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Abstract
Document stores have gained popularity among NoSQL systems mainly due to the semi-
structured data storage structure and the enhanced query capabilities. The database design
in document stores expands beyond the first normal form by encouraging de-normalization
through nesting. This hinders the process, as the number of alternatives grows exponentially
with multiple choices in nesting (including different levels) and referencing (including the
direction of the reference). Due to this complexity, document store data design is mostly
carried out in trial-and-error or ad-hoc rule-based approaches. However, the choices affect
multiple, often conflicting, aspects such as query performance, storage space, and complexity
of the documents. To overcome these issues, in this paper,we applymulticriteria optimization.
Our approach is driven by a query workload and a set of optimization objectives. First, we
formalize a canonical model to represent alternative designs and introduce an algebra of
transformations that can systematically modify a design. Then, using these transformations,
we implement a local search algorithm driven by a loss function that can propose near-
optimal designs with high probability. Finally, we compare our prototype against an existing
document store data design solution purely driven by query cost, where our proposed designs
have better performance and are more compact with less redundancy.
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1 Introduction

In the last couple of decades, the data storage paradigm has shifted from traditional rela-
tional database management systems (RDBMSs) toward more flexible NoSQL engines [1].
Among these, the popularity of document stores has prevailed due to the adoption of semi-
structured data models, which avoids the impedance mismatch between the data storage and
applications. Document stores allow users to focus on rapid application development with a
data-first approach instead of the traditional schema-first of RDBMSs. This has caused an
increase in their popularity, especially in the startup ecosystem, where the goal is to rapidly
deliver products into the competitive market [2]. As a consequence, database design (i.e., the
design of database structures and their relationships) has been overlooked and not performed
in a principled manner. However, it has been shown that the choice of database design plays
a critical role in performance [3]. Database design for document stores is, in general, mostly
carried out in a trial-and-error or ad-hoc rule-based manner. For instance, MongoDB, the
leading document store, provides a set of design patterns that define certain guidelines on
how to structure documents.1 Nevertheless, even with these guidelines, it is still common to
make bad design decisions, and issues tend to arise in the long run when the amount of data
has grown considerably, and changing them incur additional cost, time, and money.

Let us consider an exemplary scenario of product reviews composed of the entities Com-
ments and Products, with a one-to-many relationship from the latter to the former, as well as
an equiprobable hypothetical workload defined as follows: (a) given a Comment ID, find its
text; (b) given a Product ID, find its name; (c) given a Comment ID, find the Product name;
and (d) given a Product ID, find all of its Comments. To illustrate the complexity of manu-
ally determining the optimal design even in such an oversimplistic scenario, we conducted a
questionnaire to database experts on an equivalent setting.2 63% of the participants managed
to identify only three potential designs for a document store, many of them overlooking
the redundant nesting and referencing options. After comparing the results against an actual
experimental setup performance on MongoDB, we concluded that only 9% of the partici-
pants managed to find the optimal design, while 40% guessed the fourth-best design as the
optimal one (in terms of query performance). This evidences that the current way of database
design does not yield the expected results, even for very limited scenarios like this. Indeed,
real-world scenarios are far more complex involving multiple entities and relationships.

If we assume that all attributes of an entity are kept together within the same document,
we are still left with the decision on where the relationships must be stored in the final design.
Thus, database designs can be enumerated based on the alternatives to store the relationships,
which depend on three independent choices: Direction, Representing, and Structuring, as
shown in Fig. 1 together with two examples. Direction determines which entity keeps the
information about the relationship. It can be any of the two entities or both. Representation
affects how this relationship is stored by either keeping a reference or embedding the object.
Finally, Structuring determines how we structure the relationship, either as a nested list
or flattened (in the case of one-to-many relationships). For example, if we decide to keep
the references to the comments in the product, they can be stored as a list of references
(comment:...) or in a flattened manner (comment_1:.., comment_2:..). Hence, we end up with
24 possible designs for our running example. Depending on end-user preference, each one of
these designs has the potential to become the optimal design choice. This trade-off between
alternatives makes the process of finding the optimal design a complex one.

1 https://www.mongodb.com/blog/post/building-with-patterns-a-summary.
2 https://moditha.typeform.com/to/NRTjEm.
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Fig. 1 Relationship storage choices for database design

As a matter of fact, the number of relationships r determines the number of candidate
designs, which is exponential (24r ), as the storage option of each relationship is independent
of others. Note, however, that here we did not consider allowing heterogeneous collection-
s/lists, which is possible in the context of schemaless databases, leading to a complexity
increase. For example, collections at the top level could potentially contain different kinds of
documents. In our running example, the product and comment documents could be stored in
a single heterogeneous collection mixing both. Precisely, for a design with c top-level collec-
tions, the total number of combinations will be

∑c
i=1

{c
i

}
, where

{n
k

}
is the Stirling number

of the second kind, corresponding to the number of ways to partition n distinct elements into
k non-empty subsets [4]. Overall, such exponential growth makes it impossible to enumerate
and evaluate all candidate designs.

To overcome such limitations, there exist several solutions in the literature mainly relying
on the query workload to propose a database design, such as DBSR [5], NoSE [6], and
Mortadelo [7]. However, query performance is not the only factor affected by design choices.
For instance, having redundant collections to support different queries will increase query
performance but require larger storage capacity. Having complex document structures with
multiple branching and nesting levels hinders the readability of documents. Similarly, having
heterogeneous collections requires additional documentation to map where each piece of
information is stored. In our previouswork,we enabled users to evaluate alternative designs of
their choice [8]. However, this approach is painstaking for them and highly dependent on their
competencies. Therefore, we believe that it is essential to find an optimal design that considers
a variety of the user’s preferences automatically. To that end, we propose a novel automated
database designmethod for document stores that considers all such factors. This is achievedby
the adoption of well-knownmulticriteria optimization techniques, proven to efficiently tackle
multiple and conflicting objectives [9]. Thus, we generate near-optimal database designs that
balance the end-user’s preferences regarding four quantifiable objectives: storage size, query
performance, degree of heterogeneity and the average depth of documents. This work has
been demonstrated as a tool DocDesign 2.0 [10]. To show the effectiveness of our method, we
compare it against an existing document store schema generation tool in terms of the quality
of the generated design and its performance. Our experimental results show that we manage
to present a design with less redundancy and offer better performance with the flexibility of
catering to the end-user preference. We can also scale up when the number of entities and
relationships grows.
Contributions. The main contributions of our work are as follows:
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• Wepropose a novel loss function formulticriteria selection of the optimal database design
for document stores.

• We devise an algebra of transformations that allow to systematically modify a database
design while retaining all the information (i.e., no attributes or entities are lost).

• Wepresent an implementation of a local search algorithm that, driven by the loss function,
proposes with high probability near-optimal designs.

• We assess our method and prototype to show the scalability as well as the performance
gain of our solution against competitors by using the RUBiS benchmark [11].

This paper is organized as follows. First, in Sect. 2, we discuss related work. We provide
an overview of our approach in Sect. 3. In Sect. 4, we introduce the canonical model used to
represent the search space of alternative designs. Next, in Sect. 5, we formalize the design
process over the canonical model with random state generation and design transformations.
Then, we validate our data design approach with extensive experiments in Sect. 6. Finally,
we conclude our work in Sect. 7.

2 Related work

JSONhas gained popularity in recent years as an alternative storage format toXML.Although
JSON is semi-structured, a schema can be defined [12], and thus some approaches aim
to extract such schema representation from heterogeneous JSON documents [13]. When it
comes to data design for document stores, thesemainly rely on finding a solution that balances
the two extremes (i.e., normalized and embedded models) [14]. It has been shown that the
design decisions for JSON storage are not trivial and can affect the performance as storage
requirements that also depends on the choice of the storage system [15]. Moreover, some
authors [16] discuss data quality aspects that could arise in JSON stores and how to measure
them, which can help to evaluate the potential document designs.

It is well-known that design methods for NoSQL data stores must consider both relational
and co-relational perspectives at once [17]. Nevertheless, although data modeling has played
a significant role in RDBMS, little work has been carried out on data design methods for doc-
ument stores. Different approaches have been employed to tackle such problems, including
some for analytical workloads [18], as well as cost-based schema design evaluation [8] based
on a hypergraph data model [19]. NoAM [3] uses three constructs (collection, block, and key)
to introduce an abstract data model that can be mapped into heterogeneous NoSQL stores
based on entity aggregates. Alternatively, the SOS platform [20] introduces three design con-
structs (attributes, structs, and sets), which are capable of representing relational, key-value,
document, and column-family stores. Indeed, our approach builds on a hypergraph-based
formalization of the SOS constructs, which we proposed in a recent work [19]. This formal-
ization enables the generation of native queries over the heterogeneous stores to manage the
metadata of polyglot systems, thus representing the basis for defining design transformations.

