequences of sentence pairs
are encoded by a word-level module first, and every token becomes a word embedding aug-
mented by subword and ELMo. Then, the embeddings are fed to a sentence-level module
and processed by CNN or RNN encoder blocks. In addition, the output of each layer is
processed by the bidirectional attention module in the pair-level module and connected to
the pair representation, and finally sent to the classifier. This model achieved state-of-the-art
performance on PBTD 2.0.

We employ these baseline models on three datasets and take all the features in Sect. 4.4
as input for SVM, GaussianNB, AdaBoost, and RandomForest models. For the DER model,
we take news article text as input. We get the results of the baseline model on the dataset and
compare them with our model.

5.2 Experimental settings

In each dataset, there are 20000 news article pairs and less than 8% of these pairs have
causal relations. We randomly select 60% of the news articles as the training set, 20% as
the validation set, and the rest as the test set for all classifiers. The experiment was repeated
5 times with resampling each time; we report precision, recall, accuracy, and F1-score for
inter-document causal relation extraction, which are obtained by calculating the average of
five results.

The weighting parameters for constraints about storytree are hyperparameters, including
kb, ksn , ksb, kmm , kms , ksm and kss are between 0 and 1. In Sect. 4, we have shown that
constraints do not conflict, so we find the optimal value for each k separately by grid search
on each dataset. We set the SVM kernel to ‘rbf’ and the penalty coefficient is 0.8. We set the
priors to None in GaussianNB. The base estimator of AdaBoost is DecisionTreeClassifier.
The number of DecisionTree is 10 in RandomForestClassifier. In Sect. 4, we explained that
constraints donot conflictwith eachother. Therefore, ablation study is performedbygradually
increasing the number of constraints in the order of constraint presentation.

5.3 Performance comparison of different models

The last eight rows of Table 3 show the performance of our model and the result after adding
each type of constraint gradually. LR is the base model of our system. The result shows the
LR model has high recall, but suffers from low precision. The LR + ILP (storytree) model
uses only all the constraints about the storytree (SMN, RTN, DFB, SMBT, SMBM) in the
ILP model, basic constraints are not used in this model, and the purpose is to directly observe
the impact of the constraints about storytree on the LR model. We can intuitively observe
that the precision and F1-score of the storytree are improved on three datasets, especially
the precision is increased by 31% to 42%. In the Reuters dataset, despite the loss of 4.5%
recall, precision has been increased by 42.6%, resulting in a salient increase of over 19.7%
in F1-score. The following results show how each constraint affects the performance of the
model.
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Table 3 Performance of different models on causal relation extraction

Models Yahoo Reuters CNN

P R F1 Acc P R F1 Acc P R F1 Acc

SVM 78.0 78.5 78.2 97.8 75.6 80.3 77.8 96.6 79.0 82.3 80.6 97.4

GaussianNB 51.7 89.4 65.5 96.9 60.2 86.9 71.1 94.4 63.0 86.6 72.9 95.9

AdaBoost 72.6 80.0 76.1 97.5 66.9 80.5 73.0 96.5 75,7 83.2 79.3 97.2

RandomForest 78.3 81.7 79.9 98.1 75.8 80.4 78.1 96.7 79.9 81.6 80.8 97.4

DER [2] 62.3 71.8 66.9 97.0 59.4 70.4 64.4 92.4 65.2 72.6 68.7 95.1

LR 58.7 81.3 68.2 97.1 54.5 86.5 66.9 93.1 59.1 82.7 68.9 95.4

LR + ILP(storytree) 76.9 86.7 81.5 98.4 77.7 82.6 80.1 97.2 82.2 82.3 82.2 97.7

LR + ILP(basic) 57.6 89.9 70.2 97.2 55.9 85.1 67.5 93.3 59.1 86.2 70.1 95.0

+SMN 59.5 89.1 71.3 97.2 57.2 86.5 68.9 93.7 60.9 86.7 71.5 95.6

+SMN+RTN 62.0 88.8 73.1 97.3 57.4 90.3 70.2 94.0 60.7 89.0 72.1 95.8

+SMN + RTN + DFB 74.0 87.4 80.1 98.1 73.4 86.7 79.5 97.0 76.2 84.2 80.0 97.3

+SMN + RTN + DFB + SMBT 75.7 83.0 81.4 98.4 78.2 85.2 81.6 97.6 81.2 82.4 81.8 97.6

+SMN + RTN + DFB + SMBT + SMBM 80.8 88.6 84.5 99.0 79.6 86.0 82.7 97.9 85.7 84.7 85.2 98.5

LR + ILP (storytree) uses all constraints related to storytree (SMN + RTN + DFB + SMBT + SMBM)
without using basic constraints. LR + ILP (basic) uses only basic constraints
Bold show the performance of our model as the best

