
Int. J. Inf. Secur. (2007) 6:417–428
DOI 10.1007/s10207-007-0031-0

SPECIAL ISSUE PAPER

Extending .NET security to unmanaged code

Patrick Klinkoff · Engin Kirda ·
Christopher Kruegel · Giovanni Vigna

Published online: 17 July 2007
© Springer-Verlag 2007

Abstract The number of applications that are downloaded
from the Internet and executed on-the-fly is increasing every
day. Unfortunately, not all of these applications are benign,
and, often, users are unsuspecting and unaware of the inten-
tions of a program. To facilitate and secure this growing class
of mobile code, Microsoft introduced the .NET framework, a
new development and runtime environment where machine-
independent byte-code is executed by a virtual machine. An
important feature of this framework is that it allows access to
native libraries to support legacy code or to directly invoke
the Windows API. Such native code is called unmanaged
(as opposed to managed code). Unfortunately, the execu-
tion of unmanaged native code is not restricted by the .NET
security model, and, thus, could provide the attacker with a
mechanism to completely circumvent the framework’s secu-
rity mechanisms if the user decides to grant execute permis-
sion to the .NET application. The approach described in this
paper uses a sandboxing mechanism to prevent an attacker
from executing malicious, unmanaged code that is not per-
mitted by the security policy. Our sandbox is implemented
as two security layers, one on top of the Windows API and
one in the kernel. Also, managed and unmanaged parts of

P. Klinkoff (B) · E. Kirda · C. Kruegel
Secure Systems Lab/DSG-ASG, Technical University Vienna,
Vienna, Austria
e-mail: pk@seclab.tuwien.ac.at

E. Kirda
e-mail: ek@seclab.tuwien.ac.at

C. Kruegel
e-mail: chris@seclab.tuwien.ac.at

G. Vigna
Department of Computer Science, University of California,
Santa Barbara, USA
e-mail: vigna@cs.ucsb.edu

an application are automatically separated and executed in
two different processes. This ensures that potentially unsafe
code can neither issue system calls not permitted by the .NET
security policy nor tamper with the memory of the .NET run-
time. Our proof-of-concept implementation is transparent to
applications and secures unmanaged code with a generally
acceptable performance penalty. To the best of our knowl-
edge, the presented architecture and implementation is the
first solution to secure unmanaged code in .NET.

Keywords .NET Security · Unmanaged Code ·
Sandboxing

1 Introduction

With the growth of the Internet, applications are increas-
ingly downloaded from remote sources, such as Web sites,
and executed on-the-fly. Often, little or no knowledge exists
about the author or her intentions. Therefore, users are sus-
ceptible to executing potentially malicious programs on their
computers. Malicious programs contain code that executes
in any unauthorized or undesirable way.

To secure users and increase the proliferation of mobile
code, Microsoft recently introduced a new development and
runtime framework called .NET [5]. This framework lever-
ages the previous experiences gathered with the Java virtual
machine concepts and includes a fine-grained security model
that allows one to control the level of access associated with
software built upon .NET. These applications are referred
to as composed of managed code. The model significantly
limits the damage that can be caused by malicious code. To
address the important problem of backward compatibility
and legacy code support, .NET also offers a mechanism to tie

123



418 P. Klinkoff et al.

in native libraries. These libraries, however, execute outside
of the .NET security model, and therefore are called unman-
aged code. As a consequence, the usage of this feature in
.NET applications may allow an attacker to completely cir-
cumvent the framework’s security mechanisms, leading to
the unrestricted execution of arbitrary code. This security
problem is important because the use of unmanaged code
will probably be common in future Windows .NET applica-
tions. Millions of lines of legacy native Windows code exist
that will need to be integrated and supported over the next
decade. Also, software engineering research [10] has shown
that it is not realistic to expect existing applications to be
entirely rewritten from scratch in order to take advantage of
the features of a new language.

This paper describes our approach to extend the current
.NET security model to native (unmanaged) code invoked
from .NET. To this end, we use a sandboxing mechanism that
is based on the analysis of Windows API and system call invo-
cations to enforce the .NET security policy. Our approach
ensures that all unmanaged code abides by the security per-
missions granted by the framework.

Our primary contributions are as follows:

– Extension of existing sandboxing methods to .NET
unmanaged code invocations.

– Two-step authorization of system calls by placing the
security layer in the Windows API and the enforcement
mechanisms in a loadable kernel driver.

– Separation of untrusted native library and trusted man-
aged code into two separate processes by way of .NET
remoting.

We implemented a proof-of-concept prototype implemen-
tation of the architecture we propose and tested it against two
real-world, popular libraries: Sleepycat Software’s Berkeley
Database [25] and the OpenGL graphics library [22]. Our
evaluation shows that our system is well-suited to operate in
real-world environments.

The paper is structured as follows. The next section pro-
vides an overview of the .NET framework and its security-
relevant components. Section 3 introduces the design of our
proposed system. Section 4 discusses the evaluation of the
security and performance of the system and shows that our
approach is viable. Section 5 presents related work. Finally,
Section 6 outlines future work and concludes the paper.

2 Overview of the .NET Framework

Microsoft’s .NET Framework is an implementation of the
Common Language Infrastructure (CLI) [6], which is the
open, public specification of a runtime environment and its

Fig. 1 Architecture of the .NET Framework

executable code. The architecture of the .NET framework
is depicted in Fig. 1. Multiple programming languages can
be used with the .NET Framework (e.g., VB.NET, C#, C++,
etc.). The idea is that programs in any of these languages
are compiled into a Common Intermediate Language (CIL),
which is hardware-neutral byte-code. The bottom layer of
the architecture consists of the Common Language Runtime
(CLR). The CLR is a virtual machine that interprets and
executes the .NET byte-code. The .NET class libraries (also
written in CIL) are built on top of the CLR and provide func-
tionality such as networking, I/O, streams, or serialization.

