
ETH Library

OFMC
A symbolic model checker for security protocols

Journal Article

Author(s):
Basin, David; Mödersheim, Sebastian; Viganò, Luca

Publication date:
2005-06

Permanent link:
https://doi.org/10.3929/ethz-b-000052641

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
International Journal of Information Security 4(3), https://doi.org/10.1007/s10207-004-0055-7

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000052641
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10207-004-0055-7
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Int J Inf Secur (2005) 4: 181–208 / Digital Object Identifier (DOI) 10.1007/s10207-004-0055-7

OFMC:A symbolicmodel checker for security protocols

David Basin, Sebastian Mödersheim, Luca Viganò

Department of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
e-mail: {basin,moedersheim,vigano}@inf.ethz.ch
Published online: 21 December 2004 – Springer-Verlag 2004

Abstract. We present the on-the-fly model checker
OFMC, a tool that combines two ideas for analyzing secu-
rity protocols based on lazy, demand-driven search. The
first is the use of lazy data types as a simple way of build-
ing efficient on-the-fly model checkers for protocols with
very large, or even infinite, state spaces. The second is
the integration of symbolic techniques and optimizations
for modeling a lazy Dolev–Yao intruder whose actions
are generated in a demand-driven way. We present both
techniques, along with optimizations and proofs of cor-
rectness and completeness.
Our tool is state of the art in terms of both coverage

and performance. For example, it finds all known attacks
and discovers a new one in a test suite of 38 protocols
from the Clark/Jacob library in a few seconds of CPU
time for the entire suite. We also give examples demon-
strating how our tool scales to, and finds errors in, large
industrial-strength protocols.

Keywords: Security protocols – Verification – Model
checking – Formal methods – Constraints

1 Introduction

Model checking, in its broadest sense, concerns develop-
ing efficient algorithms to automatically analyze proper-
ties of systems modeled as transition systems. A wide var-
iety of model-checking approaches have been developed
for analyzing security protocols, e.g., [1, 12, 28, 40, 42,
47, 48]. The key challenge they face is that the general
security problem is undecidable [29], and even semial-
gorithms, focused on falsification, must come to terms
with the enormous branching factor in the search space
resulting from using the standard Dolev–Yao intruder
model, where the intruder can say infinitely many differ-
ent things at any time point.

In this paper, we show how to combine and extend
different methods to build a highly effective security pro-
tocol model checker. Our starting point is the approach
of [7, 8] of using lazy data types to model the infinite state
space associated with a protocol. A lazy data type is one
where data constructors (e.g., cons for building lists or
node for building trees) build data without evaluating
their arguments; this allows one to represent and compute
with infinite data (e.g., streams or infinite trees), gener-
ating arbitrary prefixes of the data on demand. In [7, 8],
lazy data types are used to build, and compute with,
models of security protocols: a protocol and a description
of the powers of an intruder are formalized as an infinite
tree. Lazy evaluation is used to decouple the model from
search and heuristics, building the infinite tree on the fly,
in a demand-driven fashion.
This approach is conceptually and practically attrac-

tive as it cleanly separates model construction, search,
and search reduction techniques. Unfortunately, it does
not address the problem of the prolific Dolev–Yao in-
truder and hence scales poorly. We show how to incor-
porate the use of symbolic techniques to substantially
reduce this problem. We formalize a technique that sig-
nificantly reduces the search space without excluding
any attacks. This technique, which we call the lazy in-
truder, represents terms symbolically to avoid explicitly
enumerating the possible messages the Dolev–Yao in-
truder can generate. This is achieved by representing
intruder messages using terms with variables, and stor-
ing and manipulating constraints about what terms must
be generated and which terms may be used to generate
them.
The lazy intruder is a general, technology-independent

technique that can be effectively incorporated in differ-
ent approaches to protocol analysis. Here we combine it
with the lazy infinite-state approach to build a tool that
scales well and has state-of-the-art coverage and perform-

182 David Basin et al.: OFMC: A symbolic model checker for security protocols

ance. In doing so, we see our contributions as follows.
First, we extend previous approaches, e.g., [1, 11, 12, 19,
25, 30, 31, 40], to symbolically representing the intruder
and thereby extend the applicability of the lazy intruder
technique to a larger class of protocols and properties.
Second, despite the extensions, we simplify the technique,
leading to a simpler proof of its correctness and com-
pleteness. Third, the lazy intruder introduces the need for
constraint reduction, and this introduces its own search
space. We formalize the integration of the technique into
the search procedure induced by the rewriting approach
of our underlying protocol model (this model provides
an infinite-state transition system). Fourth, we also de-
scribe how to efficiently implement the lazy intruder, i.e.,
how to organize state exploration and constraint reduc-
tion. Finally, we present new ideas for organizing and
controlling search based on searching different protocol
scenarios, corresponding to different “sessions” where dif-
ferent agents assume different roles in the interleaved
protocol executions. Our contribution here is to show
how a technique that we call symbolic session generation
can be used to exploit the symbolic representation of the
lazy intruder and thereby avoid enumerating all possible
session instances associated with a bounded number of
sessions.
The result is OFMC, an on-the-fly model checker for

security protocol analysis. We have carried out a large
number of experiments to validate our approach. For ex-
ample, the OFMC tool finds all known attacks, and dis-
covers a new one (on the Yahalom protocol), in a test
suite of 38 protocols from the Clark/Jacob library [21]
in a few seconds of CPU time for the entire suite. More-
over, we have successfully applied OFMC to a number
of large-scale protocols including (subprotocols of) IKE,
SET, and various other industrial protocols currently be-
ing standardized by the Internet Engineering Task Force
(IETF). As an example of an industrial-scale problem,
we describe in this paper our analysis of the H.530 pro-
tocol [32], a protocol developed by Siemens and pro-
posed as an Internet standard for multimedia communi-
cations.We havemodeled the protocol in its full complex-
ity and have detected a replay attack in 1.6 seconds. The
weakness is serious enough that Siemens has revised the
protocol [33].

Organization

The remainder of this paper is organized as follows. In
Sect. 2 we give the formal model that we use for protocol
analysis. In Sect. 3 we briefly review the lazy protocol an-
alysis approach. In Sect. 4 we formalize the lazy intruder
and constraint reduction. We discuss the organization of
state exploration and constraint reduction in Sect. 5 and
present symbolic sessions in Sect. 6. We present experi-
mental results in Sect. 7 and discuss related and future
work in Sect. 8. The appendix contains the proofs of the
theorems and lemmata given in the body of the paper.

2 Protocol specification languages and model

The formal model we use for protocol analysis is based
on two specification languages: a high-level language
(HLPSL) and a low-level language (IF). These languages
have been developed in the context of the AVISPA
project [5].

2.1 The High-Level Protocol Specification Language

The High-Level Protocol Specification Language HLPSL
allows users to specify protocols in an Alice&Bob-style
notation. As most of the ideas behind the HLPSL are
standard, e.g., [26, 34], we explain its main features using
an example. Figure 1 shows the HLPSL specification of
the Yahalom protocol, which aims at distributing a ses-
sion key KAB to two agents playing in roles A and B; to
do this, it uses a trusted server playing in role S. The fig-
ure also contains the trace of a new attack that our tool
OFMC has found, which we discuss in Sect. 7.2.
The core of the specification is the list of messages ex-

changed between the agents acting in the protocol roles.
In the ASCII syntax of HLPSL, we denote the encryption
of a message M with a symmetric key K by writing {|M|}K
(and we write {M}K for the encryption of a message M with
an asymmetric key K). HLPSL also allows one to specify
information that is often left implicit (or that is explained
informally) in protocol declarations. In the identifiers sec-
tion, for instance, we declare the types of the identifiers
used, which determines their properties. In the example,
we declare a function k (representing a key table), the new
symmetric key KAB, and nonces NA and NB that are gen-
erated during protocol execution. Although not displayed
in this example, HLPSL also supports asymmetric en-
cryption, cryptographic hash functions, nonatomic keys,
and exponentiation.
In the knowledge section, one specifies which atomic

messages an agent playing in a role of the protocol must
initially have in order to execute the protocol in that role.
For instance, an agent playing in role A must initially
know the names of the agents playing in roles B and S,
as well as the key k(A,S) he shares with S. All atomic
messages that are not part of this initial knowledge, e.g.,
the nonces NA and NB in the Yahalom example, are fresh,
i.e., they are created during the protocol execution by the
agent that first uses them.
So far, the protocol description is generic, i.e., it spec-

ifies how an agent playing in a role of the protocol should
behave. Every honest agent is a process that can partici-
pate in an unbounded number of parallel sessions (or ses-
sion instances), i.e., executions of the protocol, playing in
any of the roles. To constrain search, we can bound this
infinite set of possible protocol instantiations by specify-
ing scenarios, which are finite sets of sessions, i.e., instan-
tiations of roles with agent names, where session numbers
(IDs) are used to distinguish parallel sessions between the
same agents.

David Basin et al.: OFMC: A symbolic model checker for security protocols 183

Fig. 1. An HLPSL specification of the Yahalom protocol and OFMC’s output

For instance, the Session_instances section of the
Yahalom example specifies two sessions: one where the
agents named a, b, and s execute the protocol playing in
roles A, B, and S, respectively, and one where the three
roles are played by i, b, and s, where i is the HLPSL
keyword for the intruder. Note that the intruder can not
only pose as any other agent, but he can also participate
in a session as a normal agent under his real name. As
we will see in Sect. 7.2, the particular scenario given in
Fig. 1 is the one that gives rise to the new type-flaw at-
tack on the Yahalom protocol found by OFMC. Note that
the specification of such scenarios by the user is gener-
ally not desirable and, as we will show in Sect. 6, symbolic
session generation exploits the symbolic representation of
the lazy intruder to avoid enumerating session instances.
Finally, we specify the initial knowledge of the in-

truder and the security goal(s) that should be achieved
by the protocol, which determines what constitutes an
attack. Currently, HLPSL supports different forms of au-
thentication and secrecy goals. Secrecy of an atomic mes-

sage, e.g., the nonce NA or NB in the Yahalom protocol,
means that the intruder should not get hold of that mes-
sage (unless he is explicitly allowed to do so). Authentica-
tion is more complex: B authenticates A on M means
that if an agent b playing in role B has executed his part
of a session, then the agent he believes to play in role A
has really sent to him the value that he has accepted for
M, and this value is not replayed, i.e., b has never accepted
the same value before.
A translator called HLPSL2IF (which has also been

developed in the context of the AVISPA project) auto-
matically translates a high-level HLPSL specification into
a low-level Intermediate Format IF based on first-order
set rewriting. The IF is a simple, but expressive, formal-
ism that is well-suited for the automated analysis of se-
curity protocols. OFMC takes IF specifications as input,
and we hence base our presentation on IF for concrete-
ness, but the approach and methods we present in this
paper can be applied to other kinds of protocol models
like strand spaces or process calculi [37, 47, 49].

184 David Basin et al.: OFMC: A symbolic model checker for security protocols

2.2 The syntax of the Intermediate Format

Definition 1. Let C and V be disjoint countable sets
of constants (denoted by lowercase letters) and variables
(denoted by uppercase letters). The syntax of the IF is de-
fined by the following context-free grammar:

ProtocolDescr ::= (State,Rule∗,AttackRule∗)

Rule ::= LHS⇒RHS

AttackRule ::= LHS

LHS ::= State NegFact Condition

RHS ::= State

State ::= PosFact (. PosFact)∗

NegFact ::= (. not(PosFact))∗

PosFact ::= state(Msg) |msg(Msg) |

i_knows(Msg) | secret(Msg ,Msg)

Condition ::= (∧∧∧ Msg �= Msg)∗

Msg ::= AtomicMsg | ComposedMsg

ComposedMsg ::= 〈Msg ,Msg〉 | {Msg}Msg |

{|Msg |}Msg |Msg(Msg) |Msg
−1

AtomicMsg ::= C | V | N | fresh(C,N)

We write L(n) for the context-free language associated
with the nonterminal n. We write vars(t) to denote the set
of variables occurring in a (message, fact, or state) term
t, and when vars(t) = ∅, we say that t is ground and write
ground(t). We straightforwardly extend the functions vars
and ground to the more complex terms and structures de-
fined below.

Notation 1. We denote IF constants with lowercase
sans-serif, IF variables with uppercase sans-serif, metavari-
ables (i.e., variables ranging over message terms) with
lowercase italics, and sets with uppercase italics . �

An atomic message is a constant, a variable, a nat-
ural number, or a fresh constant. The fresh constants
are used to model the creation of random data, e.g.,
nonces, during a protocol session. We model each fresh
data item by a unique term fresh(c,n), where c is an iden-
tifier in the HLPSL specification and the number n de-
notes the particular protocol session that c is intended
for. For instance, returning to the example in Fig. 1, the
constant sess2 in the fresh terms fresh(idNB,sess2) and
fresh(idKAB,sess2) indicates that the honest agents who
created them are those declared in the second session in-
stance (cf. also Sect. 7.2).
Messages in the IF are atomic messages or are com-

posed using pairing 〈m1,m2〉, or the cryptographic oper-
ators {m2}m1 and {|m2|}m1 (for asymmetric and sym-
metric encryption of m2 with m1), or f(m) (for ap-
plication of the function f to the message m, repre-
senting a hash function or key table), or m−1 (the

asymmetric inverse of m).1 Note that by default the
IF is untyped (and the complexity of messages is not
bounded), but it can also be generated in a typed vari-
ant. The typed variant leads to smaller search spaces at
the cost of abstracting away possible type-flaw attacks on
protocols.
Note also that we follow the standard perfect cryp-

tography assumption that the only way to decrypt an
encrypted message is to have the appropriate key. More-
over, like most other approaches, we employ the free al-
gebra assumption and assume that syntactically different
terms represent different messages, facts, or states. In
other words, we do not assume that algebraic equations
hold on terms, e.g., that pairing is associative.2 OFMC
provides preliminary support for algebraic properties of
operators like exponentiation, used for instance to model
Diffie–Hellman key-exchange. Principled techniques exist
for incorporating equational operator specifications into
search, e.g., [13, 16, 17, 24, 41]; the description of the inte-
gration of such techniques is, however, outside the scope
of this paper.
Note too that, unlike other models, e.g., [27, 40], we

are not bound to a fixed public-key infrastructure where
every agent initially has a key pair and knows the public
key of every other agent. Rather, we can specify proto-
cols where keys are generated, distributed, and revoked.
Moreover, function application provides us with a simple
and powerful mechanism to model, for instance, crypto-
graphic hash functions and key tables.
To illustrate how this mechanism works, let f and

k range over constants (of type function in the typed
model). As we will see shortly, under the Dolev–Yao
model of the intruder that we define, when the intruder
knows the constant f , then he can build the hash value
f(m) for any messagem he knows. However, just knowing
f(m) is not enough to recoverm. A similar remark applies
for a key table k of public keys, where every agent a uses
k(a) as a public key (so knowing k means knowing the
public key of every known agent) and k(a)

−1
as a private

key; this private key is a message initially known by the
corresponding agent a, but no other agent can construct
this term.
Observe that there is no syntactic restriction for the

message terms that can be used as the first argument of

1 Some approaches, e.g., [43], denote by k−1 the inverse of a sym-
metric key k, with k−1 = k. We cannot do this since in our model
messages are untyped and hence the inverse key cannot be deter-
mined from the (type of the) key. In our model, every message has
an asymmetric inverse. As we will define (cf. Definition 3), the in-
truder (as well as the honest agents) can compose a message from
its submessages but cannot generate m−1 from m. The only ways
to obtain the inverse of a key are to know it initially, to receive
it in a message, or when it is the private key of a self-generated
asymmetric key pair.
2 In our model, (m−1)

−1
=m is respected while the free algebra

assumption is preserved: as no agent, not even the intruder, can
generate m−1 from m, we ensure that (m−1)

−1
is never produced

by having two rules for the analysis of asymmetric encryptions, one
for public keys and one for private ones.

David Basin et al.: OFMC: A symbolic model checker for security protocols 185

the ·(·) operator. Thus, function terms are not treated dif-
ferently from other message terms and can, for instance,
be transmitted as parts of messages.
The IF contains both positive and negative facts.

A (positive) fact represents either the local state of an
honest agent, a message in transit through the net-
work (i.e., one sent but not yet received), a message
known by the intruder, or a secret message, where
secret(m, a) means that m is a secret and that agent a
is allowed to know it. Negative facts allow for the mod-
eling of a wider range of protocols than with languages
based on standard rewrite rules that manipulate only
positive facts. For instance, negative facts allow us to
express goals that explicitly require negation, e.g., to
state that the intruder does not find out some secret.
As a concrete example, to formalize the violation of
the secrecy of a message, we could specify the attack-
rule secret(M,A).i_knows(M).not(secret(M,i)), which ex-
presses that the intruder i knows some messageM that is
a secret that some agent A is allowed to know but not the
intruder. (Attack-rules are formally defined below.)
A state is a finite set of positive (ground) facts, which

we denote as a sequence of positive facts separated by
dots. Note that in our approach we employ set rewriting
instead of multiset rewriting, which is adopted, for in-
stance, in [19, 20, 26]. Note also that the sets of positive
facts and composed messages (i.e., the context-free lan-
guages L(PosFact) and L(ComposedMsg)) can be easily
extended without affecting the theoretical results that we
present below.
To illustrate the benefits of adding negative facts (as

well as other fact symbols such as set membership), con-
sider the Needham–Schroeder public-key protocol with
a key server [21]. In a realistic model of this protocol,
an agent should (i) maintain a database of known pub-
lic keys, which is shared over all protocol executions that
he participates in, and (ii) ask the key server for the pub-
lic key of another agent only if this key is not contained
in his database. This situation can be directly modeled
using negation and an additional fact symbol knows_pk.
Before we explain the remaining parts of the gram-

mar, let us define some standard notions (see, e.g., [6])
and their extensions.