Additionally, several works have been carried out specifically on automated schema
design for NoSQL stores. We followed the principles and guidelines of Systematic Liter-
ature Reviews (SLR) as established by Kitchenham and Charters [21]. We used the search
terms NoSQL design, document store schema, NoSQL schema as the search terms to select
the initial set of articles from DBLP 3 and used a snowballing approach to track down ref-
erences related on automated schema design on document stores and NoSQL systems in
general. However, there are only a few schema generation/suggestion tools available for

3 https://dblp.org.
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Table 1 Overview of existing tools for schema generation

System Data store Workload Optimization Exploration

Chebotko et al. [24] Col Read Rule-based Low

Mortadelo [7] Col/Doc Read Query cost/metamodel Low

De Lima et al. [23] Doc Read Query cost/rule-based Low

NoSE [6] Col Read Query cost Low

DBSR [5] Doc Read Query cost Low

DocDesign 2.0 Doc Read Multicriteria High

NoSQL systems. DBSR [5] is a database schema recommender for document stores, which
uses a search-based approach to navigate the data design space similar to the one of this
paper. However, DBSR only considers the query workload in generating potential designs.
Moreover, DBSR only considers nesting as opposed to referencing, avoiding joins altogether.
However, in our work [8] we have encountered instances where external joins perform better
than certain embedded approaches. Thus, DBSR can omit some optimal designs in its pro-
cess. DBSR compares itself to other existing approaches that we found relevant for our work;
hence, we have compared our approach against it, because of being it is the latest research
carried out in automated schema design and specific to document stores and superior to pre-
vious ones. There are several similarities between DocDesign 2.0 and DBSR they are both
based on read-only workloads, and allow data duplication, nested structures, secondary index
usage, and query plan estimation on document stores. However, the cost model [22] used by
DocDesign 2.0 is more mature and robust to the underlying document store implementation
as opposed to the simple access pattern-based one used by DBSR. Moreover, DocDesign 2.0
uses a multi-criteria-based approach with more fine tune capabilities to the user, compared
to only tuning the number of final collections in DBSR resulting in a superior output.

NoSE [6] uses a cost-based schema design approach specific for column stores. In Mor-
tadelo [7], a model-driven data design based on a generic data model is used to generate
optimized data store schemas and queries for document and column stores. Another approach
[23] generates a physical schema from a logical one for document stores based on the work-
load by optimizing the query access patterns. Unlike rule-based design generation in these
approaches that could omit certain designs, our work opens the door to potentially generate
all possible combinations.

Table 1 summarizes the existing schema generation tools for NoSQL systems. Next to
the name of each system, we find in the first column the kind of system it is, because both
document and column stores are semi-structured and benefit from the same kind of design
improvements. Thus, the approaches taken to optimize their design are comparable, albeit
document stores having complex query capabilities. Irrespectively of the kind of system, all
of the observed approaches utilize random readworkloads. Nevertheless, all other approaches
except ours use only the query cost as the goal of optimization,whileDocDesign 2.0 considers
multiple criteria for greater flexibility in the design.Moreover, DocDesign 2.0 systematically
explores the search space (possible designs) thanks to our algebra of transformations, as
compared to the others which are only guided by the query workload or heuristic rules.
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Fig. 2 High-level overview of our approach

Fig. 3 ER diagram for RUBiS
framework

3 Overview

In this section, we provide a high-level overview of the components of our approach. In order
to yield the most suitable database design for a given set of contradicting objectives, we adopt
multicriteria optimization techniques. These have shown to be effective in obtaining near-
optimal solutions out of a large search space in the presence of conflicting objectives [25]. In
these scenarios, one can only aim to obtain a Pareto-optimal solution (a solution that, in the
presence of multiple objectives, cannot improve one objective without worsening another).
An overview of our approach is shown in Fig. 2; next in the following subsections, we briefly
describe each of its components: namely user inputs, the design process, loss function, and
the search algorithm.

Let us take the RUBiS benchmark [11] as a running example. As depicted in Fig. 3,
RUBiS implements an online auction system (we also take the same 11 queries used by
the DBSR framework as our workload).4 If one were to design a traditional RDBMS data
storage for this case, it would be natural to apply normalization and deploy a database schema
in either third-normal form (3NF) or Boyce–Codd normal form (BCNF). It is well known
from relational theory that such a design avoids update anomalies and would still efficiently
execute many queries. However, this penalty is not acceptable for document stores, and
they encourage denormalization and promote nesting to keep related pieces of information
together, avoiding expensive joins even if increasing redundancy. It is thus unclear what
would be the best database design, whether it could be a fully denormalized collection with
Regions as the top-level document, a normalized approach similar to 3NF, or an in-between
solution. With reference to our estimate in the introduction, there are 246 possible alternative
designs to choose from.

3.1 User inputs

The end-user must provide three inputs to initiate the optimization process: the Entity-
Relationship (ER) diagram (enriched with some physical information like attribute sizes

4 https://github.com/vreniers/DBSR.
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and cardinalities), a query workload (i.e., a set of design-independent queries together with
their frequencies), and the weights of the four cost functions.

Entity-Relationship describes the domain in terms of a graph and determines the complexity
of the optimization problem. The user has to identify the entities, the attributes of each entity,
the average size of the attributes, the number of instances of the entities, and their relation-
ships, including the multiplicities. As previously mentioned, we represent this information
using a hypergraph-based canonical model composed of Atoms and Relationships [19]. In
our running example, these are the entities, relationships, and multiplicities shown in Fig. 3.
By definition, this graph is considered immutable, and we carry out the database design on
top of it by building hyperedges. We discuss the canonical model and the design process in
detail in Sect. 4.

Query workload determines the user’s query requirements on the underlying data. Since the
input ER does not contain design information, the queries are also represented in a design-
independent manner. Thus, a query is a set of interconnected Atoms with a specific one
representing a selection criterion (as defined in the cost model [22]). Our approach works
with a constant workload, including the frequency of each of the queries. In our running
example, the workload would be the 11 queries in RUBiS together with their frequencies.

Cost function weights determine how the final design performs in four criteria, namely:
query performance, storage size, degree of heterogeneity within a collection, and depth of
the documents. Each of these has a cost function associated whichwill be weighted according
to the user’s needs to compose the loss function to be optimized.

3.2 Design processes

Once the user has provided the ER diagram, it is stored in an immutable graph where the
entities and attributes are represented as vertices (Atoms) and relationships as edges [19]. Pre-
cisely, we perform all design operations on top of this immutable graph generating candidate
designs. Two processes generate these candidate designs, namely: initial random design
generation (through those relationship design choices shown in Fig. 1) and design trans-
formation of an existing design (through the methods associated with the different classes
in the canonical model). For instance, the random design generator could generate a design
with five separate collections for each entity with their respective references (e.g., the user
references the region). Then, through design transformations, we can generate an alternative
design from the existing one by embedding the region inside the user. We introduce the for-
mal canonical model, algorithms to generate random designs, and design transformations in
Sect. 4.

3.3 Loss function

We introduce four components of the loss function to be measured and optimized in DocDe-
sign 2.0 : query cost, storage cost, degree of heterogeneity, and the average depth of the
documents (as a measure of their complexity). We chose these loss functions as a represen-
tative of different cost functions and not intended as an ultimate combination that would
provide the optimal database design. These are defined as follows:

Query cost (CFQ) is theweighted average of the relative query performance values estimated
from the schema information using a cost model for document stores [22]. This cost model is
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configurable according to the storage and the execution model of different document stores.
Thus, it is possible to adapt DocDesign 2.0 to alternate document store implementations.
The cost model firstly takes the query workload as an input, calculates the distribution of the
cache under a workload, and estimates a relative cost of accessing each of the collections and
indexes. Then, the total relative cost of each of the queries (Qq ) that depends on the access
patterns of the storage structures is also calculated. Thus, we can sum up the total query cost

as CFQ = ∑Nq
k=1 f k · Qk

q where Nq is the number of queries in the workload and f k is the
frequency of the Query.

Storage size (CFS). Is the total storage size required by the collections and indexes, calculated
using schema information in the canonical model [19]. We define the size of a collection and
an index as SC and SI , respectively. Thus, the total storage sizeCFS = ∑Nc

k=1 S
k
C +∑Ni

k=1 S
k
I

where Nc and Ni are the total number of collections and indexes in the design.

Degree of heterogeneity (CFH ) is the number of distinct types of documents in a collec-
tion/list. We use the weighted average over all the collections and lists of the schema. Each
value is given a weight depending on which level the list/collection lies in the document. The
higher the level, the higher the assigned weight, thus penalizing heterogeneities at higher
levels of the document structure. If there are n heterogeneous collection/list at a given level
lv, the degree of heterogeneity value Hlv = n

lv+1 . Assuming there are Nh number of collec-

tions/lists in the design, the average degree of heterogeneity CFH =
∑Nh

k=1 H
k
lv

Nh
.

