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Abstract

We identify a generic construction of cryptosystems based on the subset sum problem and character-

ize the required homomorphic map. Using the homomorphism from the Damgård-Jurik cryptosystem,

we then eliminate the need for a discrete logarithm oracle in the key generation step of the Okamoto,

Tanaka and Uchiyama scheme to provide a practical cryptosystem based on the subset sum problem. We

also analyze the security of our cryptosystem and show that with proper parameter choices, it is compu-

tationally secure against lattice-based attacks. Finally, we present a practical application of this system

for RFID security and privacy.

1 Introduction

Knapsack Cryptosystems

Knapsack cryptosystems, or more accurately, subset sum problem (SSP)-based cryptosystems, are the most

well-studied cryptosystems based on NP-complete problems. We refer readers to a survey by Lai [17] for

a detailed discussion and cryptanalysis of many of them. In 2000, Okamoto, Tanaka and Uchiyama [24]

presented an SSP-based cryptosystem (the OTU scheme), which combines good features of the multiplica-

tive Merkle-Hellman [20] and the Chor-Rivest [5] cryptosystems to overcome known attacks on SSP-based

cryptosystems. A motivation behind this system is to define a quantum public key cryptosystem, as many

classical public key cryptosystems (PKCs) are breakable using Shor’s algorithm [30] on a quantum com-

puter. Further, its use of low-weight subsets reduces its public-key size from Ω(n2 logn) to o(n2). Recent

lattice-based attacks [13, 22, 25] raise serious theoretical questions about the security of the OTU scheme;

however, given the very large polynomial complexity of the LLL algorithm, for moderate values of n, lattice-

based attacks can be thwarted in practice while retaining a reasonable public key size (see [22, Sec. 7] for

practical examples).

RFID Security and Privacy

RFID (Radio-Frequency IDentification) is a technology for automated identification of objects and people.

When compared with its predecessor—barcodes—RFID tags offer significant improvements in efficiency

through unique object identification rather than categorical recognition, and through fully automated read-

ing. On the other hand, ubiquitous use of RFID tags raises a significant privacy concern of clandestine

tracking and inventorying [15]. Although data and communication privacy using public key encryption are
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solved problems in the cryptographic literature with schemes such as RSA and Diffie-Hellman, all of those

protocols are beyond the computational capabilities of the majority of RFID tags.

A variety of security and privacy protocols have been suggested for RFID tags (see Avoine’s web re-

source [1] for a detailed list). However, most of them have some known weakness such as a shared sym-

metric key between a RFID reader and many RFID tags, or the requirement of exhaustive database search

for ID management. All of these weaknesses in the existing RFID security and privacy schemes can easily

be overcome using a public key encryption system. In such a system, a RFID tag encrypts the identification

information using a pre-installed public key of the valid RFID readers, which decrypts the transferred mes-

sage to securely obtain identification information of the tag. However, the computational requirements of

encryption in cryptosystems based on the discrete logarithm and integer factorization problems are beyond

the capacity of these resource-constrained devices.

Along with its significance to post-quantum cryptography, the OTU scheme is also suitable for resource-

constrained RFID devices; its public-key size is reasonable for active RFID tags and encryption in this

scheme only involves a very small number of integer additions. Still, practical use of the OTU scheme is not

possible in the near future, as it requires a (quantum) oracle to solve arbitrary discrete logarithm problems

(DLP) in the key generation step. This paper eliminates the requirement of a DLP oracle in the OTU scheme

and makes the resulting scheme feasible for practical use in identification of resource-constrained devices.

Our Contributions

As our major contribution, we present the generic construction of SSP-based cryptosystems, where the

finite field DLP computation is replaced by an additive homomorphism with certain properties. We then

show that a specialization of the homomorphic map of the Damgård-Jurik generalization [9] of the Paillier

cryptosystem [26] provides the required homomorphism and define a concrete realization of our scheme with

polynomial-time key generation on classical computers. Finally, we show the computational inapplicability

of lattice-based attacks for our chosen key sizes and define a computation-constrained identification protocol

for RFID chips.

In the next section, we summarize the important SSP-based cryptosystems and discuss the densities of

the corresponding SSP instances in relation to lattice-based attacks. In Section 3, we present our generic

SSP-based cryptosystem and use the Damgård-Jurik homomorphism to provide a realistic SSP-based scheme

in Section 4. The security of our scheme is discussed in Section 5 and Section 6 presents a practical appli-

cation of our scheme for RFID security and privacy. We conclude our discussion in Section 7.

2 Preliminaries

2.1 SSP in Cryptosystems

Definition 2.1 (Subset Sum Problem). Let A = {a1, . . . ,an} be a set of positive integers. Given the set A

and an integer c, find A ′ ⊆ A (if such a subset exists) such that c = ∑ai∈A ′ ai.

In the key generation step of an SSP-based PKC, a set A of size n is computed using a private key and

published as a public key along with some other scheme-specific parameters. A sender chooses a subset

A ′ ⊆ A uniquely associated to a plaintext M via a binary encoding, computes the subset sum c = ∑ai∈A ′ ai

and sends c as the ciphertext. The intended receiver, knowing the private key, converts this subset sum

instance (A ,c) to an efficiently solvable problem and recovers the plaintext M by solving it.