A part of the CLI specification describes the Common
Type System (CTS), which defines how types are declared
and used in the runtime. An important property of the .NET
framework is that it is type-safe. Type safety ensures that
memory accesses are performed only in well-defined ways,
and no operation will be applied to a variable of the wrong
type. That is, any declared variable will always reference
an object of either that type or a subtype of that type. In
particular, type safety prevents a non-pointer from being
dereferenced to access memory. Without type safety, a pro-
gram could construct an integer value that corresponds to
a target address, and then use it as a pointer to reference
an arbitrary location in memory. Type safety is typically
achieved by a combination of static and dynamic techniques.
During the just-in-time (JIT) compilation process, a verifier
checks whether the code fulfills all necessary (but not suf-
ficient) requirements for type safety. Those operations that
cannot statically be proven to be type-safe are augmented
with dynamic checks. In addition to type safety, .NET also
provides memory safety, which ensures that a program can-
not access memory outside of properly allocated objects.
Languages such as C are neither type-safe nor memory-safe.
Thus, arbitrary memory access and type casts are possible,
potentially leading to security vulnerabilities such as buffer
overflows. Also, as arbitrary memory access is possible, pro-
grams can rewrite parts of their own code or jump to code
constructed on-the-fly. As a result, it is typically almost
impossible to provide strong security guarantees about pro-
grams written in an unsafe language.

The runtime environment can enforce a variety of secu-
rity restrictions on the execution of a program by relying
on type and memory safety. This makes it possible to run

123



Extending .NET security to unmanaged code 419

multiple .NET programs with different sets of permissions
in the same process (on the same virtual machine). To spec-
ify security restrictions, the CLI defines a security model
that is denoted as Code Access Security (CAS) [9]. CAS
uses evidence provided by the program and security poli-
cies configured on the machine to generate permission sets
associated with the application. Security relevant operations
(for example, file access) create corresponding permission
objects, which are tested with respect to the granted permis-
sion set. If the permission is not found in the granted set, the
action is not permitted and a security exception is thrown.
Otherwise, the operation continues. Evidence is a term that
describes the information used by the runtime to determine
the identity (and hence, the trust level) associated with a pro-
gram. It exists in two forms. The first is inherent evidence
provided by the software. This includes the assembly con-
tent, publisher certificate, or a strong name.1 The second
form is runtime-based evidence, such as the location or URL
the assembly is loaded from. That is, different permissions
can be assigned to programs depending on the author of the
code or the location from where the code is downloaded.

Programs that are written in the common intermediate lan-
guage are referred to as managed code. Managed code exe-
cutes under the control of the runtime, and, therefore, has
access to its services (such as memory management, JIT com-
pilation, or type and memory safety). In addition, the runtime
can also execute unmanaged code, which has been compiled
to run on a specific hardware platform and cannot directly
utilize the runtime. In general, developers will prefer man-
aged code to benefit from the services offered by the runtime.
However, there are cases in which unmanaged code is needed.
For example, the invocation of unmanaged code is necessary
when there are external functions that are not written in .NET.
Arguably, the most important library of unmanaged functions
is the Windows API, which contains thousands of routines
that provide access to most aspects of the Windows operating
system.

To support interoperability with existing code written in
languages such as C or C++ (e.g., the Windows API), the CLI
uses a mechanism called platform invoke service (P/Invoke).
This service allows for invocation of code residing in native
libraries. As mentioned previously, the native code is code
that is already compiled to machine code and is often termed
unsafe because its behavior typically cannot be determined
by static inspection. Because code in native libraries can
modify the security state of the user’s environment, the .NET
permission to call native code is equal to full trust [20]. Fur-
thermore, native code launched by P/Invoke is run within the
same process as the .NET CIL, and, as a consequence, mali-
cious native code could modify the state of the .NET runtime

1 A strong name is a cryptographic signature authenticating the pub-
lisher.

itself. Microsoft suggests to only allow P/Invoke to be used
to execute highly trusted code. Unfortunately, users gener-
ally cannot determine the trust level of an application and
will likely grant access also to non-trustworthy applications.
In fact, some have argued [13] that the decision to support
unsafe code in .NET is a “huge security hole.” Note that
Java supports a comparable mechanism called Java Native
Interface (JNI) [26] for embedding native code into the Java
virtual machine and faces similar security problems. Thus, it
is necessary and useful to extend CAS to unmanaged (native)
code. By doing this, unmanaged code can be executed with
the same restrictions as managed .NET code.

3 System design

The .NET Code Access Security (CAS) allows users to model
permitted actions of an application on a fine-grain level.
However, due to legacy code and the mature interface of
Windows API, we expect a considerable number of .NET
programs to require access to native libraries. Unfortunately,
CAS does not extend to native libraries. Therefore, an attacker
can use native libraries to circumvent the rules specified by
the user. For example, an attacker could bundle a native
library with her application that is written as managed code.
Provided that the user permits the execution of unmanaged
code, any security restriction can be bypassed. Our goal is
to bring unmanaged native code invoked with P/Invoke from
.NET under the control of the CAS rule-set. That is, we aim to
combine the flexibility of unmanaged code with the security
constraints enforced by managed code. When unmanaged
code is executed, we assume that the attacker has complete
control over the process’ memory space and the instructions
that are executed.

As a first approach, one could attempt to use the on-board
operating system security model to enforce the desired .NET
restrictions at the process level. That is, the downloaded
application together with its native components is launched
in a dedicated process. Then, operating system access con-
trol mechanisms are employed to restrict the privileges of
this process such that the .NET Code Access Security set-
tings are mirrored. Unfortunately, this is not easily possible.
One problem is that Microsoft’s Windows security model,
though extensive, is different from the CAS model. That is,
Windows security permissions differ from .NET permissions
and do not provide a similar level of granularity. For exam-
ple, in the CAS model, it is possible to allow a program to
append to a file while simultaneously deny write access to
the file’s existing parts. In Microsoft Windows, on the other
hand, the file system permissions have to be set to permit
write access for a process to be able to append to a file.
As another example, one can finely restrict network access
to specific hosts using CAS, while this is not possible using

123



420 P. Klinkoff et al.

OS-level Windows security mechanisms. Furthermore,
Windows access control is based on user and role-based cre-
dentials. CAS, on the other hand, is based on the identity of
the code, via its evidence. A comparable concept of evidence
does not exist in the Windows security model. For example,
it is not possible to define Windows security based on the
URL the program was downloaded from.