Depth of the documents (CFD) is the average depth of the documents of the design. We
can assume that each document at the top level of a collection has branches reaching from
the root to the leaf level with a length ln, and there is Nb number of branches in all the
documents in the top level. Thus, we define the average depth of the documents of the design

CFD =
∑Nb

k=1 ln
k

Nb
.

3.4 Search algorithm

Local search algorithms consist of the systematicmodification of a given state, utilizing action
functions, in order to derive an improved state. The intricacy of these algorithms consists of
their parametrization, which is, at the same time, their key performance aspect. Due to the
genericity of different use cases our method can tackle, we decided to choose hill-climbing,
a nonparametrized search algorithm that can be seen as a local search, always following the
path that yields lower loss values. Nevertheless, the cost functions we use are highly variable
and non-monotonic, which can cause hill-climbing to provide different outputs depending on
the initial state. To overcome this problem, we adopt a variant named shotgun hill-climbing,
which consists of a hill-climbing with restarts using random initial states.

Loss function. Guiding the local search algorithm requires the definition of a loss function,
taking into account the end-user preferences. Here, this is a function to be minimized. Hence,
the end-user can assign weights to each cost function according to their importance in the
use case. Then, for a given design C , we define the loss as the normalized weighted sum

of each cost function l(C) = ∑n
k=1 wk

CFk(C) − CFmin
k

CFmax
k − CFmin

k

. The expression considers the

weight wk of each cost function, which is used on the transformed loss function for C . This
is a normalized value that considers the utopia (i.e., the expected minimal) and the maximal
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Algorithm 1 Shotgun Hill-Climbing
Input: [Initial design, number of non-improving iterations] D, N :
Output: [Solution design] solution
1: solution ← null; i ← N
2: while i > 0 do
3: B ← randomInitialState(D); finished ← false
4: while !finished do
5: neighbors ← applyAllPossibleTransformations(B)
6: B′ ← stateWithSmallestLoss(neighbors)
7: if l(B′) < l(B) then
8: B ← B′
9: else
10: finished ← true
11: end if
12: end while
13: if l(B) < l(solution) then
14: solution ← B
15: i ← N
16: end if
17: —-i
18: end while

design costs, yielding values between zero and one, depending on the accuracy of bothCFmin
i

and CFmax
i , which rely on estimations.

Shotgun hill-climbing. Algorithm 1 depicts an overview of shotgun hill-climbing. The
method generates random designs and systematically improves them by applying at each
step all available transformations keeping the one that yields the minimum loss value. Note,
however, that this approach is highly susceptible to fall in local minimums. To overcome this
issue, we repeat the process a certain number of iterations and keep the onewith theminimum
loss, overall. Once such a solution is not improved for a certain number of iterations denoted
by N (i.e., we do not find any new state with a smaller loss), it is highly probable that we
have found the optimal design.

Thus, DocDesign 2.0 will provide a pareto-optimal design depending on the importance
given to the each of the loss functions and the number of non-improving iterations given by
the user. For instance, retaking the running example, if the user had specified to optimize on
the storage space, the solution would be individual collections with references with minimal
or no nested documents (Listing 1). Or, if the query performance is the only important factor,
it is likely to generate collections that can answer the queries without joins increasing the
redundancy (Listing 2).
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Listing 1 Optimized for storage
"REGION ": {

"R_ID": int(4),
"R_NAME ": varchar (10)

}
"USER": {

"U_ID": int(4),
"U_F_NAME ": varchar (20),
"R_ID": int(4),

}
"PRODUCT ": {

"P_ID": int(4),
"P_TITLE ": varchar (10),
"C_ID": int(4),
"B_ID": int(4),
"U_ID": int(4)

}
"COMMENT ": {

"C_ID": int(4),
"C_TITLE ": varchar (20),
"U_ID": int(4),
"P_ID": int(4)

}
"BID": {

"B_ID": int(4),
"B_PRICE ": int (6),
"U_ID": int(4)

}

Listing 2 Optimized for queries
"USER -BIDS": {

"U_ID": int (4) ,...
"REGION ": {

"R_ID": int (4) ,...
},
"BIDS": [{

"B_ID": int (4) ,...
}]

}
"USER -COMMENTS ": {

"U_ID": int (4) ,...
"R_ID": int (4),
"REGION ": {

"R_ID": int (4) ,...
},
"COMMENTS ": [{

"C_ID": int (4) ,...
"U_ID": int (4)

}]
}
"PRODUCT -COMMENT ": {

"P_ID": int (4) ,...
"COMMENTS ": [{

"C_ID": int (4) ,...
"U_ID": int (4)

}],
"B_ID": int (4),
"U_ID": int (4)

}
"BID -USER": {

"B_ID": int (4) ,...,
"U_ID": int (4) ,...

}

4 Canonical model

In this section, we present the canonical data model we use to represent database designs for
document stores. We extend our previous work [19], where we presented a hypergraph-based
canonical data model for polyglot systems. A hypergraph is a generalization of a graph in
which an edge can join more than one vertex. Here, we extend it with additional artifacts and
class methods specific to document stores. To that end, we distinguish three levels of detail
frommost abstract tomost specific ( immutable, storage agnostic, anddocument store-specific
constructs). Each subsection corresponds to the three abstraction levels. Fromnowon,wewill
use the conventions listed in Table 2. The subscripts R, H , Struct, Set, Doc, Top, List , and
Col of E denotes the type of the edges such as relationship, hyperedge, struct, set, document,
top level document, list, and collection, respectively. The superscript is used to denote the
type of the data store. In this paper this is always Doc for document stores.

4.1 Immutable graph

Figure 4 depicts the main constructs of our canonical data model with the three levels of
abstraction highlighted. The ER diagram provided by the user (e.g., Comments and Products)
is considered immutable. This immutable information is a simple graph consisting of Atoms
(A) and Relationships (ER). An Atom is either an attribute AA or a class representative AC

(e.g., comment text and comment ID, respectively). This immutable graph can only represent
binary relationships of an ER diagram. However, the representation of ternary relationships
is also possible by reification of the relationship and transforming into binary relationships.

Over the immutable metadata, we define the different design artifacts depending on the
model being used (e.g., documents in our case). Therefore, we define design operations for
those artifacts at two specialization levels, each containing different class methods on the
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Table 2 Variables used in the paper

C The catalog (the design) EN Node (either atom or edge)

A Atom A Set of all atoms in C

AC Class atom O(h) Root atom of a struct h

Ex,y
R Directed relationship between

two atoms x and y
ER Set of all relationships in C

EH Hyperedge E+
H Transitive closure of EH

EStruct Struct EStruct Set of all the EStructs in C

ESet Set ESet Set of all the ESets in C

EDoc
Doc Hyperedge representing a

document of a document
store

EDoc
Top EDoc

Doc representing top level
document of a collection of
a document store

EDoc
List Hyperedge representing a list

in a document store
EDoc
Col EDoc

List representing a top level
list (a.k.a collection)

E
AC ,AC
R Relationship between two

class atoms
E Generic superclass for edges

Fig. 4 Class diagram of the canonical model

canonical model, getting more concrete as the specialization progresses. Operations at an
abstraction level have access and use the operations at more generic levels above.

4.2 Storage-agnostic constructs

The main design construct of our model is a Hyperedge (EH ). By definition, a hyperedge is
an edge that connects more than one vertex in a graph. We use the concept of generalized
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Table 3 Hypergraph methods

Method 〈〈preconditions〉〉 〈〈postconditions〉〉
Hyperedge(C, nodes : Set of EN ) • nodes ⊆ sel f

• sel f ∈ C

� Hyperedge() • sel f /∈ self.C

• sel f .children@pre ⊆ self.parent

EH .addNode(n : EN ) • sel f /∈ n+ • n ∈ sel f

EH .removeNode(n : EN ) • n ∈ sel f • n /∈ sel f

hypergraph where a hyperedge can also contain other hyperedges. Hyperedges (EH ) in our
canonicalmodel consists of a set ofNodes (EN ), which can be eitherAtoms (A),Relationships
(ER) or other Hyperedges (EH ).

In Table 3, we identify methods involving Hyperedges. These hypergraph operations are
independent of the design constructs and the concrete data store, and we show them directly
through pre- and postconditions. Firstly, creating a Hyperedge defines a set of nodes in the
catalog. On destroying it, all nodes inside are absorbed by its parent to ensure the validity
of the catalog as per Definition 3. On adding a new node EN to a Hyperedge EH , it must
happen that the Hyperedge EH does not transitively contain itself to avoid cyclic references.
Here, sel f and@pre refer to the instance of the EH and value of the corresponding variable
before the operation, respectively.