Definition 2. A substitution σ is a mapping from V to
L(Msg). The domain of σ, denoted by dom(σ), is the set
of variables V ⊆ V such that σ(v) �= v iff v ∈ V . As we
only consider substitutions with finite domains, we repre-
sent a substitution σ with dom(σ) = {v1, . . . , vn} by [v1 	→
σ(v1), . . . , vn 	→ σ(vn)]. The identity substitution id is
the substitution with dom(id) = ∅. We say that a substitu-
tion σ is ground, and write ground(σ), if σ(v) is a ground
term for all v ∈ dom(σ). We extend σ to a homomorphism
on message terms, facts, and states in the standard way,
and we also write tσ for σ(t).
We say that two substitutions σ1 and σ2 are compati-

ble, written σ1 ≈ σ2, if vσ1 = vσ2 for every v ∈ dom(σ1)∩

dom(σ2). The composition of σ1 and σ2 is denoted by
σ1σ2. Note that σ1σ2 = σ2σ1 for compatible ground substi-
tutions. For two sets of ground substitutions Σ1 and Σ2,
we define their intersection modulo the different domains
as

Σ1 Σ2 = {σ1σ2 | σ1 ∈Σ1 ∧ σ2 ∈Σ2 ∧ σ1 ≈ σ2}.

Since the composition of compatible ground substitutions
is associative and commutative, so is the operator.
Two terms unify when there exists a substitution,

called their unifier, under which they are equal. Matching
is the special case where one of the terms is ground. Since
we are working under the free algebra assumption, two
unifiable terms always have a most general unifier (mgu).
Finally, for φ a propositional combination of equalities

and for σ a substitution for the free variables of φ, we de-
fine the relation σ |= φ to represent that φ is satisfied by σ
in the structure given by the freely generated term algebra
(in our case with the carrier set L(Msg)).

A condition is a conjunction of inequalities of mes-
sages. Rules describe state transitions. The left-hand side
(LHS) of a Rule consists of a set of positive facts P ,
a set of negative facts N , and a condition Cond , where
vars(P) ⊇ vars(N)∪vars(Cond). As we will formally de-
fine below (Definition 4), a rule is applicable to a state if
(i) the positive facts are contained in the state for some
substitution σ of the rule’s variables, (ii) the negative
facts under σ are not contained, and (iii) the condition
Cond is satisfied under σ. The right-hand side (RHS) of
a rule LHS⇒ RHS is just a set of positive facts, where we
require that vars(LHS) ⊇ vars(RHS). We will define the
successors of a state S as the states generated by replac-
ing in S the facts that match the positive facts of the LHS
of some applicable rule with the RHS of that rule.
In this paper, we consider only IF rules of the form

msg(m1).state(m2).P1.N1∧∧∧Cond

⇒ state(m3).msg(m4).P2 , (1)

where N1 is a set of negative facts that do not con-
tain i_knows or msg facts, P1 and P2 are sets of positive
facts that do not contain state or msg facts, and Cond
is a condition, i.e., a conjunction of inequalities of mes-
sages. Moreover, we require that if i_knows(m) ∈ P1, then
i_knows(m) ∈ P2; this ensures that the intruder know-
ledge is monotonic, i.e., that the intruder never forgets
messages during transitions.
More specifically, every rule describes a transition of

an honest agent since a state fact appears in both the LHS
and the RHS of the rule. Also, in both sides we have amsg
fact representing the incoming message that the agent ex-
pects to receive in order to make the transition (in the
LHS) and the agent’s answer message (in the RHS). The
rule corresponding to the initial (respectively, final) pro-
tocol step contains no incoming (respectively, outgoing)
message. However, the rule form (1) is not a restriction

186 David Basin et al.: OFMC: A symbolic model checker for security protocols

here, as one may always insert a dummymessage that can
be generated by the intruder. In fact, rules of the form (1)
are adequate to describe a large class of protocols, includ-
ing all those discussed in Sect. 7.
An attack-rule of a protocol description describes the

condition under which an attack takes place. We formal-
ize an attack-rule syntactically and semantically like the
LHS of a rule of the form (1), with the same restriction
on the variables described above. That is, an attack-rule
characterizes those states for which a rule with the same
LHS is applicable, which we henceforth call attack-states.
Note that we can always introduce dummy message and
state facts so that an attack-rule has the required form
(but we will refrain from considering dummies in our ex-
amples, for simplicity).
We now conclude our discussion of the syntax of

the IF. A protocol description ProtocolDescr is a triple
(I,R,AR) consisting of an initial state I, a set R of rules,
and a set AR of attack-rules. A protocol description con-
stitutes a protocol when the initial state is ground.

Example 1. When given the description of the Yahalom
protocol of Fig. 1, the HLPSL2IF translator produces an
IF file with the following initial state (determined by the
session instances and the initial knowledge associated to
each role):

state(roleA,step0,sess1,a,b,s,k(a,s)).

state(roleB,step0,sess1,a,b,s,k(b,s)).

state(roleS,step0,sess1,a,b,s,k).

state(roleB,step0,sess2,i,b,s,k(b,s)).

state(roleS,step0,sess2,i,b,s,k).

i_knows(a).i_knows(b).i_knows(s).

i_knows(i).i_knows(k(i,s)) .

Note that in the state facts we write, for example,
roleA to denote the role A of the protocol, and that, here
and in the remainder of this paper, we omit the pair-
ing operator to simplify the notation when no confusion
arises. The first three state facts represent the first de-
clared session between the agents a, b, and s, followed
by two state facts that represent the second declared ses-
sion between the intruder i and the honest agents b and
s. Note, too, that there are only state facts for the hon-
est agents b and s in this session, as the intruder model we
give below subsumes the correct execution of the protocol
steps by the intruder. The fact i_knows(k(i,s)) represents
that the intruder has a shared key with the server, which
he needs to participate in the second session of the proto-
col. More generally, when a session instance declares the
intruder to play a certain role, then all the initial know-
ledge declared for that role is, under the instantiation,
added to the initial intruder knowledge. The second ar-
gument of the state facts here indicates the current step
number in the protocol execution (which is initially step0)
and the third argument is a session identifier inserted by

the HLPSL2IF translator to simplify the generation of
fresh values.
To illustrate the transition rules of the honest agents,

let us consider only those rules that describe the behavior
of an agent in role roleB. In the agent’s first transition, he
receives the initial message from some agent A containing
a nonce NA, generates a fresh value for the nonce NB, and
sends the appropriate message to the server:

state(roleB,step0,SID,A,B,S,KBS).

msg(A,NA)

⇒

state(roleB,step1,SID,A,B,S,KBS,NA,fresh(idNB,SID)).

msg(B, {|A,NA, fresh(idNB,SID)|}KBS) .

In his second transition, the agent playing in roleB re-
ceives the third message of the protocol from agent A and
checks that the key contained in the first encrypted part,
which seemingly comes from the server, is used to encrypt
the nonce NB generated (and stored) by B earlier:

state(roleB,step1,SID,A,B,S,KBS,NA,NB).

msg({|A,KAB|}KBS, {|NB|}KAB)

.not(seen(B,KAB))

⇒

state(roleB,step4,SID,A,B,S,KBS,NA,NB,KAB)

.seen(B,KAB) . (2)

To make the example also cover negation, we have un-
derlined a possible extension of the rule, which expresses
that the honest agent playing in roleB additionally per-
forms a replay check: we introduce a binary fact symbol
seen and express with the underlined fact in the RHS that
an agent stores all keys he has seen so far (in any session),
while with the underlined fact in the LHS we ensure that
he never accepts a key that he has already seen.3

Finally, the attack-rule for the specified goal of the Ya-
halom protocol characterizes the set of states in which the
agent playing in roleB has finished the protocol, accepting
a key KAB as generated from the server S for communi-
cation between A and B, although the server never issued
this key for that purpose:

state(roleB,step4,SID,A,B,S,KBS,NA,NB,KAB).

not(state(roleS,step3,SID’,A,B,S,K,KAB)) .

3 One might argue that the nonce NB freshly created by the
agent playing in roleB already ensures (without such a replay
check) the freshness of the session key KAB, as in the final message
NB must be encrypted with KAB. However, the replay attack first
mentioned in [45] shows that this argumentation is not valid since
the message from the agent playing in roleS for the agent playing in
roleB in which KAB is issued does not contain NB. Note that the at-
tack of [45] is prevented by this replay check, while the attack given
in Fig. 1 still works.

David Basin et al.: OFMC: A symbolic model checker for security protocols 187

This is exactly the attack-rule that fires in the state
reached by the attack-trace given in Fig. 1: an honest
agent accepts the pair NA,fresh(idNB,sess2) as the key
from the server for communication with the intruder, al-
though the server never issued this key. Note that this
attack-rule is automatically generated by the HLPSL2IF
translator for the goal B weakly_authenticates
S on KAB, while the strong authentication goal of Fig. 1
generates an attack-rule that additionally considers re-
plays. A detailed discussion of various kinds of authenti-
cation goals can be found in [36]. �

2.3 The Dolev–Yao intruder

We follow Dolev and Yao [27] and consider the standard
model of an active intruder who controls the network but
cannot break cryptography. In particular, the intruder
can intercept messages and analyze them if he possesses
the corresponding keys for decryption, and he can gen-
erate messages from his knowledge and send them under
any agent name.

Definition 3. For a setM of messages, let DY(M) (for
Dolev–Yao) be the smallest set closed under the following
generation (G) and analysis (A) rules:

m ∈M

m ∈DY(M)
Gaxiom ,

m1 ∈ DY(M) m2 ∈ DY(M)

〈m1,m2〉 ∈ DY(M)
Gpair ,

m1 ∈ DY(M) m2 ∈ DY(M)

{m2}m1 ∈ DY(M)
Gcrypt ,

m1 ∈ DY(M) m2 ∈ DY(M)

{|m2|}m1 ∈ DY(M)
Gscrypt ,

m1 ∈ DY(M) m2 ∈ DY(M)

m1(m2) ∈ DY(M)
Gapply ,

〈m1,m2〉 ∈ DY(M)

mi ∈ DY(M)
Apairi ,

{|m2|}m1 ∈ DY(M) m1 ∈ DY(M)

m2 ∈ DY(M)
Ascrypt ,

{m2}m1 ∈ DY(M) m1
−1 ∈DY(M)

m2 ∈DY(M)
Acrypt ,

{m2}m1−1 ∈ DY(M) m1 ∈ DY(M)

m2 ∈ DY(M)
A−1crypt .

The generation rules express that the intruder can
compose messages from known messages using pairing,
asymmetric and symmetric encryption, and function ap-
plication. The analysis rules describe how the intruder
can decompose messages. Note that no rules are given
that allow the intruder to analyze function applications,

for example to recover m from f(m). Moreover, note
that this formalization correctly handles nonatomic keys,
for instance m ∈ DY({ {|m|}f(k1,k2), k1, k2, f }). This is in
contrast to other models such as [1, 37, 43, 48] that handle
only atomic keys.

2.4 The semantics of the Intermediate Format

Using DY, we now define a protocol model for the IF
in terms of an infinite-state transition system. In this
definition, we incorporate an optimization that we call
step-compression, which is based on the idea [1, 11, 20,
25, 40] that we can identify the intruder and the net-
work: every message sent by an honest agent is received
by the intruder and every message received by an hon-
est agent comes from the intruder. More specifically,
we compose (or “compress”) several steps: when the in-
truder sends a message, an agent reacts to it according to
the agent’s rules, and the intruder intercepts the agent’s
answer.

Definition 4. Let r = lhs⇒rhs be a rule of the form (1),
i.e.,

msg(m1).state(m2).P1.N1∧∧∧Cond

⇒ state(m3).msg(m4).P2 ,

and let P1 be obtained from P1 by removing all i_knows
facts, i.e.,

P1 = P1 \{f | ∃m. f = i_knows(m)} . (3)

We define the applicability of such a rule r by the func-
tion applicable that maps a state S and the LHS lhs of r to
the set of ground substitutions under which the rule can be
applied to the state:

applicable lhs(S) = { σ |

ground(σ) ∧ dom(σ)
= vars(m1)∪vars(m2)∪vars(P1) ∧

(4)

{m1σ}∪{mσ | i_knows(m) ∈ P1}
⊆ DY({m | i_knows(m) ∈ S}) ∧

(5)

state(m2σ) ∈ S ∧ P1σ ⊆ S ∧ (6)

(∀f. not(f) ∈N1 =⇒ fσ /∈ S) ∧σ |= Cond } . (7)

We can then define the successor function

succR(S) =
⋃

r∈R

stepr(S)

that, given a set R of rules of the above form and a state S,
yields the corresponding set of successor states by means of
the following step function:

step lhs⇒rhs(S) = {S
′ | ∃ σ.

σ ∈ applicable lhs(S) ∧ (8)

188 David Basin et al.: OFMC: A symbolic model checker for security protocols

S′ = (S \ (state(m2σ)∪P1σ))∪ state(m3σ)

∪ i_knows(m4σ)∪P2σ } . (9)

Here and elsewhere, we simplify notation for singleton
sets by writing, e.g., state(m2σ) ∪ P1σ for {state(m2σ)}∪
P1σ.

The function applicable yields the set of ground substi-
tutions under which a rule can be applied to a state.
In particular, condition (5) ensures that the message m1
(which is expected by the honest agent) as well as all mes-
sages that appear in i_knows facts in P1 can be generated
from the intruder knowledge under σ, where according to
(4) σ is a ground substitution for the variables in the pos-
itive facts of the LHS of rule r. Note that this ensures
that each i_knows fact in the LHS of a rule is treated like
a message that the intruder has to generate. In particu-
lar, the message to be generated is not required to be
directly contained in the intruder knowledge, but rather
it is sufficient that the intruder can generate this mes-
sage from his knowledge. With P1 as defined by (3) we
refer to all facts in P1 other than i_knows facts. The con-
juncts of (6) ensure that the other positive facts of the
rule appear in the current state under σ, and (7) ensures
that none of the negated facts is contained in the cur-
rent state under σ and that the conditions are satisfied
under σ.
The step function implements the step-compression

technique described above in that it combines three tran-
sitions: the intruder sends a message that is expected by
an honest agent, the honest agent receives the message
and sends a reply, and the intruder intercepts this reply
and adds it to his knowledge. In particular, the step func-
tion creates the set of successor states of a state S by
identifying the substitutions such that the given rule is
applicable (8) and by defining, under such substitutions
σ, the successor states S′ that result by removing from S
the positive facts of the LHS of r and replacing them with
the RHS of r (9).

Example 2. We consider the step performed according to
the second (extended) rule of the Yahalom protocol for
roleB, i.e., (2). We have the following instantiation for the
metavariables in the description of the step function:

– m1 = {|A,KAB|}KBS, {|NB|}KAB for the incoming mes-
sage,

– m2 = roleB, . . . ,NB for the message describing the
current local state of the agent playing in roleB,

– m3 = roleB, . . . ,NB,KAB for the message describing
the agent’s next state,

– m4 = finished for the reply message, where finished is
a dummy message (initially known by the intruder) to
give the rule the required form,

– P1 = ∅,
– N1 = {not(seen(B,KAB))},

– P2 = {seen (B,KAB)}, and
– Cond = true.

Now consider a state S that contains the fact

state(roleB,step1,sess2,i,b,s,k(b,s),na,fresh(idNB,sess2)) ,

where na is a value that the intruder chose earlier. Fur-
ther, assume that in S the intruder has received from the
server the message

{|b, fresh(idKAB,sess2), na, fresh(idNB,sess2)|}k(i,s) ,

{|i,fresh(idKAB,sess2)|}k(b,s) .

Let us refer to the fresh values fresh(idNB,sess2) and
fresh(idKAB,sess2) as nb and kab for short. Then the
successor states of stepr(S) are determined as follows.
Let σ = [SID 	→ sess2, A 	→ i, B 	→ b, S 	→ s, KBS 	→ k(b,s),
NA 	→ na, KAB 	→ kab, NB 	→ nb]. Two conditions must be
satisfied for stepr(S) to yield a successor state with this
substitution σ. First, the intruder must be able to gener-
atem1σ, which is

{|i,kab|}k(b,s), {|nb|}kab .

That is, it must be that m1σ ∈ DY({m | i_knows(m) ∈
S}). Second, the negative facts under σ must not be con-
tained in S, i.e., it must be that seen(b,kab) /∈ S. Under
these two conditions, rule r is applicable under σ since, by
assumption,

state(m2σ) = state(roleB,step1,sess2,i,b,s,k(b,s),

na,nb) ∈ S ,

P1σ = P1σ = ∅ ⊆ S, and σ |= Cond . S′ is obtained by re-
placing the matched state fact with the updated fact

state(m3σ) = state(roleB,step1,sess2,i,b,s,k(b,s),

na,nb,kab) ,

as well as P2σ = seen(b,kab). Since the intruder already
knows the dummy message m4σ = finished, the intruder
knowledge does not grow. �

Definition 5. We define the set of reachable states of
a protocol (I,R,AR) as reach(I,R) =

⋃
n∈N succ

n
R(I).