To be useful in cryptography, any subset sum (or ciphertext c) should not have two different subsets

associated with it, as in that case, a unique decryption would not be possible. The associated specialization

of the SSP is known as the unique subset sum problem.
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Definition 2.2 (Unique Subset Sum Problem). Let A = {a1, . . . ,an} be a set of positive integers such that

sum of every subset is unique. That is, for any A1,A2 ⊆ A , if ∑ai∈A1
ai = ∑a j∈A2

a j, then A1 = A2. Given

the set A and an integer c, find A ′ ⊆ A (if such a subset exists) such that c = ∑ai∈A ′ ai.

As unique SSPs are a proper subset of (general) SSPs, given an oracle to solve the SSP, one can solve

a unique subset-sum instance; thus, Unique Subset Sum ≤p Subset Sum. A reduction in other direc-

tion seems to be unlikely, as deciding if a subset sum instance is a unique subset sum instance is itself

PNP-complete [27]. Separation between these two problems is further supported by the difference in their

densities and subsequent susceptibility of many instances of the unique SSP to lattice-based attacks; we

discuss these issues next.

2.2 SSP Density and Lattice-Based Attacks

Although the subset-sum problem is NP-hard in the worst case, not all instances of the SSP are equally

difficult. The applicability of known attacks on SSP-based cryptosystems is determined by a metric called

the subset sum density [16].

Definition 2.3 (Density). The density D of a subset sum instance with set A = {a1, . . . ,an} is the ratio of

the size of the set A to the size of the largest element in it. D = n/ log2 (maxA ), where maxA = maxi(ai).

The density D for a general subset sum instance can take any non-negative value; however, for a unique

subset sum instance, D is bounded above by 1 + O
(

log logmaxA

logmaxA

)

; we show this fact next. We find that a

result of Erdős [11] (with improvements by Elkies [10]) is applicable to the density of the unique subset

sum instances. [12] For ℓ > 1, the largest number of integers a1, . . . ,an ≤ 2ℓ having the unique sum property

is limited by

ℓ+1 ≤ n < ℓ+
1

2
log2 ℓ+

1

2
log2 π .

Using this, the density D of any set of ℓ-bit values {a1, . . . ,an} with the unique sum property is

D <
ℓ+0.5log2 ℓ+0.5log2 π

ℓ

< 1+
log2 ℓ

2ℓ
+

0.826

ℓ
. (1)

Therefore, for large values of ℓ, D < 1+O
(

log logmaxA

logmaxA

)

. In practice, most unique subset sum instances have

D ≪ 1.

Low values of D in the unique SSP instances are a major concern, as Lagarias-Odlyzko [16] and Brickell

[3] showed that it is possible to solve almost all SSPs when D is sufficiently small (D ≪ 1). They accom-

plished this by reducing the SSP to the problem of finding the Euclidean norm of the shortest non-zero vector

in a lattice. Coster et al. [6] and Joux-Stern [14] (the CJLOSS attack) independently improved the bound by

demonstrating that it is possible to solve almost all SSPs of density D < 0.9408 (asymptotically) if a lattice

oracle is present, which with high probability, given a lattice basis of dimension n+1, finds the Euclidean-

norm shortest nonzero vector of the lattice in polynomial time. While no polynomial-time algorithm is

known to compute the Euclidean-norm shortest nonzero vector of a lattice precisely, the polynomial-time

algorithm by Lenstra, Lenstra and Lovász (LLL algorithm) [18] solves it with good approximation for D < 1

in practice. As for almost all unique subset sum instances, D < 1, the unique SSP is significantly vulnerable

to lattice-based attacks and these attacks are the major concern to the security of SSP-based cryptosystems.
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2.3 The Merkle-Hellman Multiplicative Knapsack-Based Cryptosystem

As the pioneering work in the area, Merkle and Hellman [20] proposed an SSP-based cryptosystem known

as the Merkle-Hellman multiplicative knapsack-based cryptosystem. This PKC is different from the more

famous Merkle-Hellman knapsack-based cryptosystem using a super-increasing sequence, which was bro-

ken by Shamir [29]. It uses the DLP computation in a prime field Fp for a generator g to obtain a unique

subset sum instance B = (b1, . . . ,bn) from a set of n pairwise coprime integers P = (p1, . . . , pn) such that

the product p1 p2 · · · pn < p. Further, the DLP in the field Fp must be tractable, which asks for p−1 without

any large divisors. The unique subset sum instance (b1, . . . ,bn) forms a public key, while (p,g, p1, . . . , pn)
forms a private key. Given an n-bit plaintext (m1, . . . ,mn), a sender computes a ciphertext c as c = ∑n

i=1 mibi.

While decrypting, knowing the private key, a receiver computes u ≡ gc (mod p) = ∏gmibi . The value u

will be a product of integers chosen from {p1, . . . , pn}, so the receiver can factor u by trial division of these

values to recover the plaintext (see [20] for a detailed discussion).