Now, we introduce two specialized EH s that are generic to any database system. EStruct

represents the structure of the stored elements in the database (i.e., a row in an RDBMS or
a document in a document store) with a specific AC identified as the root (primary attribute
of the EStruct). ESet represents the collections of the database (table in an RDBMS, list or
collection in a document store), which can contain different kinds of structures (in the case of
document stores). We use the hypergraph operations to manipulate specialized hyperedges
EStruct and ESet, defined at Definitions 1 and 2.

Definition 1 A Struct is a subclass of Hyperedge with a prominent node inside (called root,
noted O(self ), which is an AC ), so that:

(a) All the Atoms in a Struct must have a single path of relationships to its root which is also
part of the Struct.
∀a ∈ (self ∩ A) − O(self ) : ∃!{EO(self ),x1

R , . . . , Exn ,a
R } ⊆ self

(b) All the roots of the nested Structs inside a parent Struct must have a single path of
relationships from the root of the parent, and this path must be inside the parent.
∀s ∈ (self ∩ EStruct) : O(self ) = O(s) ∨ ∃!{EO(self ),x1

R , . . . ., Exn ,O(s)
R } ⊆ self

(c) All the Sets inside a parent Struct must contain a set of relationships that connect any
Atom of the parent to the root of the child Struct or a child Atom of the Set.
∀s ∈ (self ∩ ESet),∀t ∈ (s ∩ (EStruct ∪ A)) : ∃!{Ey,x1

R , . . . ., Exn ,z
R } ⊆ s ∧ y ∈ (self ∩

A) ∧ (t ∈ A ? z = t : z = O(t))
(d) To make sure that there are no dangling relationships inside the Struct, all of the rela-

tionships inside it must be involved in a path that connects either the child Atoms or the
child Structs to its root.
∀Ea,b

R ∈ (self∩ER) : (∃y ∈ (self∩A) : Ea,b
R ∈ {EO(self ),x1

R , . . . , Exn ,y
R } ⊆ self )∨(∃y ∈

(self ∩ EStruct) : Ea,b
R ∈ {EO(self ),x1

R , . . . , Exn ,O(y)
R } ⊆ self )
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Table 4 Struct and set methods

Method Activity

Struct(C, r : AC, At : Set of A, Re : super(C, {r} ∪ At ∪ Re ∪ Hy)

Set of ER , Hy : Set of EH , p : EH ) self.setRoot(r)

p.addNode(self )

Set(C, Re : Set of ER , Hy : Set of EStruct, At : super(C, Re ∪ Hy ∪ At)

Set of A, p : EStruct) p.addNode(self )

Definition 2 A Set is a subclass of Hyperedge, so that:

(a) Sets cannot directly exist within another Set (i.e., they must be contained in an interme-
diate Struct).
∀h ∈ (self ∩ EH ) : h ∈ EStruct

(b) Together with invariant 1c, it guarantees that all the Structs inside a Set are connected
to the parent Struct of the Set by a set of relationships in the Set itself. Finally, all the
relationships inside the Set must be involved in the path that connects its child structs or
Atoms to the parent Struct to avoid dangling relationships.
∀Ea,b

R ∈ (self ∩ ER) : ∃Ax1
C ∈ self.parent, ∃y ∈ (self ∩ (EStruct ∪ A)) : Ea,b

R ∈
{Ex1,x2

R , . . . , Exn ,z
R } ⊆ self ∧ (y ∈ A ? z = y : z = O(y))

Table 4 shows themethods of Set and Struct constructors. Even if for the sake of simplicity,
they are not explicit there; we consider all properties in Definitions 1 and 2 are invariants for
these methods and consequently guaranteed also in those at document store-specific level.
Here, super refers to the constructor of the super class.

4.3 Document store-specific constructs

Document store-specific constructs are specializations of EStructs and ESets specific to docu-
ment stores. We specifically identify the document structure at the top level as EDoc

Top and the

collection as EDoc
Col . All other documents and nested lists are identified as EDoc

Doc and EDoc
List ,

respectively. We now use the Struct and Set constructors to define the operators considering
document store-specific constraints. The constraints and mappings we consider correspond
to the following grammar:

C �⇒ EDoc
Col

+

EDoc
Col �⇒ EDoc

Top
+

EDoc
Top �⇒ AC (A | EDoc

List | EDoc
Doc )

∗

EDoc
List �⇒ ER

+(EDoc
Doc | A)+

EDoc
Doc �⇒ AC (A | EDoc

List | EDoc
Doc )

∗

We define the constructors of the data store-specific structures considering these produc-
tion rules, as shown in Table 5.

Finally, we define a valid design using these constructs, which guarantees that we do not
lose any information provided in the input ER diagram.
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Table 5 Document store-specific constructor methods

Method Activity

Document(C, r : AC , Re : Set of ER , At : Set of A, super(C, r , At, Re, Do ∪ Li, p)

Do : Set of EDoc
Doc , Li : Set of EDoc

List , p :
(EDoc

List ∪ EDoc
Struct))

TopDoc(C, r : AC , Re : Set of ER , At : Set of A, super(C, r , At, Re, Do ∪ Li, p)

Do : Set of EDoc
Doc , Li : Set of EDoc

List , p : EDoc
Col )

Collection(C, Do : Set of EDoc
Top ) super(C, ∅, Do, ∅, ∅)

List(C, Re : Set of ER , Do : Set super(C, Re, Do, At, p)

of EDoc
Doc , At : Set of A, p : EDoc

Struct)

Definition 3 A design D is a set of collection Hyperedges and is valid if it contains all the
Atoms andRelationships in the closure of at least one of its collectionHyperedges.Formally:
∀x ∈ (A ∪ ER) : ∃EDoc

Col ∈ D ∧ x ∈ EDoc+
Col .

Generating arbitrary constructs cannot guarantee a valid design as per Definition 3.
Thus, when using these document store-specific constructors, the validity must be explicitly
enforced.

5 Design processes over the canonical model

Now that we formally defined our canonical model to represent document store data designs,
we can use it in our shotgun hill-climbing approach introduced with Algorithm 1 to find
the near-optimal design. To achieve this, we need to create a initial state with a random
design (line 3) and apply transformations to generate neighboring designs (line 5). Thus,
we introduce two design processes over the canonical model: random design generation and
design transformation each corresponding to a subsection.

5.1 Random design generation

The key concept used in the random design generator is generating connected components
(i.e., subgraphs) of the immutable graph until all the Atoms and Relationships are in one of
these components. This ensures that none of the input ER diagram information is lost, adher-
ing to a valid design. Each connected component represents then a collection in the document
store schema. Algorithm 2 is responsible for generating a random design together with the
aid of Algorithm 3 to make the design structure decisions. The main requirement behind
these algorithms is to make the relationship storage choices randomly. For the simplicity of
the algorithms, we omit the flattened representation in the random generation process. Thus,
a relationship can be referred, nested, or skipped (in the case of chained relationships). In our
running example, the region collection can have bids embedded or referred without storing
the user information. However, the relationship between the users and bidsmust be stored in
another collection (i.e., user collection referring/embedding bids) to ensure no information
is lost from the original ER diagram adhering to the validity of a design.
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Definition 4 Each connected component (Comp) is represented as a tree of Cnodes, each
representing a relationship and its storage choice, except for the root (where the from
and the relationship are empty) and the leaves (where children are empty). Thus, each
Cnode of the tree contains five elements: 1. the from AC , 2. the to AC , 3. a relation-
ship ER that connects the parent and the child, 4. the representation (i.e., nest, refer, or
skip) of the ER connecting them, or an indicator of being the topmost element of the
component identified as the ROOT , and 5. the set of child Cnodes. Formally: Comp =
Cnode〈from, to, rel, (NEST | REF | SKIP | ROOT), {Cnode}〉 s.t : from, to ∈ AC ∧ rel =
Efrom,to
R

Algorithm 2Main Algorithm
Input: graph G containing Atoms and Relationships
1: all AC s ← G.get ACs() � all AC s in G

2: allERs ← G.get E
AC ,AC
R s() � all ERs that connect two ACs in G

3: ERs ← newList〈ER〉() � ERs to be explored
4: comps ← List〈Comp〉() � list of connected components
5: repeat
6: if ERs �= ∅ then � connected ER to an explored one
7: next ← ERs.remove(RandInt(ERs.si ze))
8: allERs.remove(next)
9: else � pick a new random unexplored ER
10: next ← allERs.remove(RandInt(allERs.si ze))
11: end if
12: [root, comps, allERs, all AC s] ← choose(next, comps, allERs, all AC s)

13: ERs.add All(G.getUnusedE
AC ,AC
R (next.get(root))) � add connected ERs to explore

14: until allERs = ∅ ∧ ERs = ∅

15: for all atom ∈ all AC s do � make remaining AC s into new Comps
16: col ← newCnode(null, atom, null, ROOT )

17: comps.put(col)
18: end for
19: for all tree ∈ comps do � transform Comps into EH s
20: buildHyperedge(tree,G, all AC s)
21: end for

Algorithm 2 keeps track of unused AC s and ERs that connect two AC s (lines 1 and 2) and
maintains a list of ERs to be explored and a list of connected components (lines 3 and 4).
The generation process is initialized by randomly picking one of the available relationships.
This can be from the list of relationships to explore (lines 6–8), if any, or from all unexplored
relationships (lines 9–10). This chosen ER will create a new connected component or extend
an existing one depending on the current components using Algorithm 3, which also returns
the root of this connected component (e.g., assume that it is the U_I D). Then, in line 13,
we take all the unused ERs that connect other AC s to the picked root (e.g., EU_I D,R_I D

R ,

EU_I D,C_I D
R ) expanding the connected edges to be explored in. We continue this procedure

until all the ERs have been used for the connected components. Then, we generate new
connected components for all the remaining AC s that are not used in any of the existing con-
nected components (lines 15–18). Finally, in lines 19–21, we build the ECols corresponding
to the connected components in G by transforming the Comps into corresponding EH s. Due
to space limitations, we introduce this transformation in Appendix A as the procedure is
purely technical.
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Algorithm 3 Choose Algorithm
Input: ER rel, List〈Comp〉 comps, List allERs, List all AC s
1: pSkip ← 0.25
2: opChoice ← flip(LEFT | RIGHT | BOTH)
3: if opChoice = LEFT then� need the choice otherwise we will always grow components if its connected
4: canExtend ← f alse
5: for all tree ∈ comps do
6: for all node ∈ tree.postOrderTraversal() do
7: if node.to = rel(0) ∧ node. f rom �= rel(1) ∧ (� n ∈ node.children s.t n.rel = rel) then� find

a node with rel(0) as "to" which is not connected by rel(1) and has no children or none of the children has
used rel

8: node.addChild(rel(0), rel(1)), rel, flip(REF | NEST)) � add new child to the tree
9: all AC s.remove(rel(0))
10: if randomDouble() < pSkip then � skip with probability
11: node.t ype = SKIP
12: allERs.add(node.rel) � add the relationship back to the pool
13: end if
14: Connection f ound ← true
15: break � only add the node to the tree and stop the iteration within the tree
16: end if
17: end for
18: if Connection f ound then � stop looking in more trees if the node is already added
19: break
20: end if
21: end for
22: if !Connection f ound then � new component
23: root ← newCnode(null, rel(0), null, ROOT )

24: root .addChild(newCnode(rel(0), rel(1)), rel, flip(REF | NEST)))
25: comps.put(root)
26: end if
27: else if opChoice = RIGHT then
28: same as above swap 0 and 1
29: else if opChoice = BOTH then
30: do opChoice LEFT and RIGHT (nest on both ends or refer on both ends)
31: end if
32: opChoice = BOTH ? flip(LEFT | RIGHT) : opChoice
33: return opChoice, comps, allERs, all AC s

Algorithm3 is responsible for determining the direction and the representing of a particular
ER chosen by Algorithm 2. The inputs consist of a chosen ER , the list of currently connected
components, and the list of all unused ERs sent by Algorithm 2. We determine the direction
of the relationship randomly in line 2, which determines the from AC of the new Cnode.
Next, we go through the list of currently connected components (line 5), doing a postorder
traversal (line 6) to determine whether one of the currently connected components can be
extended with the new Cnode as a child. This is possible only if there is a Cnode with to as
the from of the new Cnode and from is not the to of the new Cnode and the existing Cnode
does not use the selected ER in any of the children. Once we find the location, we update
that connected component with the new Cnode with a random choice of reference or nesting
(line 8).

In the case of a chain of relationships between two AC within a connected component, it
is possible to skip some of them in the final document representation. For example, we can
store the list of bids of a particular region without the user’s details even though the user is
related to the bid. The skip choice enables such design decisions. We introduce a probability
to skip a relationship in line 1 and change the Cnode type to SKIP and add the ER back to
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the pool of unused ERs (to ensure that particular relationship information is not lost) with
that probability in lines 10–13. We add the new Cnode to only one connected component and
to a single particular branch (lines 14–21). If no component can be updated, we make a new
connected component with the new Cnode as the ROOT as shown in lines 22–31. Finally,
we return the parent side of the ER that we used back to Algorithm 2, in the case of both
sides, we randomly return one of the AC s (lines 31–33).

The above choices are carried out until all the entities and relationships belong to at
least one of the connected components. Finally, each of the components is represented as
a document store collection. These initial designs do not contain heterogeneous collections
or lists, yet, since we initially ignore the choice of flattening and only use the nested option
for structuring concerning the options in Fig. 1. This decision reduces the complexity of the
random generation and the number of starting schemas. However, we introduce this through
design transformations to ensure that we do not lose certain designs in the process.

Let us consider the running example of products and comments from RUBiS and
also include users to have a complex scenario to generate a random design. Let us assume
we picked EP_ID,C_ID

R as the first ER in Algorithm 2 line 5. Next, in Algorithm 3 we got
LEFT as the random opChoice in line 2. Since there are no existing Comps we move to
line 21 and create a new Comp to the comps list with Cnode〈P_I D, null, null, ROOT 〉
as the root and a single child Cnode〈P_I D,C_I D, EP_I D,C_I D

R ,NEST〉 if we got NEST

option. Now, coming back to line 7 in Algorithm 2, we have EP_I D,U_I D
R in ERs as

the only unused E AC ,AC
R connected to P_I D. Here, at line 13 we pick this ER and go

back to Algorithm 3. Let us assume that we got RIGHT as the opChoice. We cannot
extend the previous Comp that we made as it does not satisfy the extensible criteria.
Thus, we create a new Comp with Cnode〈U_ID, null, null, ROOT 〉 as the root and
Cnode〈U_ID,P_ID, EP_I D,U_I D

R , REF〉 as its child.
Finally, similarly, if we assume the last remaining ER between U_ID and C_ID got

BOTH and REF , both the Comps of the product and the user will be extended with
Cnode〈C_ID,U_ID, EU_I D,C_I D

R , REF〉 and Cnode〈U_ID,C_ID, EU_I D,C_I D
R , REF〉,

respectively. Now that we have exhausted all ERs, we build the EH s that represent the
corresponding design (algorithm in A). In this case, the design is products embedding
comments in one collectionwith comments having a reference to the users and a second
collection of users with a reference to both comments and products.

5.2 Design transformations

In order to generate neighboring designs to a given valid design, we introduce now seven
public methods specific for document stores at the corresponding specific design constructs.
A detailed formalization of these transformation rules is available in Appendix B.

1. Union : Merges two sibling EDoc
Set into one.

2. Segregate: Separates a EDoc
Struct from inside a heterogeneous EDoc

Set into a new independent
EDoc
Set .

3. Embed: Embeds EDoc
Struct into another sibling EDoc

Struct that have a path of ERs.
4. Split Separates a EDoc

Struct into two under a given partition of its elements.
5. Nest Creates a new EDoc

Struct within an existing EDoc
Struct, given a subset of its elements.

6. Group Creates a new heterogeneous EDoc
Set containing two EDoc

Structs.
7. Flatten Removes an EDoc

H and let its parent absorb the content.
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Fig. 5 Sketch of schema transformations in document stores using transformation rules

Let us retake a subset of the running example of storing only products and comments
to illustrate the transformations. Figure 5 shows different designs that can be conceived
and sketches the transitions between them using the transformations in Table 10. Glowing
lines indicate the hyperedges that participate in the transformations that follow each design.
Additionally, the hyperedge where the relationship belongs to is assumed to be that of the tail
of the arrow (i.e., in Design 3, ERel belongs to the EDoc

Top containing P_ID; in Design 5,

it is the EDoc
Set of C_I D; and in Design 4, that of the AC ). Notice that in Designs 1 and

2, there is a double-head dashed arrow, which means that, for segregation and union, its
existence is optional and also can be at either one or other side. The optionality of the ER

in Design 1 and 2 implies that the reference between the collections can reside on either
side, which gives rise to four alternative schemas, namely references on both collections, one
collection, or none.

From here on, to identify specific ERs, we introduce the corresponding As. For example,
the relationship between P_I D and C_I D is written as EP_I D,C_I D

R . Similarly, for the
hyperedges, EDoc

ColPod
identify the collection hyperedge of product. Since, only AC s are

relevant for the transformations, namely P_ID and C_ID, only these are shown to keep the
figures clean. Nevertheless, we assume that the attributes of any AC are always attached to
it (e.g., P_NAME will always be in the same hyperedge/document as P_ID).

Let us assume that we start with Design 1 where a product have references to
the comments and follow the transformations as illustrated in Fig. 5. According to
Table 10, in order to union two EDoc

Set s, they need to share the same parent. Thus, if we
call EDoc

Col_Prod .union(EDoc
Col_Com), firstly, the EDoc

Col_Com is added to the source EDoc
Col_Prod),

followed by the removal of the absorbed collection from the catalog. Finally, EDoc
Col_Com is

disposed, leaving its children in the new parent EDoc
Col_Prod , as represented in Design 2,

where comments and products are in the same collection (notice that in this case only
products references comments). The equivalent representation in JSON is illustrated in
Fig. 6

To embed a EDoc
Doc into another, they must have the same parent, and their roots

must be the same, or there must be a path between them. We exemplify this by
EDoc
Top_Prod .embed(EDoc

Top_Com), which moves EDoc
Top_Com inside EDoc

Top_Prod as in Design
3. The result is that for each product, there will be several comments in the form of a flat-
tened list, and each document will carry the name of the relationship suffixed by a counter.
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Fig. 6 Union transformation

Fig. 7 Embed transformation

Fig. 8 Flatten transformation

Implementation-wise, we rename the embedded EDoc
Doc with the name of the relationship

followed by a counter, as shown in the JSON in RHS of Fig. 7.
In order to flatten an EH , its parent must be a EDoc

Doc (or E
Doc
Top ) to ensure a correct design

(i.e., sets directly inside sets should not be allowed without a struct hyperedge in between).
If so, the EH is simply disposed of, letting its children to be absorbed by its parent. By
applying EDoc

Doc_Com .Flatten() to Design 3, we obtain Design 4, where the comments
are directly embedded inside each product without an enclosing comments document.
However, the prefixgotCom followed by the counter still needs to be included in the JSON to
distinguish different instances as shown in Fig. 8. Similarly, by applying EDoc

List_Com .Flatten()
on Design 5, we can flatten the list of comments into an embedded sequence with a
counter.

The group transformation creates a EDoc
Set around a child EDoc

Doc (s) within another EDoc
Struct.

Both the child EDoc
Doc and the defining path of ERs to it must already be inside the orig-

inal EDoc
Struct. By EDoc

Top_Prod .group(E
A_I D,B_I D
R , EDoc

Struct_gotCom) in Design 3, we obtain
Design 5 which embeds the comments inside each product document. Afterward,
the child EDoc

Doc and the ERs that are no longer used in any path to the remaining children, are
removed from the original EDoc

Struct. The transformation results in a new List inside the JSON
containing the data in the child EDoc

Doc which is linked to the container by the path of ERs.
To revert this transformation, we can call f latten on the created EDoc

List moving us back to
Design 3. This transformation is illustrated as JSON in Fig. 9
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Fig. 9 Group transformation

Fig. 10 Group transformation

The nest transformation creates a new embedded EDoc
Doc inside another EDoc

Doc (or EDoc
Top ).

It is necessary to use the same parameters to create any document, but they must all be
contained within the original EDoc

Doc . After creating the embedded EDoc
Doc , all its nodes are

removed from the original EDoc
Doc , except the ERs needed to keep it connected. Thus, nest

does not allow keep redundant As or EH s in the original EDoc
Doc ; if redundancy is required, a

split transformation needs to be done beforehand. By calling nest in Design 4 to nest the
comment, we can obtain back Design 3 as shown in Fig. 10.

The split transformation allows creating a sibling independent EDoc
Doc with all or part of

the content of another one, inside its parent (this can result in EDoc
Top instead of EDoc

Doc if the

parent is actually a collection). Some or all of the nodes in the new EDoc
Doc can be removed

from the original. Thus, the parameters of the transformation (which must all be inside the
original EDoc

Doc ) are both the contents of the new EDoc
Doc and which elements out of these are

removed from the original. As a result, both EDoc
Structs either share the same root , or there

will be a path between the root of the original EDoc
Doc and that of the new one. Notice that

parameters must be so that both resulting EDoc
Doc satisfy the invariants, but there is still freedom

to determine whether this path is at the end contained in the original, new, or both EDoc
Structs.

In our example, by splitting the gotCom from product in Design 4, we can obtain back
Design 2 (the dashed arrow depending on the path the parameters determine). An example
of the split transformation is shown in Fig. 11. Finally, the segregate transformation divides
an EDoc

List (or E
Doc
Col ) containing multiple EDoc

Doc s or As into two. The only condition is that the
segregated nodes must be already contained in the original EDoc

List . After the transformation,
the ERs that are no longer used by any of the children inside the original EDoc

List are removed
from it together with the segregated EDoc

List . As a result, the corresponding JSON will contain
two independent lists (or collections if we are talking about EDoc

Col ) with EDoc
Doc or A, whose

contents will depend on the path to EDoc
Doc or A from the parent of the original EDoc

Set . By call-
ing EDoc

Col_ABs .segregate(E
Doc
Top_Com) on Design 2, we can obtain Design 1. Figure 12

illustrates the segregation in JSON.
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Fig. 11 Group transformation

Fig. 12 Segregate transformation

Not having any normal forms or design algorithms to use as a baseline for comparison (like
in RDBMS), we validate our document store design transformations against existing rule-
based patterns. Luckily, MongoDB ones are publicly available.5 Hence, we showcase our
canonical hypergraph representation with MongoDB patterns and analyze how to implement
them using a sequence of transformations in Appendix 1.

6 Experiments

We implemented our approach in a system called DocDesign 2.0 [10], using HypergraphDB6

to store the canonical model, AIMA3e7 for optimization using Java together with query
cost estimator using Gekko8 written in Python. In this section, we present its experimental
evaluation, which is twofold. First, we analyze the quality of the designs generated (Sect.
6.1), and second, we evaluate the scalability of DocDesign 2.0 when the complexity of the
entities and their relationships increase (Sect. 6.2).

6.1 Quality of the design

To evaluate the quality of the generated designs, we use DocDesign 2.0 on the running
example of the RUBiS benchmark [11] (see Fig. 3). We prioritized query performance (0.7)
followed by the storage space (0.2), depth of documents (0.05), and heterogeneity (0.05)
togetherwith the number of non-improving iterations (N inAlgorithm,1) of 10. The generated
design was then compared against the ones presented by the DBSR framework [5]. We used
a higher weight for the query performance for our design to be comparable with DBSRwhile

5 https://www.mongodb.com/blog/post/building-with-patterns-a-summary.
6 http://www.hypergraphdb.org.
7 https://github.com/aimacode/aima-java.
8 https://gekko.readthedocs.io/en/latest.

123

https://www.mongodb.com/blog/post/building-with-patterns-a-summary
http://www.hypergraphdb.org
https://github.com/aimacode/aima-java
https://gekko.readthedocs.io/en/latest


3066 M. Hewasinghage et al.

Table 6 Workload used in the
experiments

Query Frequency

πU_ID(σB_I D=b) 4%

πP_ID(σB_I D=b) 2%

πR_ID(σU_I D=u) 4%

πP_ID(σU_I D=u) 6%

πP_ID(σU_I D=u∧B_I D=b) 20%

πU_ID(σU_I D=u∧B_I D=b∧P_I D=p) 6%

πC_ID(σU_I D=u) 4%

πC_ID(σP_I D=p) 20%

πU_ID(σP_I D=p∧C_I D=c) 8%

πU_ID(σP_I D=p) 6%

πB_ID(σP_I D=p) 20%

trying to improve storage size, and this configuration will be the typical ones that one would
use where query performance is the most important aspect. Moreover, we have evaluated
DocDesign 2.0 ’s capability to generate alternate designs depending on the weights provided
by the user in our previous work [10].

We extended the DBSR evaluation benchmark to include the design suggested by DocDe-
sign 2.0 . All the queries were executed using MongoDB Java driver 3.8.2. We used a single
instance of MongoDB Community Edition version 4.2 running on Intel Xeon E5520, 24 GB
of RAM with Debian 4.9 as the experimental setup. First, we generated data consisting of 1
million users, 10 million items, 5 million bids, 10 million comments, 3 million bids, and 4
regions. Then, the same data were stored in the alternative designs suggested by DBSR and
DocDesign 2.0 . Next, 1 million random queries were executed, consisting of 11 different
queries with their respective probabilities as shown in Table 6. The LHS of the arrow repre-
sents the selection, and RHS is the projection of the query. P_I D,C_I D → U_I D means
what is the User give a Product and a Comment. Finally, we measured the throughput
of each of the alternate designs.