The set of reachable states is ground as no state reach-
able from the initial state I may contain variables (by the
definition of a protocol description and the form of the
rules). As the properties we are interested in are reach-
ability properties, we will sometimes abstract away the
details of the transition system and refer to this set as the
ground model of the protocol.
We now introduce a predicate isAttackar(S) that

characterizes insecure states: if the attack-rule ar is appli-
cable at state S, then S is an insecure state.

Definition 6. We define the attack-predicate isAt-
tackar(S) to be true iff applicablear(S) �= ∅. We then say

David Basin et al.: OFMC: A symbolic model checker for security protocols 189

that a protocol (I,R,AR) is secure iff isAttackar(S) is
false for all S ∈ reach(I,R) and all attack-rules ar ∈AR.

3 The lazy infinite-state approach

In the previous section, we defined a protocol model for
the IF in terms of an infinite-state transition system.
This transition system defines a (computation) tree in the
standard way, where the root is the initial system state
and children represent the ways that a state can evolve in
one transition. The tree has infinitely many states since,
by the definition of DY , every node has infinitely many
children. It is also of infinite depth, provided we do not
bound (and in fact we cannot recursively bound) the
number of protocol sessions. The lazy intruder technique
presented in the next section uses a symbolic representa-
tion to solve the problem of infinite branching, while the
lazy infinite-state approach [7, 8] allows us to work with
infinitely long branches. As we have integrated the lazy
intruder with this approach, we now briefly summarize
the main ideas of [7, 8].4

The key idea behind the lazy infinite-state approach
is to explicitly formalize an infinite tree as an element of
a data type in a lazy programming language. This yields
a finite, computable representation of the model that can
be used to generate arbitrary prefixes of the tree on the
fly, i.e., in a demand-driven way. One can search for an
attack by searching the infinite tree for an attack-state.
Our on-the-fly model checker OFMC uses iterative deep-
ening to search this infinite tree.When an attack is found,
OFMC returns the attack-trace, i.e., the sequence of ex-
changed messages leading to the attack-state (cf. Fig. 1).
This yields a semidecision procedure for protocol insecu-
rity: our procedure always terminates (at least in prin-
ciple) when an attack exists. Moreover, our search pro-
cedure terminates for finitely many sessions (e.g., using
the approach to bounded session generation described in
Sect. 6) when we employ the lazy intruder to handle the
infinite set of messages the intruder can generate.
The lazy approach has several strengths. It separates

(both conceptually and structurally) the semantics of
protocols from heuristics and other search reduction pro-
cedures, and from search itself. The semantics is given
by a transition system generating an infinite tree, and
heuristics can be seen as tree transducers that take an in-
finite tree and return one that is, in some way, smaller
or more restricted. The resulting tree is then searched.
Although semantics, heuristics, and search are all for-
mulated independently, lazy evaluation serves to corou-
tine them together in an efficient, demand-driven fash-
ion. Moreover, there are efficient compilers for lazy func-
tional programming languages like Haskell, the language
we used to implement OFMC.

4 Note that there is no relation between the lazy intruder and
the lazy protocol analysis, except that both are demand-driven
(“lazy”) techniques.

4 The lazy intruder

The lazy intruder is an optimization technique that sig-
nificantly reduces the search tree without excluding any
attacks. This technique uses a symbolic representation to
avoid explicitly enumerating the possible messages that
the Dolev–Yao intruder can generate, by storing and ma-
nipulating constraints about what must be generated.
The representation is evaluated in a demand-driven way,
and hence the intruder is called lazy.
The idea behind the lazy intruder was, to our know-

ledge, first proposed by [31] and then subsequently de-
veloped by [1, 11, 12, 19, 25, 30, 40], among others; see [22]
for an overview. Our contributions to the lazy intruder
technique are as follows. First, we simplify the technique,
which, as we show in the appendix, also leads to a simpler
proof of its correctness and completeness. Second, we for-
malize its integration into the search procedure induced
by the rewriting approach of the IF and, on the practical
side, we present (in Sect. 5) an efficient way to organize
and implement the combination of state exploration and
constraint reduction. Third, we extend the technique to
ease the specification and analysis of a larger class of pro-
tocols and properties, where we implement negative facts
and conditions in the IF rewrite rules by inequality con-
straints for the lazy intruder. Finally, we show how to em-
ploy the lazy intruder to solve the problem of instantiat-
ing protocols for particular analysis scenarios (cf. Sect. 6).

4.1 Constraints

The Dolev–Yao intruder leads to an enormous branch-
ing of the search tree when one näıvely enumerates all
(meaningful) messages that the intruder can send. The
lazy intruder technique exploits the fact that the actual
value of certain parts of a message is often irrelevant for
the receiver. Therefore, whenever the receiver will not fur-
ther analyze the value of a particular message part, we
can postpone during the search the decision about which
value the intruder actually chooses for that part by re-
placing it with a variable and recording a constraint on
which knowledge the intruder can use to generate the
message. We express this information using constraints of
the form from(T, IK), meaning that T is a set of terms
generated by the intruder from his set of known messages
IK (for “intruder knowledge”).

Definition 7. The semantics of a constraint from(T, IK)
is the set of satisfying ground substitutions σ for the vari-
ables in the constraint, i.e.,

[[from(T, IK)]] = {σ | ground(σ) ∧ ground(Tσ∪ IKσ)

∧ Tσ ⊆DY(IKσ)} .

We say that a constraint from(T, IK) is simple if T ⊆ V,
and we then write simple(from(T, IK)).
A constraint set is a finite set of constraints, and its

semantics is the intersection of the semantics of its elem-

190 David Basin et al.: OFMC: A symbolic model checker for security protocols

ents, i.e., overloading notation, [[{c1, . . . , cn}]] =ni=1[[ci]].
A constraint set C is satisfiable if [[C]] �= ∅. A constraint
setC is simple if all its constraints are simple, and we then
write simple(C).

Example 3. Consider again the trace of the attack on
the Yahalom protocol in Fig. 1, and let us again refer to
the fresh values fresh(idNB,sess2) and fresh(idKAB,sess2)
as nb and kab for short. The intruder first chooses
a nonce NA for communication with b. Then, the in-
truder sees both the message from b to s, namely,
{|i,NA,nb|}k(b,s), and the message from s to i, namely,
{|b, kab,NA, nb|}k(i,s), {|i, kab|}k(b,s). Hence the following
constraints arise from the steps taken in the trace:

{ from(NA, IK 0) ,

from(〈{|i,KAB|}k(b,s),{|nb|}KAB〉 , IK 0∪{|i,NA, nb|}k(b,s)

∪{|b, kab,NA, nb|}k(i,s), {|i, kab|}k(b,s)) } ,

where KAB is a fresh variable and IK 0 is the initial in-
truder knowledge, which includes all agent names and the
intruder’s shared key with the server, k(i,s). �

4.2 Constraint reduction

The core of the lazy intruder technique is to reduce
a given constraint set into an equivalent one that is ei-
ther unsatisfiable or simple. (As we show in Lemma 3,
every simple constraint set is satisfiable.) This reduc-
tion is performed using the generation and analysis rules
of Fig. 2, which describe possible transformations of the
constraint set. Afterwards, we show that this reduction
does not change the set of solutions, roughly speaking
[[C]] = [[Red(C)]], for a relevant class of constraints C.
A generation or analysis rule r has the form

C′, σ′

C, σ
r ,

with C and C′ constraint sets and σ and σ′ substitutions.
It expresses that (C′, σ′) can be derived from (C, σ),
which we denote by (C, σ) �r (C′, σ′). That is, the con-
straint reduction rules are applied backwards. Note that
σ′ extends σ in all rules. As a consequence, we will be able
to apply the substitutions generated during the reduction
of C also to the facts of a lazy state, as we discuss below.
The generation rulesGlpair,G

l
scrypt,G

l
crypt, andG

l
apply

express that the constraint stating that the intruder can
generate a message composed from submessages m1 and
m2 (using pairing, symmetric and asymmetric encryp-
tion, and function application, respectively) can be re-
placed by the constraint stating that he can generate both
m1 andm2. The ruleG

l
unif expresses that the intruder can

use a message m2 from his knowledge provided this mes-
sage can be unified with the message m1 that he has to
generate (note that both the terms to be generated and
the terms in the intruder knowledge may contain vari-
ables). The reason that the intruder is “lazy” stems from

Fig. 2. Lazy intruder: constraint reduction rules

the restriction that the Glunif rule cannot be applied when
the term to be generated is a variable: how the intruder
chooses to instantiate this variable is immaterial at this
point in the search and hence we postpone this decision.
The analysis of the intruder knowledge is more com-

plex for the lazy intruder than in the ground model since
messages may now contain variables. In particular, if the
key term of an encrypted message contains a variable,
then whether or not the intruder can decrypt this mes-
sage is determined by the substitution we (later) choose
for this variable. We solve this problem by using the rule
Alscrypt, where the variable in the key term can be in-
stantiated during subsequent constraint reduction.5More
specifically, for a message {|m2|}m1 that the intruder at-
tempts to decrypt, we add the contentm2 to the intruder
knowledge of the respective constraint (as if the check
was already successful) and add a new constraint express-
ing that the symmetric key m1 necessary for decryption
must be generated from the same knowledge. Hence, if we
attempt to decrypt a message that cannot be decrypted
using the corresponding intruder knowledge, we obtain an
unsatisfiable constraint set.
Note that we also make the restriction that the mes-

sage {|m2|}m1 to be analyzed may not be used in the
generation of the key; this is in contrast to similar ap-
proaches that can also handle nonatomic symmetric keys
such as [20, 40]. In our notation, their decryption rule is

from(m1, {|m2|}m1
∗∪ IK)

∪ from(T,m2∪{|m2|}m1 ∪ IK)∪C, σ

from(T, {|m2|}m1∪ IK)∪C, σ
Alscrypt

∗ .

5 This solution also takes care of nonatomic keys since we do not
require that the key be contained in the intruder knowledge but
only that it can be generated from the intruder knowledge, e.g., by
composing known messages.

David Basin et al.: OFMC: A symbolic model checker for security protocols 191

This rule is the same as ours, except that the constraint
governing the derivation of the key m1 additionally con-
tains the message {|m2|}m1 marked with an asterisk. This
marking denotes that {|m2|}m1 may not be further ana-
lyzed (as there is already an analysis of this term in
progress). Without this mark, the approaches of [20, 40]
would not terminate since, in the derivation of m1, one
could infinitely often decrypt {|m2|}m1 , repeatedly pro-
ducing the same constraint. Although the mark ensures
termination, it gives the rule a procedural aspect, making
it less declarative.
As formally justified in the proof of our completeness

theorem (the proof of Theorem 1 in the appendix), our
rule Alscrypt, which omits marking entirely, does not ex-
clude any solution. The intuition behind this is as follows:
the only case in which the marked term {|m2|}m1 is ac-
tually used to derive m1 is when there is another term
t ∈ IK that is encrypted with the term {|m2|}m1 as a key.
However, in this case, we could have first performed the
analysis of t and hence need not perform it during the
derivation of m1. In general, if one performs the analysis
steps in the order that they depend on each other, no an-
alysis is needed in the constraints that are introduced by
the analysis rules, in this case the from(m1, ·) constraint.
Note that our rule is not only simpler andmore declar-

ative, it also considerably simplifies the completeness
proof. For example, the respective completeness proof
in [40] must split into one part with encryption hiding (as
they call the marked terms) and one without.

Definition 8. Let � denote the reflexive and transitive
closure of the union of the derivation relations �r for every
rule r of Fig. 2. The set of pairs of simple constraint sets
and substitutions derivable from (C, id) is

Red(C) = {(C′, σ) | ((C, id) � (C′, σ)) ∧ simple(C′)} ,

where we define

[[Red(C)]] = {σσ′ | ∃C′. (C′, σ) ∈ Red(C)∧σ′ ∈ [[C′]]} .

Example 4. Consider the reductions performed on the
constraints of the Yahalom example above. First, the in-
truder can perform an analysis step on the intruder know-
ledge IK , since a part of the message sent by the server s is
encrypted by the shared key k(i,s) of i and s. Applying the
rules Alpair and A

l
scrypt to the second constraint results in

the following constraint set:

{from(NA, IK 0) ,

from(k(i,s), IK 0∪{|i,NA, nb|}k(b,s)∪{|i, kab|}k(b,s)) ,

from(〈{|i,KAB|}k(b,s),{|nb|}KAB〉,

IK 0∪{|i,NA, nb|}k(b,s)∪{|i, kab|}k(b,s)∪kab

∪NA∪nb) } .

In the remainder of this paper, we will refer to the in-
truder knowledge of the third constraint in the above set

as IK . The second of these constraints is directly solvable
using the Glunif rule since k(i,s) ∈ IK 0. Applying G

l
pair to

the third constraint replaces the pair in the terms to gen-
erate with its components:

{from(NA, IK 0) ,

from({|i,KAB|}k(b,s)∪{|nb|}KAB, IK) } ,

where, here and in the following discussion, we omit the
constraints of the form from(∅, IK).
For the first message that the intruder has to gen-

erate in the second constraint, i.e., {|i,KAB|}k(b,s), there
are two possibilities: using the Glunif rule, this message
can be unified either with the message {|i,NA, nb|}k(b,s)
sent earlier by b (where the unifier is KAB 	→ 〈NA,nb〉)
or with the original message {|i, kab|}k(b,s) from the server
(where the unifier is KAB 	→ kab). The second possibil-
ity reflects the “correct” protocol execution (and the
remaining constraint is easily solved in this case). Let
us thus consider the other possibility, which leads to
the attack displayed in Fig. 1, i.e., KAB 	→ 〈NA,nb〉, so
that

{from(NA, IK 0) ,

from({|nb|}〈NA,nb〉, IK) } .

These constraints can be solved by first applying the rules
Glcrypt and G

l
pair, resulting in

{from(NA, IK 0) ,

from(NA∪nb, IK) } ,

and then eliminating nb using theGlunif rule (as nb ∈ IK).
The remaining constraint set is simple.
To summarize, there are two simple constraint sets

corresponding to the original constraint set in this ex-
ample: one corresponding to the correct execution of the
protocol and the other representing an attack. �

4.3 Properties of Red

By Theorem 1 below, the Red function is correct, com-
plete, and recursively computable (since � is finitely
branching). To show completeness, we restrict our atten-
tion to a special form of constraint sets, calledwell-formed
constraint sets. This is without loss of generality as all
states reachable in the lazy intruder setting obey this re-
striction (cf. Lemma 4).

Definition 9. A constraint set C is well formed if
one can index the constraints, C = {from(T1, IK 1), . . . ,
from(Tn, IKn}), so that the following conditions hold:

IK i ⊆ IKj for i≤ j , (10)

vars(IK i)⊆
i−1⋃

j=1

vars(Tj) . (11)

192 David Basin et al.: OFMC: A symbolic model checker for security protocols

Intuitively, (10) requires that the intruder knowledge
increase monotonically, and (11) requires that every vari-
able that appears in terms known by the intruder be part
of a message that the intruder created earlier. Said an-
other way, variables only “originate” from the intruder.
Note that the analysis rules of the lazy intruder can

destroy property (10), as a message obtained by an an-
alysis rule is not necessarily contained in the subsequent
(i.e., of higher index) intruder knowledge sets. However,
as we show in the proof of Theorem 1 given in the ap-
pendix, there is a straightforward procedure that trans-
forms every simple constraint set obtained byRed into an
equivalent, well-formed, simple one.

Theorem 1. Let C be a well-formed constraint set.
Red(C) is finite and � is well founded. Moreover, [[C]] =
[[Red(C)]], i.e., Red(C) is correct and complete.

The intuition behind this theorem is that with every
reduction step the constraints become simpler in some
sense, and thus � is well founded and Red(C) is finite.
Correctness, i.e., [[C]] ⊇ [[Red(C)]], holds as no rule ap-
plication adds solutions to the constraint set. Complete-
ness, i.e., [[C]] ⊆ [[Red(C)]], holds because if a solution σ
is allowed by the constraint set (i.e., σ ∈ [[C]]), then we
can either find an applicable rule such that the result-
ing constraint set C′ still supports σ (i.e., σ ∈ [[C′]]) or C′

is already simple. Since � is well founded, after finitely
many applications of rules supporting σ, the resulting
constraint set C′′ must be simple. Thus if σ ∈ [[C]], then
there is a simple C′′ ∈ Red(C) such that σ ∈ [[C′′]].