As bi = logg pi ∈ Zp−1, with high probability, the size of the set of elements log(maxB) = log(p),
where maxB = max(b1, . . . ,bn). As density D = n

log(bmax)
, we obtain log p = n/D. In the Merkle-Hellman

cryptosystem, as ∏pi∈P pi < p, on average, pi < n
√

p. Therefore, log pi < 1
n

log p, log pi < n
nd

= 1
d

and for

any reasonable pi, the density d ≪ 1. Therefore, the density of a unique subset sum instance generated by the

Merkle-Hellman multiplicative knapsack-based cryptosystem is significantly less than 1 and is not secure

against LLL-based lattice attacks. Due to the high O(n6 log3 (maxB)) complexity of the LLL algorithm,

choosing a large n ≥ 500 is an option to avoid lattice attacks, as maxB > (n logn)n. However, this results in

an infeasibly large public key, often on the order of megabytes.

2.4 The OTU Quantum Public Key Cryptosystem

Okamoto, Tanaka and Uchiyama propose a new SSP-based scheme (the OTU scheme) [24], which combines

the best features from the multiplicative Merkle-Hellman and Chor-Rivest [5] cryptosystems and overcomes

the low density problem and the known underlying field problems in the respective systems. We summarize

the basic OTU scheme in Appendix A and refer the reader to [24] for a detailed discussion.

In the basic OTU scheme, as in the Merkle-Hellman cryptosystem, knowledge of a finite field Fp, a

particular generator g, and an extra “shifting parameter” d allows decryption by converting a subset sum

instance into a factorization problem with a known small set of factors to choose from. The key distinction

is that in the Merkle-Hellman scheme, p must be chosen so that p > p1 p2 · · · pn, whereas in the OTU scheme,

it suffices that p be greater than products of any k of the pi, for a suitable parameter k = o(n). This eliminates

the low density problem as the resulting bi will be smaller, increasing the density D by a factor of n/k. The

derived public key is no longer a unique subset sum instance; it is rather an instance of a variant we call the

k-unique subset sum problem.

Definition 2.4 (k-Unique Subset Sum Problem). Let A = {a1, . . . ,an} be a set of positive integers such

that the sum of every subset of any fixed size ≤ k is unique (i.e., for A1,A2 ⊆ A of the same size ≤ k, if

∑ai∈A1
ai = ∑a j∈A2

a j, then A1 = A2). Given the set A and an integer c, find A ′ ⊆ A (if such a subset

exists) such that

c = ∑
ai∈A ′

ai.

As only certain subset sums need to be unique, the density bound in Equation (1) does not apply to the

k-unique SSP. Although, to the best of our knowledge, there is no related density bound for k-unique SSP

instances available in the literature, in practice, the densities of k-unique SSP instances are much higher than

those of the unique SSP instances. Further, as every unique SSP instance is also a k-unique SSP instance,

the k-unique SSP is at least as hard as the unique SSP.
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On the practical side, using the k-unique SSP with small value of k = o(n) also provides significant

savings in the public key size, which is in the range of nk(logn + log(logn)). This makes n ≈ 1000 also

a feasible case, for which a LLL-algorithm execution is well beyond the currently assumed adversarial

computational capabilities.

The Chor-Rivest cryptosystem [5] was the first to use the k-unique SSP. It used the elegant Bose-

Chowla theorem [2] to obtain k-unique SSP instances, and mitigated the problem of low density in the

Merkle-Hellman scheme. The OTU scheme, which combines the Merkle-Hellman and the Chor-Rivest

schemes, achieves similar (medium) density by generating k-unique SSP instances. Concerned mostly with

the density-based attacks, both these systems fail to formally identify and define the k-unique SSP.

2.5 Lattice-Based attacks for k-Weight Subset Sums

On the theoretical side, Omura and Tanaka [25] and Nguyen and Stern [22] improve lattice-based attacks

on SSP instances for the specialized case of the low values of k used in the OTU scheme. They observe that

due to the known low weights of the OTU plaintexts, the density bounds of the Lagarias-Odlyzko as well

as CJLOSS attacks can be revised to much higher values. Nguyen and Stern further demonstrate that all the

parameter values (n, k) suggested in the original OTU paper are actually susceptible to lattice-based attacks

and introduce a new density measure called pseudo-density = k log2 n/ log2(maxB) to be used in place of

conventional density for low-weight SSPs. Notably, they also suggest the possibility of OTU parameters

secure against lattice-based attacks.

To achieve pseudo-density > 1 we need maxB < nk. In the OTU scheme, maxP ≫ n and the product of

the k largest pi has to be smaller than p. Further, maxB is nearly equal to p, and p > (maxP)k ≫ nk. Thus

pseudo-density > 1 is nearly impossible and we do not consider the OTU scheme to be theoretically secure

against lattice-based attacks. However, as discussed above, with large n, practical lattice-based attacks are

computationally infeasible. Without any significant reduction in the LLL algorithm complexity in last 25

years since its inception, we believe in security based on the infeasibility of an LLL computation for n ≥ 500

and use that to define a practical SSP-based system.

In another effort, Izu et al. [13] generalized the CJLOSS attack to improve its non-asymptotic behaviour;

they can attack low-weight SSPs of higher density, at a cost of O(nr) lattice basis reductions of dimension

n− r + 1, where r is a small constant (typically r ≤ 5). Considering the very high cost of a single LLL-

algorithm call, performing O(nr) lattice basis reductions is certainly well beyond existing computational

capabilities for n ≥ 500.