LR + ILP (basic) model uses only the basic constraints in ILP, the result shows that
this model has a subtle improvement in both F1-score, and the improvement in the recall
is significant in Yahoo and CNN datasets; the recall in Yahoo reaches the highest value.
However, it does not fundamentally solve the problem of the low precision of the model.
+Same Node Constraints (SMN) shows the performance of the ILP systemwith constraints
about encouraging the causal relation between the news articles from the same node in the
storytree. In Reuters and CNN datasets, this constraint slightly increases recall and precision,
resulting in a subtle improvement on the F1-score. In the Yahoo dataset, the addition of
this constraint slightly reduces recall but still has an improvement on the F1-score. The
results of +Root Node Constraints (RTN) are improved in different degrees for all three
models, especially on the Yahoo dataset. On the CNN dataset, where the previous model does
poorly, ourmodel also gets some improvement.Although this constraint does not significantly
improve the F1-score, the recall in the CNN and Reuters datasets has reached the highest
value. Next, adding constraints about articles from different branches of storytree(+Different
Branch Constraints (DFB)) improves the performance of the model. Although it reduces
the recall on all three datasets, it significantly improves the precision and F1-score. +Same
Branch Time Constraints (SMBT) reduces the recall of the three datasets, but also improves
the accuracy rate again, making the precision and the recall closer, which improves the F1-
score of all datasets. +Same Branch M&S Constraints (SMBM) improves precision and
recall on the three datasets. The precision on the three datasets reaches the highest value and
also has a high recall, which makes the F1-score of the model reach its peak.

In general, the ILP model based on storytree improves the performance of the model
comprehensively, with over 30% improvement in all three datasets. Each constraint has
a positive effect on the model. Different constraints have different effects on the model.
Different Branch Constraints (DFB) have the most significant impact on the model.

The first five rows of Table 3 show the experiment results of other classifiers. SVM
and RandomForest are the prevailing classifiers in inter-article relation classification, while
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Table 4 Comparison of model performance before and after removal of link features

Models Yahoo CNN

F1 (with link) F1 (without link) F1 (with link) F1 (without link)

SVM 78.2 77.9 80.6 78.9

GaussianNB 65.5 65.5 72.9 72.5

AdaBoost 76.1 73.3 79.3 77.1

RandomForest 79.9 78.5 80.8 78.8

LR + ILP (Full) 84.5 82.4 85.2 82.6

LR + ILP (Full) is the model with all the constraint

GaussianNB and AdaBoost are other text classifiers. The results show that AdaBoost and
GaussianNB perform differently on the three datasets. AdaBoost performs the worst on
the Reuters dataset, while GaussianNB performs the worst on the Yahoo dataset, and both
perform best on the CNN dataset. RandomForest is the best-performing classifier. SVM’s
performance is slightly inferior to RandomForest. Both have higher accuracy and recall rates,
but our model is higher in precision and recall. Compared with the best-performing classifier,
our model has improved the F1-score by 5.7%, 5.9%, and 5.4%, respectively. In addition,
our model also achieves the best performance on the accuracy metric.

Because the existing causal relation extraction models are not for inter-document, we use
the model of discourse relation classification for comparison and causal relation is a type of
implicit discourse relation. DER experimented on PBTD 2.0. We modified the preprocessing
part of this model so that it can process our dataset. In their model, ELMo is used for text
representation. When the length of the input text becomes longer, the training speed becomes
slower. Each news article in our dataset is long. The average length of the CNN and Yahoo
datasets exceeds 300 words, and the average length of the Reuters dataset is also close to 200
words, which causes the model to train very slowly and cannot converge. In order to solve
this problem, we limited the length of the input text to 100 characters. Although the training
speed is still very slow, the model finally converged and got the result. The result shows that
our model overperforms this model by more than 24%.

To sum up, our storytree-based model not only improves the performance of the classifier
but also achieves better results than the widely used classifiers and models. However, it is
also clear that most of the methods perform worst on the Reuters dataset. There is no link
information in the Reuters dataset, so we will verify how the link characteristics influence
the model performance in the following experiment.