4.4 Lazy intruder reachability

We describe now the integration of constraint reduction
into the search procedure for reachable states. The space
of lazy states consists of states that may contain vari-
ables (as opposed to the groundmodel where all reachable
states are ground) and that are associated with a set of
from constraints as well as a collection of inequalities. The
inequalities are used to handle negative facts and con-
ditions in the context of the lazy intruder. We require
that the inequalities be given as a conjunction of dis-
junctions of inequalities between terms. We will use the
inequalities to rule out certain unifiers; for example, to
express that both the substitutions σ = [v1 	→ t1, v2 	→ t2]
and τ = [v1 	→ t3] are excluded in a certain state, we use
the inequality constraint (v1 �= t1∨∨∨ v2 �= t2) ∧∧∧ (v1 �= t3).
Note that we write ∨∨∨ and ∧∧∧ to avoid confusion with the
respective metaconnectives ∨ and ∧.
A lazy state represents the set of ground states that

can be obtained by instantiating the variables with
ground messages so that all associated constraints are
satisfied.

Definition 10. A lazy state is a triple (P,C,N), where
P is a sequence of (not necessarily ground) positive facts,
C is a constraint set, and N is a conjunction of dis-

junctions of inequalities between terms. The semantics of
a lazy state is [[(P,C,N)]] = {Pσ | σ ∈ [[C]]∧σ |=N}.
Let freshvarsS(r) be a rule obtained from rule r by re-

naming the variables in r with respect to the lazy state
S = (P,C,N) so that vars(S) and vars(freshvarsS(r)) are
disjoint. As in the ground case, let r = lhs⇒rhs be a rule
of the form (1), i.e.,

msg(m1).state(m2).P1.N1∧∧∧Cond

⇒ state(m3).msg(m4).P2 ,

and let P1 be obtained from P1 by removing all i_knows
facts, i.e.,

P1 = P1 \{f | ∃m. f = i_knows(m)} . (12)

We can then define the applicability of such a rule r to
a lazy state (P,C,N) by the function applicable l that maps
(P,C,N) and the left-hand side lhs of r to a set of substi-
tutions under which the rule can be applied to the state:

applicablellhs(P,C,N) =
{
(σ, C′, N ′) |

dom(σ)⊆ vars(m1)∪vars(m2)∪vars(P1)∪vars(P,C,N)∧

state(m2σ) ∈ Pσ∧P1σ ⊆ Pσ∧ (13)

C′ = (C ∪

from(m1 ∪ {m | i_knows(m) ∈ P1}, {i | i_knows(i) ∈ P}))σ∧
(14)

N ′ =Nσ ∧∧∧
∧∧∧
φ∈subCont(N1σ,Pσ) φ∧∧∧Cond σ

}
(15)

where

subCont(N,P) =
{
φ | ∃ t, t′, v1, . . . , vn, t1, . . . , tn.

not(t) ∈N ∧ t′ ∈ P ∧mgu(t, t′) = [v1 	→ t1, . . . , vn 	→ tn]

∧ φ=
∨∨∨
n
i=1 vi �= ti

}
.

We can then define the lazy successor function

succlR(S) =
⋃

r∈R

steplfreshvarsS(r)(S)

that maps a set R of rules of the form (1) and a lazy state
S = (P,C,N) to a set of lazy states by means of the follow-
ing lazy step function:

steplr(P,C,N) = { (P
′, C′, N ′) | ∃ σ.

(σ,C′, N ′) ∈ applicable llhs(P,C,N) ∧ (16)

P ′ = (Pσ \ (state(m2σ)∪P1σ))∪ state(m3σ)

∪ i_knows(m4σ)∪P2σ } . (17)

The function applicable l is the “lazy equivalent” of the
ground applicable function: given a lazy state and the
LHS of a rule of the form (1), applicable l yields the set of
triples of substitutions, constraint sets, and inequalities
such that the conditions (13)–(15) are satisfied. Condi-
tion (13) is similar to the first two conjuncts in condi-

David Basin et al.: OFMC: A symbolic model checker for security protocols 193

tion (7) in the ground model, where the substitution is
now applied also to the set of positive facts in the state
(instead of matching, we now perform unification). The
constraint in condition (14) expresses that both the mes-
sage m1 and the i_knows facts of the positive facts of
the LHS of rule r must be generated by the intruder
from his current knowledge. Condition (15) states that
the inequalities are conjoined with the inequalities of
the rule and with the conjunction of all formulae that
subCont(N1σ, Pσ) yields. The name subCont expresses
that this function produces a formula that excludes those
most general substitutions under which the given nega-
tive facts are contained in the given state. More con-
cretely, for a setN of negative facts and a set P of positive
facts, subCont(N,P) generates a disjunction of inequal-
ities that excludes all unifiers between two positive facts
t and t′ such that not(t) ∈ N and t′ ∈ P . Note that in
the special case that t= t′, we obtain the solution σ = [],
and, as is standard, we define ∨∨∨0i=1 φ to be false for any φ.
Hence, subCont(not(f) ∪ N, f ∪ P) = false for any fact
f . Also, N ′ is conjoined with the inequalities of the rule
under σ. Note that, unlike in the ground model, we can-
not directly check here if the condition is satisfied since
it is not necessarily a ground term; instead, we store this
constraint.
Like the successor function of the ground model, the

lazy successor function also performs step-compression,
by exploiting the lazy step function stepl (where, in con-
trast to the ground case, we rename the variables of the
rule to avoid clashes with the variables that may appear
in the lazy state). The lazy step function stepl creates the
set of lazy successor states of a lazy state (P,C,N) by first
using the applicable l function to identify triples consisting
of the new constraints C′, the new inequalities N ′, and
a substitution σ such that the given rule is applicable (as
is done in condition (16)), and then using σ to compute
the positive facts P ′ in the successor state, which result
by removing the positive LHS facts from P (under σ) and
adding the RHS facts.
Note that the lazy applicability and step functions do

not check the satisfiability of the generated constraints
and inequalities. This is because we do not want to pre-
scribe, as part of the formalism, whether or not con-
straints are directly reduced after every transition. In-
stead, we leave this decision to the search strategy, dis-
cussed in Sect. 5.

Example 5. We return to our Yahalom example to con-
trast the lazy successor function stepl with the ground
successor function step. The major difference is that we
now start with a symbolic state (P,C,N) where S ∈
[[(P,C,N)]] for the state S introduced in Example 4. We
can obtain such a symbolic state, occurring in the analy-
sis of the Yahalom protocol, by replacing in S the value
na (whatever the agent playing in roleB received) with
the variable NA (this yields the set P of positive sym-
bolic facts) and the constraint set C = {from(NA, IK 0)}

representing that the intruder generated this value NA
earlier.
The substitution taken in the stepl function thus

differs from the substitution taken in the ground case
step by not substituting values for NA and for KAB.
Note that the value of KAB is not determined by the
rule since the agent playing in roleB accepts any value
whenever he receives messages of the proper format. For
instance,

m1σ = {|i,KAB|}k(b,s), {|NB|}KAB .

Another difference is that the stepl function does not
“check” that the intruder can generate the messages in
question (in this case m1σ). Instead, it adds an appro-
priate constraint to the constraint store (in this case
C′ = C ∪ from(m1σ, IK), where IK is the set of messages
m for which i_knows(m) ∈ P). If there is no solution for
this constraint, then the semantics of the successor state
(P ′, C′, N ′) is empty.
Similarly, the negative facts are not directly eval-

uated. Suppose, for instance, that the set P contains
the fact seen(b,kab). Then the new conjunctions added
to N by subCont(N1σ, Pσ) (where N1σ is the con-
dition not(seen(b,KAB))) entail the inequality KAB �=
kab. Intuitively, the newly received key must differ
from all keys already in the database of seen keys, and
this check is done as soon as the constraint set is re-
duced, possibly leading to substitutions for the variable
KAB.
Finally, in the successor state (P ′, C′, N ′) we have the

updated state fact for b, containing now both the vari-
ables NA and KAB, and the (nonsimple) constraint set C′

as described above. �

Definition 11. We define the set of reachable lazy
states of a protocol (I,R,AR) as reach l(I,R) =

⋃
n∈N

(succlR)
n
(I, ∅, ∅).

We also call reach l(I,R) the lazy intruder model of the
protocol (I,R,AR), or lazy model for short.
As we show in the appendix, the lazy model is equiva-

lent to the ground model, in the sense that they both
represent the same set of reachable states.

Lemma 1. reach(I,R) = ∪(P,C,N)∈reachl(I,R)[[(P,C,N)]]
for every initial state I and every set R of rules of the
form (1).

Recall that we have defined that a protocol is secure
iff isAttackar(S) is false for all reachable ground states S
and ar ∈AR. A similar check suffices in the lazy intruder
model, where we rename the variables of the attack-rule
(analogous to the lazy successor function in Definition 10)
in order to avoid clashes.

Definition 12. For a lazy state (P,C,N) and an attack-
rule ar, we define the lazy attack-predicate isAttacklar (P,

194 David Basin et al.: OFMC: A symbolic model checker for security protocols

C,N) to be true iff [[(Pσ,C′, N ′)]] �= ∅ for some (σ,C′, N ′)
∈ applicable lar′(P,C,N) with ar

′ = freshvars(P,C,N)(ar).

If isAttack l is true for a reachable lazy state (P,C,N),
then (P,C,N) represents an attack-state:

Lemma 2. For all lazy states (P,C,N) and all attack-
rules ar, the predicate isAttack lar(P,C,N) holds iff isAt-
tackar(S) holds for some represented ground state S ∈
[[(P,C,N)]].

We thus have the following theorem, proven in the
appendix.

Theorem 2. A protocol (I,R,AR) is secure iff isAt-
tack lar(P,C,N) is false for all attack-rules ar ∈ AR and
all reachable lazy states (P,C,N) ∈ reach l(I,R).

Using the above results, we now show how the lazy in-
truder allows us to build an effective decision procedure
for protocol (in)security for a bounded number of ses-
sions with unbounded message complexity, and a semide-
cision procedure for protocol insecurity for an unbounded
number of sessions. To this end, we have to tackle three
problems.
First, the stepl function may return infinitely many

successors, as there can be infinitely many unifiers σ for
the positive facts of the rules with a state. However, as we
follow the free algebra assumption on the message terms,
two unifiable terms always have a unique mgu, and we
can, without loss of generality, represent only that unifier.
Note also that there are always finitely manymgus as the
set of rules is finite and a lazy state contains finitely many
facts.
Second, we must represent the reachable states. The

lazy infinite-state approach provides a straightforward
solution to this problem: we represent the reachable
states as the tree generated using the lazy intruder succes-
sor function. For an unbounded number of sessions, this
tree is infinitely deep, but by using lazy data types we can
compute with a finite representation of it. In particular,
we can apply the lazy attack-predicate as a filter on this
tree to obtain the lazy attack-states.
Third, we must check whether one of these lazy

attack-states is satisfiable, i.e., represents a possible at-
tack. (We will see that this check can also be applied as
a filter on the tree.) Constraint reduction is the key to
this task. By Theorem 1 we know that, for a well-formed
constraint set C, constraint reduction produces a set of
simple constraint sets that together have the same seman-
tics as C. The following lemma shows that a lazy state
with a simple constraint set and a satisfiable collection of
inequalities is always satisfiable.

Lemma 3. Let (P,C,N) be a lazy state where C is sim-
ple and N is satisfiable, i.e., there is a σ such that σ |=N .
Then [[(P,C,N)]] �= ∅.

The proof given in the appendix is based on the obser-
vation that a simple constraint set with inequalities is

always satisfiable as the intruder can always generate suf-
ficiently many different messages. This is the intuition
why inequalities can be so easily integrated into our lazy
model.
From this lemma we conclude the following for a well-

formed constraint set C and a collection of inequalities
N . If there is at least one solution (C′, τ) ∈ Red(C) and
Nτ is satisfiable, then [[(P,N,C)]] �= ∅, since C′ is simple
and [[C′]]⊆ [[C]], by Theorem 1. Otherwise, if Red(C) = ∅
or if N is unsatisfiable, then [[(P,C,N)]] = ∅, also by
Theorem 1.
So, for a reachable lazy state (P,C,N) we can decide

if [[(P,C,N)]] is empty, as long as C is well formed. To
obtain simple constraint sets, we call Red, which only ap-
plies to well-formed constraint sets. It thus remains to
show that all constraint sets of reachable lazy states are
well formed. This follows from the way in which new con-
straints are generated during the stepl transitions.

Lemma 4. For a protocol (I,R,AR), if (P,C,N) ∈
reach l(I,R), then C is well formed.

We can now put all the pieces together to obtain an
effective procedure for checking whether a protocol is se-
cure: we generate reachable lazy states and filter them
both for attack-states and for constraint satisfiability. We
next describe how to implement this procedure in an effi-
cient way.

5 Organizing state exploration
and constraint reduction

When implementing the lazy intruder, we are faced with
two design decisions: (i) in what order to apply the two
“filters” mentioned above and (ii) how to realize con-
straint reduction.
With respect to (i), note that the definition of reach-

able lazy states does not prescribe when Red should be
called; Red is only used to determine if a constraint set
is satisfiable. OFMC applies Red after each transition to
check if the constraints are still satisfiable. This allows
us to eliminate from the search all states with unsatisfi-
able constraint sets, as the successors of such states will
again have unsatisfiable constraint sets. We also extend
this idea to checking the inequalities and remove states
with unsatisfiable inequalities. In the lazy infinite-state
approach, this can be realized simply by swapping the
order in which the “filters” are applied, i.e., the tree of
reachable lazy states is first filtered for satisfiable lazy
states (using Red), thereby pruning several subtrees, and
then for attack-states (using isAttack l). Note that Red
can lead to case splits if there are several solutions for
the given constraint set; in this case, to avoid additional
branching in the search tree, one can continue the search
with the original constraint set.
With respect to (ii), note that the question of how

to reduce constraints (in particular, how to analyze the

David Basin et al.: OFMC: A symbolic model checker for security protocols 195

intruder knowledge) is often neglected in other presenta-
tions of symbolic intruder approaches. One solution is to
proceed on demand: a message in the intruder knowledge
is analyzed iff the result of this analysis can be unified
with a message the intruder has to generate. We adopt
a more efficient solution. We apply the analysis rules to
every constraint until a fixed-point is reached, i.e., no
rule produces additional knowledge. The result is that
the intruder knowledge is “normalized” with respect to
the analysis rules. As a consequence, we need not further
consider analysis rules during the reduction of the con-
straints. This has the advantage that to check if the Glunif
rule is applicable to a message m that the intruder has
to generate, we must simply check if in the (analyzed)
intruder knowledge some message appears that can be
unified withm. In contrast, with analysis on demand it is
necessary in this case to check if a unifiable message may
be obtained through analysis.
However, when normalizing the intruder knowledge,

we must take into account that the analysis may produce
substitutions. Every substitution restricts the set of pos-
sible solutions, and in this case the restriction is necessary
only if the respective decrypted message content is actu-
ally used later.6 Our solution is that when an analysis step
is possible only under a substitution σ, then we perform
a case split. In one case we apply σ and perform the an-
alysis step, and in the other case we do not perform the
analysis step and exclude the substitution σ to prevent
repeated application of the same case split to this case.
Exclusion of a substitution σ = {(v1, t1), . . . , (vn, tn)} is
achieved by conjoining the disjunction of the inequalities

v1 �= t1∨∨∨ . . .∨∨∨vn �= tn

to the constraint set.
Note that a demand-driven analysis would perform

such a case split only if the analyzed term is actually used.
However, our strategy is often more efficient as it does
not require complicated caching strategies, and our expe-
rience shows that most case splits during normalization
analysis distinguish states that must also be considered
by demand-driven analysis.

6 Symbolic sessions

The lazy approach to model-checking security protocols
described above allows one to work even with an un-
bounded number of sessions. However, in practice it is

6 As an example, suppose that the intruder wants to analyze
the message {|{|m|}k|}{|M|}k , where the variable M represents a mes-
sage the intruder generated earlier, and that he already knows
the message {|m|}k. Obviously the new constraint expressing that
the key term can be derived from the rest of the knowledge,
from({|M|}k, {|m|}k), is satisfiable, unifyingM=m. The point is that
the result of the decryption does not give the intruder any new in-
formation (he already knows {|m|}k). Hence, by unifying M=m we
unnecessarily limit the possible messages the intruder could have
said.

often advantageous to organize and control search by con-
sidering (and searching) different scenarios under which
a protocol should be checked, corresponding to different
sessions where different agents assume different roles in
the interleaved protocol executions. In this section, we
consider several alternatives of increasing sophistication
and power: (i) manual session specification, which is com-
mon in many tools, e.g., in previous versions of HLPSL
and OFMC [2] or CAPSL/CIL [26]; (ii) automatic session
generation, which has been developed in [14]; and, finally,
(iii) our new approach based on symbolic sessions.

6.1 Manual session specification

The first alternative is that the user explicitly describes
the scenario under which the protocol should be checked
using OFMC. This may be done by specifying a finite list
of instantiations of the roles of the protocol with agent
names, where i denotes the intruder and all other agents
(a, b, . . .) are honest. For example, in a protocol with
roles A and B (in the notation of the HLPSL, which cor-
respond to roleA and roleB in the notation of the IF), one
might specify the following instances:

[A:a, B:b]

[A:a, B:b]

[A:b, B:i] .