3 A Generic Cryptosystem Based on the SSP

Most of the SSP-based cryptosystems use DLP computations in their key generation steps. They assume the

existence of an oracle to solve arbitrary DLP (e.g. the OTU scheme [24]) or propose to choose a finite field

from a restricted set where the DLP computation is easy (e.g. Merkle-Hellman [20] and Chor-Rivest [5]

cryptosystems). This significantly reduces the practicality of the SSP-based cryptosystems, until quantum

computers are available to solve arbitrary DLPs in polynomial time.

In this section, we eliminate need of the DLP computation in the key generation step of these cryp-

tosystems. We show that any invertible map with certain homomorphic properties can replace the DLP

computation and present a generic construction of an SSP-based cryptosystem based on it.

3.1 Homomorphism in SSP-Based Cryptosystems

SSP-based schemes use the DLP computation over a multiplicative group of a finite field to convert easy fac-

torization problems (with a small set of possible factors) to SSP instances. In such schemes, DLP computa-
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tions in the key generation step map secret integers to their exponents. In exactly the opposite manner, in the

decryption step, modular exponentiations convert ciphertexts, which are sums of some of these exponents,

into products of the corresponding secret integers. The homomorphic property of the DLP computation over

a multiplicative group of a finite field, which makes these cryptosystems work, can be expressed as follows.

DLPg(x1)+DLPg(x2) ≡ DLPg(x1 ∗ x2)

where DLPg : F
∗
q 7→ Z/(q−1)Z such that for every x ∈ F

∗
q and a generator g ∈ F

∗
q, y = DLPg(x) if x = gy.

In these cryptosystems, the DLP itself does not provide the security. It is rather based on hiding the

field Fq and the generator g, as it is infeasible to obtain an integer x (private key) from the corresponding

exponent y (public key) without knowing Fq and g. Except for the homomorphic property in Equation 2,

none of other features of the DLP are used in these cryptosystems. Therefore, we can replace the DLP oracle

in these schemes with any other invertible additive-multiplicative homomorphism, where computation of the

map and its inverse is infeasible without knowing some secret information. Formally, we need a map Hσ

with following properties.

1. Hσ should be an invertible map such that

Hσ : S1 → S2

H−1
σ : S2 → S1

are homomorphisms, where (S1,∗) and (S2,+) are two Abelian semigroups of the same size.

2. Computation of both Hσ and H−1
σ requires knowledge of a secret parameter σ .

3.2 Generic SSP-based Scheme

We first define the k-unique subset sum property over structures other than the integers.

Definition 3.1 (k-unique Subset Sum property over (S ,+)). Let (S ,+) be an Abelian semigroup, and let

A = {a1, . . . ,an} be a set of n elements of S . The A has the k-unique Subset Sum property over (S ,+) if

whenever A1,A2 ⊆ A of the same size ≤ k and ∑ai∈A1
ai = ∑a j∈A2

a j, then we have that A1 = A2.

We now use the above homomorphic map Hσ to define the generic SSP-based cryptosystem. Although

Hσ can replace the DLP computation in any SSP-based cryptosystem, we choose the OTU scheme consid-

ering its computational security against all known attacks.

Key Generation:

1. Fix size parameters n,k ∈ Z
+, with k < n/2.

2. Choose two Abelian semigroups (S1,∗), (S2,+) and a mapping Hσ : S1 → S2 (with corre-

sponding secret σ ) satisfying the properties listed in Section 3.1.

3. Select at random n elements p1, p2, . . . , pn ∈ S1 such that P = {p1, p2, . . . , pn} has the k-unique

Subset Sum property over (S1,∗), and solving the k-unique SSP on the set P in (S1,∗) is easy,

given that the target subset is of size k.

An easy way to do this is to have S1 be the multiplicative group of GF(p), and for p1, p2, . . . , pn

to be such that the product of any k of them (or properly, their least positive representatives) is

less than p, and are pairwise coprime. Note that in this case, since (S1,∗) is a multiplicative

group, the SSP here is really referring to finding factors of products instead of addends of sums.

4. Use the secret σ to compute ai = Hσ (pi) ∈ S2 for 1 ≤ i ≤ n.
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5. Randomly choose an integer d ∈ S2. Compute bi = ai +d ∈ S2, for each 1 ≤ i ≤ n. This value

d helps to confound an attacker’s attempt to brute-force the secret σ .

6. The public key is (n,k,b1,b2, . . . ,bn), and the secret key is (Hσ ,H−1
σ ,σ ,d,P).

Encryption:

1. A plaintext M = (m1, . . . ,mn) is a binary vector of length n with exactly k ones. Any message of

size ⌊log2

(
n
k

)
⌋ bits can be converted to a valid plaintext M by a straightforward encoding [7].

2. The ciphertext c ∈ S2 is computed as

c =
n

∑
i=1

mibi = ∑
i∈M′

bi

where M′ is the set of nonzero indices of m.

Decryption:

1. Compute r = c− kd where kd = (d +d + · · ·+d)
︸ ︷︷ ︸

k times

∈ S2.

2. Calculate u = H−1
σ (r) ∈ S1 and solve the k-unique SSP on P and u over (S1,∗) to obtain a

subset P′ ⊂ P of size k. If pi ∈ P′, then mi = 1, else mi = 0.