5.4 Validation of link feature

We assume that the reason the model does not perform as well on the Reuters dataset as the
other two datasets is that it does not have linked information. In order to prove the validity of
the link feature for the model, we remove the link information from the datasets of Yahoo and
CNN and then train the full model and other classifiers in the same environment as before.
The results are shown in Table 4.

The results show that the F1-scores of the models decrease on both datasets after the
link feature is removed. GaussianNB is the least affected, with a slight decrease in the CNN
dataset and the SVM is most affected. The F1 values of our model on these two datasets
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Table 5 The number of
misclassified classifiers under the
same test set

Number of misclassified models

1 2 3 4

(0,42), (10,6) (0,6), (1,6) (0,9) (10,8), (0,3)

(10,9), (0,2)

(10,1)

The column of (a, b) indicates that n classifiers misclassify the relation
between news article a and b

happen to be very close to the results on the Reuters dataset, and our model is still 5% higher
than other models on three datasets. To sum up, the experiment results suggest that link
information has a positive impact on the model, and the performance of the model on the
three datasets is similar after the removal of link information.

5.5 Case study

In this section, we will use an example to explain how storytrees work in our model. We
take the story of Kobe’s death from the Yahoo dataset as an example and use the same test
set to test our model and four other classification models. Then, we count the article pairs
associated with the story in the results, which are misclassified by the classifier but correctly
classified by our model. The results are shown in Table 5. Besides, the storytree containing
this story is shown in Fig. 3. Each node represents an event. Inside the node are the news
articles contained by the event. The root article is the report of Kobe’s crash, and the others
are all related after that. The dotted line linking the two articles represents the misclassified
article pairs, which correspond to Table 5.

In this case, (10,8) and (0,3) are misclassified by all four classifiers. In article 10, former
NBA star Wade expressed his condolences to Kobe Bryant in an interview a few days before
the retirement ceremony (A.6). In article 8, Wade expressed his condolences to Bryant in
a speech at the retirement ceremony (A.4). The two articles have a causal relation, but the
classifiers do not classify them correctly. In the storytree, the two news articles are about the
same event. In our model, the causal relation between articles in the same node is encouraged,
and the article pair alsomeets the corresponding constraints, so our model correctly classified
this article pair. For another example, article 0 is about Kobe Bryant’s eldest daughter Natalia
paying tribute to her late father and sister at the winter formal (A.1). This article is the latest
in this event, and there are many descriptions of Natalia in this news article, which cannot
be accurately classified only by similarity and keyword characteristics. But in the storytree,
article number 3 is the root article (A.3), and our model encourages the root article to have
causal relationswith any articles in the same storytree, so ourmodel is also classified correctly.

For (0,9), three classifiers determine causality, but article 9 is about Beyonce opening
Kobe Bryant’s memorial by singing Kobe’s favorite song(A.5). There is no causal relation
between the two articles. In the storytree, the node of article 0 is a child of the node of article
9. Our model also has constraints on events under the same branch. LR has low confidence
scores on these two articles, so the final result of the ILP model is that there is no causal
relation.

Article 42 is related to the new coronavirus and does not belong to this storytree(A.7), so
it has no causal relation with article 0. SVM misclassifies the relation of the pair of articles,
but our model does not encourage articles in different branches to have a causal relation.
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Fig. 3 A storytree of Kobe
Bryant’s death. The Numbers 0 to
10 represent 11 news articles
about this event, and the number
42 is a article that is not related to
this event
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The same storytree also satisfies the condition, so our model judges wrong, (0, 2(A.2)) is the
same.

From this case, it can be seen that each type of constraint can have a positive effect on the
model. In general, using the storytree to design the constraints in the ILP model is effective
in our model.

6 Discussion

In Sect. 5, we prove the effectiveness of the model by experiments, and it is better than
other classification models. We conduct an ablation study by adding constraints gradually.
From the results, we can know that the effect of each constraint on different datasets varies.
Because the datasets are collected from different data sources, they are different in content,
type, and language habits. After building a storytree, each storytree has a different structure,
so the constraints play different roles. The most effective constraint is the Different Branch
Constraint. We analyze the reason for this result is that the proportion of positive examples in
the data is very small, and most article pairs are not in the same branch of the storytree. This
constraint affects the most number of articles, leading to the most obvious improvement to
the model. To prove our analysis, we extracted a small part of the dataset as a small version
the dataset. The small version of the dataset only contains articles that can form a story and
do not contain noise data. In each full dataset, there are more than 30 storytrees containing
more than 5 news articles, while there are less than 5 storytrees in each small version dataset.
We also conduct an ablation study on small datasets and compare it with the results of the
ablation study on full datasets, as shown in Fig. 4. To eliminate the influence of constraints
on the different strictness of the model, we set the constraint parameters the same as the full
datasets.