This describes a scenario consisting of three parallel ses-
sions, two between the honest agents a and b and one
between b and the intruder. Recall that the intruder can
always send messages under any identity; however, a ses-
sion instance between an honest agent and the intruder
explicitly models an honest agent who runs a protocol
with a dishonest or corrupted agent.7

The formal meaning of such a scenario is defined
by the translation to the IF that is performed by the
HLPSL2IF translator. In the IF, the initial state deter-
mines the scenario to be explored: every state fact repre-
sents an honest agent who is willing to perform one run of
the protocol. This is because every rule in the IF contains
exactly one state fact both on the left-hand side and on
the right-hand side, so that the number of agent facts is
the same in all reachable states. A state fact of the initial
state thus corresponds to the initial node of a strand in
a strand space model or an agent process in a process cal-
culus model; see, e.g., [37, 47, 49] as well as the discussions
in Sect. 8.8

Given a protocol with r roles in HLPSL, for every
specified session the HLPSL2IF translator generates r

7 This also reflects that we do not distinguish between differ-
ent intruders and corrupted parties but assume that they all work
together and can thus be merged into one intruder.
8 We assume here that the rules of an IF protocol specification
ensure that every state fact can be involved only in a bounded
number of transitions. This assumption holds, for instance, for all
protocols that can be specified in HLPSL, but it excludes stream-
ing and group protocols (unless one bounds the length of the
stream or the size of the group).

196 David Basin et al.: OFMC: A symbolic model checker for security protocols

state facts in the initial state of the resulting IF files, one
fact for each role that contains the agent names of the re-
spective session instance. For example, for the instances
specified above, the initial state contains the facts

state(roleA,step0,sess1,a,b).state(roleB,step0,sess1,b,a).

state(roleA,step0,sess2,a,b).state(roleB,step0,sess2,b,a).

state(roleA,step0,sess3,b,i).state(roleB,step0,sess3,i,b) ,

where we again omitted the pairing operator to simplify
the notation. Every pair of state facts contains a unique
identifier sessj. In our set rewriting approach, this allows
us to specify multiple parallel sessions between the same
agents (in the example, the sessions sess1 and sess2).
The last state fact, state(roleB,step0,sess3,i,b), repre-

sents that the intruder can execute the protocol in roleB
with b in roleA. This and other state facts for the intruder
are actually not necessary under the Dolev–Yao intruder
model since an intruder can always execute a protocol
in the intended way under his own, real name. Indeed,
the HLPSL2IF translator checks that the HLPSL speci-
fication of the protocol is executable in the sense that,
given the required initial knowledge, every agent can con-
struct the messages he is supposed to, and this ability is,
of course, subsumed by the abilities of the Dolev–Yao in-
truder.
Manual session instantiation constitutes a basic mech-

anism for specifying protocol analysis scenarios. However,
it is unsatisfactory that the user must specify instances
manually. In practice, to avoid state-space explosion due
to parallelism, it is desirable to iterate through many sce-
narios, with differing role instances. Support for searching
among instances is called for here.

6.2 Automatic session generation

The second alternative is to automatically generate sce-
narios. This may be accomplished, for a given number n
of sessions and a set of roles, by generating all scenar-
ios with n session instances of the roles up to isomorphy,
i.e., renaming the honest agents and reordering the list
of sessions (see [14]). OFMC can then analyze the proto-
col for each of the scenarios generated this way. However,
even for a small number n, the number of scenarios to be
considered is enormous.

6.3 Symbolic session generation

One can interpret automatic session generation as a kind
of parameter search: the protocol model is parameterized
over a scenario and we can explore the values of this pa-
rameter (for a given upper bound). We now introduce
a refinement of this idea that we use in OFMC: we im-
prove upon this approach by letting the lazy intruder take
care of sessions. This is possible as there is no essential dif-
ference between choosing an agent from a limited set of

possibilities when generating sessions and using the lazy
intruder to choose a message from his knowledge during
the normal search.
More specifically, we take advantage of the symbolic

representation of the lazy intruder to avoid enumerating
all possible session instances (for a given bound on the
number of sessions). To do this, we instantiate the roles
with variables rather than with constant agent names.
The variables are then instantiated by unification during
search, either to constant agent names or to other vari-
ables. For instance, for n= 3 and a protocol with two roles
roleA and roleB, the lazy initial state contains

state(roleA,step0,sess1,A1,B1).state(roleB,step0,sess1,B2,A2).

state(roleA,step0,sess2,A3,B3).state(roleB,step0,sess2,B4,A4).

state(roleA,step0,sess3,A5,B5).state(roleB,step0,sess3,B6,A6)

A1 �= i∧∧∧B2 �= i∧∧∧A3 �= i∧∧∧B4 �= i ∧∧∧A5 �= i∧∧∧B6 �= i .

Note that, following our previous discussion, we add in-
equalities that explicitly prevent unifying variables that
are intended to represent honest agents with the name of
the intruder.9

Now let Agent= {i, a, b, . . . } be a set of agent names.
If all the variables that we have introduced into the initial
state range over the set Agent, then this symbolic initial
state represents the set of all initial states that would re-
sult from automatic session generation with this set of
agents (for a given bound n of the sessions).
In order to integrate the approach just described with

the lazy intruder, there is, however, one subtlety that we
must address: we have assumed that all constraint sets
are well formed, in particular, that each variable that ap-
pears in a constraint set is introduced on the left-hand
side of some constraint. Intuitively speaking, combining
session instantiation with the lazy intruder means that
the intruder chooses the concrete names of the agents
in the initial state but leaves variables for these choices
and lazily instantiates them during the search. The initial
state must therefore contain a constraint set that requires
that the lazy intruder “generate” all agent names from
his initial intruder knowledge IK 0. That is, for symbolic
agent names A1, . . . ,Ap in the initial state, we have the
constraint

from({A1, . . . ,Ap}, IK 0)∪ I0 ,

where I0 is the initial set of inequalities and we as-
sume that IK 0 contains the names of all agents (which

9 This specification of the initial state is slightly more general
than the enumeration of ground sessions described above; there,
the state facts of the same session ID contain the same agent
names, i.e., it results from unifying A1 = A2, B1 = B2, etc.:

state(roleA,step0,sess1,A1,B1).state(roleB,step0,sess1,B1,A1).

state(roleA,step0,sess2,A3,B3).state(roleB,step0,sess2,B3,A3).

state(roleA,step0,sess3,A5,B5).state(roleB,step0,sess3,B5,A5)

A1 �= i∧∧∧B1 �= i∧∧∧A3 �= i∧∧∧B3 �= i ∧∧∧A5 �= i∧∧∧B5 �= i .

David Basin et al.: OFMC: A symbolic model checker for security protocols 197

is usually not a problem, at least for protocols not in-
volving anonymity or pseudonymity). Note, however,
that this constraint actually allows more than we want:
each Aj can be instantiated with an arbitrary term
that can be generated from IK 0 (e.g., the concatena-
tion of two agent names). We can simply exclude this
by enforcing the Ajs to be typed variables (that can
only be instantiated with constants of type Agent). In-
tegrating a typed or partially typed model (where only
part of the type information is checked as in this case)
into OFMC’s untyped model is technically not diffi-
cult and can be realized in different ways, e.g., by ex-
tending the term algebra with unary functions such as
agent(·).
Regarding the set Agent as a type even allows us to

use an infinite set of agent names, with the special rule
that the intruder knows every constant of type Agent.
Although for a finite number of sessions we only need
a finite set of agents (everything else will be equivalent
modulo renaming of constant agent names), it can be dif-
ficult to determine how many distinct agents are actually
necessary (in particular, if there is some form of nega-
tion in the model). An infinite type Agent makes matters
simpler in this regard. Also, the fact that the intruder
knows all agent names implies that the initial constraint
set is always satisfiable, and its ground solutions are ex-
actly the possible instantiations of the sessions. In par-
ticular, as an immediate consequence of the definitions,
we have

Lemma 5. Consider a symbolic initial state with vari-
ables A1, . . . ,Ap of type Agent and a ground initial in-
truder knowledge IK 0 such that Agent ⊆ IK 0. Then the
semantics of the initial constraint set is the set of all sub-
stitutions of the variables Aj with agent names, i.e.,

[[from({A1, . . . ,Ap}, IK 0)]]

= { σ | ground(σ) ∧ Ajσ ∈ Agent for 1≤ j ≤ p}.

Hence the lazy intruder can be straightforwardly
adapted to solve the problem of session instantiation.

Example 6. To illustrate session instantiation at work,
let us now consider the Needham–Schroeder Public-Key
protocol NSPK [21, 35]:

1. A -> B: {NA,A}KB

2. B -> A: {NA,NB}KA

3. A -> B: {NB}KB

which aims at providing mutual authentication between
two agents but suffers from the well-known man-in-the-
middle attack first reported by Lowe. Let us focus, in
particular, on the states that form the trace for the man-
in-the-middle attack in the symbolic model where there
is one session. (Indeed, using symbolic sessions we only
need one session, i.e., one pair of honest agents, to find the
attack.)

The initial state in this case contains

state(roleA,step0,sess1,A1,B1).

state(roleB,step0,sess1,B2,A2)

A1 �= i∧∧∧B2 �= i .

The attack-trace starts with the agent A1 sending a mes-
sage for B1, encrypted with B1’s public key. The intruder
can analyze this message iff B1 = i; hence, we have a case
split, i.e., one state where we perform the substitution
B1 = i and one where we have the additional inequality
B1 �= i. The attack corresponds to the first case, where the
substitution is performed. In this case, the intruder learns
the nonce n1 that A1 has created for him. In the next step,
the intruder sends a message to B2, posing as A2 (whoever
that is). B2 responds with a message encrypted with the
public key of A2, and again the intruder can decrypt that
message iff A2 = i. Now consider the case A2 �= i. In this
case, the intruder chooses to send (under his real name)
an answer to A1’s first message. A1 expects this message
to be encrypted with his public key and to contain the
nonce he sent earlier to i, i.e., we have the constraint set

{from({A1,A2,B2}, IK 0) ,

from(NA, IK 0∪ n1) ,

from({n1,NB}k(A1), IK 0∪ n1∪ {NA,n2}k(A2)) }

and the inequalities

A1 �= i∧∧∧B2 �= i .

Here NA is a variable representing the nonce the intruder
sent earlier to B2, n1 is the nonce agent A1 has created
for i, n2 is the nonce agent B2 has created for A2, and NB
is a variable for whatever the intruder sends to A1 as his
nonce.
The constraint reduction will identify two possible so-

lutions for this constraint set: either the intruder gener-
ated the last message {n1,NB}k(A1) from its components
(which he can do, as he knows A1, the key table k, and the
nonce n1) or he replays the message he just received from
A2, since it is unifiable using the substitution

[A2 	→ A1 , NA 	→ n1 , NB 	→ n2] .

Hence we have found out that this trace (which leads to
Lowe’s man-in-the-middle attack) only works if the agent
that B2 thinks he is talking to (i.e., A2) is indeed the one
who receives the message (i.e., A1), while A1 thinks he is
talking to i. As an answer, A1 sends the final message of
the protocol {n2}k(i), so the intruder knows the nonce that
B2 has generated for A2 �= i, which is a violation of secrecy.
Furthermore, authentication is violated if he sends this
nonce to B2. �

This example demonstrates how, during search, the
space of possible instances is narrowed down in a demand-
driven fashion. Note that in the manual session gener-
ation, even for only three agents Agent = {a, b, i}, we

198 David Basin et al.: OFMC: A symbolic model checker for security protocols

would have 24 instances. However, under the demand-
driven strategy of the lazy intruder, not all of these in-
stances must be explored.
To conclude this section, observe that during the ex-

ample derivation, variables of type Agent were instanti-
ated with other variables or with the constant i. In gen-
eral, the Ajs can be instantiated only with those constant
agent names that appear in the initial state or in some
transition rule, and this is usually just the name of the
intruder i. Note that this bears some similarity to the
phenomenon observed in [23], namely, that under certain
conditions “two agents are sufficient” (an honest agent
and a dishonest one). Investigating this relationship in
more detail will be the subject of future work.

7 Experimental results

To assess the effectiveness and performance of OFMC, we
have tested it on a large protocol suite that includes the
authentication protocols of the Clark/Jacob library [21,
28] as well as a number of industrial-scale protocols. Since
OFMC implements a semidecision procedure, it does not
terminate for secure protocols, although it can establish
the security of protocols for a bounded number of ses-
sions. We describe below the search times we have meas-
ured for finding attacks in flawed protocols.

7.1 The Clark/Jacob library

OFMC can find all known attacks and discovers a new
one in a test-suite of 38 protocols from the Clark/Jacob
library. As the performance times in Table 1 show, OFMC
is a state-of-the-art tool: for each of the flawed proto-
cols, a flaw is found in under 4 seconds and the total
analysis of all flawed protocols takes less than 1minute
of CPU time. The time displayed for each attack is the
one measured for the minimum number of protocol ses-
sions such that the attack can be performed (which is
two sessions in most cases). The experiments were carried
out on a PC with a 1.4-GHz Pentium III processor and
512MB of RAM, but note that, due to the use of iterative
deepening search, OFMC requires a negligible amount of
memory.
To our knowledge, there are only a few automated

tools, such as [28, 38], that have comparable cover-
age. Most existing tools have been implemented only
as prototypes and have only been applied to a small
number of examples. In terms of efficiency, there are
also few tools comparable to OFMC. The lazy intruder
technique provides a great advantage with respect to
more “näıve” techniques. Other tools based on the
lazy intruder technique, such as CL-atse [50], have
comparable performance, although currently smaller
coverage.
Note that the analysis of the untyped and typed IF

specifications may lead to the detection of different kinds

of attacks. When this is the case, we report in Table 1
both attacks found. In all other cases, the times are
obtained using the untyped model. “MITM” is short
for man-in-the-middle attack and “STS” is short for re-
play attack based on a short-term secret. Also note that
the table contains four variants of protocols in the li-
brary, marked with an asterisk, that we have additionally
analyzed.

7.2 A new attack on the Yahalom protocol

The Clark/Jacob library reports an attack on the Ya-
halom protocol, but this attack requires that the intruder
be able to guess the nonce NB, which is contrary to
the usual assumption of unguessability of nonces. Using
OFMC, however, we have uncovered the subtle weak-
ness that we presented in Fig. 1. In this trace, the in-
truder officially (under his real name i) plays in roleA,
and the agents b and s play in roleB and roleS. The no-
tation i(b) denotes that the intruder poses as b. Accord-
ing to the protocol, the intruder receives the new ses-
sion key fresh(idKAB,sess2) from the server in message 3,
along with a message encrypted for b, which should be
forwarded to him in message 4. However, the intruder
replays the encrypted part of message 2 instead. This
is accepted by b since the message is encrypted with
the expected key k(b,s) and starts with the expected
agent name i. Hence b accepts the pairing of nonces
NA,fresh(idNB,sess2) as the session key issued by the
server. Although the intruder does not “get in” with this
attack (e.g., he did not make the agent b believe that he is
talking to somebody else or find out secrets of other ses-
sions), this state violates an authentication goal, namely,
that any agent playing in roleB can rely on the integrity
of the session key. Here the intruder can make the agent
b accept a fake key that did not originate from the server.
A part of that key, i’s nonce NA, is completely determined
by the intruder.
We conclude with three remarks. First, in [44] Paulson

proved noninjective agreement (in the sense of [36]) for
the Yahalom protocol, including the goal we have found
to be violated. However, he used a typed model, and the
above attack exploits a type confusion between a key and
a pair of nonces. Second, the attack-trace given above is
similar to the attack originally described in [21]. There,
the intruder listens to the communication between honest
agents and then, similar to our attack, tries to generate
message 4, taking advantage of the same confusion with
the encrypted part of message 2 as in our attack (which
is, however, impossible unless the intruder can guess the
nonce NB). Finally, the attack we have detected is differ-
ent from that of [45], in which the intruder only makes the
agent playing in roleB accept for the second time the key
KAB generated by the server. This is a replay attack that
violates agreement [36]. In our attack, the intruder makes
the agent playing in roleB accept a key different from the
one issued by the server.