Because the Microsoft Windows security mode is signif-
icantly different than CAS, we propose a dedicated security
layer to extend the .NET code access security to unmanaged
code. The goal of this security layer is to monitor the actions
performed by the unmanaged code and enforce those restric-
tions specified by the CAS permission set. In the following
sections, we discuss details about the design and implemen-
tation of our security layer.

3.1 Security layer

The first design decision is concerned with the placement
of the security layer. Ideally, this layer should be transpar-
ent to the application that it encapsulates. Also, it requires
full access to all security-relevant functions invoked by the
application (with parameters), so that sufficient information
is available to make policy decisions. Finally, it must be
impossible for malicious code to bypass the security layer.

The fundamental interface used by applications to interact
with the environment, and the operating system in particular,
is the Windows API. The Windows API is the name given by
Microsoft to the core set of application programming inter-
faces available in the Microsoft Windows operating systems.
It is the term used for a large set of user mode libraries,
designed for usage by C/C++ programs, that provide the
most direct way to interact with a Windows system. We
can, therefore, expect all security-relevant operations, such
as file access, networking, memory, etc.,2 to pass through the
Windows API.

In a first step, we decided to place the security layer
between the Windows API and the native library. More pre-
cisely, we intercept calls to security-relevant Windows API
functions and evaluate their function parameters. Fortunately,
.NET security permissions map well to Windows API calls.
Thus, we can evaluate the parameters of Windows API calls
by creating and checking corresponding .NET permission
objects. For example, we can evaluate the parameters of the
CreateFile3 API call and create a corresponding .NET
permission object representing the filename and the requested
action (create or open). Then, this permission object can be
checked against the granted CAS permissions, appropriately
permitting or denying the request.

2 For details on the Windows API, refer to [29].
3 The name of this call is slightly misleading, as it is also used to open
files.

To intercept Windows API functions, we make use of
Detours [16]. Detours is a general purpose library provided
by Microsoft for instrumenting x86 functions. This is
achieved by overwriting the first few instructions of a tar-
get function with an unconditional jump to a self-provided
function. Using this technique, we create hooks in security-
relevant functions of the Windows API. The hook functions
evaluate the parameters and create corresponding .NET per-
mission objects. These permissions are then tested against
the permission set granted to the application. If the requested
action represented by the security permission is not per-
mitted, a security exception is thrown. A valid request is
passed on to the original Windows API call to perform the
requested operation. By placing the security layer on top
of the Windows API, it is possible to make the mechanism
transparent to applications, and, in addition, it allows for
comprehensive access to security-critical functions and their
arguments.

Unfortunately, an attacker who has access to native code
has great flexibility and can use a range of possible tech-
niques to evade our naive security layer. The main reason is
that the Windows API is user-level code that can be easily
bypassed by interacting with the operating system directly.
This could be achieved, for example, by invoking functions
from ntdll.dll, which is the user space wrapper for
kernel-level system calls, or by calling the system calls
directly with assembly code. Another attack vector that needs
to be mitigated is that parts of the .NET framework can be
modified. Both the unmanaged code and the runtime are exe-
cuted in the same process, thus, there is no memory protection
boundary between both execution threads (see Fig. 2). Hence,
unmanaged code has complete and unrestricted access to the
virtual address space that it is executed in.

Unrestricted memory access can be leveraged by an
attacker to overwrite management objects of the .NET

Fig. 2 Unmanaged code has complete and unrestricted access to the
virtual address space that it is executed in

123



Extending .NET security to unmanaged code 421

runtime. For example, the variables holding the granted
permission set could be modified. This would allow the
unmanaged code to elevate its own permissions before invok-
ing mediated Windows API functions. The attacker could
also modify executable parts necessary for security enforce-
ment, or simply tamper with objects on the managed heap,
thereby crashing other .NET threads running on the same
virtual machine. To protect from these kinds of attacks, the
security layer has to shield the .NET runtime and concur-
rently executing processes from tampering with their allo-
cated memory.

In the following Sect. 3.2, we introduce our approach to
prevent unmanaged code from bypassing the Windows API
when calling security-relevant functions. Then, in Sect. 3.3,
we discuss our techniques to protect memory objects of the
runtime from modifications.

3.2 Securing the security layer

In this section, we discuss our mechanism to prevent an
attacker from bypassing the Windows API. To this end, we
require a mechanism that allows us to enforce that certain
user-mode library functions are called before correspond-
ing operating system calls are performed. This mechanism
is a second security layer that resides in kernel space. In a
fashion similar to the previously mentioned layer at the API
level, this second layer intercepts and analyzes operating sys-
tem invocations. In particular, it enforces that each system
call invocation must first pass through our security layer in
the Windows API. To this end, the functions in the Win-
dows API are modified such that subsequent system calls
must be authorized. That is, whenever a security relevant
Windows API function is invoked, this function authorizes
the corresponding operating system calls that it is supposed
to make. To make sure that only the security layer can autho-
rize system calls (and not the native code controlled by the
attacker), we have to ensure (i) that the authorization call
originates from the security layer and (ii) that the security
layer was not modified by the attacker. The mechanisms to
enforce these two conditions are explained in more detail
later.

When unsafe code attempts to bypass the checks in the
first security layer and performs a system call directly, the
kernel space layer identifies this invocation as unauthorized
and can abort the operation. The kernel driver is the only
trusted component in the system, as it cannot be modified
directly by a user process. Thus, if the attacker circumvents
the Windows API, the invoked system call is not authorized
and is therefore blocked by the driver.

Of course, the attacker could attempt to bypass the param-
eter evaluation in the security layer and jump directly to
the instructions that grant the system call. We prevent this
with a two-step authorization process. The check routine in

Fig. 3 Two-step authorization

the security layer immediately grants authorization for the
system call. The parameters are then evaluated and, if any
check fails, the security layer revokes its authorization. Thus,
to authorize a system call, the attacker must always jump
before the actual argument check routines and run through
the entire process. Figure 3 shows the two-step authorization
process.