3. The recovered plaintext is M = (m1, . . . ,mn).

Proof of Soundness: In decryption,

u = H−1
σ (r)

= H−1
σ (c− kd)

= H−1
σ (

n

∑
i=1

mibi − kd)

= H−1
σ (

n

∑
i=1

mi(ai +d)− kd)

= H−1
σ (

n

∑
i=1

miai) as exactly k of the mi are 1

=
n

∏
i=1

H−1
σ (miai)

= ∏
i:mi=1

pi

where ∏ and ∑ denote application of the semigroup operation over (S1,∗) and (S2,+), respectively.

Since P = {p1, . . . , pn} was chosen so that it has the k-unique Subset Sum property over (S1,∗) and

that solving the k-unique SSP on P is easy, the decryption step will recover the set P′ containing

exactly those pi for which mi = 1, and the proof is complete.

4 Using the Damgård-Jurik Homomorphism

The finite field DLP is the most natural example for the homomorphism Hσ characterized in Section 3.1.

But due to its superpolynomial complexity, SSP-based cryptosystems requiring the use of the DLP are not
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practical on classical computers. Although it is a workable solution to use finite fields in which the DLP

computation is easy, it severely restricts the possible choices for the secret key and makes the cryptanalysis

easy. In this section, we show that the Damgård-Jurik generalization [9] of the Paillier cryptosystem [26]

provides a homomorphism map satisfying all of the requirements of Section 3.1, and we apply this map to

design a practical SSP-based cryptosystem.

Paillier [26] introduced the composite residuosity class problem and presented a probabilistic homomor-

phic public key cryptosystem with the trapdoor permutation property. For t = pq where p and q are prime

and g ∈ Z
∗
t2 having order t, the Paillier cryptosystem provides an isomorphism Eg such that

Eg : Zt ×Z
∗
t → Z

∗
t2

(x,y) 7→ gx ∗ yt (mod t2).

It has a homomorphic property

Eg(x1,y1)∗Eg(x2,y2) = Eg(x1 + x2,y1 ∗ y2).

In the usual use of Paillier, x is the message plaintext, and y is a randomization factor used to achieve

semantic security.

Damgård and Jurik [9] generalize the Paillier Cryptosystem using computation modulo ts+1, for an

integer s such that 1 ≤ s < min(p,q). For an element g ∈ Z
∗
ts+1 of order ts, the corresponding map E s

g can be

represented as follows:

E
s

g : Zts ×Z
∗
t → Z

∗
ts+1

(x,y) 7→ gx ∗ yts

(mod ts+1).

E s
g has the same homomorphic property as Eg:

E
s

g (x1,y1)∗E
s

g (x2,y2) = E
s

g (x1 + x2,y1 ∗ y2).

To obtain a homomorphism Hσ as defined in Section 3.1, we need to consider the decryption function

(say D s
g) corresponding to E s

g such that

D
s
g : Z

∗
ts+1 → Zts ×Z

∗
t .

Given a ciphertext c = gxyts ∈ Z
∗
ts+1 , and the factorization of t, D s

g returns x ∈ Zts and y ∈ Z
∗
t in polynomial

time. D s
g provides a homomorphism of the form

D
s
g(c1 ∗ c2) = (x1 + x2,y1 ∗ y2)

We note that this encryption-decryption pair (E s
g ,D s

g) can not be directly used as our desired (H−1
σ ,Hσ ),

since the homomorphism is additive (as required) on the first coordinate, but multiplicative on the second.

We overcome this obstacle by considering the deterministic version of Damgård-Jurik that fixes y = 1,

yielding a bijection between (〈g〉,∗) and (Zts ,+). Note that we use the Damgård-Jurik cryptosystem only

as a homomorphic map; the security of our cryptosystem does not depend upon the security of the special

case of the Damgård-Jurik cryptosystem with y = 1.

The modified decryption function D̂ s
g is a homomorphism such that

D̂ s
g(c1 ∗ c2) = (x1 + x2)

= D̂ s
g(c1)+ D̂ s

g(c2)

and the corresponding encryption function Ê s
g satisfies

Ê s
g (x1)∗ Ê s

g (x2) = Ê s
g (x1 + x2).

As (D̂ s
g, Ê

s
g ) satisfies all the required properties of (Hσ ,H−1

σ ), we use them to define a practical SSP-based

cryptosystem, which we present next.
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4.1 The Proposed Scheme

Key Generation:

1. Fix size parameters n,k,s ∈ Z
+, with k < n/2 and k < s.

2. Randomly choose two primes p and q and compute t = pq. Pick an element α ∈R Z
∗
ts , and verify

that g = αt +1 ∈ Zts+1 has order ts.

3. Select at random n pairwise coprime integers 1 < p1, p2, . . . , pn < t(s+1)/k such that all of them

(considered as elements of Z
∗
ts+1) belong to the subgroup 〈g〉. Since 1/t of the elements of Z

∗
ts+1

belong to 〈g〉, it behooves us to have n ≪ 1/t ∗ t(s+1)/k = t(s−k+1)/k, and this is why we pick

s > k. Note that this also rules out the use of the plain Paillier cryptosystem (which is just the

Damgård-Jurik cryptosystem with s = 1).