David Basin et al.: OFMC: A symbolic model checker for security protocols 199

Table 1. Performance of OFMC over the flawed protocols
of the Clark/Jacob library

Protocol Name Attack Time (s)

ISO symm. key 1-pass unilateral auth. Replay 0.0
ISO symm. key 2-pass mutual auth. Replay 0.0
Andrew Secure RPC prot. Type flaw 0.0

Replay 0.1
ISO CCF 1-pass unilateral auth. Replay 0.0
ISO CCF 2-pass mutual auth. Replay 0.0
Needham–Schroeder Conventional Key STS 0.3
Denning–Sacco (symmetric) Type flaw 0.0
Otway–Rees Type flaw 0.0
Wide-Mouthed Frog Parallel-session 0.0
Yahalom Type flaw 0.0
Woo–Lam Π1 Type flaw 0.0
Woo–Lam Π2 Type flaw 0.0
Woo–Lam Π3 Type flaw 0.0
Woo–Lam Π Parallel-session 0.2
Woo–Lam Mutual auth. Parallel-session 0.3
Needham–Schroeder Signature prot. MITM 0.1
∗ Neuman Stubblebine initial part Type flaw 0.0
∗ Neuman Stubblebine rep. part STS 0.0
Neuman Stubblebine (complete) Type flaw 0.0
Kehne Langendorfer Schoenw. (rep. part) Parallel-session 0.2
Kao Chow rep. auth., 1 STS 0.5
Kao Chow rep. auth., 2 STS 0.5
Kao Chow rep. auth., 3 STS 0.5
ISO public-key 1-pass unilateral auth. Replay 0.0
ISO public-key 2-pass unilateral auth. Replay 0.0
∗ Needham–Schroeder Public-Key NSPK MITM 0.0
NSPK with key server MITM 1.1
∗ NSPK with Lowe’s fix Type flaw 0.0
SPLICE/AS auth. prot. Replay 4.0
Hwang and Chen’s modified SPLICE MITM 0.0
Denning–Sacco Key Distr. with Public Key MITM 0.5
CCITT X.509 Type flaw 0.1
Shamir Rivest Adelman Three-Pass prot. Type flaw 0.0
Encrypted Key Exchange Parallel-session 0.1
Davis Swick Private-Key Certificates (DSPKC), prot. 1 Type flaw 0.1

Replay 1.2
DSPKC, prot. 2 Type flaw 0.2

Replay 0.9
DSPKC, prot. 3 Replay 0.0
DSPKC, prot. 4 Replay 0.0

7.3 The H.530 protocol

We have applied OFMC to a number of industrial-scale
protocols such as IKE (for which we found the weaknesses
already reported in [39]) and the H.530 protocol of the
ITU [32]. H.530, which has been developed by Siemens,
providesmutual authentication and key agreement inmo-
bile roaming scenarios in multimedia communication.
H.530 is deployed as shown in the left part of Fig. 3:

a mobile terminal (MT) wants to establish a secure con-
nection and negotiate a Diffie–Hellman key with the
gatekeeper (VGK) of a visited domain. As they do not
know each other in advance, the authentication is per-

formed using an authentication facility AuF within the
home domain of the MT. Both MT and VGK initially
have shared keys with AuF. The right part of Fig. 3 shows
the messages exchanged: first, both MT and VGK cre-
ate Diffie–Hellman half-keys, along with hashes that
are encrypted for AuF (denoted by the messages ReqMT
and ReqVGK, respectively). After checking these mes-
sages, AuF replies with appropriate acknowledge mes-
sages AckMT and AckVGK that also contain encrypted
hashes for the respective recipients. Finally, MT and
VGK perform a mutual challenge-response using the new
Diffie–Hellman key that was authenticated by AuF (di-
rectly or over a chain of trustworthy servers).

200 David Basin et al.: OFMC: A symbolic model checker for security protocols

Fig. 3. The H.530 protocol (simplified). The deployment of the protocol is on the left,
the messages exchange between the participants are summarized on the right

The messages exchanged in the H.530 protocol are
considerably more complex than those of the Clark/ Ja-
cob protocols. As an example, the following excerpt from
our HLPSL specification of H.530 (in ASCII syntax) cor-
responds to the fourth protocol message

4. VGK -> MT :

MT,VGK,CH1,CH2,exp(G,Y),

Hash(K, xor(exp(G,X),exp(G,Y))),Hash(K,MT),

Hash(exp(exp(G,X),Y),MT,VGK,CH1,CH2,exp(G,Y),

Hash(K,xor(exp(G,X),exp(G,Y))),

Hash(K,MT))

Here, for instance, exp(G,Y) stands for exponentiation, K
is a symmetric key, and G, CH1, and CH2 are nonces. In
contrast to other model-checking tools, e.g., [28, 37], this
kind of complexity is not a problem for our approach.
We can directly analyze the full specification of the H.530
protocol without resorting to abstraction or other tech-
niques to simplify the messages.
We have applied OFMC to automatically analyze this

protocol in collaboration with Siemens. OFMC takes only
1.6 seconds to detect a previously unknown attack to
H.530. It is a replay attack where the intruder first lis-
tens to a session between honest agents mt in role MT,
vgk in role VGK, and auf in role AuF. Then the intruder
starts a new session impersonating both mt and auf. The
weakness that makes the replay possible is the lack of
fresh information in the message AckVGK, i.e., the mes-
sage where auf acknowledges to vgk that he is actually
talking with mt. Replaying the respective message from
the first session, the intruder impersonating mt can ne-
gotiate a new Diffie–Hellman key with vgk, “hijacking”
mt’s identity. To perform the attack, the intruder must
at least be able to eavesdrop and insert messages both
on the connection between MT and VGK and on the con-
nection between VGK and AuF. We have suggested in-
cluding MT’s Diffie–Hellman half-key in the encrypted
hash of the message AckVGK to fix this problem. With
this extension we have not found any further weaknesses
in the protocol, and Siemens has revised the protocol
accordingly [33].

8 Related work and concluding remarks

Our formal protocol model is based on the specifica-
tion languages HLPSL and IF, which we have developed

with colleagues as part of a larger project [2–4, 18–20,46]
aimed at providing security protocol validation tools. The
HLPSL evolved out of the input language of the Casrul
system, described in [34].
The use of a generic high-level language and a lower-

level language based on (multi)set rewriting was de-
veloped by [26], and our work was inspired by this com-
bination. There are, however, a number of differences
between our work and the CAPSL/CIL system, pro-
posed in [26]. For example, CAPSL cannot handle pro-
tocols where an agent first receives a message that he
cannot decrypt, say, {|m|}k, and later receives the sym-
metric key k, which he can use to decrypt the message.
In our case, the agent will store {|m|}k and later decrypt
it after receiving the key. In comparison with CIL, the
IF additionally supports negative facts and conditions,
which extends the scope of the protocols and proper-
ties that can be modeled. Finally, based on the available
experiments (cf. Sect. 7 as well as [8, 26]), OFMC ap-
pears to be considerably more effective on the protocols
we have analyzed than the current tools connected to
CAPSL/CIL.
There are several model-checking approaches simi-

lar to ours. As a prominent example, we compare our
approach with Casper [28, 37], a compiler that trans-
lates protocol specifications, written in a high-level spe-
cification language similar to CAPSL and HLPSL, into
protocol descriptions in the process algebra CSP. The
approach uses finite-state model checking with FDR2.
Casper/FDR2 successfully discovered flaws in a wide
range of protocols: among the protocols of the Clark/Ja-
cob library, it found attacks on 20 protocols previously
known to be insecure, as well as attacks on 10 other pro-
tocols originally reported as secure. Experiments indicate
that OFMC is considerably faster than Casper/FDR2,
despite being based on a more general model: Casper lim-
its the size of messages to obtain a finite-state model. This
limitation is problematic for the detection of type-flaw at-
tacks. For example, Casper/FDR2 misses our type-flaw
attack on Yahalom. Finally, the Casper grammar only
includes atomic keys, which hinders its application to pro-
tocols like IKE, where each participant constructs only
a part of the shared key that is negotiated.
The Athena tool [48] combines model-checking and

interactive theorem-proving techniques with strand
spaces [49] to reduce the search space and automatically

David Basin et al.: OFMC: A symbolic model checker for security protocols 201

prove the security of protocols with arbitrary numbers
of concurrent runs. Interactive theorem proving in this
setting allows one to limit the search space by manu-
ally proving lemmata (e.g., “the intruder cannot find out
a certain key, as it is never transmitted”). However, the
amount of user interaction necessary to obtain such state-
ments can be considerable. Moreover, like Casper/FDR2,
Athena supports only atomic keys and cannot detect
type-flaws.
To compare with related approaches to symbolically

modeling intruder actions, we now expand on the re-
marks in Sect. 4; see [22] for a detailed overview of the
lazy intruder approaches. The idea of a symbolic in-
truder model has undergone a steady evolution, becom-
ing increasingly simpler and more general. In the earli-
est work [31], both the technique itself and the proofs
of its correctness and completeness were of substantial
complexity. Amadio and Lugiez [1] drastically simpli-
fied the technique and its formal presentation (in par-
ticular, the proofs of correctness and completeness) and
proved that the constraint reduction problem is NP-
hard. Chevalier and Vigneron [19] presented the first
approach that could handle nonatomic keys (proved cor-
rect and complete in [20]), and Rusinowitch and Turu-
ani [46] showed that, for a bounded number of sessions,
the protocol insecurity problem with nonatomic keys is
NP-complete. Millen and Shmatikov [40] independently
proposed a similar generalization to nonatomic keys (al-
though in their case the public-key infrastructure is fixed)
and gave simpler proofs than [1]. Corin and Etalle [25] im-
proved the approach of [1] by increasing its expressiveness
and providing a more efficient implementation. Note that
all approaches that can handle nonatomic keys use the
marking of decrypted terms during the analysis of keys
as discussed in Sect. 4.2 (see the alternative intruder rule
Alscrypt

∗). In contrast, our approach, which is closest to
that of [19, 46], works without such a marking, and this
provides for a simpler procedure and simpler proofs of its
correctness and completeness.
In our work, we have also extended the lazy intruder

by introducing inequalities and symbolic sessions. The
introduction of inequalities, together with the notion of
simple constraints, has a very natural interpretation: “the
intruder can generate as many different terms as he likes.”
Inequalities are also introduced in [1], where they are used
to handle conditional transitions. The support of inequal-
ities is crucial for a number of advanced protocols and
goals, e.g., the replay check described in Example 1. Our
use of inequalities, however, goes beyond the handling
of conditional transitions, as we employ them to handle
the entire instantiation problem using only the lazy in-
truder (while other approaches tackle the instantiation
problem by performing an additional parameter search).
Moreover, the use of inequalities allows us to explicitly
exclude certain substitutions, which is necessary for sepa-
rating the analysis of messages from constraint reduction,
as discussed in Sect. 5.

As we have seen, most approaches are restricted
to atomic keys.10 This prevents the modeling of many
modern protocols like IKE. Moreover, untyped proto-
col models with atomic keys exclude type-flaw attacks in
which keys are confused with composed terms. We be-
lieve that this is why our type-flaw attack on the Yahalom
protocol was not discovered earlier, even though Yahalom
has been extensively studied.
The work presented here originated with the idea of

on-the-fly model checking proposed in [7, 8]. The original
tool required the use of heuristics and even then did not
scale to most of the protocols in the Clark/Jacob library.
The use of the symbolic techniques described here has
made an improvement of many orders of magnitude, and
the techniques are so effective that heuristics play no role
in the current system. Moreover, OFMC scales well be-
yond the Clark/Jacob protocols, as our example of the
H.530 protocol suggests.
Current work involves applying OFMC to other

industrial-scale protocols, such as those proposed by the
IETF. Although our initial experience is positive, we see
an eventual role for heuristics in leading to further im-
provements. For example, a simple evaluation function
could be: “has the intruder learned anything new through
this step, and how interesting is what he learned?” We
have also been investigating the integration of reduc-
tion techniques inspired by partial-order reduction in our
model checker, and the first results are very positive [10].

Acknowledgements. This work was partially supported by the
FET Open Project IST-2001-39252 and the BBW Project 02.0431,
“AVISPA: Automated Validation of Internet Security Protocols
and Applications.” A preliminary version of this paper appeared in
the Proceedings of ESORICS 2003 [9]. We thank the anonymous
referees for their comments.

References

1. Amadio R, Lugiez D (2002) On the reachability problem in
cryptographic protocols. In: Proceedings of CONCUR’00. Lec-
ture notes in computer science, vol 1877. Springer, Berlin Hei-
delberg New York, pp 380–394

2. Armando A, Basin D, Bouallagui M, Chevalier Y, Com-
pagna L, Mödersheim S, Rusinowitch M, Turuani M, Viganò
L, Vigneron L (2002) The AVISS security protocol analy-
sis tool. In: Proceedings of CAV’02. Lecture notes in com-
puter science, vol 2404. Springer, Berlin Heidelberg New York,
pp 349–354

3. Armando A, Compagna L (2002) Automatic SAT-compilation
of protocol insecurity problems via reduction to planning.
In: Proceedings of FORTE 2002. Lecture notes in computer
science, vol 2529. Springer, Berlin Heidelberg New York,
pp 210–225

4. Armando A, Compagna L, Ganty P (2003) SAT-based model-
checking of security protocols using planning graph analy-
sis. In: Proceedings of FME 2003. Lecture notes in com-
puter science, vol 2805. Springer, Berlin Heidelberg New York,
pp 875–893

10 For example, [12] generalizes [11] by introducing a generic set
of cryptographic primitives, but the approach is still limited to
atomic keys and it is unclear how this can be lifted without losing
the generality. Note that all cryptographic primitives that are given
as examples in [12] are also implemented in OFMC.

202 David Basin et al.: OFMC: A symbolic model checker for security protocols

5. AVISPA: Automated validation of internet security protocols
and applications (2003) FET Open Project IST-2001-39252.
www.avispa-project.org

6. Baader F, Nipkow T (1998) Term rewriting and all that. Cam-
bridge University Press, Cambridge, UK

7. Basin D (1999) Lazy infinite-state analysis of security pro-
tocols. In: Proceedings of CQRE’99. Lecture notes in com-
puter science, vol 1740. Springer, Berlin Heidelberg New York,
pp 30–42

8. Basin D, Denker G (2001) Maude versus Haskell: an experi-
mental comparison in security protocol analysis. In: Elec-
tronic notes in computer science, vol 36. Elsevier, Amsterdam,
pp 235–256

9. Basin D, Mödersheim S, Viganò L (2003) An on-the-fly
model-checker for security protocol analysis. In: Proceedings
of ESORICS’03. Lecture notes in computer science, vol 2808.
Springer, Berlin Heidelberg New York, pp 253–270

10. Basin D, Mödersheim S, Viganò L (2003) Constraint differ-
entiation: a new reduction technique for constraint-based an-
alysis of security protocols. In: Proceedings of CCS’03. ACM
Press, New York, pp 335–344

11. Boreale M (2001) Symbolic trace analysis of cryptographic
protocols. In: Proceedings of ICALP’01. Lecture notes in com-
puter science, vol 2076. Springer, Berlin Heidelberg New York,
pp 667–681

12. Boreale M, Buscemi MG (2002) A framework for the analysis
of security protocols. In: Proceedings of CONCUR’02. Lecture
notes in computer science, vol 2421. Springer, Berlin Heidel-
berg New York, pp 483–498

13. Boreale M, Buscemi MG (2003) On the symbolic analysis
of low-level cryptographic primitives: modular exponentiation
and the Diffie-Hellman protocol. In: Proceedings of FCS’03.
TR-2003-04, Computer Science Department, University of
Ottawa

14. Bouallagui M, Jain H (2003) Automatic session generation.
AVISPA report, LORIA-INRIA-Lorraine

15. Cervesato I, Durgin NA, Lincoln PD, Mitchell JC, Scedrov
A (2000) Relating strands and multiset rewriting for security
protocol analysis. In: Proceedings of CSFW’00. IEEE Press,
New York, pp 35–51

16. Chevalier Y, Küsters R, Rusinowitch M, Turuani M (2003)
An NP decision procedure for protocol insecurity with Xor.
In: Proceedings of LICS 2003. IEEE Press, New York,
pp 261–270

17. Chevalier Y, Küsters R, Rusinowitch M, Turuani M (2003)
Deciding the security of protocols with Diffie-Hellman ex-
ponentiation and products in exponents. Lecture notes in
computer science, vol 2914. In: Proceedings of FST TCS’03.
Springer, Berlin Heidelberg New York, pp 124–135

18. Chevalier Y, Küsters R, Rusinowitch M, Turuani M, Vi-
gneron L (2003) Extending the Dolev–Yao intruder for analy-
zing an unbounded number of sessions. In: Proceedings of CSL
2003. Lecture notes in computer science, vol 2803. Springer,
Berlin Heidelberg New York, pp 128–141

19. Chevalier Y, Vigneron L (2001) A tool for lazy verification
of security protocols. In: Proceedings of ASE’01. IEEE Press,
New York, pp 373–376

20. Chevalier Y, Vigneron L (2002) Automated unbounded ver-
ification of security protocols. In: Proceedings of CAV’02.
Lecture notes in computer science, vol 2404. Springer, Berlin
Heidelberg New York, pp 324–337

21. Clark J, Jacob J (1997) A survey of authentication protocol
literature: version 1.0, 17 November 1997.
www.cs.york.ac.uk/∼jac/papers/drareview.ps.gz

22. Comon H, Shmatikov V (2002) Is it possible to decide whether
a cryptographic protocol is secure or not? J Telecommun Inf
Technol 4:5–15

23. Comon-Lundh H, Cortier V (2003) Security properties: two
agents are sufficient. In: Proceedings of ESOP’03. Lecture
notes in computer science, vol 2618. Springer, Berlin Heidel-
berg New York, pp 99–113

24. Comon-Lundh H, Shmatikov V (2003) Intruder deductions,
constraint solving and insecurity decision in presence of exclu-
sive or. In: Proceedings of LICS 2003. IEEE Press, New York,
pp 271–280

25. Corin R, Etalle S (2002) An improved constraint-based sys-
tem for the verification of security protocols. In: Proceedings
of SAS 2002. Lecture notes in computer science, vol 2477.
Springer, Berlin Heidelberg New York, pp 326–341

26. Denker G, Millen J, Rueß H (2000) The CAPSL integrated
protocol environment. Technical Report SRI-CSL-2000-02,
SRI International, Menlo Park, CA

27. Dolev D, Yao A (1983) On the security of public-key protocols.
IEEE Trans Inf Theory 2(29):198–208

28. Donovan B, Norris P, Lowe G (1999) Analyzing a library of se-
curity protocols using Casper and FDR. In: Proceedings of the
FLOC’99 workshop on formal methods and security protocols
(FMSP’99)