As can be seen from the figure, for small datasets, Root Node Constraints have the largest
impact on the Yahoo dataset, and Same Branch M&S Constraints have the largest improve-
ment on the other two datasets. There are few storytrees in the small Yahoo dataset. The
similarity between the root article and the later events is not high, resulting in errors in the
LR classification results, so Different Branch Constrains affect more news articles. For the
other two small datasets, the number of storytrees generated by the articles is deep, and there
are few storytrees, resulting in many events in the same branch, so the constraints related to
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Fig. 4 Comparison of the results of ablation experiments on full datasets and small datasets. The horizontal
axis is the constraint, and the vertical axis is the�F1 of themodel. A positive value represents an improvement,
and a negative represents a decrease

branch (SMBT and SMBM) have a greater impact. In all the full datasets, Different Branch
Constrains are the constraint condition for the highest improvement. This is also because
most of the randomly selected news articles in each full dataset are not in the same story-
tree, which leads to the widest impact of Different Branch Constrains. In addition, we have
also adjusted the parameters of Different Branch Constrains to make them less strict, and its
impact is still the largest. Therefore, for our dataset, constraints that affect more news articles
bring greater improvement.

In our model, the storytree affects the model in the form of constraints, but it means more
to the model. In the RE task, people pay more attention to the relation between the sentence
level and the document level, because in the same sentence or the same document, the entity
pair is contextual, which can be used as a very important feature, and used in more complex
models. But for the task of relation extraction of inter-documents, each news article is more
independent, and there is no contextual information between articles. The storytree system
clusters news articles into stories based on datasets and stores them in the form of trees. This
is exactly the contextual information that has the time sequence and relative position for the
news articles. This is a new method for feature-based models. Other feature-based models
focus on improving the quality of features [10] or improving the classifier [13]. We not only
use the basic information of the data to build features but build storytrees to find a deeper
connection between news articles to create contextual information. The created contextual
information is applied to the feature-based model, which is a method that the previous model
did not propose. In addition, comparedwith the deep learningmodel, our model consumes far
fewer resources and time than the deep learning model and obtains better results. In general,
our model is different from the existing work, and it is also efficient and effective.

Although the ILP model improves both precision and recall, in the case study section,
we found that some errors are caused by constraints. This is because the storytree does not
completely represent the relative position between news articles, so the performance of the
model depends on the accuracy of the storytree, which is a limitation of this method. In the
future work, we hope to optimize the construction of the storytree or come up with new ways
to construct contextual information between news articles.

The implication of our research is to propose a new method for extracting the causal
relationship between long text data like news articles. Most of the previous models studied
the extraction of relationships between entities, which is more microscopic than our research.
However, there are not many studies on inter-document relation extraction. Our research
provides an effective method, and we will improve our method in future work. On the other
hand, the extraction of relations between long text data can have many applications. For
example, the relation between scientific research papers can make people find more relevant
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and logically continuous papers, and the relation between news can help people understand
the entire event. By improving the accuracy of extracting relations between news articles,
people can learn more about the causes and consequences of news when reading news.

7 Conclusion

In this paper, we propose a model for extracting causal relations of news articles based on
storytrees. We illustrate the development of news articles by constructing storytrees for the
data. Constraints are designed based on the structure information of the storytree, and the
constraints are applied to the ILP system. The experimental results show that our model
performs better on the three datasets than widely used classifiers and a state-of-the-art deep
learning model. Our model is improved by 5.7%, 5.9%, and 5.4% compared to the best-
performing classifiers. In futurework,wewill build a larger dataset, and optimize and improve
the construction of the storytree.
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Appendix A. News articles in case study

In Section 5.6, we explain how story trees work in ourmodel based on cases, and use numbers
to represent news articles. In this section, we present the text of some of the articlesmentioned
in Section 5.6. For very long news articles, we only show a portion of the articles.

A.1. Article 0

Kobe Bryant’s Daughter Natalia, 17, Pays Tribute to Late Dad and Sister Gianna at
Winter FormalKobeBryant ’s eldest daughterNatalia stopped to posewith amural honoring
her late dad and little sister Gianna as she headed to her winter formal. On Sunday, Vanessa
Bryant shared a photograph of her 17-year-old all dressed up and ready to attend her high
school dance. Ahead of the formal, Natalia posed for photographs in front of a tribute mural
painted to honor Kobe, 41, and 13-year-old sister Gigi, both who died in the tragic Jan. 26
helicopter crash in Calabasas, California ."my babies. Natalia. #winterformal," the mom of
four captioned the photograph, which featured a smiling Natalia, who was dressed in a blue
and white polka dot dress. Fans flooded Bryant’s comments section with compliments for
Natalia. NBA star Dwyane Wade commented to heart emojis, while WNBA star Candace
Parker wrote, "BEAUTIFUL" with several heart emojis. "She’s beautiful and so is that mural.
one fan wrote. Another added, "This warms my heart and at the same time saddens it. Good
to see you girls pushing through. "RELATED: Vanessa Bryant ‘Devastated’ by Claims of
L.A. Deputies Sharing Photos of Helicopter Crash Site The post comes just one week after
Vanessa’s legal team spoke out about the allegations that Los Angeles County Sheriff’s
deputies shared graphic photos of the helicopter crash site where Kobe, Gigi and seven
others were killed on Jan. 26. In the statement, they denounced the "inexcusable" acts "of
injustice" and called on "an Internal Affairs investigation of these alleged incidents. "The
Los Angeles County Sheriff’s office also released a statement, claiming an investigation
surrounding the allegations was underway. Last month, Vanessa, 37, also filed a wrongful
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death lawsuit against the helicopter company that owned the aircraft in the tragic crash.
RELATED: Powerful Kobe & Gianna Bryant Fan Art Created to Honor Their Legacies
In a complaint obtained by PEOPLE that lists herself and her daughters as plaintiffs, the
NBA star’s widow is suing Island Express Helicopters and claims that pilot Ara Zobayan of
Huntington Beach, California, who was piloting the flight at the time of the crash and died
, "failed to properly monitor and assess the weather prior to takeoff," "failed to abort the
flight when he knew of the cloudy conditions" and "failed to properly and safely operate the
helicopter resulting in a crash. "The complaint also claims that Island Express Helicopters
"knewor should haveknown" thatZoboyanhadbeenpreviously cited by theFAAfor violating
"the visual flight rules minimums by flying into an area of reduced visibility from weather
conditions. "Vanessa and her daughters are seeking general, economic and punitive damages.
In response to the lawsuit, a spokesperson for Island Express Helicopters told PEOPLE, "This
was a tragic accident. We will have no comment on the pending litigation.

A.2. Article 2

KISS Pay Elaborate Tribute to Kobe Bryant at Staples Center: WatchThe post KISS Pay
Elaborate Tribute to Kobe Bryant at Staples Center: Watch appeared first on Consequence of
Sound .KISS paid tribute to late NBA legendKobe Bryant during their show at Staples Center
in Los Angeles on Wednesday night. Bryant, 41, and his 13-year-old daughter, Gianna, died
in a tragic helicopter crash along with seven others in late January, and KISS’ Paul Stanley
took a moment to show his respect. Donning Bryant’s No. 24 Lakers jersey, Stanley gave a
brief monologue during the band’s set before playing Destroyer track "Do You Love Me".
"We’re in the house that Kobe built," Stanley said of the Lakers’ home arena. "None of us
would be here if this place wasn’t really like a memorial to somebody who was so much
more than a basketball player, somebody who’s been a role model. And tonight, I think
we dedicate this show not only to Kobe and his daughter Gigi, but to all the people who
perished on that helicopter. "Bryant’s retired numbers - No. 8 and 24 - were displayed on
the band’s stage screens as they performed "Do You Love Me". As the song concluded,
Lakers-colored purple and gold balloons flooded the stage and Stanley dribbled them like
basketballs. Editors’ Picks Stanley previously expressed his sadness after Bryant’s death
on Twitter . Posted with a picture of Bryant and himself shaking hands courtside, Stanley
wrote: "WOW! Kobe. Such A Shock. My Condolences To His Wife And Children. Very,
very sad. #KobeBryant". KISS will continue the U.S. leg of their "End of the Road Tour"
with Van Halen’s David Lee Roth through mid-March before heading across Europe this
summer. After that, they’ll return to the States for another leg in the fall. Get tickets to KISS’
upcoming shows here .Watch KISS’ tribute to Kobe Bryant below. Popular PostsSubscribe
to Consequence of Sound’s email digest and get the latest breaking news in music, film, and
television, tour updates, access to exclusive giveaways, and more straight to your inbox.

A.3. Article 3

Kobe Bryant’s death leaves sports world stunned Kobe Bryant was killed in a helicopter
crash in Calabasas Sunday morning, a source confirms to PEOPLE. The NBA legend, 41,
was reportedly traveling with at least three other people in his private helicopter when it went
down, according to TMZ. Emergency personnel responded but nobody on board survived.
Five people are confirmed dead, TMZ reported. The outlet says that Bryant’s wife, Vanessa
Bryant, was not onboard. Spokespersons for LA county sheriff’s office and LAPD did not
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immediately respond to PEOPLE’s request for comment. Bryant is survived by Vanessa, 37,
and their four children together: daughters Natalia, 17, Gianna, 13, Bianka, 3, and son Capri,
7 months. Since the start of his basketball career, Bryant was one of the most accomplished
men in the NBA, having played all 20 seasons with the Los Angeles Lakers. Until yesterday,
he was the third-leading scorer in NBA history with 33,643 points but was surpassed LeBron
James. James paid tribute to Bryant with special Nike shoes during the game against the
Philadelphia 76ers.

A.4. Article 8

Dwyane Wade Reflects on Kobe Bryant’s Wish to Inspire Others in Jersey Retirement
Speech Whenever KembaWalker looks down at the No. 8 on his jersey, he’ll be reminded of
the MambaMentality. While others in the NBA switched their jersey numbers in the wake of
Kobe Bryant’s tragic death, Walker instead decided to honor the Los Angeles Lakers legend
by keeping hisNo. 8. TheBostonCeltics guard spokewithESPN’sRachelNichols aboutwhat
it means to wear that number going forward. N̈ow, that number means even more. So every
time I step on the court, I just want to give 100 percent for him,Ẅalker toldNichols. T̈hat’smy
goal for the rest of the year and for the rest of my career. L̈IVE stream the Celtics all season. In
the immediate aftermath of Bryant’s passing,Walker considered a number change. Evidently,
he decided the best way for him to honor Bryant was to continue wearing No. 8 while putting
100-percent effort into every game, just as Kobe would.Ï had a talk about it with some close
people in my circle,Ẅalker said. Ï definitely thought about giving it up but then I thought, I
think Kobe would want me and allowme to wear it. We want to keep his legacy going. I know
of a few of us that’s kept it. We’re all just going to go out there and do what we can to play as
hard as possible for Kobe.Ẅatch below: Not enough Kemba Walker in your life right now?
He and I sat down to talk about what it was like replacing Kyrie, wearing No. 8 for Kobe, and
what he thinks the Celtics ceiling is this postseason: pic.twitter.com/VyNBM24AZs- Rachel
Nichols (Rachel__Nichols) February 27, 2020In 46 games this season, Walker has averaged
21.8 points, 4.1 rebounds, and 5.0 assists while earning his fourth All-Star selection. A knee
injury has kept Walker out of commission for the last few games, but the Celtics are hopeful
they’ll have him back in the lineup sooner rather than later. Don’t miss NBC Sports Boston’s
coverage of Rockets-Celtics, which begins Saturday at 7:30 p.m. with Celtics Pregame Live.
You can also KembaWalker explains keeping No. 8 to honor Kobe Bryant: ’We want to keep
his legacy going’.

A.5. Article 9

Beyonce opens Kobe Bryant’s memorial by singing ’XO,’ one of Bryant’s favorite songs
The memorial to Kobe and Gianna Bryant began in an inspiring way Monday. The memorial
opened with Beyonce, who told attendees, "I’m here because I love Kobe," before launching
into one of Bryant’s favorite songs. Beyonce then began singing "XO." Beyonce opens Kobe
&Gianna’s Celebration of Life with one of his favorite songs.(via SpectrumSN) February 24,
2020, Beyonce followed that up with "Halo." Beyonce performs Ḧaloät Kobe and Gianna’s
memorial.#KobeFarewell - Entertainment Tonight (etnow) February 24, 2020Beyonce was
backed up by a chorus and an orchestra. After Beyonce opened the event, Vanessa Bryant
eulogized Kobe and Gianna in a moving speech. Bryant and his 13-year-old daughter Gianna
were among the nine people killed in a helicopter crash in January. Fans gathered to put
together a make-shift memorial outside the Staples Center in the days after Bryant’s death.