Table 7 shows the schemas of the designs generated by each of the systems. Designs
generated by DBSR are based on joining the collections. Thus, the results can be controlled
through the number of collections in the final design. In this scenario, we present the solutions
of both 3 and 5 collections for comparison. It is clear that the designs generated by DBSR
contain multiple redundancies, especially on the product. On the contrary, DocDesign
2.0 learns more toward having references and only embedding the region within the
user. From an end-user perspective, the design from DocDesign 2.0 is much cleaner and
has less maintenance compared to the ones of DBSR. Moreover, doing any updates will be
pretty expensive in DBSR designs as it will involve updating multiple documents in different
collections. The documents used in DBSR contain rather small documents and are unrealistic
for a real-world scenario. Because of this, we conduct the same experiment with increased
document sizes by converting the integer identifiers into MongoDB UUID fields (24 bytes
instead of only 4) and increasing the description attribute size while maintaining the same
workload.

Table 8 depicts the summary of the throughput values obtained for the 1 million random
queries. The five-collection design of DBSR was also evaluated using the MongoDB aggre-
gation framework. However, this has the worst performance out of all the designs. Since
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Table 7 Final designs generated by DocDesign 2.0 and DBSR

DocDesign 2.0 DBSR (3 col) DBSR (5 col)

"USER": {
"U_ID": int (4),
"U_F_NAME ": varchar (20),
"REGION ": {

"R_ID": int (4),
"R_NAME ": varchar (10)

}
}
"PRODUCT ": {

"P_ID": int (4),
"P_TITLE ": varchar (10),
"BIDS": [{

"B_ID": int (4),
"B_PRICE ": int ,
"U_ID": int (4)

}],
"COMMENTS ": [{

"C_ID": int (4),
"C_TITLE ": varchar (20),
"U_ID": int (4)

}],
"U_ID": int (4)

}

"BID -PRODUCT ":{
"B_ID": int (4),
"B_PRICE ": int ,
"U_ID": int (4),
"PRODUCT ": {

"P_ID": int (4),
"P_TITLE ": varchar (10)

}}
"PRODUCT -SELLER -REGION ": {

"P_ID": int (4),
"P_TITLE ": varchar (10),
"USER": {

"U_ID": int (4),
"U_F_NAME ": varchar (20),
"REGION ": {

"R_ID": int(4),
"R_NAME ": varchar (10)

}}}
"PRODUCT -COMMENTS ": {

"P_ID": int (4),
"P_TITLE ": varchar (10),
"COMMENTS ": [{

"C_ID": int (4),
"C_TITLE ": varchar (20),
"U_ID": int (4)

}]}

"PRODUCT -SELLER ": {
"P_ID": int (4),
"P_TITLE ": varchar (10),
"USER": {

"U_ID": int (4),
"U_F_NAME ": varchar (20)

}
}
"PRODUCT -BIDS": {

"P_ID": int (4),
"P_TITLE ": varchar (10),
"BIDS": [{

"B_ID": int (4),
"B_PRICE ": int ,
"U_ID": int (4)

}]
}
+ DBSR (3 col)

Table 8 Performance comparison of the original dataset

Runtime (ms)

Min Q1 Mean Media Q3 Max

DocDesign 2.0 270 512 733 604 726 80,639

DBSR (3 col) 228 470 760 575 1074 80,063

DBSR (5 col) 262 523 787 585 2067 76,259

DBSR (5 col agg.) 253 542 1304 607 2471 75,583

Table 9 Performance comparison of the realistic dataset

Runtime (ms)

Min Q1 Mean Media Q3 Max

DocDesign 2.0 650 1121 1842 1268 2003 88,869

DBSR (3 col) 519 1292 2629 1782 4091 115,290

DBSR (5 col) 639 1558 2683 1866 7317 97,611

DBSR (5 col agg.) 619 1555 4147 1814 9587 108,083

DBSR can answer most of the queries with a single collection, the minimum runtime is
lower as it is the time taken to retrieve the smallest cached document. The min runtime per
query is highest on DocDesign 2.0 in both original and the large document experiment due
to the smallest document being larger than the ones of DBSR (38 bytes user in DocDesign
2.0 vs 26-byte bid-product in DBSR).

However, DBSR loses the advantage when looking at the other statistics. In particular, the
designwith five collections falls quite behind; this could bemainly because the collections are
competing on the available memory and a higher proportion of documents need to be fetched
from the disk rather than the memory. In the original experiment, DocDesign 2.0 has a slight
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Fig. 13 Scalability of DocDesign
2.0 with number of entities
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advantage in the mean and a higher one at Q3. However, once we increase the document
size to be more realistic with the same workload (Table 9), DBSR always falls behind the
performance of DocDesign 2.0 . Overall DocDesign 2.0 has better average performance and
less skewed results by looking at the inter-quartile range, especially with larger document
sizes. The maximum value of almost all the designs is quite similar because these queries
involve fetching documents from the disk in the event of a cache miss. Both DBSR and
DocDesign 2.0 did not generate heterogeneous designs as the optimal ones. In the case of
DBSR, this is never considered, and in DocDesign 2.0 , since we are optimizing for query
performance, the designs with heterogeneous collections become non-optimal. DocDesign
2.0 designs are less complex with a maximum depth of one level of nesting, while DBSR
has two levels of nesting in the case of product-seller-region collection. When it comes to the
total storage space, DBSR required 7GB in the three collections and 12GB in the case of five
collections (due to the high redundancy in the generated designs of DBSR) as opposed to
DocDesign 2.0 that required only 6.5 GB. Thus, it is clear that DocDesign 2.0 is capable of
generating document store designs with better performance and superior space optimization.

6.2 Scalability of the approach

We tested the scalability of our approach in DocDesign 2.0 as it is an essential factor in larger
use cases. In order to achieve this, we measured how many iterations it would take to get the
near-optimal solution when the number of entities and relationships grows. For that purpose,
we needed random ER diagrams with a varying number of entities as well as differentiate
the topologies for each number of entities. This eliminates any opportunity of the topology
affecting the final outcome of the experiment. We generated a synthetic ER diagram since
it is impossible to find real-world ER diagrams that satisfy this requirement. Thus, we used
gMark [26] (a graph instance and query workload generator) to create randomER topologies.
We used a pre-defined number of entities and Gaussian distribution (μ = 0.31 and σ = 1) of
the relationships to generate the gMark graph and transformed it into our immutable graph.

Next, we generated as many random queries as the number of entities with equal proba-
bilities. Finally, we used these values as input to DocDesign 2.0 to find the optimal design.
We measured the number of iterations until there is no improvement for the next 100, assum-
ing that this would give us the closest to the optimal solution. For each number of entities
(experiment), we generated 10 random topologies, and for each topology ran DocDesign 2.0
10 times to obtain the average. As shown in Fig. 13, the number of shots required increases
linearly as the number of entities grows. We appreciate that it requires around 100 (exactly
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Fig. 14 Improvement over the
number of shots
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99.68) iterations to completely stabilize the design with 30 entities. However, in reality, one
can obtain a near-optimal solution with much fewer iterations.

Figure 14 shows the evolution of the loss function that DocDesign 2.0 makes as the
iterations (shots) progress in the experiment with 30 entities. The average and the standard
deviation are of the 100 instances (10 topologies 10 runs) mentioned before. The initial shots
make significant improvements fast, but as the shots progress, the improvement is minimal.
Thus, we can safely assume that it is possible to obtain a near-optimal solution for this
problem in around 15 iterations (i.e., N = 15 in Algorithm 1).

In summary:

• The design generated by using weights that represent typical requirement of optimizing
queries with consideration on storage space outperforms the design generated by DBSR.

• DocDesign 2.0 ’s design was not only performant, but also requires less storage space.
• DocDesign 2.0 ’s multicriteria-based approach provides flexibility for the end users to

optimize according to their requirements.
• The non-improving iterations (N ) determine the optimality of the design. Through a

synthetic workload with 30 entities with varying topology, we concluded that N = 15
would already generate a near-optimal solution.

6.3 Threats to validity

The first threat to validity is the possible bias on evaluating the quality of the design. The
authors perceived having large collections with redundant data as a negative property of a
design in comparison with DBSR. Nevertheless, we assume that this is the perspective of a
traditional relational database designer in most of the cases as we experienced through the
answers to the questionnaire we mentioned in the introduction. Only 9% of the responses
chose redundant nested options as an optimal one.

Another threat to validity is that DocDesign 2.0 only provides a near-optimal solution
and we do not know how far it really is from the best solution to a given problem. This can
only be answered by testing all the possible implementations through an exhaustive search.
This is a typical situation highly complex optimization problems. Thus, we used DBSR as a
baseline to compare our solution instead.

An external threat to validity is the use of synthetic data to test the scalability of the
approach instead of real-world data. We decided to use synthetic data because it allows to
have full control over the scale factors of the input ER diagrams. Finding real-world data
with such specific requirements is impossible.

Finally, the experimentation results might be biased in Table 9 where we increased the
size of the dataset based on the fact that the design proposed by DocDesign 2.0 was not
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outperforming on all the aspects (Q1 and Max) with the original dataset. However, in all the
other aspects DocDesign 2.0 outperformed DBSR.

7 Conclusions

The popularity of document stores has prevailed among the plethora of NoSQL systems due
to its flexible semi-structured data models. However, this flexibility poses a new challenge
of determining the optimal data design for a particular use case. Currently, the data design
is carried out in an trial-and-error or with simple ad-hoc rule-based approaches instead of a
formal methodology such as normalization in RDBMS. The encouraged de-normalization
through nesting and data redundancy increases the number of potential designs exponentially.
Moreover, the database design of a document store affects not only its query performance
but also other criteria such as storage space, data redundancy, and complexity of the stored
documents. Thus, we approach the data design problem for document stores as a multicriteria
optimization where we try to obtain a near-optimal design out of potential ones with a given
use-case and user preference. We consider four cost functions in evaluating designs: query
performance, storage size, heterogeneity of the collections, and depth of documents. The
end-users can provide weights for these functions according to their preference. Then, once
the end-user specifies the entity relationship diagram and the query workload, we use the
shotgun hill-climbing approach to generate, evaluate, and present the near-optimal design
solution for that particular use case.

To achieve this, first, we introduce and formalize a hypergraph-based canonical model
to represent design alternatives. Then, we present an algorithm to generate random designs
and an algebra of transformations to modify a database design to optimize it systematically.
Finally, we propose a near-optimal design using a shotgun hill-climbing algorithm driven
by the cost functions and the design operations. We evaluate our approach against DBSR,
an automated database design solution purely driven by query cost. Our proposed design
has a better performance than the competition and produces compact designs instead of the
redundant ones given by DBSR. Moreover, we show that our approach scales up to provide
the near-optimal design within 15 iterations of shotgun hill-climbing, even for complex use
cases with the growth of entities and relationships.

This work is an initial step toward a novel approach for database designs for document
stores that goes beyond simple query-based optimization. For future work, it would be of
interest to include additional objective functions to be optimized such as number of nested
collections, degree of redundancy, referencing rate, and width of the stored documents. How-
ever, it is necessary to identify if any correlations exist between them as this may push the
final solution toward a specific area in the solution space, especially with positive correla-
tions. Currently all the loss functions are calculated after each transformation. Therefore, it
is possible to further optimize the execution of DocDesign 2.0 by incrementally updating
possible loss functions together with the transformations. Moreover, it would also be of inter-
est to see the possibility of pruning the search space during the exploration of parameters of
transformations.
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Appendix A: Algorithm to build hyperedges from connected compo-
nents

Algorithm 4 BuildHyperedge Algorithm
Input: Cnode node, HyperG G, List<AC> all Atoms
1: list elements ← newList()
2: for all child ∈ node.children do
3: elements.add All(BuildHyperedge(child,G, all Atoms))
4: end for
5: if node.t ype = SKIP then
6: elements.add(node.rel)
7: else if node.t ype = REF then
8: elements.add(node.to)
9: elements.add(node.rel)
10: else if node.t ype = NEST then
11: hyp ← G.newHyperedge(DOCUMENT, node.to, {attributesrelationships(node.to), elements})
12: elements.clear()
13: elements.add(node.rel)
14: elements.add(hyp)
15: set ← G.newHyperedge(LIST, elements)
16: elements.clear()
17: elements.add(set)
18: all Atoms.remove(node.to)
19: else if node.t ype = ROOT then
20: hyp ← G.newHyperedge(TOPDOC, node.to, {attributesrelationships(node.to), elements})
21: G.newHyperedge(COLLECTION, hyp)
22: elements.clear()
23: all Atoms.remove(node.to)
24: end if
25: return elements
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Algorithm 4 generates corresponding EDoc
H s recursively for a given connected component

tree. It takes a Cnode, the hypergraph, and a list of unused AC s from Algorithm 2. We use
a recursive call to build hyperedges to all the child Cnodes of a given Cnode (lines 2–4)
and keep them in a list of elements. Then, if the Cnode type is SKIP, we only add the ER of
the Cnode to the elements (lines 5–6). If it is REF, we add both ER and its originating AC

(to) to the elements (lines 7–9). If it is NEST, we make a new EDoc
Doc with the originating AC

(to) as the root, the AAs connected to the root and their corresponding ERs, and the built-up
elements (line 11). Once we clear the elements in line 12, we build a EDoc

List containing the
newly created EDoc

Doc and the ER of the Cnode (lines 11–15). Then, we reset the element
list to contain only the new EDoc

List and take out the originating AC from the unused AC s in
lines 16–18. If the Cnode is ROOT , we build a EDoc

Top with the element list and an EDoc
Col

containing the new EDoc
Top , clear the element list, and remove the originating AC from the

unused AC s (lines 19–24). Finally, the collected element list is returned to be used by the
calling function (line 25).

Appendix B: Formalized transformations

Formal definitions of the transformations discussed in Chapter 5.2 are described in Table 10.
They allow to transform any valid document design and at the same time guarantee the
validity of the resulting design. We use an auxiliary function findRelPath(x : EH , y : EH )

which will find the path of relations from x to O(y).

Appendix C: Validation of operations againstMongoDBdesign patterns

In the following, we go through each of the patterns, digest them, and use the same examples
for illustration.9 Nevertheless, our design transformations are defined at the logical level, so
some physical patterns (e.g., involving indexing) cannot be fully represented.
Attribute pattern (Fig. 15) tries to identify a subset of fields that share some common
characteristics that are frequently queried together, and add them into an array (e.g., release
dates of themovies in different regions). The original document without the array has the field
name suffixed by the region name, but since our immutable graph does not contain details
about the instances, we simply use a counter instead as shown on Design 4 in Fig. 5. Our
set of transformation can implement this pattern by first using nest to create a flat embedded
document and then using group to make a list out of the documents.
Bucket pattern (Fig. 16) groups specific data together (e.g., time series of sensor data).
This pattern can be easily represented through our transformations by expliciting intervals a
priori in the form of different atoms and Relationships, since the predicates used for the
bucket arrangement (e.g., start and end dates) cannot be generated as they are not part of the
immutable graph. Moreover, the immutable graph must contain an additional AC to identify
each of the measurements. With that information, we can firstly use a sequence of split,
embed, and flatten operations to change the root of the document (e.g., from measurement
to sensor); then, similar to the attribute pattern, through nest and group we can create an
embedded list with all measurements of the same sensor.

9 See https://www.essi.upc.edu/~moditha/transformations.
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Table 10 Document store-specific transformation methods
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Fig. 15 Transformations of the Attribute pattern

Fig. 16 Transformations of the Bucket pattern

Fig. 17 Transformations of the Polymorphic pattern

Polymorphic pattern (Fig. 17) is used tomerge collectionswith documents that sharemultiple
attributes (e.g., Bowling and Tennis Athletes). We can easily deal with such transformation
by union, embed, and flatten operations. However, currently, our hypergraph does not support
specialization due to the complexity of guaranteeing the validity of the design (i.e., ensuring
none of the subclasses/partitions are missed as a result of the transformations). Thus, this
pattern can only be partially represented. However, it is possible to fully represent if the
immutable graph contained the subclass information.

Extended reference pattern (Fig. 18) is a mean of avoiding joins by embedding frequently
accessed data of two entities (e.g., customer address in an order). First, we use split to extract
from one document the information that needs to be embedded in the other (e.g., the address
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Fig. 18 Transformations of the Extended reference pattern

Fig. 19 Transformations of the Subset pattern

from the customer) and segregate this into a newcollection. Then,we union the new collection
and the one that requires embedding, to finally, join the information by embed, flatten, and
nest.

Subset pattern (Fig. 19) is used to prevent unnecessary growth of documents. A typical
example would be to only store the first n documents in a list, keeping the rest of the list in a
separate collection. As in the bucket pattern, n should be encoded somehow in the immutable
graph (e.g., representing the two sets of documents in different classes). First, we remove the
list with two consecutive flatten operations. Next, we split the document and segregate the
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part that needs to be moved to a new collection. Finally, we nest and group to recreate the
original list.

The remaining sevenMongoDB design patterns (namelyOutlier,Approximation,Com-
puted,Document versioning, Preallocated, Schema versioning, and Tree and graph) can
be represented in our canonical model, provided the immutable graph contains the required
information (e.g., schema/document version, the average of an attribute), but besides that,
they require changes in the client application logic or the engine configuration rather than in
the document design. Thus, they are out of the scope of this work.
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