29. Durgin N, Lincoln PD, Mitchell JC, Scedrov A (1999) Unde-
cidability of bounded security protocols. In: Proceedings of the
FLOC’99 workshop on formal methods and security protocols
(FMSP’99)

30. Fiore M, Abadi M (2001) Computing symbolic models for ver-
ifying cryptographic protocols. In: Proceedings of CSFW’01.
IEEE Press, New York, pp 160–173

31. Huima A (1999) Efficient infinite-state analysis of security
protocols. In: Proceedings of the FLOC’99 workshop on formal
methods and security protocols (FMSP’99)

32. ITU-T Recommendation H.530: Symmetric security proced-
ures for H.510 (mobility for H.323 multimedia systems and
services) (2002)

33. ITU-T Recommendation H.530, Corrigendum 1 (2003) Cor-
rected version of [32]

34. Jacquemard F, Rusinowitch M, Vigneron L (2000) Compil-
ing and verifying security protocols. In: Proceedings of LPAR
2000. Lecture notes in computer science, vol 1955. Springer,
Berlin Heidelberg New York, pp 131–160

35. Lowe G (1996) Breaking and fixing the Needham–Shroeder
public-key protocol using FDR. In: Proceedings of TACAS
’96. Lecture notes in computer science, vol 1055. Springer,
Berlin Heidelberg New York, pp 147–166

36. Lowe G (1997) A hierarchy of authentication specifications.
In: Proceedings of CSFW’97. IEEE Press, New York, pp 31–43

37. Lowe G (1998) Casper: a compiler for the analysis of security
protocols. J Comput Secur 6(1):53–84

38. Meadows C (1996) The NRL protocol analyzer: an overview. J
Logic Programm 26(2):113–131

39. Meadows C (1999) Analysis of the Internet Key Exchange
Protocol using the NRL protocol analyzer. In: Proceedings
of the 1999 IEEE symposium on security and privacy. IEEE
Press, New York, pp 216–231

40. Millen JK, Shmatikov V (2001) Constraint solving for
bounded-process cryptographic protocol analysis. In: Proceed-
ings of CCS’01. ACM Press, New York, pp 166–175

41. Millen JK, Shmatikov V (2003) Symbolic protocol analysis
with products and Diffie-Hellman exponentiation. In: Pro-
ceedings of CSFW’03. IEEE Press, New York, pp 47–61

42. Mitchell JC, Mitchell M, Stern U (1997) Automated analy-
sis of cryptographic protocols using Murphi. In: Proceedings
of the 1997 IEEE symposium on security and privacy. IEEE
Press, New York, pp 141–153

43. Paulson LC (1998) The inductive approach to verifying cryp-
tographic protocols. J Comput Secur 6(1):85–128

44. Paulson LC (1999) Relations between secrets: the Yahalom pro-
tocol. In: Proceedings of the 7th Cambridge international work-
shop on security protocols. Lecture notes in computer science,
vol 1796. Springer, Berlin Heidelberg New York, pp 73–77

45. Perrig A, Song D (2000) Looking for diamonds in the desert
(extending automatic protocol generation to three-party au-
thentication and key agreement protocols). In: Proceedings of
CSFW’00. IEEE Press, New York, pp 64–76

46. Rusinowitch M, Turuani M (2001) Protocol insecurity with
finite number of sessions is NP-complete. In: Proceedings of
CSFW’01. IEEE Press, New York, pp 174–187

47. Ryan P, Schneider S, Goldsmith M, Lowe G, Roscoe B (2000)
Modelling and analysis of security protocols. Addison-Wesley,
Reading, MA

48. Song D, Berezin S, Perrig A (2001) Athena: a novel approach
to efficient automatic security protocol analysis. J Comput Se-
cur 9:47–74

David Basin et al.: OFMC: A symbolic model checker for security protocols 203

49. Thayer Fábrega FJ, Herzog JC, Guttman JD (1999) Strand
spaces: proving security protocols correct. J Comput Secur
7:191–230

50. Turuani M (2003) Sécurité des protocoles cryptographiques:
décidabilité et complexité. PhD Thesis, Université Henri
Poincaré, Nancy, France

Appendix: Proofs of the theorems
and lemmata

We now give the proofs of the theorems and lemmata
stated in the body of the paper. We will employ the fol-
lowing additional notation.

Notation 2. Given a constraint from(T, IK), we use
LHS and RHS to refer to T and IK , respectively.

Our first theorem, Theorem 1, follows directly from
Lemmata 6–8.

Theorem 1. Let C be a well-formed constraint set.
Red(C) is finite, and � is well founded. Moreover, [[C]] =
[[Red(C)]], i.e., Red(C) is correct and complete.

Lemma 6. LetC be a well-formed constraint set.Red(C)
is finite and � is well founded.

The intuition for the proof is that there can only be
finitely many applications of the Glunif rule in any deriva-
tion and all other rules can only be applied finitely of-
ten before a unification operation is required. Like the
other rules, the unification rule Glunif cannot introduce
new variables. Either it is applied to ground terms or, if
the terms to be unified are not ground, then it actually
reduces the set of variables appearing in the constraints.
The latter case cannot occur in a derivation an infinite
number of times as there are only finitely many variables
in a finite constraint set. The case of ground unifications
as well as all other rule applications that can occur be-
tween two such substitutions is also limited: Glunif always
reduces the LHS terms and the other generation rules of
the lazy intruder decompose LHS terms. The applicabil-
ity of analysis rules is bounded because only subterms of
the initial RHS terms can occur in the resulting intruder
knowledge. Formally:

Proof. Let us begin by defining a weight function w for
messages on the LHS of a constraint as follows:

w(m) = 1, form ∈AtomicMsg ,

w(m−1) = 1,

w(〈m1,m2〉) = w(m1)+w(m2)+1,

w({|m2|}m1) = w(m1)+w(m2)+1,

w({m2}m1) = w(m1)+w(m2)+1,

w(m1(m2)) = w(m1)+w(m2)+1,

w({m1, . . . ,mn}) =
n∑

i=1

w(mi).

The definition of the weight of the intruder knowledge
(i.e., of the RHS of the constraints) must take into ac-
count that analysis is possible that introduces a new term
into the intruder knowledge as well as a new constraint
for the derivation of the key. To measure the weight of
the intruder knowledge, we thus define the weight func-
tion wIK for messages in the IK of the RHS of a constraint
as follows:

wIK (m) = w(m), form ∈AtomicMsg ,

wIK (m
−1) = w(m−1),

wIK (〈m1,m2〉) =

w(〈m1,m2〉), ifm1 ∈ IK andm2 ∈ IK

w(〈m1,m2〉)+wm1 ∪m2 ∪ IK (m1 ∪ m2)+1,

ifm1 /∈ IK orm2 /∈ IK ,

wIK ({|m2|}m1) =

w({|m2|}m1), ifm2 ∈ IK

w({|m2|}m1)+wm2 ∪ IK (m2)+w(m1)

+wIK ′(IK
′)+1, for IK ′ = IK \{|m2|}m1 ,

ifm2 /∈ IK ,

wIK ({m2}m1) =

w({m2}m1), ifm2 ∈ IK

w({m2}m1)+wm2 ∪ IK (m2)+w(m1)

+wIK ′(IK
′)+1, for IK ′ = IK \{m2}m1 ,

ifm2 /∈ IK ,

wIK (m1(m2)) = w(m1(m2)),

wIK ({m1, . . . ,mn}) =
n∑

i=1

wIK (mi).

Observe that, if IK ′⊆IK , then wIK ′(M) ≥ wIK (M)
for all sets M of messages. This holds as the only places
in wIK that depend on the set IK are in the case splits for
the cases 〈m1,m2〉, {|m2|}m1 , and {m2}m1 . In these cases,
a smaller IK can only lead to a larger weight as the second
cases of the case splits add additional weights.
The weight W of a constraint set {from(T1, IK 1), . . . ,

from(Tn, IKn)} is defined as a pair (v, g), where v is the
number of variables in Ti and g is the sum of the con-
straint weights. That is,

W ({from(T1, IK 1), . . . , from(Tn, IKn)})

=

(
|
n⋃

i=1

vars(Ti) | ,
n∑

i=1

w(Ti) + wIK i(IK i)

)
.

We order these pairs lexicographically, overloading the
“>” symbol, defining

(v1, g1)> (v2, g2) iff v1 > v2 ∨ (v1 = v2 ∧ g1 > g2) .

This order is well founded, as the ordering on both com-
ponents is well founded over the natural numbers. We
show that the application of any constraint reduction rule
decreases the weight of a constraint set according to >:

204 David Basin et al.: OFMC: A symbolic model checker for security protocols

– Glunif : if no variable is substituted, then a term from
the LHS is dropped (so strictly less in g), else at least
one variable is substituted (so strictly less in v).

– Glpair, G
l
scrypt, G

l
crypt, and G

l
apply: strictly less in g

since

1+w(m1)+w(m2)>w(m1)+w(m2) .

– Alscrypt (and similarly for A
l
crypt, A

l
crypt−1

, and Alpair):

Consider the constraint set {from(T1, IK 1), . . . ,
from(Tn, IKn)}. As the number of variables does not
change, we consider the second component of the
weight,

n∑

i=1

w(Ti)+wIK i(IK i) .

If we apply an analysis rule to the jth constraint,
1 ≤ j ≤ n, and IKj = {t1, . . . , tp} and the analyzed
message is tl = {|m2|}m1 for l ∈ {1, . . . , p}, then the
constraint after application of the analysis rule is

{from(T1, IK 1), . . . , from(Tj−1, IKj−1),

from(m1, IKj\{tl}), from(Tj ,m2 ∪ IKj),

from(Tj+1, IKj+1), . . . , from(Tn, IKn)}

with the weight (second component)

O+w(m1)+wIK0(IK 0)+w(Tj)

+wm2 ∪ IKj (m2 ∪ IKj)

= O+w(m1)+wIK0(IK 0)+w(Tj)

+wm2 ∪ IKj (IK 0)+w({|m2|}m1)

+wm2 ∪ IKj (m2)

≤ O+w(m1)+wIK0(IK 0)+w(Tj)+wIKj (IK 0)

+w({|m2|}m1)+wm2 ∪ IKj (m2)

=def O+w(Tj)+wIKj (IK 0)+wIKj ({|m2|}m1)−1

= O+w(Tj)+wIKj (IKj)−1

= snd(W ({from(T1, IK 1), . . . ,

from(Tn, IKn)})−1 ,

where O = snd(W ({from(T1, IK 1), . . . , from(Tn,
IKn)}\ from(Tj , IKj))) and IK 0 = IKj \{|m2|}m1 . So
the analysis decreases the weight by at least one. This
concludes the proof of the lemma. �

Lemma 7. [[C]]⊇ [[Red(C)]] for a well-formed constraint
set C.

Proof. Let C be a well-formed constraint set. Initially,
observe that [[C]]⊇ [[Red(C)]] is short for [[C]]⊇ {σσ′ | ∃C′.
(C′, σ) ∈ Red(C) ∧ σ′ ∈ [[C′]]}. To show that the rules of
the lazy intruder do not introduce new solutions to the
semantics of the constraint set, it is enough to show that
each rule application is correct in the following sense.
Whenever the application of a rule transforms a con-
straint set and a substitution (C, τ) into (C′, τσ), then

any solution for C′ is also a solution for C, i.e., σ′ ∈ [[C′]]
implies σσ′ ∈ [[C]] (where τ is not considered as vars(C)∩
dom(τ) = ∅ by the construction of Red). We show only
the case of the rule Glunif , as the other cases are similar.
In this case, C, C′, and σ have the form: C = from(t ∪
T, s ∪ IK) ∪ C0, σ = mgu(t, s), and C′ = (from(T, s ∪
IK) ∪ C0)σ. Let σ′ ∈ [[C′]]. Then σ′ already satisfies all
constraints in C except from(t ∪ T, s ∪ IK). Now tσσ′ =
sσσ′ and hence σσ′ is a solution of C. �

Lemma 8. [[C]]⊆ [[Red(C)]] for a well-formed constraint
set C.

Proof. Let C be a well-formed constraint set. We begin
the proof by observing that [[C]] ⊆ [[Red(C)]] is short for
[[C]] ⊆ {σσ′ | ∃C′. (C′, σ) ∈ Red(C) ∧ σ′ ∈ [[C′]]}. Show-
ing the completeness of Red, i.e., that all solutions of
a constraint set C are also solutions of the reduction
of C, is more difficult than showing the correctness of
Red. The main problem is that completeness requires
that Red be performed on a well-formed constraint set,
but, during the reduction procedure, property (10) of the
well-formedness (cf. Definition 9) can be destroyed by the
analysis rules. In particular, an analysis rule introduces
(i) a new constraint for the derivation of a key, where the
intruder knowledge no longer contains the decryption key
(hence the intruder knowledge may be smaller than the
intruder knowledge of all previous constraints) and (ii) it
adds the analyzed term to the intruder knowledge of the
constraint to which it was applied (hence the intruder
knowledge may be larger than the intruder knowledge
in all successive constraints). Note that, here and below,
“previous” and “successive” constraints refer to the order
given by the well-formed constraint sets.
Problem (ii) is easy to overcome. To restore prop-

erty (10), we perform the same analysis steps on the suc-
cessive constraints as well: these must allow the same
derivations in the intruder knowledge since the initial
constraint set was well formed.
To tackle problem (i), we relax the invariant in the

proof: at any step during the proof we want to preserve
the invariant that the constraint set is well formed if one
removes all constraints that were introduced by the appli-
cation of an analysis rule. For simplicity, we will still refer
to this invariant as well-formedness. For the resulting sim-
ple constraint sets, one can restore their well-formedness
in the original sense by simply deleting the constraints
that were introduced by applications of analysis rules.11

Wesay in the following that the result (C′, σ)of a reduc-
tion step (or, simply, reduction) supports τ if there exists

11 This does not change the semantics of the constraint set. The
constraint set is simple, and therefore all constraints have only
variables in the LHS. Moreover, it is well formed without the con-
straints C that were introduced by the analysis, so the constraints
C can only have variables in their LHS that were introduced by
previous constraints. As these previous constraints have a smaller
intruder knowledge, they are more restrictive. Hence C is already
entailed by them.

David Basin et al.: OFMC: A symbolic model checker for security protocols 205

a σ′ such that τ = σσ′ andσ′ ∈ [[C′]]. Hence, our proof obli-
gation is to show that for a given well-formed constraintC
and an arbitrary solution τ ∈ [[C]], the reduction yields at
least one result (C′, σ) ∈Red(C) that supports τ .
To show this, it is sufficient to prove that for a given

well-formed, nonsimple C and τ ∈ [[C]] there exists at
least one rule of the lazy intruder that can be applied to
C such that the result (C′, σ) of the rule application sup-
ports τ . Once this property of the rules is proved, we show
completeness as follows. Let a well-formed constraint C
and solution τ ∈ [[C]] be given. We can repeatedly apply
some of the lazy intruder rules, maintaining the solution
τ , as long as the constraint set does not become sim-
ple. By Lemma 6, we know that an infinite chain of rule
applications is impossible, so we must eventually reach
a simple constraint set that supports τ .
So it remains to show that for a well-formed, nonsim-

ple constraint set C and a solution τ ∈ [[C]], we can find
a rule application such that the result supports τ . First,
we introduce the notion of a derivation tree. Since τ ∈
[[C]], we know there must be a τ derivation for every con-
straint from(T, IK)∈C in the sense that Tτ ⊆DY(IK τ).
We want to make this derivation explicit in the constraint
set C by labeling every term in T with a DY-derivation
tree: A DY-derivation tree is a binary tree where leaves
are messages and each node is an application of one of the
DY rules. Note that we will simplify the notation by writ-
ing only the messages and omitting the “∈ DY(IK)”; in
particular, the applications of the Gaxiom rule will simply
be the leaf nodes of the tree.
Every leaf and every node then stands for a mes-

sage, composed or decomposed from the (roots of the)
respective subtrees. Hence, if m ∈ DY(IK), then there
is a derivation tree such that m is the derived message
at the root node and all leaves are in IK . We say that
a constraint set C is labeled with DY-derivation trees for
a solution τ ∈ [[C]] if in every constraint from(T, IK) ∈ C
every term t ∈ T is labeled with aDY-derivation tree of tτ
from terms in IK τ .
As a simple example, considerC = from(〈K,m〉, {|m|}k∪

{|k|}{|m|}k), which has, among others, the solution τ = [K 	→
{|m|}k].We can label themessage 〈K,m〉with the derivation
tree for the message 〈K,m〉τ = 〈{|m|}k,m〉 as follows:

Gaxiom Gaxiom
{|m|}k {|k|}{|m|}k

Ascrypt Gaxiom

Gaxiom
k {|m|}k

Ascrypt
{|m|}k m

Gpair
〈{|m|}k,m〉
�
〈K,m〉 .