123



A storytree-based model for inter-document causal... 849

The Staples Center decided to host a memorial for Kobe, Gianna and the seven other victims
of the crash. February 24 - or 224 - was chosen as the date of the memorial. Gianna Bryant
wore No. 2. Kobe Bryant wore No. 24. More from Yahoo Sports: Eisenberg: How Kobe
touched the lives of 10 everyday peopleIole: Wilder assistant was right to throw in towel vs.
FuryKeyser: How do Astros fans feel about sign-stealing scandal? Bucks clinch playoff spot
faster than anyone in at least 15 years.

A.6. Article 10

Dwyane Wade Says Friend Kobe Bryant Was ’in the Process of Building’ His Next
Legacy Before Death Dwyane Wade says Kobe Bryant was just beginning his second act
ahead of his shocking death in a helicopter crash in January. Wade tells PEOPLE in an
interview ahead of the release of his documentary, D. Wade: Life Unexpected, that Bryant’s
legacy is so much more than his illustrious career in the NBA. "His legacy is what he was
in the process of building that we all got a chance to watch, right?" says Wade, 38. "We’ve
seen what he did for basketball. We’ve seen that legacy. "Continues the former Miami Heat
star, "But the legacy he was building outside of there was being there for the players, being a
voice for the next generation. Working them out, being on the court with them, being there in
his kids’ lives, being a real all-star, superstar parent. Being an amazing husband. "Bryant, 41,
was married to Vanessa Bryant, 37. The couple shares four daughters, including Gianna, 13,
who was also killed in the crash. "And I think the one thing Kobe told us along the way is that
no one is perfect in this, but at some point in his life - I said this recently - he mastered all of
it," Wade tells PEOPLE. "He started mastering all of this. And then he showed us, too, that,
’Listen, we can do anything we want.’ "RELATED: Dwyane Wade Had to Rank Himself
and His Former Heat Teammates LeBron James and Chris Bosh on Wade calls his friend’s
legacy "so huge," adding, "and I think the thing that hurt more so than anything is that we
all feel that we lost a loved one when Kobe passed". "And that’s powerful - for someone
that a lot of people haven’t even met or didn’t even know, still are mourning and trying to
get over it, trying to move on with life," the retired athlete reflects. "That’s when you know
that you’ve built something, you’ve created something special. "RELATED: Dwyane Wade
on How He and LeBron James Are Different as Basketball Dads: I ’Have More Self-Talk’
Immediately after Bryant’s death, Wade released a video of himself crying on Instagram ,
admitting, "Today is one of the saddest days in my lifetime". "It seems like a bad dream
that you just wanna wake up from. It’s a nightmare." D. Wade: Life Unexpected from ESPN
Films and Imagine Documentaries and directed by Bob Metelus premieres Sunday at 9 p.m.
EST on ESPN.

A.7. Article 42

Person in Washington State Is First in U.S. to Die From Coronavirus, Authorities Say A
middle-aged patient in Washington state became the first person to die from the 2019 novel
coronavirus inside the United States, officials said on Saturday as they announced additional
cases, including a nursing home that could become the next hot zone. At least 69 people on
American soil have had confirmed cases of the novel 2019 coronavirus, which is believed to
have originated in a large seafood and live animal market in Wuhan, China, where it killed
thousands before spreading to dozens of other countries. One American also died in China
earlier this month. The U.S. outbreak seemed to reach a new stage over the weekend, with the
number of confirmed patientswho contracted it locally not from traveling abroad-creeping up.
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California announced Saturday that it had recorded a third such "community spread" case, a
patient who was apparently infected by a Santa Clara County woman diagnosed a day earlier.
The person who died in Washington state overnight was a man in his 50s considered at high
risk, said Dr. Jeff Duchin, health officer for Seattle and King County. Dr. Robert Redfield,
director of Centers for Disease Control and Prevention (CDC), said there was currently "no
evidence" that the person who died had traveled recently to China or had any contact with
someone who had-making it another case of "community spread" or unknown origin. "It’s a
tough one, but a lot of progress has been made," President Trump said at a press conference
Saturday, stressing that the risk to the general population remained low. "We’re doing really
well," he added, "under incredibly adverse circumstances...
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