The second security layer is implemented as a device
driver loaded directly into kernel space. Russinovich [24]
describes a method for hooking operating system calls in
Windows NT by replacing the function pointer in the system
call table. The driver employs this method to hook operating
system calls and monitors the invocation of these calls from
the unmanaged code. The security layer that resides at the
Windows API level communicates with the kernel driver via
IOCTL messages. These messages allow user space appli-
cations to communicate with kernel-level drivers by pass-
ing buffers between them. In particular, IOCTL messages
are used to perform authorization and revocation of system
calls.

As discussed previously, the system must not allow the
native code to communicate with the kernel driver directly
(via IOCTLmessages). Otherwise, the attacker could autho-
rize (and later invoke) a certain system call without going
through the security layer. Thus, only the security layer can

123



422 P. Klinkoff et al.

be allowed to grant and revoke system calls. The problem is
that both the security layer (at the Windows API level) and
the native code are executed in the same address space, and
it is not immediately obvious how a call from the security
layer can be distinguished from one of the native code. To
solve this problem, we permit IOCTL calls only from Win-
dows API library code segments (where the security layer is
implemented), and not from the native code itself (or from
other segments such as the heap or stack). To this end, the
system call handler for the IOCTL call first determines the
address of the instruction that invoked the system call. If
this address is not in the code segment of a library, it is not
forwarded to the kernel driver. When the attacker attempts
to jump directly to the instruction in the library that autho-
rizes a call, the two-step authorization process ensures that
arguments are checked properly. Otherwise, the authoriza-
tion would be revoked immediately.

In addition, the correct operation of the two-step authori-
zation process relies on the fact that the native code cannot
alter the code executed by Windows API functions. Other-
wise, it would be easy for an attacker to rewrite the code
parts that check arguments or simply remove the statements
that are responsible for revoking authorization when a CAS
policy violation is detected. Fortunately, ensuring that code
sections are not modified is relatively straightforward. The
reason is that executable code sections are stored in mem-
ory pages that are marked execute-only. Thus, to modify
these sections, the attacker must first change the protection
of the corresponding pages. To prevent this, the driver hooks
the system call that handles page protection modifications.
Pages containing executable code are typically marked as
only PAGE_EXECUTE. This prevents reading or writing to
any memory location in the page. To modify the functions, an
attacker would have to change the page protection to allow
for write access. To prevent this, we deny write modifications
to any PAGE_EXECUTE pages. More precisely, we query
the desired page protection before modification and do not
allow elevation to write access for any page that has the exe-
cute flag set. This approach prevents an attacker from mod-
ifying executable code, but still allows for dynamic library
loading. When a library is loaded dynamically, for example
through the LoadLibrary call, memory is first allocated
with PAGE_READWRITE protection [23]. After the library
is loaded, the protection is changed to PAGE_EXECUTE.
Because of this, the unmanaged code is effectively prevented
from writing to executable pages in memory.

The security of the whole system relies on the fact that
a user process cannot modify objects that reside in kernel
space, and thus, cannot tamper with our second security layer.
The astute reader might wonder why the security layer was
placed in the Windows API in the first place, given the secu-
rity advantages from placing it in kernel space. One impor-
tant reason is the absence of a published documentation of

the native API,4 which is subject to changes without notice
even between different service packs of Windows. In con-
trast, the Windows API is well-documented and explicitly
designed to shield application code from subtle changes of
the native API. In addition, Windows API calls exist that map
to multiple system calls. In such cases, the Windows API
function parameters indicate the actual purpose of the invo-
cation and checks are easier to perform at the Windows API
level than based on arguments of individual system calls.

As mentioned previously, unmanaged code cannot tamper
with the driver because it is located in kernel space. We can,
therefore, use the driver as a trusted storage for important
data. In particular, to mitigate the danger of an attacker mod-
ifying the CAS permission set, we safely store it in the trusted
storage. To this end, we serialize the permission set and store
it in the driver before we launch any native code. This is,
again, achieved with IOCTL messages. Note that permis-
sion sets are stored on a per-process basis. That is, multiple
processes with different permission sets can be sandboxed at
the same time. When checking a requested action, the secu-
rity layer does not check against the (possibly modified) per-
mission set residing in .NET. Instead, the security layer first
retrieves the trusted permission set from the driver and then
checks against this set. Of course, the permission set stored
in the driver cannot be modified directly by the unmanaged
code through another IOCTL, because that invocation would
be trapped and checked with respect to the established per-
mission set.

In the previous discussion, the two steps of granting and
revoking authorization were explained in the context of a
process. However, when considering multi-threaded appli-
cations, this two-step authorization process would contain
a race condition. This race condition can be exploited when
one thread attempts a particular forbidden call, while another
thread attempts to sneak in the same call between the time
it is originally authorized and the time it is revoked. This
problem is solved by granting and revoking authorization for
system calls on a per-thread basis. That is, whenever the ker-
nel driver is consulted to grant or revoke permissions for a
system call, it checks the thread identified of the currently
running thread instead of its process ID.

3.3 Remoting

Using security layers and the two-step authorization process,
the CAS protection is successfully extended to unmanaged
code. That is, the CAS model is enforced by monitoring
all relevant interaction with the operating system and the
permission set is safely stored in the trusted kernel driver.

4 Even though [21] does an excellent job at documenting the native
API, the documentation can never be complete without support from
Microsoft.

123



Extending .NET security to unmanaged code 423

Unfortunately, the objects in the managed heap and data
structures of the runtime can still be altered by an attacker,
possibly causing the virtual machine or other .NET threads to
crash or behave unexpectedly. Another problem is that there
are system calls invoked by the runtime (or certain man-
aged classes) that do not necessarily pass through the Win-
dows API. Although these system calls are not authorized by
our security layer, they are still valid. Of course, these calls
must be permitted as blocking them would prevent managed
classes from functioning correctly.

To protect the managed heap of .NET threads (and the
runtime) and to make tracking of system calls easier, we iso-
late the unsafe code from the managed code that invokes it.
More specifically, we create a process boundary between the
managed code and the unmanaged code. Existing sandbox-
ing techniques consider the entire process untrusted. For our
purposes, however, we must distinguish between managed
and unsafe code, even though these run in the same process.
We therefore isolate the untrusted native library from the
trusted managed code by running them in two different pro-
cesses. In this way, we leverage the basic memory protection
mechanisms offered by the operating system and prevent un-
managed code from accessing memory allocated by managed
code.