Note that we use the symbol � to denote labeling of
terms with Dolev–Yao derivation trees.
To resume the proof, let a well-formed, nonsimple con-

straint set C and a solution τ ∈ [[C]] be given, where C is

labeled with DY-derivation trees for the solution τ . Ac-
cording to the order of the well-formed constraint set, we
pick the first constraint from(T, IK) that contains a non-
variable message t ∈ T . We show that, depending on the
root node of the DY-tree that labels t, we can find a con-
straint reduction rule that is applicable and such that
the resulting constraint set C′ can again be labeled with
DY-trees according to τ (and hence the result still sup-
ports τ). We now consider the different possible cases for
the kind of root node that the DY-tree has for t.
Gaxiom: This means that tτ ∈ IK τ . So t can be unified

with a term s ∈ IK and the Glunif rule is applicable to C,
and the unifier σ =mgu(t, s) is compatible with τ . Hence
the resulting C′ supports τ as all remaining terms can be
labeled with the same trees as in C. To illustrate this, ob-
serve that applying the rule Glunif (using a substitution σ
that is at least as general as τ) to the constraint

Gaxiom T0tτ
�

...
from(t ∪ E0, IK)

yields the constraint

T0
...

from(E0σ, IKσ) .

Gscrypt (and similarly for Gpair, Gcrypt, and Gapply,
mutatis mutandis): Since t is not a variable, it must have
the form t= {|t2|}t1 for some terms t1 and t2. As a result,
the rule Glscrypt can be applied. The resulting constraint
contains the terms t1 and t2, which can be labeled with
the respective subtrees of the derivation tree of t. Hence
C′ still supports τ . To illustrate this, observe that apply-
ing the rule Glscrypt to the constraint

T1 T2
...

...
t1τ t2τ

Gscrypt{|t2|}t1τ T0
�

...
from({|t2|}t1 ∪ E0, IK)

yields the constraint

T1 T2
...

... T0
t1τ t2τ ·
� �

...

from(t1 ∪ t2 ∪ E0σ, IKσ) .

Ascrypt (and similarly for Apair, Acrypt, and A
−1
crypt,

mutatis mutandis): tτ is obtained through a decryption of
a term {|t|}kτ . The respective analysis step of the lazy in-
truder may not yet be possible if the subtrees of t’s deriva-
tion tree contain further analysis operations (that must
be performed first). Since the tree is finite, there must be

206 David Basin et al.: OFMC: A symbolic model checker for security protocols

an analysis operation in the DY-tree for t that has no an-
alysis operations in its subtrees. We pick such an analysis
operation for applying the next lazy intruder rule to the
constraint set. Let t′0 be the term obtained in theDY-tree
by the selected analysis operation and k′0 and {|t

′
0|}k′0

be
the terms obtained at the children nodes of the analysis
operation (in the case that there were no analysis nodes in
the subtrees, we have t′0 = tτ and k

′
0 = kτ). There must be

a message tk0 ∈ IK such that tk0τ = {|t′0|}k′0 . Without loss
of generality, we can assume that tk0 is not a variable: if it
were a variable, then, since C is well formed, tk0 ∈ T for
an earlier constraint from(T, IK 0) ∈ C (which is already
simple) for some IK 0 ⊆ IK with tk0 /∈ IK 0. Therefore,
the term to be constructed can be generated from the
knowledge IK 0. Since tk0 is not a variable, it must have
the form tk0 = {|k0|}t0 , where t0τ = t

′
0 and k0τ = k

′
0, and

therefore the rule Alscrypt can be applied. This adds the
analyzed term t0 to the intruder knowledge and the new
constraint from(k0, IK \{|t0|}k0) to the constraint set (in
the case ofApair, no new constraint is added). Now all oc-
currences of the analyzed term t0τ in the DY-tree can be
replaced with a leaf node. In the newly added constraint
from(k0, IK \{|t0|}k0) (in the case of Ascrypt), the term k0
can be labeled with the k0τ subtree of the analysis node
in the DY-tree. This labeling is correct since this subtree
cannot contain any further analysis operations; therefore
it can contain only subterms of k0τ (if k0τ is nonatomic)
that are present in IK τ . In particular, it cannot contain
{|t0|}k0τ . Hence C

′ still supports τ . To illustrate this, ob-
serve that applying the rule Alscrypt to the constraint

T1
... Gaxiom
k0τ {|t0|}k0τ Ascrypt

t0τ T2
...

...
kτ {|t|}kτ

Ascrypt T0
tτ ·
�

...

from(t ∪ E0, IK)

yields the two constraints

T1
...
k0τ
�

from(k0, IK \ {|t0|}k0)

and

t0τ
Gaxiom T2

...
...

kτ {|t|}kτ
Ascrypt T0

tτ ·
�

...

from(t ∪ E0, t0∪ IK) .

This concludes the proof of the lemma. �

To illustrate the proof, we consider again the con-
straint presented above and show how the reduction pro-
ceeds according to the previous case split. First, the
root of the only term to generate is Gpair. Therefore, we
can apply the Glpair rule to obtain from(K ∪ m, {|m|}k ∪
{|k|}{|m|}k) labeled as follows (recall that we consider the
solution τ = [K 	→ {|m|}k]):

{|m|}k

�

K

Gaxiom

Gaxiom Gaxiom
{|m|}k {|k|}{|m|}k Ascrypt Gaxiom

k {|m|}k
Ascrypt

.

m

�

m

Since K is a variable in the constraint set, we can only
proceed by derivingm. As the root of the derivation tree is
an analysis operation and one subtree contains a further
analysis step, we proceed with this innermost analysis.
The respective analysis rule decrypts {|k|}{|m|}k , adds k
to the intruder knowledge, and adds the new constraint
that the key term, {|m|}k, can be derived from the rest of
the knowledge, i.e., from({|m|}k, {|m|}k), from(K ∪ m, k ∪
{|m|}k ∪ {|k|}{|m|}k), with the labeling

{|m|}k

�

K

Gaxiom
{|m|}k

�

{|m|}k

Gaxiom
k
Gaxiom

{|m|}k
Gaxiom

m

�

m

Ascrypt .

The first constraint is easily handled by the Glunif
rule; we proceed then with the analysis of {|m|}k, as the
DY-tree contains no further analysis operations. This
introduces the new constraint for the derivation of k,
i.e., from(k, k ∪ {|k|}{|m|}k), from(K ∪ m,m ∪ k ∪ {|m|}k ∪
{|k|}{|m|}k), with the labeling

{|m|}k
�
K

Gaxiom
k
�
k

Gaxiom
m
�
m

Gaxiom .

Two further applications ofGlunif then result in the simple
constraint set that supports τ , i.e., we have from(K,m ∪
k ∪ {|m|}k ∪ {|k|}{|m|}k), which concludes the example.
We now prove Lemma 1, i.e. that the lazy model is

equivalent to the ground model, in the sense that they
represent the same set of reachable states. To do that, we
first prove the following auxiliary lemmata:

Lemma 9. For a rule r = lhs⇒rhs of the form (1) and
a lazy state (P,C,N), where vars(P,C,N)∩vars(lhs) = ∅,
it holds that:

{στ | ∃S. S ∈ [[(P,C,N)]]∧S = Pσ∧ τ ∈ applicable lhs(S)}

= {στ | ∃C′, N ′. (σ,C′, N ′) ∈ applicable llhs(P,C,N)

∧ground(lhsστ)∧ground((P,C,N)στ)∧στ ∈ [[C′]]

∧στ |=N ′ } .

David Basin et al.: OFMC: A symbolic model checker for security protocols 207

Proof. For the ⊆ direction, let (P,C,N) be a lazy state
and S ∈ [[(P,C,N)]] be a ground state. Let σ′ be the
respective ground substitution, i.e., such that S = Pσ′,
σ′ ∈ [[C]], and σ′ |=N . Let τ ′ ∈ applicable lhs(S). We show
for σ = σ′τ ′ and τ = id that the conditions of the right-
hand side of the equality of the lemma are satisfied, and
therefore στ = σ′τ ′ is contained in the right-hand side set.
First, we construct C′ and N ′ for σ according to the

definition of applicable, i.e.,

C′ = (C ∪ from(m1 ∪ {m | i_knows(m) ∈ P1},

{i | i_knows(i) ∈ P}))σ

N ′ =Nσ∧∧∧
∧∧∧
φ∈subCont(N1σ,Pσ) φ∧∧∧Cond σ .

We then have that (σ,C′, N ′)∈ applicable llhs(P,C,N) be-
cause the conditions of applicable l are satisfied: since
state(m2τ ′) ∈ S, m2τ ′ =m2σ and S = Pσ′ = Pσ, it fol-
lows that state(m2σ) ∈ Pσ; similarly, P1σ ⊆ Pσ.
We now show that σ ∈ [[C′]]. As σ ∈ [[C]], we must

only show that the newly added constraint is satis-
fied by σ, i.e., that σ ∈ [[from(m1 ∪ {m | i_knows(m) ∈
P1}, {m | i_knows(m) ∈ P})]]. The assumption that σ′ ∈
applicable lhs(S) implies that the messages m1σ

′ ∪{mσ′ |
i_knows(m)∈ P1} can be generated according toDY from
the intruder knowledge of S, i.e., from {m | i_knows(m) ∈
S}. For the messages m of lhs , it holds that mσ =mσ′,
and the intruder knowledge of S is equal to that under
Pσ. Therefore, the constraint is satisfied.
Finally, we show that σ |= N ′. Assume that σ �|= N ′.

Since σ |= N , and σ |= Cond, the only possible reason
for σ �|= N ′ is that (at least) one of the conjuncts of
subCont(N1σ, Pσ) does not hold. That would mean that
there is a fact not(f)∈N1σ and a substitution ρ such that
fσρ ∈ Pσρ. Since fσ and Pσ are ground, fσ ∈ Pσ. Since
fσ = fτ ′ and Pσ = S, this contradicts the assumption of
τ ′ ∈ applicable lhs(S), which implies (∀f. not(f) ∈N1 =⇒
fτ ′ /∈ S).
The converse direction ⊇ follows similarly, and we

therefore only give the basic structure of the proof. Let
(P,C,N), σ, τ , C′, and N ′ be as in the conditions of the
set comprehension of the right-hand side of the equality.
Let σ′ be the restriction of στ to the variables of (P,C,N)
and let τ ′ be the restriction of στ to the variables of lhs
(since στ is a ground substitution for variables of both
(P,C,N) and lhs). It is then easy to show that S = Pσ ∈
[[(P,C,N)]] and τ ′ ∈ applicable lhs(S), which concludes the
proof. �

By employing the same construction of substitutions
as in the proof of Lemma 9, we can straightforwardly
show:

Lemma 10. For a rule r of the form (1) and a lazy state
(P,C,N), where vars(P,C,N)∩vars(r) = ∅, it holds that

⋃

S∈[[(P,C,N)]]

stepr(S) =
⋃

(P ′,C′,N ′)∈steplr(P,C,N)

[[(P ′, C′, N ′)]] .

The main lemma about reachability in the ground and
lazy models follows by induction on the number of appli-
cations of step and stepl, using Lemma 10, where variable
clashes between lazy states and rules are prevented by the
renaming performed as part of the succl function.

Lemma 1. reach(I,R) = ∪(P,C,N)∈reachl(I,R)[[(P,C,N)]]
for every initial state I and every set R of rules of the
form (1).

Before proving Theorem 2, we establish the relation-
ship between ground and lazy attack-predicates:

Lemma 2. For all lazy states (P,C,N) and all attack-
rules ar, the predicate isAttack lar(P,C,N) holds iff isAt-
tackar(S) holds for some represented ground state S ∈
[[(P,C,N)]].

Proof. The lemma follows by observing that isAttack lar
(P,C,N) holds iff there is (σ,C′, N ′) ∈ applicable lar(P,
C,N) such that τ |= N ′ holds for some ground substitu-
tion τ ∈ [[C′]]. This is in turn the case iff there is a ground
state S ∈ [[(P,C,N)]] such that applicablear(S) holds,
which follows by Lemma 9. �

Theorem 2.A protocol (I,R,AR) is secure iff isAttack lar
(P,C,N) is false for all attack-rules ar ∈ AR and all
reachable lazy states (P,C,N) ∈ reach l(I,R).

Proof. Let (I,R,AR) be a secure protocol. This is
equivalent to the condition that isAttackar(S) does
not hold for any ar ∈ AR and reachable state S. By
Lemma 1 this is in turn equivalent to the condition that
isAttackar(S) does not hold for any state S in the se-
mantics of a reachable lazy state (P,C,N) and ar ∈AR.
Finally, by Lemma 2 this is equivalent to the condition
that the predicate isAttack lar(S) does not hold for all
reachable lazy states (P,C,N) and ar ∈AR. �

We conclude by proving Lemmata 3 and 4.

Lemma 3 Let (P,C,N) be a lazy state where C is sim-
ple and N is satisfiable, i.e., there is a σ such that σ |=N .
Then [[(P,C,N)]] �= ∅.

Proof. In a simple constraint set, the messages the in-
truder has to generate consist only of uninstantiated vari-
ables, leaving his choice of instances open. Let us assume,
as is standard, that the initial intruder knowledge is not
empty, but that the intruder knows at least his own name
i. Hence, as the intruder can always generate some mes-
sage from his knowledge, a simple constraint set is always
satisfiable, i.e., [[C]] �= ∅ for a simple C.
The key idea behind the integration of inequalities is

that, unless the inequalities alone are already unsatisfi-
able, they cannot destroy the satisfiability of the con-
straint set, as we now show. It is straightforward to check
whether a conjunction of disjunctions of inequalities N
is satisfiable. Let vars(N) = {v1, . . . , vn} and σ = [v1 	→
m1, . . . , vn 	→mn] for ground messagesmi with mi �=mj

208 David Basin et al.: OFMC: A symbolic model checker for security protocols

for all 1 ≤ i, j ≤ n with i �= j. The resulting ground col-
lection of inequalities N ′ =Nσ is satisfiable iff N is sat-
isfiable. (And it is simple to check if N ′ is satisfiable as
it is ground.) Hence, if N is satisfiable and C is a sim-
ple constraint set, then every solution σ ∈ [[C]] (extended
to the variables in N that do not occur in C) is also
a solution for N , provided it maps every variable in N
to different messages. So to satisfy both C and N , it is
sufficient that the intruder be able to generate finitely
many different messages, i.e., the messages m1, . . . ,mn
above.
Since our model is untyped, the intruder can achieve

this easily, for instance by composing in different ways
the terms that he knows, even when he knows only his
name i. That is, for vars(N) = {v1, . . . , vn} a solution
would be σ = [v1 	→ i, v2 	→ 〈i,i〉, . . . , vn 	→ 〈i, . . . 〉]. Now
σ ∈ [[C]] and σ |= N , hence Pσ ∈ [[(P,C,N)]] by defin-
ition, which concludes the proof for the untyped model.
In the case of the typed model, the proof proceeds along
the same lines since we can assume, without loss of gen-
erality, that the intruder initially knows (or can freshly
create) an unbounded number of messages of each type.

�

Lemma 4 For a protocol (I,R,AR), if (P,C,N) ∈
reach l(I,R), then C is well formed.

Proof. The lemma follows from the following stronger
invariant on the states that can be reached with stepl: all
reachable states (P,C,N) have the property that

C is well formed, vars(P)⊆ vars(C),

and ik(C) ⊆ ik(P) , (18)

where we introduce the function ik to denote the in-
truder knowledge for several types of arguments: ik(P) =
{m |msg(m) ∈ P ∨ i_knows(m) ∈ P} for a set P of facts,

ik(from(T, IK)) = IK for a constraint, ik(C) =
⋃
c∈C ik(c)

for a set of constraints, ik(r) = ik(P) for a rule r with set
P of positive facts in the left-hand side.
Let (P,C,N) be a state that obeys (18), let (P ′, C′,

N ′) ∈ steplr(P,C,N) for some rule r ∈R, and let σ be the
corresponding substitution according to the definition
of stepl. Note that we can safely assume that vars(r)∩
vars(P ′, C′, N ′) = ∅ as succl renames all rule variables.
We show that (P ′, C′, N ′) obeys (18).
First, observe that in the definition of stepl all the

facts of P1 (i.e., the positive left-hand side facts of the
rule without the intruder-generated facts ik(r)) are uni-
fied under σ with the facts of P . Hence σ substitutes all
those variables of the rule that occur in P1. Due to the
form of the rules, all other variables of the rule r are those
variables that occur in ik(r) but nowhere else in the posi-
tive facts of the rule. Let us denote this set of variables by
IV . We can thus conclude that vars(P ′)⊆ vars(P)∪ IV .
Furthermore, the constraint set is augmented by the con-
straint c = from(ik(r), ik(P)), i.e., C′ = C ∪{c}. Hence
vars(C′) = vars(C)∪ IV ⊇ vars(P ′), proving the second

conjunct of (18) for (P ′, C′, N ′). Moreover, for the new
constraint c, it holds that ik(c) = ik(P) ⊇ ik(C). It fol-
lows that ik(P ′) ⊇ ik(P) = ik(c) = ik(C′), proving the
third conjunct of (18) for (P ′, C′, N ′).
Finally, as C is already well formed, there is an order

on the constraints in C along which the intruder know-
ledge increases and all variables are introduced on the
left-hand sides of the constraints. If we extend such an
order making c′ the highest constraint in C′, then these
two properties still hold so that C′ is also well formed.
The intruder knowledge increases since, as noted above,
ik(c) ⊇ ik(C) and vars(c′)\vars(C) = IV = vars(ik(r))\
vars(ik(P)). This proves the first conjunct of (18) for
(P ′, C′, N ′), and the lemma follows. �

