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Abstract
An obvious defect of extreme learning machine (ELM) is that its prediction performance is
sensitive to the random initialization of input-layer weights and hidden-layer biases. Tomake
ELM insensitive to random initialization, GPRELM adopts the simple an effective strategy
of integrating Gaussian process regression into ELM. However, there is a serious overfitting
problem in kernel-based GPRELM (kGPRELM). In this paper, we investigate the theoretical
reasons for the overfitting of kGPRELM and further propose a correlation-based GPRELM
(cGPRELM), which uses a correlation coefficient to measure the similarity between two
different hidden-layer output vectors. cGPRELM reduces the likelihood that the covariance
matrix becomes an identitymatrixwhen the number of hidden-layer nodes is increased, effec-
tively controlling overfitting. Furthermore, cGPRELMworks well for improper initialization
intervals where ELM and kGPRELM fail to provide good predictions. The experimental
results on real classification and regression data sets demonstrate the feasibility and superi-
ority of cGPRELM, as it not only achieves better generalization performance but also has a
lower computational complexity.
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Abbreviations
ELM Extreme learning machine
SLFN Single hidden-layer feed-forward network
BP Back-propagation
BLRELM Bayesian linear regression-based ELM
GPR Gaussian process regression
GPRELM GPR-based ELM
1HNBKM One hidden-layer nonparametric Bayesian kernel machine
RBF Radial basis function
kGPRELM Kernel-based GPRELM
cGPRELM Correlation-based GPRELM
SVM Support vector machine
LSSVM Least square SVM
UCI University of California, Irvine
KEEL Knowledge extraction based on evolutionary learning
RMSE Root-mean-square error

List of symbols
D Training data set
N Number of instances in D
xi Input of the i-th training instance
yi Output of the i-th training instance
D Number of instance’s condition attributes
M Number of instance’s decision attributes
W Input-layer matrix of ELM
wdl Weight on the link between the d-th input-layer node and the l-th hidden-

layer node
b Hidden-layer bias vector of ELM
bl Bias of the l-th hidden-layer node
H Hidden-layer output matrix of ELM
h (xi ) Hidden-layer output of i-th training instance
β Output-layer matrix of ELM
g (·) Activation function of hidden-layer node
k (·, ·) Kernel function
λ Kernel radius of kernel function k (·, ·)
μ Mean of Gaussian distribution
σ 2
N Variance of Gaussian distribution

ε Gaussian noise
I Identity matrix
C Correlation matrix
c (·, ·) Correlation function
Cov (u, v) Covariance between vectors u and v
Var (u) Variance of vector u

1 Introduction

Extreme learning machine (ELM) [12, 13] is a type of noniterative training algorithm for sin-
gle hidden-layer feed-forward neural network (SLFN). ELM randomly selects the input-layer
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weights/hidden-layer biases and analytically calculates the output-layer weights [6]. Because
ELM does not perform complex parameter adjustment (e.g., learning rate, learning epoches,
stopping criteria) and time-consuming weight updates, ELM is simpler and faster than the
traditional back-propagation (BP) algorithm [5, 10]. In addition, the theoretical universal
approximation [9] also guarantees that ELM can obtain better generalization capability than
BP [4]. ELM has been successfully applied to time series prediction [31], image recognition
[27], smart city design [24], and COVID-19 severity detection [8].

However, random sensitivity is one of the obvious defects of ELM and it affects its gen-
eralization performance. The random initialization of input-layer weights and hidden-layer
biases can result in nonfull rank of the hidden-layer output matrix and make ELM prediction
unstable [29]. There are two main strategies to tackle this limitation: using an optimization
algorithm and building an ensemble of ELMs. The former strategy employs different evo-
lution algorithms to obtain optimal input weights and hidden biases (e.g., particle swarm
optimization in [7] and differential evolution in [34]), whereas the latter integrates mul-
tiple ELMs to mitigate the negative effect of randomization on predictive stability (e.g.,
cross-validation-based ensemble in [19] and selective ensemble in [32]). More studies on
this problem can be found in [2, 16, 17, 26, 33]. To some extent, these enhancements over-
come ELM’s random instability to a certain degree. However, using optimization algorithms
and multi-ELMs training considerably increases the computational complexity of learning
models. In addition, the optimized weights and biases usually cause ELMs to overfit.

Recently, integrating Bayesian prior knowledge into ELM has been proposed as an
improvement to make ELM more insensitive to random initialization [3, 21, 28]. Instead
of direct point prediction, these methods estimate the posterior probability distributions of
ELM output, reducing the influence of random initialization. Soria-Olivas et al. [28] devel-
oped aBayesian linear regression (BLR)-basedELMmodel (BLRELM). Then, Luo et al. [21]
improved BLRELM and proposed a sparse BLRELM in which each weight has an indepen-
dent regularization prior rather than all weights sharing a single prior as in BLRELM. Chatzis
et al. [3] designed aOne-Hidden layerNonparametric BayesianKernelMachine (1HNBKM),
which is a Gaussian process regression (GPR)-based ELMmodel (GPRELM). In probability
theory and statistics, a Gaussian process [20] is a stochastic process represented by a collec-
tion of random variables indexed by time or space, and every finite collection of those random
variables has amultivariate normal distribution.As pointed out byChatzis et al. [3], BLRELM
is a special case of GPRELM. When a linear kernel is considered in GPRELM, BLRELM
is reduced to GPRELM. Thus, the majority of our analysis and improvement in this paper
are focused on GPRELM, which is a more general form of Bayesian prior knowledge-based
ELM. GPRELM is simpler and faster than the complex and time-consuming optimization
and ensemble methods mentioned above. It provides a more efficient way of alleviating
the random sensitivity of ELM. However, using a radial basis function (RBF) in GPRELM
(kGPRELM) results in serious overfitting. In addition, improper initialization intervals (e.g.,
[−100, 0] or [0, 100]) can significantly degrade kGPRELM’s predictive accuracies.