When the native, unmanaged parts of an application are
executed in a process different from the one where the man-
aged part of the application resides, the question naturally
arises how communication between these processes is real-
ized. In particular, we need to explain how parameters and
return values can be exchanged between the process that runs
managed code and the process with the native code piece.
While simple data types such as integers can be easily passed
(copied) between address spaces, the situation is more dif-
ficult when complex data structures such as linked lists are
involved. In these cases, the data structures have to be serial-
ized by the sender and appropriately rebuilt by the receiver.

To accomplish the data exchange between the managed
and the native processes, we make use of .NET remoting,
the Remote Procedure Call (RPC) mechanism of .NET. The
.NET remoting infrastructure automatically ensures that even
complex data structures (with an arbitrary level of nesting)
are flattened, transferred over the network, and correctly
restored at the remote end. To use .NET remoting, two proxy
libraries have to be generated. The first proxy library contains
the stubs for the native calls and is linked with the managed

part of the application. More precisely, this library acts as
an interceptor that replaces the original native library. It con-
tains one method stub for each function of the unmanaged
code that the managed code can invoke. Each method stub
uses .NET remoting to invoke its corresponding method in the
second proxy library. The second proxy library, called remote
object, exposes a remote method for each function that the
managed code uses in native libraries. These remote methods
then perform the actual invocation of the native library in the
remote process. Conceptually, the .NET remoting process
can be viewed as an additional level of indirection between
the managed code and the native libraries. Instead of pass-
ing values directly to the native code via the P/Invoke func-
tion, these values are first copied to the remote process using
.NET remoting and only there passed to the native library.
Note that both proxy libraries are automatically generated
from the managed assembly. To this end, we use a combi-
nation of .NET reflection and an analysis of the disassembly
of the intermediate language code. The goal is to obtain the
required information to generate the proxy libraries, namely,
the number of parameters of each native function and their
respective types.

One problem that has not been discussed so far are param-
eters that are passed by-reference from managed code to
the native library. The problem is that variables cannot be
transferred across the process boundary with remoting when
they are by-reference. This is because pointer values have
no meaning outside the process address space. As a result,
remoting parameters are always passed by-value. However,
P/Invoke allows for by-reference parameters and we must
take this into account. To solve this problem, we have to simu-
late by-reference parameter passing by copying the variables
back and forth by-value. More precisely, the proxy library
on the managed side transforms a by-reference argument into
the corresponding value that is then copied to the remote pro-
cess. Once the call into the native library is completed by the
remote object, the stub method requests the parameter vari-
ables back. Then, the reference parameters are copied back
into the original locations, as changes in the remote process
must be reflected in the original object. Figure 4 shows the
process of simulating by-reference parameter passing.

Another problem might occur when linking the proxy
library on the managed side (that is, the interceptor library
that contains the method stubs for each native function) to
the application. In the simplest case, we would rename the

Fig. 4 Remote parameter
passing

Remote
Object

Managed
Application

Remoting ServerManaged Application

Stubs Native
Library

by-valby-ref by-ref

by-val

123



424 P. Klinkoff et al.

Fig. 5 System Architecture

System Call Hooks

WinAPI

Detours Hook

Driver

Remoting
Server

Remote
Object

Native
Library

System Call Interface

Kernel

Kernel Space
User Space

Managed
Application

Process 2Process 1

Proxy
RPC

original native library and replace it with our proxy library.
In this case, the calls from the managed code would correctly
invoke our new library functions instead of the original ones.
Unfortunately, renaming is not possible for system libraries.
The reason is that system libraries are always searched in the
system directories and never in the local directory. Thus, even
if we place our system library replacement with the correct
name into the application directory, the managed applica-
tion will still load the original, unmodified library. To solve
this problem, the managed application needs to be patched
to redirect invocations to our interceptor library.5 That is, the
function call in the managed code is rewritten to call a method
in our supplied library. Of course, the function signatures of
our library are identical to the ones in the system library, but
the name of the libraries are different.

The remoting server (see Fig. 4) hosts both the remote
object (which contains managed code) and the native library
that should be confined. Before the unmanaged code is exe-
cuted, the remoting server has to perform a number of initial-
ization tasks. First, the Windows API hooks are installed to
perform API function monitoring. Then, the .NET security
manager is used to generate the granted permission set based
on the evidence provided by the managed application. This
permission set is then serialized to an XML format and sent to
the trusted storage. Finally, the kernel driver has to be initial-
ized. To this end, the remoting server registers its own process
ID for subsequent monitoring. From that point onward, the
remoting server process is subject to the CAS policy enforce-
ment and can no longer perform any unauthorized system
calls. Of course, the native library can freely tamper with the
process memory and possibly crash the virtual machine or

5 Patching potentially invalidates cryptographic signatures of the man-
aged application. However, this is of little concern as we do not trust
the application anyway.

return arbitrary results to the managed code. However, such
actions only affect this single process, while the managed
code and the runtime (together with other threads) is suc-
cessfully shielded by the process barrier. In particular, note
that values returned by the unmanaged code are automati-
cally integrated into the .NET type system when received by
the proxy on the managed side. If values are returned that
do not correspond to valid types, the situation is detected
and an appropriate unmarshaling exception thrown. Thus, an
attacker cannot indirectly subvert the managed code by mak-
ing our system copy back illegal values from the unmanaged
code.

For a schematic overview of the complete system intro-
duced in this section, refer to Fig. 5.

4 Evaluation

To evaluate the proposed approach, we developed a proof-of-
concept implementation of our system. Our prototype imple-
ments both the security layer at the kernel level and the
layer at the Windows API level. Also, we support running
the native process in a dedicated process with the automatic
generation of the .NET proxy libraries. The system extends
CAS to the following areas: file access, registry handling,
and interaction with environment variables.

We investigated whether the current prototype achieves
our stated goal of extending .NET’s CAS mechanism to
native libraries. We report on results of our simulations of
the attack methods discussed previously. We continue by
shedding light onto the performance penalty incurred by the
design and conclude with experiments that demonstrate that
our system can successfully isolate the native libraries of
real-world applications.

123



Extending .NET security to unmanaged code 425

4.1 Functionality

Functionality testing is directly linked to our stated goal. We
would like to ensure that native code cannot perform actions
that are restricted by the code access security (CAS) policy.
For this purpose, we first constructed a CAS rule set that
denies access to a certain file. The check of the file name
to enforce this policy is performed in the CreateFile
Windows API function, which in turn has to authorize the
invocation of the corresponding operating system call. Then,
we attempted to bypass our checks and illegitimately obtain
access to this file.

In a first test, we attempted to circumvent our security
layer. An attacker has multiple routes to achieve this, all ulti-
mately resulting in a jump beyond the check routines in the
Windows API security layer. Our first approach attempted to
dynamically load the NtCreateFile from ntdll.dll
withLoadLibrary andGetProcAddress. Thentdll.
dll is located just above kernel space and below the Win-
dows API, thereby bypassing our security layer. We invoked
the call and, as expected, our kernel-level security layer
denied the call as it was not authorized by the Windows API
security layer.

In the second approach, we decided to avoid using libraries
altogether. We used in-line assembly code to invoke sys-
tem calls directly. For this, we adopted the code provided
by ntdll.dll functions. We thereby completely avoided
any user space DLLs and, of course, our security layer. Again,
our kernel driver prevented the system call invocation.

Next, we simulated an attacker’s attempt to subvert the
runtime or the security layer. An attacker could, for exam-
ple, inject a jump statement in the check routines to prevent
the security layer from revoking a previously authorized call,
thereby completely defeating the security layer. To modify
an executable function, the attacker must change the memory
page protection. We simulated this attack by attempting to
modify an executable function. As expected, the driver hook
for page protection denied this modification.

The results obtained from our attacks indicate that our sys-
tem works as expected, and we successfully showed that all
system call invocations must first pass through the security
layer, and the checks therein.

We did, however, identify one possible venue to defeat
the security system when the CAS security policy is not con-
figured properly. This vector requires that the attacker has
unrestricted registry access. The reason is that Windows reg-
istry provides a key for specifying DLLs that are loaded on
every application start. If an attacker can load a DLL into
every program, he is able to use the library’s DLLMain rou-
tine to execute arbitrary code before program execution [14].
All user space applications, including of course the remot-
ing server, would come under the control of the attacker.
Therefore, care must be taken in securing the relevant registry

keys by including a statement in the CAS policy that denies
unmanaged code access to these keys. In this way, the out-
lined attack can be successfully prevented.

Also, note that .NET CAS can assign permissions to dif-
ferent components of an application. Hence, it can support
scenarios where a single VM has components with many
different levels of trust. One limitation of our approach, in
contrast, is that we only support the simple (but most com-
mon) use case of an entire application being granted the same
permissions.

4.2 Performance

After testing the system’s functionality, we ran performance
analysis to determine the overhead incurred by the security
layer and, in particular, the remoting infrastructure. To this
end, we conducted a series of micro benchmarks to measure
the performance overhead of individual calls to native library
functions. All experiments were run on a machine with an
Intel Pentium 4 1.8 GHz and 1 GB of RAM, running Win-
dows XP with Service Pack 2.

We anticipated the .NET remoting infrastructure to incur
the largest performance penalty. To measure this penalty, we
isolated the remoting infrastructure from the remaining sys-
tem. For this, we modified our remoting server to not instan-
tiate the security layer and to not interact with the driver. Our
first test library function takes no parameters and returns no
variables. The test function solely invokes theCreateFile
function from kernel32.dll to create a file. The remot-
ing server is hosted on the same machine, preventing network
delays from skewing the results. The first entry (i.e., Test 1)
in Table 1 compares the average running time over ten calls
of a direct P/Invoke call to a call redirected over .NET remot-
ing. As we expected, the .NET remoting mechanism creates
a considerable performance penalty, which arises from the
need to perform interprocess communication. In our next
test, we used the remoting server as outlined in Sect. 3.3.
That is, the security layer was in place and interacted with
the driver. Our test function was the same as above, i.e.,
it took no parameters and returned no value. The second
entry (i.e., Test 2) in Table 1 shows the average running time
over ten calls. The results indicate that our security layer

Table 1 P/Invoke versus remoting

Test Test description Direct call Remoting call

(P/Invoke) (ms) (ms)

1 No security layer 15 234

2 Active security layer 15 234

3 Active security layer + 15 286

function parameters

123



426 P. Klinkoff et al.

introduces no measurable performance penalty (less than one
millisecond). Finally, we investigated how parameter passing
affects performance. To this end, our next test compared the
overhead produced by parameters in the .NET remoting call.
This overhead stems from the need to marshal arguments
at the sender and restore them at the receiver. The Cre-
ateFile call has seven parameters and one return param-
eter, which need to be serialized and exchanged between
processes. The last entry (i.e., Test 3) in Table 1 shows that
including parameters exacerbates the performance penalty.

While the overhead of a remote procedure call is an order
of magnitude larger than invoking unmanaged code within a
process, this is not surprising. Also, note that the in-process
P/Invoke call incurs significantly more overhead than a reg-
ular function call. Thus, we do not expect this mechanism to
be used frequently by performance-critical applications and
believe that the increase in security clearly outweighs the
performance loss.

4.3 Remoting

Another feature that we evaluated is the remoting infrastruc-
ture and the generated stub libraries. In particular, we want
to ensure that we have not introduced limitations on param-
eter passing and that we maintain transparency for managed
real-world applications that use native library components.

As mentioned in Sect. 2, an important reason for the intro-
duction of P/Invoke and the ability to include unmanaged
code into .NET applications is the need to call Windows API
functions. Thus, we have to ensure that our protection infra-
structure supports the invocation of (almost) all API func-
tions. To test the ability of our system to call Windows API
functions, we selected a representative subset of ten routines
from important areas such as process management, file han-
dling, and helper functions (all implemented in the ker-
nel32.dll, the core Windows kernel library). We then
tested whether these functions can be invoked from man-
aged code running in a different process. We observed that
our design successfully passed the relevant parameters across
the process boundary via .NET remoting and invoked the
native functions in the remote server process. After invok-
ing the respective function, possible return parameters were
successfully passed back to the original process.

Besides tests with Windows API functions, we also inves-
tigated our system when running real-world managed appli-
cations that make use of native library routines. To this end,
we tested our infrastructure on two popular libraries: Sleepy-
cat Software’s Berkeley Database [25] and the OpenGL
graphics library [22].

Berkeley Database (BDB) is an embedded database. This
is, the database engine component is compiled as a library
and linked with the application. BDB is officially available
as libraries for multiple languages such as C, C++, and Java.

In addition, an unofficial C# wrapper [1] exists to port BDB
to .NET. This wrapper uses P/Invoke to call the functions of
the original BDB library. To test our system, we used the C#
wrapper to invoke functions of the BDB library. More pre-
cisely, our test application uses the C# BDB wrapper to open
a database, store and retrieve records, and close the database.
Function parameters include strings, integers and enums for
supporting flags.

For testing OpenGL, we used a C# wrapper called CsGL
[4] that encapsulates a native OpenGL library. To test our
prototype, we exercised basic OpenGL functionality, such as
filling the background of a window and drawing a rectangle.
However, because most OpenGL functions use a similar syn-
tax, we are confident that this covers the majority of OpenGL.

In both cases, our system automatically generated the
necessary proxy libraries to split the managed part and the
native library into two processes. That is, instead of invok-
ing unmanaged library functions directly with P/Invoke, the
parameters were first transferred to a remote process via .NET
remoting. Only there were the native functions executed (via
P/Invoke). Also, in case where a function returned a value,
these values were properly returned to the managed applica-
tion. This demonstrates that our system can automatically and
transparently isolate native components from managed code.

5 Related work

The system presented in this paper uses a sandbox to confine
the execution of potentially untrusted applications. Sandbox-
ing is a popular technique for creating confined execution
environments that has been of interest to systems research-
ers for a long time.

An important class of sandboxing systems uses system
call interposition to monitor operating system requests. That
is, system calls are intercepted at the kernel interface. Then,
these calls and their arguments are evaluated against security
policies and denied when appropriate. Numerous approaches
have been proposed [2,3,11,19] that implement a variation
of a sandboxing mechanism based on system calls. These
approaches typically differ in the flexibility and ease-of-use
of the policy language and the fraction of system calls that
are covered.

One problem with kernel-level sandboxing mechanisms
is the need to install the necessary policy enforcement infra-
structure (e.g., kernel drivers or operating system modifica-
tions). To circumvent this problem, techniques [12,17] have
been proposed that rely on existing monitoring infrastructure
in the kernel (e.g., APIs used for tracing and debugging such
as ptrace) to intercept system calls, which are then processed
by a monitor that resides in user space.

The main differences between our proposed approach and
sandboxing techniques that operate on system calls are two-

123



Extending .NET security to unmanaged code 427

fold. First, we do not only analyze the invoked system calls
but can also force native code to go through user-mode
libraries first (in our case, Windows API functions) before
invoking a system call. That is, our two-step authorization
process extends system call interposition to user libraries.
The second difference is that we distinguish between a
trusted, managed part and an untrusted, native part of an
application, which originally run together in the same address
space. To protect the managed code from malicious, unman-
aged code, both parts have to be run in separated processes.

Forcing native code to go through user libraries can also be
achieved with program shepherding [18], a method for mon-
itoring control flow transfers during program execution to
enforce security policies. The difference to our system is that
program shepherding cannot prevent data values from being
overwritten, a property that we obtain by executing managed
and unmanaged code in two separate address spaces.

Being at the boundary between potentially untrusted user
programs and the trusted kernel, system calls have received
interest also from other areas of security research. In partic-
ular, system calls have been extensively used for performing
host-based intrusion detection. To this end, specifications of
permitted system calls were either learned by observing legit-
imate application runs [8] or extracted statically from the
application [7,27].

Another way to get programs to behave in a manner consis-
tent with a given security policy is by modifying the programs
so that they behave only in safe ways. This is embodied by an
approach to security known as software-based fault isolation
(SFI) [28].

Finally, Herzog and Shahmehri [15] present an approach
that extends the Java policy syntax for resource control. While
we do not extend the .NET policy syntax per se, we extend
its reach by applying it to native code.

6 Conclusions

The number of applications that are being downloaded from
Web sites and automatically executed on-the-fly is increas-
ing every day. Unfortunately, some of these applications are
malicious. The .NET framework provides a security mech-
anism called Code Access Security (CAS) to help protect
computer systems from malicious code, to allow code from
unknown origins to run with protection, and to help prevent
trusted code from intentionally or accidentally compromis-
ing security. CAS succeeds in restricting undesired actions of
managed code. However, the permission to invoke unman-
aged (i.e., native) code gives a potential attacker complete
freedom to circumvent all restrictions.

This paper introduced a system to extend the CAS rule-set
to unmanaged code. The evaluation of the proof-of-concept
prototype of our proposed system shows that our design is
viable. In particular, we successfully extended the CAS rule

set to important Windows API functions. By confining a pos-
sible attacker to using the Windows API, we subjected un-
managed code to our security layer. Further, we successfully
protected our system against possible attack vectors, such
as circumvention of the security layer and memory corrup-
tion. To the best of our knowledge, the presented architecture
and implementation is the first solution to secure unmanaged
code in .NET.

Future work will consist primarily of extensions to our
prototype. The security and kernel layers should be extended
to cover the entire range of Windows API functions. Also,
the extensibility of the .NET permission structure allows cus-
tomized permissions to extend our system to domains that are
not currently covered by .NET, such as memory allocation.
Furthermore, because .NET is conceptually very similar to
Java, we plan to investigate if the approach we present in this
paper is also easily applicable to native code that uses the
Java Native Interface (JNI) [26].

We expect the use of unmanaged code to be common in
future Windows .NET applications as millions of lines of leg-
acy native Windows code exist that will need to be integrated
and supported. We hope that the approach and the concepts
we presented in this paper will be useful for securing unman-
aged code running under .NET.

Acknowledgments This work was supported by the Austrian Science
Foundation (FWF) under grants P18368 (Omnis) and P18764 (Web-
Defense), and by the Secure Business Austria competence center.

References

1. Berkeley DB for .NET. http://sourceforge.net/projects/libdb-
dotnet

2. Berman, A., Bourassa, V., Selberg, E.: TRON: Process-specific file
protection for the UNIX operating system. In: Winter USENIX
Technical Conference (1995)

3. Chari, S., Cheng, P.: BlueBox: A Policy-Driven, Host-Based Intru-
sion Detection System. In: Network and Distributed Systems Secu-
rity Symposium (NDSS) (2002)

4. CsGL. http://csgl.sourceforge.net/
5. .NET Framework Development Center. http://msdn.microsoft.

com/netframework/
6. ECMA: ECMA 335—Common language infrastructure partitions

I to VI, 3rd edn (2005)
7. Feng, H., Giffin, J., Huang, Y., Jha, S., Lee, W., Miller, B.: For-

malizing Sensitivity in Static Analysis for Intrusion Detection. In:
IEEE Symposium on Security and Privacy (2004)

8. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A Sense of
Self for Unix Processes. In: IEEE Symposium on Security and
Privacy (1996)

9. Freeman, A., Jones, A.: Programming .NET Security. O’Reilly &
Associates, Inc., Sebastopol (2003)

10. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software
Engineering. Prentice Hall Inc., New York (1991)

11. Ghormley, D., Petrou, D., Rodrigues, S., Anderson, T.: SLIC: An
Extensibility System for Commodity Operating Systems. In: USE-
NIX Technical Conference (1998)

12. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.: A secure envi-
ronment for untrusted helper applications: Confining the wily
hacker. In: 6th USENIX Security Symposium (1996)

123



428 P. Klinkoff et al.

13. Gosling, J.: Huge security hole in .NET. http://builder.com.
com/5100-6371_14-5565971.html

14. Gutmann, P.: An Open-source Cryptographic Coprocessor. In: Pro-
ceedings of the 9th USENIX Security Symposium, Denver, Colo-
rado (2000)

15. Herzog, A., Shahmehri, N.: Using the Java Sandbox for Resource
Control. In: 7th Nordic Workshop on Secure IT Systems (NordSec)
(2002)

16. Hunt, G., Brubacher, D.: Detours: Binary Interception of Win32
Functions. In: 3rd USENIX Windows NT Symposium (1999)

17. Jain, K., Sekar, R.: User-level infrastructure for system call inter-
position: A platform for intrusion detection and confinement. In:
Network and Distributed Systems Security Symposium (NDSS)
(2000)

18. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure Execution
Via Program Shepherding. In: 11th USENIX Security Symposium
(2002)

19. Ko, C., Fraser, T., Badger, L., Kilpatrick, D.: Detecting and Coun-
tering System Intrusions Using Software Wrappers. In: 9th USE-
NIX Security Symposium (2000)

20. .NET Framework Class Library Documentation—Security.
Permissions. http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfSystemSecurityPermissions.asp (2006)

21. Nebbett, G.: Windows NT/2000 Native API Reference. New Riders
Publishing, Thousand Oaks (2000)

22. OpenGL. http://www.opengl.org
23. Osterlund, R.: Windows 2000 Loader, What Goes On Inside Win-

dows 2000: Solving the Mysteries of the Loader. MSDN Magazine
(2002)

24. Russinovich, M., Cogswell, B.: Windows NT system-call hooking.
Dr. Dobb’s J. (1997)

25. Sleepycat Software: Berkeley DB Database. http://www.sleepycat.
com/

26. Sun Microsystems: Java Native Interface. http://java.sun.com/j2se/
1.3/docs/guide/jni/

27. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis.
In: IEEE Symposium on Security and Privacy (2001)

28. Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient
Software-based Fault Isolation. In: Proceedings of the fourteenth
ACM symposium on Operating Systems Principles, pp. 203–216.
ACM Press, New York (1994)

29. Platform SDK: Windows API. http://www.microsoft.com/
msdownload/platformsdk/

Authors Biography

Patrick Klinkoff was a master
student at the Secure Sys-
tems Lab of the Technical
University Vienna. His main
research interest was unman-
aged code security with a par-
ticular emphasis on sandbox-
ing. Patrick Klinkoff finished
his thesis in early 2006 and
graduated with an MSc in
Technical Mathematics. He is
now working as a manage-
ment consultant.

Engin Kirda is an Associate
Professor with the Distributed
Systems Group at the Techni-
cal University Vienna and one
of the founders of the Secure
Systems Lab. He received his
Ph.D. with honors in computer
science from the Technical Uni-
versity Vienna while working
as a research assistant for the
Distributed Systems Group. His
research interests include most
aspects of computer security,
with an emphasis on web secu-
rity, binary analysis, and mal-
ware detection. Engin Kirda is

also interested in distributed systems and software engineering.

Christopher Kruegel is an
Associate Professor with the
Automation Systems Group at
the Technical University Vienna
and one of the founders of the
Secure Systems Lab. Before that,
he was working as a research
post-doc for the Reliable Soft-
ware Group at the University
of California, Santa Barbara.
Christopher Kruegel received his
Ph.D. with honors in computer
science from the Technical Uni-
versity Vienna while working
as a research assistant for the
Distributed Systems Group. His

research interests include most aspects of computer security, with an
emphasis on network security, intrusion detection and vulnerability
analysis.

Giovanni Vigna is an Asso-
ciate Professor in the Depart-
ment of Computer Science at the
University of California in Santa
Barbara. His current research
interests include network secu-
rity, intrusion detection, vulner-
ability assessment, and security
of mobile code systems. In par-
ticular, he worked on frameworks
for the modular development and
testing of intrusion detection sys-
tems. He also edited a book on
Security and Mobile Agents and
authored one on Intrusion Corre-
lation. He has been the Program

Chair of the International Symposium on Recent Advances in Intrusion
Detection (RAID 2003). Finally, he is known for organizing and run-
ning the first inter-university international Capture The Flag hacking
context. Giovanni Vigna received his M.S. with honors and Ph.D. from
Politecnico di Milano, Italy, in 1994 and 1998, respectively.

123