The goal of this paper is to solve the overfitting and large interval unavailability prob-
lems of GPRELM by replacing the kernel trick in GPR with an alternative technique. The
contributions of this cover four main aspects.

(1) Themain reasonwhy kGPRELMoverfits is theoretically analyzed. Increasing the number
of hidden-layer nodes tends to cause kernel inefficiency for kGPRELM.

(2) A correlation-based GPRELM (cGPRELM) method is proposed by calculating the sim-
ilarity between two hidden-layer output vectors using a correlation index. This alleviates
the overfitting problem of GPR-based ELM.
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(3) A normalization strategy to normalize the hidden-layer inputs of cGPRELM is introduced
to reduce the possibility that the hidden-layer output matrix elements become 0 or 1.

(4) Extensive experiments are conducted to compare the effectiveness of cGPRELM with
standard ELM, kGPRELM, and multilayer ELM (ML-ELM) [15].

The remainder of this paper is organized as follows: In Sect. 2, we provide a brief overview
of kernel-basedGPRELM (kGPRELM). Section 3 introduces the proposed correlation-based
GPRELM (cGPRELM) method. Experimental simulations are presented in Sect. 4. Finally,
in Sect. 5, we conclude this paper and outline the main directions for future research.

2 kGPRELM: kernel-based GPRELM

This section first describes the fundamental concepts of ELM and kGPRELM and then
analyzes kGPRELM’s overfitting from a theoretical perspective.

2.1 Original ELM

Given a training data set

D = {(xi , yi )Ni=1 |xi = (xi1, xi2, . . . , xi D) , yi = (yi1, yi2, . . . , yiM )} , (1)

which includes N distinct instances with D condition attributes, ELM [11, 13] calculates the
output-layer weight matrix

β = H†Y, (2)

where H† is the Moore-Penrose generalized inverse of the hidden-layer output matrix

H =

⎡

⎢⎢⎢
⎣

g (w1x1 + b1) g (w2x1 + b2) · · · g (wLx1 + bL)

g (w1x2 + b1) g (w2x2 + b2) · · · g (wLx2 + bL)
...

...
. . .

...

g (w1xN + b1) g (w2xN + b2) · · · g (wLxN + bL)

⎤

⎥⎥⎥
⎦

, (3)

g (v) = 1
1+e−v is the sigmoid activation function, L is the number of hidden-layer nodes in

SLFN, the input-layer weight matrix

W =

⎡

⎢⎢⎢
⎣

w1

w2
...

wL

⎤

⎥⎥⎥
⎦

T

=

⎡

⎢⎢⎢
⎣

w11 w21 · · · wD1

w12 w22 · · · wD2
...

...
. . .

...

w1L w2L · · · wDL

⎤

⎥⎥⎥
⎦

(4)

and hidden-layer bias vector b = [b1, b2, · · · , bL ] are randomly generated according to any
continuous probability distribution [13], the training output is a matrix

Y =

⎡

⎢⎢⎢
⎣

y11 y12 · · · y1M
y21 y22 · · · y2M
...

...
. . .

...

yN1 yN2 · · · yNM

⎤

⎥⎥⎥
⎦

(M > 1) (5)
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in the case of a classification problem and a vector

Y =

⎡

⎢⎢⎢
⎣

y11
y21
...

yN1

⎤

⎥⎥⎥
⎦

(M = 1) (6)

for a regression problem, M is the number of instance decision attributes. For an unseen
instance x̂ = (x̂1, x̂2, . . . , x̂D

)
, ELM predicts its output ŷ as follows:

ŷ = h
(
x̂
)
β = h

(
x̂
)
H†Y, (7)

where h
(
x̂
) = [g (w1x̂ + b1

)
, . . . , g

(
wL x̂ + bL

)]
.

Because ELM does not require iterative adjustments to weights and biases like SLFN,
ELM’s training speed can be thousands of times faster than BP [13]. ELM can achieve
equal generalization performances with support vector machine (SVM) and least square
SVM (LSSVM) [11]. From Eq. (7), we can find that the predictive accuracy of ELM mainly
depends on the calculation of H†. Sometimes, the random selection of input-layer weights W
andhidden-layer biases b canproduce anonsingular hidden-layer outputmatrixH, resulting in
no solution for the linear systemHβ = Y and lowering ELM’s predictive accuracy [29]. This
makes ELM’s prediction unstable and indicates that it is sensitive to random initialization.

2.2 kGPRELM

kGPRELM is a recently proposed ELM variant that uses the Bayesian optimization method
[23] to improve ELM’s random sensitivity. It is called one-hidden layer Bayesian kernel
machine (1HNBKM) [3]. It predicts the output ŷ for an unseen instance x̂ according to the
following joint Gaussian distribution:

[
Y
ŷ

]
∼ N

[
0,

[
K (H,H) kT

(
h
(
x̂
)
,H
)

k
(
h
(
x̂
)
,H
)
k
(
h
(
x̂
)
, h
(
x̂
))
]]

, (8)

where

h (xi ) = [g (w1xi + b1) , . . . , g (wLxi + bL)] (9)

is the hidden-layer output vector of the i-th (i = 1, 2, . . . , N ) training instance,

K (H,H) =
⎡

⎢
⎣

k (h (x1) , h (x1)) · · · k (h (x1) , h (xN ))
...

. . .
...

k (h (xN ) , h (x1)) · · · k (h (xN ) , h (xN ))

⎤

⎥
⎦ (10)

is the kernel matrix,

k
(
h
(
x̂
)
,H
) = [k (h (x̂) , h (x1)

)
, . . . , k

(
h
(
x̂
)
, h (xN )

)]
(11)

is the kernel vector, and

k (u, v) = exp

(

−‖u − v‖2
2λ2

)

(12)

is the radial basis function (RBF) kernel.
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From Eq. (8), we can derive the posterior distribution of the predicted output ŷ as

P
(
ŷ
∣∣h
(
x̂
)
,H,Y

) = N
(
μ, σ 2) , (13)

where the mean and variance of this Gaussian distribution are

μ = k
(
h
(
x̂
)
,H
) [
K (H,H) + σ 2

N I
]−1

Y (14)

and

σ 2 = k
(
h
(
x̂
)
, h
(
x̂
))− k

(
h
(
x̂
)
,H
) [
K (H,H) + σ 2

N I
]−1

kT
(
h
(
x̂
)
,H
)
, (15)

respectively, and I is a N -by-N identity matrix. In 1HNBKM, μ is used as the predictive
output of the unseen instance x̂, i.e., let

ŷ = k
(
h
(
x̂
)
,H
) [
K (H,H) + σ 2

N I
]−1

Y. (16)

[μ − 1.96σ,μ + 1.96σ ] be a 95% confidence region for the estimation of the unknown ŷ.
So far, there is one parameter that we have not discussed, which is σ 2

N in Eqs. (14)–(16). This
parameter is related to Gaussian process regression (GPR) [22], which assumes that

ŷ = h
(
x̂
)
β + ε, (17)

where the noise ε obeys a Gaussian distribution N
(
0, σ 2

N

)
.

From the aforementioned reasoning process, we can clearly see that 1HNBKM actually
introduces GPR into ELM, i.e., using RBF kernel-basedGPR to solve the linear system in Eq.
(17) and predict the output for x̂. Thus, in this paper, the so-called one-hidden layer Bayesian
kernel machine is called kernel-based GPRELM (kGPRELM) to indicate that 1HNBKM is
an improved variant of the original ELM.

2.3 Overfitting analysis of kGPRELM

ELM [13] is sensitive to random initialization and thus generates unstable predictions.
kGPRELM [3] improves the usability of ELM, but it suffers from serious overfitting. The
following derivation process provides a theoretical analysis of kGPRELM’s overfitting.

For a given λ, SLFNwith L1 hidden-layer nodes calculates the hidden-layer output vectors
for any two instances xi , x j ∈ D as

h1 (xi ) = [g (w1xi + b1) , . . . , g
(
wL1xi + bL1

)]
(18)

and

h1
(
x j
) = [g (w1x j + b1

)
, . . . , g

(
wL1x j + bL1

)]
, (19)

respectively. When the hidden-layer nodes are incrementally increased to L2 (L2 > L1), the
hidden-layer output vectors of xi and x j are changed into

h2 (xi ) = [g (w1xi + b1) , . . . , g
(
wL1xi + bL1

)
, g
(
wL1+1xi + bL1+1

)
, . . . , g

(
wL2xi + bL2

)]

(20)

and

h2
(
x j
) = [g (w1x j + b1

)
, . . . , g

(
wL1x j + bL1

)
, g
(
wL1+1x j + bL1+1

)
, . . . , g

(
wL2x j + bL2

)]
.

(21)
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Fig. 1 ELM’s instability

We can calculate

k
(
h1 (xi ) , h1

(
x j
)) = exp

[

−
∥∥h1 (xi ) − h1

(
x j
)∥∥2

2λ2

]

= exp

[

−
∑L1

l=1

[
g (wlxi + bl) − g

(
wlx j + bl

)]2

2λ2

]

(22)
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Fig. 2 kGPRELM’s overfitting (for a fixed λ = 1)

and

k
(
h2 (xi ) , h2

(
x j
)) = exp

[

−
∥∥h2 (xi ) − h2

(
x j
)∥∥2

2λ2

]

= exp

⎡

⎣−
∑L1

l=1 [g(wlxi+bl )−g(wlx j+bl)]2

2λ2

−
∑L2

l=L1+1 [g(wlxi+bl )−g(wlx j+bl)]2

2λ2

⎤

⎦ (23)

Then, the following inequality

k
(
h1 (xi ) , h1

(
x j
))

> k
(
h2 (xi ) , h2

(
x j
))

(24)

is derived. This indicates that as the number of hidden-layer nodes is increased in SLFN,
k
(
h (xi ) , h

(
x j
))

is monotonically decreasing and converges toward 0, i.e., for the fixed λ,

lim
L→+∞ k

(
h (xi ) , h

(
x j
)) = 0. (25)
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Equation (25) leads to K (H,H) → I. For the training input matrix

X =

⎡

⎢⎢⎢
⎣

x11 x12 · · · x1D
x21 x22 · · · x2D
...

...
. . .

...

xN1 xN2 · · · xND

⎤

⎥⎥⎥
⎦

, (26)

its predictive output matrix Ŷ can be easily calculated with kGPRELM as

Ŷ = K (H,H)
[
K (H,H) + σ 2

N I
]−1

Y → Y, (27)

when L → +∞ and σ 2
N → 0. Equation (27) shows that kGPRELM will seriously overfit

for a large number of hidden-layer nodes and small noise.
We present a simple experimental simulation to demonstrate the instability of ELM and

the overfitting of kGPRELM using the Iris classification andDaily Electricity Energy (DEE)
regression data sets, which are, respectively, selected from the UCI [18] and KEEL [1]
machine learning repositories. Classification accuracy and root-mean-square error (RMSE)
are used to assess the classification and regression performance of ELM [13] and kGPRELM
[3]. Each experimental result was obtained using a 10 times twofold cross-validation proce-
dure. SLFN weights and biases are Uniform random numbers selected in the [0, 1] interval.
The highly fluctuating learning curves in the right sub-figures of Fig. 1 demonstrate ELM’s
instability. Higher training accuracy/lower training RMSE and lower testing accuracy/higher
testing RMSE in Fig. 2 show that kGPRELM is seriously overfitting, but it is more stable
than ELM.

3 cGPRELM: correlation-based GPRELM

According to the analysis of Sect. 2.3, the main cause of kGPRELM’s overfitting is the
RBF kernel k

(
h (xi ) , h

(
x j
)) → 0 for any i �= j when L → +∞ (or λ2 → 0) and

σ 2
N → 0. In the classical GPR, the kernel function is introduced to guarantee the positive

semi-definition of the Gaussian distribution’s covariance matrix in Eq. (8), which evaluates
the correlation between two outputs by measuring the similarity between the corresponding
inputs [30]. This similarity between input pairs is represented by the inner product, which is
calculated in a high-dimensional projected space. It is very difficult to determine the specific
form of the original input in high-dimensional space. Thus, a kernel trick is applied in the
original input space to calculate the inner product in projected space. That is to say, the kernel
operation includes a one-time projection from the original space to a high-dimensional space.
In fact, there is another projection in kGPRELM, i.e., from the D-dimensional input xi to
the L-dimensional hidden-layer output h (xi ) of ELM. The relationship between these two
projections can be represented as

xi
ELM→ h (xi )

x j
ELM→ h

(
x j
)

}
RBF Kernel→ k

(
h (xi ) , h

(
x j
))

. (28)

The kernel’s role in kGPRELM is to measure the similarity between two different hidden-
layer output vectors h (xi ) and h

(
x j
)
. The second projection for hidden-layer outputs with

RBF kernel leads to overfitting and redundancy if an alternative criterion can be used to
measure the similarity between hidden-layer outputs obtained by the first projection.
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In this paper, we propose a correlation-based GPRELM (cGPRELM) which uses a corre-
lation coefficient defined as

c
(
h (xi ) , h

(
x j
)) = 1

2

[
Cov

(
h (xi ) , h

(
x j
))

Var (h (xi ))Var
(
h
(
x j
)) + 1

]

, (29)

to measure the similarity between h (xi ) and h
(
x j
)
, where Cov

(
h (xi ) , h

(
x j
))

is the covari-
ance between h (xi ) and h

(
x j
)
, and Var (h (xi )) and Var

(
h
(
x j
))

are variances of h (xi ) and
h
(
x j
)
, respectively. cGPRELM predicts the output ŷ for an unseen instance x̂ based on the

following formulation

ŷ = c
(
h
(
x̂
)
,H
) [
C (H,H) + σ 2

N I
]−1

Y, (30)

where

C (H,H) =
⎡

⎢
⎣

c (h (x1) , h (x1)) · · · c (h (x1) , h (xN ))
...

. . .
...

c (h (xN ) , h (x1)) · · · c (h (xN ) , h (xN ))

⎤

⎥
⎦ (31)

is the correlation matrix and

c
(
h
(
x̂
)
,H
) = [c (h (x̂) , h (x1)

)
, · · · , c

(
h
(
x̂
)
, h (xN )

)]
(32)

is the correlation vector.
The covariancematrix inEq. (8) for the jointGaussian distribution should be positive semi-

definite [25]; thus, GPR requires a kernel matrix K (H,H) in kGPRELM that is also positive
semi-definite. Hence, the positive semi-definition property of the correlation matrix C (H,H)

is also necessary and important for the rationality of cGPRELM. The requirement of the
positive semi-definite property ensures the existence of an inverse matrix for C (H,H) + σ 2

N I
in Eq. (30). Theorem 1 proves the positive semi-definition property of C (H,H) and then
guarantees the rationality of Eq. (30).

Theorem 1 zC (H,H) zT ≥ 0 holds for any nonzero row vector z = (z1, z2, . . . , zN ).

Proof We can calculate

zC (H,H) zT =
N∑

j=1

N∑

i=1

[
zi c
(
h (xi ) , h

(
x j
))
z j
]

=
N∑

j=1

N∑

i=1

[

zi
1

2

[
Cov

(
h (xi ) , h

(
x j
))

Var (h (xi ))Var
(
h
(
x j
)) + 1

]

z j

]

= 1

2

N∑

j=1

N∑

i=1

[
zi

Var (h (xi ))
Cov

(
h (xi ) , h

(
x j
)) z j

Var
(
h
(
x j
))

]

+ 1

2

⎡

⎣
N∑

j=1

[

z j

N∑

i=1

zi

]⎤

⎦

= ẑCOVẑT + 1

2

[
N∑

i=1

zi

]2

, (33)

where

ẑ =
[

z1
Var (h (x1))

,
z2

Var (h (x2))
, . . . ,

zN
Var (h (xN ))

]
(34)
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Fig. 3 Comparison of MATLAB computational time between kernel and correlation matrices in kGPRELM
and cGPRELM

and

COV =
⎡

⎢
⎣

Cov (h (x1) , h (x1)) · · · Cov (h (x1) , h (xN ))
...

. . .
...

Cov (h (xN ) , h (x1)) · · · Cov (h (xN ) , h (xN ))

⎤

⎥
⎦ (35)

is the covariance matrix. Because the covariance matrix of any real random vector is always
positive semi-definite, then we can get

ẑCOVẑT ≥ 0. (36)

Moreover, 1
2

[∑N
i=1 zi

]2 ≥ 0 holds for any nonzero row vector z. In conclusion, we obtain

zC (H,H) zT ≥ 0. 	

For the given parameter σ 2

N > 0 and any nonzero row vector z, C (H,H) + σ 2
N I is a

positive definite matrix because

z
[
C (H,H) + σ 2

N I
]
zT = zC (H,H) zT + σ 2

N zz
T > 0 (37)

holds according to the conclusion of Theorem 1. Applying the correlation coefficient shown
in Eq. (29) has the following advantages.

(1) The purpose of Eq. (29) is to assess the correlation between two hidden-layer outputs
h (xi ) and h

(
x j
)
as c

(
h (xi ) , h

(
x j
)) ∈ [0, 1]. When there is a perfectly linear negative

correlation between h (xi ) and h
(
x j
)
, c
(
h (xi ) , h

(
x j
)) = 0. That is c

(
h (xi ) , h

(
x j
))

→ 0 is determined by the linear correlation between h (xi ) and h
(
x j
)
rather than the

number L of hidden-layer nodes in SLFN. Thus, Eq. (29) can more effectively control
overfitting than the RBF kernel in kGPRELM.

(2) There is no user-specified parameter in Eq. (29), whereas the RBF kernel in kGPRELM
includes an undetermined parameter, i.e., λ. In the following experimental validation, we
find that λ seriously influences the rank of K (H,H) + σ 2

N I.
(3) The computational time of c

(
h (xi ) , h

(
x j
))

is lower than k
(
h (xi ) , h

(
x j
))

in the MAT-
LAB environment. A series of hidden-layer output matrices HN×L were randomly gen-
erated corresponding to 1800 different pairs of (N , L), where N = {110, 120, . . . , 1000}
and L = {10, 20, . . . , 200}. We compared the computational time of K (H,H) and
C (H,H) in kGPRELM and cGPRELM. The experimental results are presented in Fig. 3,
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which show that the computational time of cGPRELM (green curves in the third picture)
is far less than that of kGPRELM (red curves in the third picture).

We now introduce the main framework of the novel cGPRELM method, which uses
correlation-based GPR to handle the hidden-layer outputs of SLFN. Here, the hidden-layer
output h

(
x̂i
)
corresponding to the i-th training instance x̂i ∈ D depends on the input-layer

weights W and hidden-layer biases b. Huang et al. [13] demonstrated that for any W and
b selected from any intervals, ‖Hβ − Y‖ < ε holds for any small positive value ε with
probability 1. However, we find that improperw jl and bl ( j = 1, 2, . . . , D; l = 1, 2, . . . , L)

can seriously degrade the classification accuracies or regressionRMSEs of ELM, kGPRELM,
and cGPRELM. Assume that the inputs and output (only for regression) of instances are all
normalized into the [0, 1] interval, in this paper. If w jl and bl were randomly selected from
interval [−100, 0] or [0, 100], we would obtain

g (wlxi + bl) → 0 or g (wlxi + bl) → 1. (38)

This is caused by themathematical property of the sigmoid activation function g (v) = 1
1+e−v .

In MATLAB, when v ≤ −12.206, g (v) ≤ 0.00001; when v ≥ 11.108, g (v) ≥ 0.99999. The
improper initialization intervals easily result in

wlxi + bl ≤ −12.206 or wlxi + bl ≥ 11.108. (39)

For ELM, this leads to

H →

⎡

⎢⎢⎢
⎣

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤

⎥⎥⎥
⎦

or H →

⎡

⎢⎢⎢
⎣

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎤

⎥⎥⎥
⎦

(40)

and results in very inaccurate training and testing. For kGPRELM and cGPRELM, it brings
about

K (H,H) →

⎡

⎢⎢⎢
⎣

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎤

⎥⎥⎥
⎦

(41)

and

C (H,H) →

⎡

⎢⎢⎢
⎣

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎤

⎥⎥⎥
⎦

, (42)

respectively. As a consequence, GPRELM is unable to accurately measure the similarity
between pairs of hidden-layer outputs corresponding to different SLFN inputs.

In this paper, we design a normalization method to normalize the hidden-layer inputs of
SLFN in cGPRELM, which calculates h (xi ) as

h (xi ) = [hi1, hi2, . . . , hi L ] , (43)

where

hil = g

[
wlxi + bl

(D + 1) × max [abs (W) , abs (b)]

]
, l = 1, 2, . . . , L (44)
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and max [abs (W) , abs (b)] is the maximum of the absolute components from the input-layer
weight matrix W and hidden-layer bias vector b. Then, Cov

(
h (xi ) , h

(
x j
))
, Var (h (xi )) and

Var
(
h
(
x j
))

for Eq. (30) in cGPRELM are

Cov
(
h (xi ) , h

(
x j
)) =

L∑

l=1

[(
hil − h̄i

) (
h jl − h̄ j

)]
, (45)

Var (h (xi )) =
√√√√

L∑

l=1

(
hil − h̄i

)2
, (46)

and

Var
(
h
(
x j
)) =

√√√√
L∑

l=1

(
h jl − h̄ j

)2
, (47)

where h̄i =
∑L

l=1 hil
L and h̄ j =

∑L
l=1 h jl
L . Assume that random weights and biases are selected

for interval [R1,R2]. We can derive

wlxi + bl
(D + 1) × max [abs (W) , abs (b)]

∈

⎧
⎪⎨

⎪⎩

[
R1

abs(R1)
, R2
abs(R1)

]
⊂ [−1, 0), if abs (R1) ≥ abs (R2)

[
R1

abs(R2)
, R2
abs(R2)

]
⊂ (0, 1], if abs (R1)< abs (R2)

. (48)

Then, we can get

hil ∈
[

1

1 + e
,

1

1 + e−1

]
= [0.2689, 0.7311] . (49)

This indicates that the normalization inEq. (44)makes it possible for cGPRELMto effectively
handle classification and regression tasks for any random initialization. Table 1 summarizes
the main differences between ELM, kGPRELM, and cGPRELM when predicting the label
for an unseen instance x̂ = (x̂1, x̂2, . . . , x̂D

)
.

We briefly discuss the time complexity of cGPRELM. It was shown [14] that the time
complexities of standard ELM are O (NDL) and O

(
L3 + L2N + LNM

)
for calculating

the hidden-layer output matrix and output-layer weight matrix, where N is the number of
instances, D is the number of instance condition attributes, M is the number of instance
decision attributes, and L is the number of hidden-layer nodes. Because of the introduc-
tion of the correlation matrix as shown in Eq. (31), the time complexity for calculating
C (H,H)+σ 2

N I is O
(
NDL + N 2

)
for cGPRELM. Then, the time complexity of calculating

[
C (H,H) + σ 2

N I
]−1

Y is O
(
N 3 + N 2M

)
.

4 Experimental simulations

This section presents the results of a series of experiments conducted to validate the pre-
dictive performance of the proposed cGPRELM method. These experiments include (1)
evaluating the training/testing accuracy/RMSE of cGPRELM on the Iris and DEE data sets;
(2) comparing the confidence intervals of kGPRELM and cGPRELM on the SinC data set;
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Table 1 Main differences between ELM, kGPRELM, and cGPRELM

Algorithm Predicted output Hidden-layer
transformation

Hidden-layer
normalization

ELM ŷ = h
(
x̂
)
H†Y No No

kGPRELM ŷ = k
(
h
(
x̂
)
,H
) [

K (H,H) + σ 2
N I
]−1

Y RBF kernel in Eq. (12) No

cGPRELM ŷ = c
(
h
(
x̂
)
,H
) [

C (H,H) + σ 2
N I
]−1

Y Correlation in Eq. (29) Yes
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Fig. 4 Training and testing performances of cGPRELM on the Iris and DEE data sets

(3) comparing the generalization capabilities of ELM, kGPRELM, cGPRELM, and mul-
tilayer ELM on 19 UCI [18] and 10 KEEL [1] data sets; and (4) comparing the ranks of
K (H,H) + σ 2

N I and C (H,H) + σ 2
N I. All the experiments were implemented using MAT-

LAB and ran on a Thinkpad SL410K computer with Windows XP Professional, a Pentium
Dual-core T4400 2.20 GHz processor and 4 GB of RAM.

4.1 On the Iris and DEE data sets

Figures 1 and 2 of Sect. 2.3 illustrate the instability of ELM and overfitting of kGPRELM,
respectively. In this experiment, we also plot the learning curves of cGPRELM for the Iris
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Fig. 5 Predictive performances of kGPRELM (
(
L, σN , λ2

) = (190, 2−20, 2−9)) and cGPRELM (
(
L, σN

) =(
80, 2−20)) on 200 SinC instances

and DEE data sets. The experimental parameters were setup as follows: the number of
hidden-layer nodes in SLFNs is L = {10, 20, . . . , 190, 200}; σN in Eqs. (5) and (12) is σN

= {2−24, 2−23.5, . . . , 2−0.5, 20
}
; and λ2 in RBF kernel is λ2 = {2−9, 2−8.5, . . . , 29.5, 210

}
.

Figure 4 presents the training/testing accuracies of cGPRELM on Iris and training/testing
RMSEs on DEE. In that figure, we can clearly see that the learning curves of cGPRELM
do not sharply fluctuate and that the testing accuracies and RMSEs of cGPRELM do not
obviously decrease and increase with an increase of the training accuracies and decrease of
training RMSEs. This is because the proposed cGPRELM method is more stable than ELM
and more effectively control overfitting than kGPRELM.

4.2 On the SinC data set

The second experiment compares the 95%confidence intervals (CIs) [μ − 1.96σ,μ + 1.96σ ]
of kGPRELM and cGPRELM, where μ and σ 2 are the mean and variance of the predictive
output. In total, 200 instances (xi , yi ) , i = 1, 2, . . . , 200were randomly generated according
to the following SinC function

yi =
{ sin xi

xi
+ εi , xi �= 0

1 + εi , xi = 0
, (50)

123



2032 X. Ye et al.

Table 2 Details of 19 UCI [18]
classification data sets

No. Data sets Attributes Classes Instances

1 Auto Mpg 5 3 392

2 Blood transfusion 4 2 748

3 Breast cancer W-P 33 2 198

4 Cleveland 13 5 297

5 Credit approval 15 2 690

6 Cylinder bands 20 2 540

7 Ecoli 5 8 336

8 Glass identification 9 7 214

9 Haberman’s survival 3 2 306

10 Image segment 19 7 2310

11 Ionosphere 33 2 351

12 Iris 4 3 150

13 Magic telescope 10 2 19020(5%)

14 New thyroid gland 5 3 215

15 Page blocks 10 5 5473

16 Pima Indian diabetes 8 2 768

17 Sonar 60 2 208

18 Vehicle silhouettes 18 4 846

19 Vowel recognition 10 11 528

Table 3 Details of 10 KEEL [1]
regression data sets

No. Data sets Attributes Instances

1 Daily electricity energy 7 365

2 Delta ailerons 6 7129

3 Electrical maintenance 5 1056

4 Friedman function 6 1200

5 Laser generated 5 993

6 Mortgage 16 1049

7 Stock prices 10 950

8 Treasury 16 1049

9 Weather Ankara 10 321

10 Weather Izmir 10 1461

where xi and εi are random numbers drawn uniformly in intervals [−10, 10] and [−0.2, 0.2],
respectively. The predictive curves and corresponding CIs of kGPRELM and cGPRELM are
presented in Fig. 5. We selected the best learning parameters corresponding to the lowest
trainingRMSEs for kGPRELM(i.e.,

(
190, 2−20, 2−9

)
) and cGPRELM(i.e.,

(
80, 2−20

)
) from

parameter spaces L ×σN ×λ2 and L ×σN , respectively, where L = {10, 20, . . . , 190, 200},
σN = {2−25, 2−20, . . . , 215, 220

}
, and λ2 = {2−9, 2−8, . . . , 29, 210

}
. In Fig. 5, we can find

that kGPRELM overfits, while the proposed cGPRELM does not suffer from serious over-
fitting. Figure 5c compares different CIs of kGPRELM and cGPRELM. We can find that
the CIs of cGPRELM are almost all contained in those of kGPRELM. This indicates that
cGPRELM obtains smaller CIs than kGPRELM. From a statistical perspective, the smaller a
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CI is, themore accurate the estimation is. This indicates that the proposed cGPRELMmethod
can obtain a more accurate predictive output than kGPRELM. The next experiments on real
data sets also support this empirical conclusion.

4.3 On UCI and KEEL data sets

In another experiment, we selected 19 UCI classification data sets (Table 2) and 10 KEEL
regression data sets (Table 3) to compare the performances of ELM, kGPRELM, cGPRELM,
and multilayer ELM (ML-ELM) [15]. We measured the training accuracy/RMSE, testing
accuracy/RMSE, training time, and testing time of these three methods. The inputs of all
29 data sets and outputs of 10 regression data sets are normalized in the [0, 1] interval. The
learning parameters for ELM, kGPRELM, and cGPRELM are L = {10, 20, . . . , 190, 200},
σN = {2−25, 2−20, . . . , 215, 220

}
, and λ2 = {2−9, 2−8, . . . , 29, 210

}
. To find the best training

models, ELM, kGPRELM, and cGPRELM were, respectively, trained 20, 20×10×20, and
20×10 times for each data set. For each L ,

(
L, σN , λ2

)
, and (L, σN ),we used 10 times twofold

cross-validation to train and test ELM, kGPRELM, and cGPRELM. ForML-ELMwith three
hidden-layers, a fixed learning parameter is used to train and test the algorithm based on the
same training and testing data sets as ELM, kGPRELM, and cGPRELM. Accuracies and
RMSEs are listed in Tables 4, 5. Learning time on classification and regression data sets is
summarized in Tables 6, 7.

The experimental results in Tables 4, 5 support the theoretical analysis of kGPRELM’s
overfitting presented in Sect. 2.3. Its maximal training accuracies on 18 UCI classification
data sets are 1.000, and minimal training RMSEs on 9 KEEL regression data sets are 0.000.
However, the corresponding testing accuracies and RMSEs of kGPRELM are the worst.
Smaller λ2s (e.g., 2−9) lead to overfitting for classification tasks and larger Ls (e.g., 160,
170, 180, 190, and 200) for regression tasks. Though the proposed cGPRELM method does
not achieve the highest training accuracies or the lowest trainingRMSEs, its testing accuracies
and RMSEs are the best in comparison with ELM and kGPRELM. cGPRELM, in particular,
achieves comparable testing results with ML-ELM: cGPRELM obtains the highest testing
accuracies on 14 classification data sets and lower testing RMSEs on 7 regression data sets. It
indicates that correlation GPR can help ELM in achieving good generalization performances
under the condition of shallow learning. Tables 6, 7 compare the training and testing times
of ELM, kGPRELM, cGPRELM, and ML-ELM. It is found that cGPRELM requires less
training time than kGPRELM. This is because calculating K (H,H) is more time-consuming
than C (H,H). This observation is also supported by the computational time comparison for
kernel and correlation matrices in Fig. 3.

4.4 Ranks of K (H,H)+ �2
NI and C (H,H)+ �2

NI

We use two classification (Iris and New Thyroid Gland) and two regression (DEE and
Wankara) data sets to validate the effects of ranks of K (H,H) + σ 2

N I and C (H,H) + σ 2
N I

on the predictive performances of kGPRELM and cGPRELM, respectively. For kGPRELM,
we set σN = 2−24, L = {10, 20, . . . , 190, 200}, and λ2 = {

2−9, 2−8.5, . . . , 29.5, 210
}
. For

cGPRELM, we let L = {10, 20, · · · , 190, 200}, and σN = {
2−24, 2−23.5, . . . , 2−0.5, 20

}
.

Figures 6 and 7 show the relationships between ranks and predictive performances on clas-
sification and regression data sets, respectively. In the RBF kernel of kGPRELM, there is a
user-specified parameter, i.e., λ2. From Figs. 6a, c, 7a, and c, we can find that smaller λ2s lead
to full ranks of K (H,H) + σ 2

N I and thus higher training accuracies (e.g., 1.000) and lower
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Table 6 Training and testing times of ELM, kGPRELM, cGPRELM, and ML-ELM on 19 classification data
sets

No. ELM kGPRELM cGPRELM MLELM

Training Testing Training Testing Training Testing Training Testing

1 0.031 0.000 0.148 0.156 0.000 0.039 0.003 0.000

2 0.000 0.000 0.484 0.344 0.102 0.031 0.004 0.000

3 0.000 0.000 0.023 0.031 0.000 0.016 0.004 0.000

4 0.016 0.000 0.063 0.078 0.000 0.031 0.003 0.000

5 0.016 0.047 0.367 0.289 0.063 0.047 0.004 0.000

6 0.047 0.000 0.227 0.180 0.070 0.039 0.004 0.000

7 0.023 0.000 0.094 0.055 0.000 0.039 0.003 0.000

8 0.016 0.000 0.047 0.031 0.000 0.016 0.003 0.000

9 0.016 0.000 0.102 0.094 0.000 0.016 0.003 0.000

10 0.070 0.023 6.273 2.750 2.453 0.391 0.007 0.000

11 0.031 0.000 0.125 0.109 0.016 0.000 0.004 0.000

12 0.000 0.000 0.016 0.016 0.000 0.000 0.003 0.000

13 0.031 0.000 0.641 0.383 0.164 0.070 0.004 0.000

14 0.000 0.000 0.047 0.031 0.016 0.000 0.003 0.000

15 0.063 0.039 2.250 2.141 1.247 0.243 0.004 0.000

16 0.047 0.000 0.453 0.367 0.117 0.055 0.004 0.000

17 0.016 0.000 0.047 0.047 0.016 0.000 0.005 0.000

18 0.031 0.039 0.438 0.344 0.109 0.055 0.004 0.000

19 0.000 0.000 0.172 0.234 0.047 0.039 0.004 0.000

Table 7 Training and testing times of ELM, kGPRELM, cGPRELM, andML-ELM on 10 regression data sets

No. ELM kGPRELM cGPRELM MLELM

Training Testing Training Testing Training Testing Training Testing

1 0.016 0.000 0.164 0.203 0.031 0.000 0.003 0.000

2 0.086 0.055 2.969 3.125 0.313 0.000 0.018 0.003

3 0.039 0.000 0.417 0.365 0.211 0.070 0.004 0.000

4 0.130 0.000 0.469 0.495 0.305 0.109 0.005 0.000

5 0.023 0.000 0.488 0.508 0.195 0.086 0.004 0.000

6 0.031 0.023 0.469 0.313 0.242 0.078 0.004 0.000

7 0.031 0.000 0.508 0.430 0.172 0.078 0.004 0.000

8 0.070 0.000 0.469 0.417 0.227 0.117 0.005 0.000

9 0.031 0.000 0.117 0.156 0.031 0.000 0.003 0.000

10 0.047 0.016 0.688 0.594 0.531 0.141 0.005 0.000
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(a) kGPRELM on Iris data set
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(c) kGPRELM on New Thyroid Gland data set
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Fig. 6 Ranks of K (H,H) + σ 2
N I and C (H,H) + σ 2

N I on two representative classification data sets
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Fig. 7 Ranks of K (H,H) + σ 2
N I and C (H,H) + σ 2

N I on two representative regression data sets
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training RMSEs (e.g., 0.000). However, as λ2 increases, the testing accuracies for kGPRELM
decrease initially and increase afterward (the testing RMSEs increase initially and decrease
afterward). This indicates that kGPRELM easily overfits and λ2 has a clear influence on
the testing accuracy and RMSE of kGPRELM. As the designed cGPRELM method has no
pre-determined parameters in Eq. (30), cGPRELM is more simple to use than kGPRELM. It
is observed in Figs. 6b, d, 7b, and d that the rank of C (H,H) + σ 2

N I mainly depends on σN .
Usually, smaller σN s leads to better training and testing performances for cGPRELM even
though C (H,H) + σ 2

N I is not full rank.

5 Conclusion

This paper investigated the primary cause of overfitting in kernel-based Gaussian process
regression for extreme learning machine (kGPRELM) and proposed a correlation-based
GPRELM (cGPRELM) method. It provides stable prediction and effectively control overfit-
ting by using a correlation coefficient rather than a kernel function to measure the similarity
between different hidden-layer outputs of the single hidden-layer feed-forward neural net-
work (SLFN) with random input-layer weights and hidden-layer biases. The experimental
results demonstrated the feasibility and effectiveness of the proposed cGPRELM method,
which not only outperforms kGPRELM in terms of generalization performance but also has
a lower computational complexity. In future work, we will (1) provide a theoretical proof
for the overfitting of the Gaussian process-based random weight network; (2) investigate
the robustness of cGPRELM for noisy data and outliers; and (3) use cGPRELM to handle
prediction tasks with fuzzy-in and fuzzy-out data.
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