4. Compute ai = D̂ s
g(pi) ∈ Zts for 1 ≤ i ≤ n.

5. Randomly choose an integer d ∈ Zts and compute bi = ai +d mod ts for each 1 ≤ i ≤ n.

6. The public key is (n,k,b1,b2, . . . ,bn), and the private key is (p,q, t,s,g,d, p1, p2, . . . , pn).

Encryption:

1. A plaintext M = (m1, . . . ,mn) is a binary vector of length n with exactly k ones, as before.

2. The ciphertext c ∈ Zts is computed as c = ∑n
i=1 mibi = ∑i∈M′ bi where M′ is the set of nonzero

indices of m. Note that although the public key consists of n numbers, each s times the size of t,

encryption consists simply of adding some k of them together.

Decryption: Compute r = c−kd ∈Zts and u = gr ∈Z
∗
ts+1 . Treating u as an integer in the range 0 < u < ts+1,

check if pi|u for each 1 ≤ i ≤ n. If it does, set mi = 1; else set mi = 0. The decrypted message is then

M = (m1, . . . ,mn).

Proof of Soundness: In decryption,

u ≡ gr ≡ gc−kd ≡ g∑n
i=1 mibi−kd ≡ g∑n

i=1 mi(ai+d)−kd mod ts+1

= g∑n
i=1 miai = ∏

i∈M′
gai = ∏

i∈M′
pi

Note that the pi were selected so that they are pairwise coprime, and that the product of any k of them

is less than ts+1. Therefore, determining which of the pi divide this u will reconstruct the original M′,
and thus M.

4.2 Variants

In this section, we consider some possible variants of the above scheme, which significantly improve the

security of the private key in the scheme.

Picking non-coprime pi

We suggested above to pick the pi so that they are pairwise coprime. This condition is sufficient to ensure

that a product of some subset of the pi can be uniquely factored in polynomial time. However, this condition

is not strictly necessary. For example, it also suffices that for each of the pi, there is some prime power which

divides it, and which divides none of the other pi. This can be easily checked by ensuring that p2
i 6 |∏n

j=1 p j

for each i. The non-unique factors of the pi can be ignored when recovering the factorization of u, and

choosing the pi in this way greatly increases the number of possible keys for given size parameters.
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Variable k

Some utility may be obtained by having the sender choose the value of k, rather than it being a fixed part

of the public key, as it increases the number of possible ciphertexts for a given plaintext. Note that in order

to decrypt correctly, the receiver needs to know k, so that she can calculate r = c− kd. Therefore, in this

case, k would need to appear as part of the ciphertext. It is important that k does not depend on the plaintext,

of course, as that would leak information to an observer. Minor modifications and care are needed in the

choosing of the parameters in this case, but we find that these are easily handled.

Prime or multi-prime t

We stated that t should be the product of the two primes p and q. However, it is also possible use a prime

t, as the required multiplicative group also exists in that case. Further, as t is part of the private key in

this system, and not disclosed, it is acceptable to use a larger number of smaller (distinct) primes. This will

involve the use of a straightforward extension of the Damgård-Jurik homomorphism to the multi-prime case.

Choosing a prime or multi-prime t significantly increases the search space for an attacker.

5 Security Analysis

We observe that the public keys produced by our cryptosystem are instances of the k-unique SSP from

Definition 2.4, where only subsets of fixed size at most k need to have unique sums; there will likely be pairs

of larger subsets (or pairs of subsets of unequal size) that have equal sums.

Fact The {bi} portion of every public key obtained using the scheme from Section 4.1 has the k-unique

Subset Sum property over (Zts ,+).

Proof. Let (n,k,b1, . . . ,bn) be a public key generated by our scheme. Let B = {b1, . . . ,bn}, and let B1,B2 be

two subsets of B, each of size k, such that ∑bi∈B1
bi = ∑bi∈B2

bi. Let this common sum be c. For i ∈ {1,2},

let Mi be the index set of Bi; that is, Mi = { j : b j ∈ Bi}. Because decryption has been proven to be sound,

we must have that c has a unique decryption, so M1 = M2, and therefore B1 = B2.

Now suppose B1 and B2 are subsets of B of the same size k′ < k < n/2 that have the same sum. Then

B′ = B\(B1∪B2) has at least n−2k′ > k−k′ elements, since n > k+k′. Let B∗ be a set of any k−k′ elements

of B′. Then B1 ∪B∗ and B2 ∪B∗ are subsets of size k with the same sum, and so by the above, B1 = B2.

Thus, the decryption problem in our cryptosystem is an instance of the k-unique SSP. Of course, being

an instance of k-unique SSP does not provide any evidence towards the hardness of our decryption problem;

however, it certainly puts it in the security range of the OTU scheme. Next we discuss concrete security

properties of our cryptosystem.

5.1 Semantic Security

The encryption scheme defined in Section 4.1 is not probabilistic in nature and consequently, does not

provide semantic security. However, as with other deterministic encryption schemes, it is possible to achieve

semantic security by padding the message with a random string before encrypting. Here, a message is

padded with random string before deterministically encoding it to a n bit plaintext of weight k. After

decryption and subsequent decoding, the random padding is removed to obtain the message sent. Note that

the length of the random padding depends upon the security requirements; 80 bits is usually an appropriate

value.
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5.2 Attacks

We consider the system to be secure against an attack if an adversary needs to do approximately 280 com-

putations for that attack to be successful. We next discuss important attacks on our system and restrictions

on our parameters to avoid these attacks.

Lattice-based attacks using the LLL algorithm have been the single most important tool used to cryptan-

alyze existing SSP-based cryptosystems. [6, 13, 14, 22] As already discussed, the computational complexity

of the LLL algorithm is very large, requiring O(n6 log3 (maxB)) operations, where maxB > ts for our cryp-

tosystem. For n ≥ 500 and ts in the 1500-bit range, a single LLL computation is beyond the capacity of an

adversary with a computational power of 280 operations.

Note that recent floating-point versions of LLL, such as Schnorr’s algorithm [28] and the L2 algo-

rithm [21] provide a bit smaller complexity bounds, such as O(n5 log2 (maxB)). However, these algorithms

also have associated floating point errors and the reduction in security is still tolerable in many practical

scenarios. Further, lattice-dimension reduction attacks for convolution modular lattices [19] are not appli-

cable to solving our non-convolutional SSP instances, and our choice of k = ω(logn) reduces the success

probability for these attacks to be negligible in any event.

In order to achieve semantic security, and the ability to encrypt a large number of messages, we would

like both the size of our message space and that of the random padding to exceed 80 bits. Therefore, we

need to select n and k such that
(

n
k

)
≥ 2160. Further, the complexity of the dynamic programming method to

solve an SSP instance is at least Ω(maxB). Here, maxB = ts = 2sτ , where τ = log2 t, so we choose sτ ≥ 80.

5.3 Choosing parameters

An important consideration to the security of our scheme is the choice of the parameters n, k, and s (and

relatedly t). Considering various attacks discussed above, we apply following restriction on the parameters

n, k, s, and t.

•
(

n
k

)
must be sufficiently large to resist brute-force attacks and also to provide sufficient message size

to realize padding-based semantic security.

• n, s, and τ = log t must be large enough such that lattice-based attacks, requiring at least O(n6s3τ3)
operations, are not possible

• n ≪ t(s−k+1)/k (from section 4.1) so that there are a large number of private key choices for given

parameter sizes

Strategy

We suggest a following strategy to choose the parameters for our cryptosystem.

1. Choose n sufficiently large so that computational resistance against lattice attacks is feasible.

2. Select n and k large enough to obtain message size ≥ 2160.

3. Find τ (the bitlength of t) and s such that s > k and n ≪ (2τ)(s−k+1)/k = 2(s−k+1)τ/k. That is,
k

s−k+1
log2 n ≪ τ .

4. Select t to be a square-free integer of size τ such that all of its prime factors are greater than s. Note that

it is acceptable for t to be smaller than a usual RSA modulus, since it is not made public. Damgård-

Jurik is used for its discrete log homomorphism, not for its cryptographic strength. However, t should

still be large enough that an attacker cannot brute-force all values of t (though the confounding factor

of d, which is of size sτ bits, may be enough to thwart that).

The public key size is around nsτ bits, while encryption requires O(ksτ) additions.
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RFID Tag RFID Reader

(ID,PK) (PK,SK)

c ∈R {0,1}δ

c⇐=

[r ∈R {0,1}80−δ ]
R = EncryptPK([r]||ID||c)

R
=⇒

[r′]||ID′||c′ = DecryptSK(R)

Verify c′
?
= c.

Identify the tag using ID.

Figure 1: Privacy-preserving Identification Protocol

Example

For the practical security of constrained devices, we find the parameter set (n,k,s,τ) = (500,30,35,50)
to be convenient. Here,

(
n
k

)
is approximately 2160, the public key is 109 KBytes and a lattice-based attack

requires around 5006353503 > 286 computations using the LLL algorithm. Also, 240 choices for t (assuming

prime and multi-prime t), and ts ≈ 21750 choices for g and d make private-key extraction difficult.

6 Application: RFID Security and Privacy

Cryptosystems based on the knapsack and subset-sum problems provide feasible options for authentica-

tion and identification protocols for RFID chips as the encryption steps for these systems are practical for

computationally constrained devices. Further, with the availability of a randomness source on a chip, it is

easily possible to make these protocols privacy preserving. Cui et al. [8] use the Niederreiter asymmetric

encryption scheme [23] to define a privacy-preserving authentication protocol for RFID systems. However,

Brickell and Odlyzko [4] have cryptanalyzed the Niederreiter encryption scheme and have suggested two

polynomial-time attacks. We observe that our SSP-based cryptosystem, which requires considerably less

computation than that of the Niederreiter cryptosystem and is computationally secure against all known at-

tacks on the SSP-based cryptosystems, certainly provides a promising choice. Although previous SSP-based

cryptosystems such as OTU [24] were also suitable for RFID chips, the need of a DLP oracle in the key gen-

eration step has been a major obstacle in considering them for practical use. Our encryption scheme using

the homomorphism of the Damgård-Jurik system overcomes this obstacle and provides a polynomial-time

key generation scheme.

6.1 Privacy-Preserving Identification Protocol

In this protocol, we assume that there is a public key-private key pair associated with a valid RFID reader

and the reader’s public key is embedded in a RFID chip. The RFID chip also contains an identification

string ID, which it needs to present to the reader to identify itself. In order to avoid cloning of the RFID

signals or the corresponding counterfeiting of an associated object, we need a mechanism for secure and

private transfer of the identification string from the chip to the reader. We achieve this using our encryption

protocol. In order to avoid a replay attack, where an eavesdropper replays a signal from a legitimate RFID

chip, the reader sends randomly generated challenge string c. Subject to the availability of an randomness

source on the RFID chip, it is also possible to make the protocol privacy-preserving. Here, the chip pads

the identifying string ID and the received challenge c with a random string r, so that its responses for two

identical challenges from an active attacker differ. Note that in the absence of a randomness source on
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the RFID chip, deterministic responses make privacy-preserving identification impossible against an active

attacker. We present a privacy-preserving identification protocol in Figure 1. Here, the reader’s challenge c

and the optional randomness r combine to form the 80 bits of randomness required for semantic security.

6.2 A Multi-chip Identification Scheme Using the Chinese Remainder Theorem

Although the parameter choices presented in the example in Section 5.3 can be used to develop a practical

and secure identification scheme, the large public-key size can be a concern during the implementation. In

this section, we mitigate this problem using Chinese remainder theorem (CRT) based public key distribution

over multiple RFID chips. In this multi-chip solution, we distribute the RFID reader’s public key over

multiple RFID chips and then appropriately combine the responses received from the involved chips to

decrypt the message and determine the identity of the product those are attached to.

The number of RFID chips to be used in this distributed protocol is determined by the number of pairwise

coprime factors of the parameter ts. For t = pq used in the proposed scheme (Section 4.1), we can use

two RFID chips. We divide the public-key parameters bi ∈ Zts for i ∈ [1,n] into b
(p)
i = bi mod ps and

b
(q)
i = bi mod qs, and along with an identical identity string ID, put all b

(p)
i on one chip and all b

(q)
i on

the other. The identification protocol remains exactly the same except during the decryption step at the

reader. During the decryption step, the reader collects ciphertext parts R(p) and R(q) received from the

two chips, computes R(p) mod ps and R(q) mod qs and extracts the corresponding R mod ts using CRT. We

assume that both chips are physically close to each other so that they both receive the challenge sent by the

reader. In other words, we assume that the reader sends the same challenge c to both chips. Further, for this

identification to be privacy preserving, both chips have to use the same r value, which is possible using a

pseudorandom number generator with the same seed value on both chips.

Note that an active attacker may somehow target just one of the two chips and destroy the synchrony of

the generated randomness and similarity of the plaintext at the two chips. However, this is an example of

denial of service (DoS) attack. If two chips are in close proximity, then an attacker that can selectively target

one of the two chips can also easily destroy the chip by other physical means. Therefore, in practice, this

desynchronization attack is not relevant. Next, we describe the proof of soundness, security and advantages

of our approach.

Proof of Soundness

We have gcd(ps,qs) = 1. Let M = Encode([r]||ID||c) be the plaintext of length n with exactly k ones (which

will be encrypted by both chips) and M′ is the set of nonzero indices in M. Given R(p) = ∑i∈M′ b
(p)
i and

R(q) = ∑i∈M′ b
(q)
i ,

R = CRT-Reconstruct(R(p) mod ps,R(q) mod qs)

= CRT-Reconstruct( ∑
i∈M′

b
(p)
i mod ps, ∑

i∈M′
b

(q)
i mod qs)

= ∑
i∈M′

CRT-Reconstruct(b
(p)
i ,b

(q)
i )

= ∑
i∈M′

bi mod ts

Here, function CRT-Reconstruct represents a reconstruction algorithm that, given the remainders, computes

the dividend in the CRT setting. The rest of the soundness proof remains the same as that of the basic scheme

(Section 4.1), by substituting r = R.
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Security Analysis

When compared with the original instance (b1,b2, · · · ,bn), the reduction in the complexity of LLL

attacks over each of instances (b
(p)
1 ,b

(p)
2 , · · · ,b(p)

n ) and (b
(q)
1 ,b

(q)
2 , · · · ,b(q)

n ) is η3, where η represents the

number of parts into which the k-unique SSP instance is divided; η is also the number of pairwise co-

prime factors of t (η = 2 here). For η3 = 8, an LLL attack over (b
(p)
1 ,b

(p)
2 , · · · ,b(p)

n ) or (b
(q)
1 ,b

(q)
2 , · · · ,b(q)

n )
is just 8 times faster than that over the original instance. Consequently, as required, LLL attacks remain

infeasible. Further, although the attacker now has the additional knowledge that all b
(p)
i < ps and all b

(q)
i <

qs, guessing the private-key parameters is still beyond the reach of a polynomially bounded attacker. Finally,

the complexity of the brute force attack remains the same
(

n
k

)
.

Advantages

Although we describe our mutli-chip solution for η = 2, it can be seamlessly extended to more chips using

multi-prime t having more than 2 coprime factors (η > 2). Further, using the above solution, the size of the

public key to be stored per chip gets reduced by a factor of η . For the example described in Section 5.3,

the above multi-chip solution reduces the size of public key to (109/η) KBytes. The complexity of the

encryption step also decreases by a factor of η .

7 Conclusion

In this paper, we provided a general construction for SSP-based cryptosystems and identified the require-

ments for the underlying homomorphism. We used the homomorphism from the Damgård-Jurik cryptosys-

tem to provide the a polynomial-time key generation procedure for the OTU cryptosystem, leading to a

practical SSP-based cryptosystem.

We observed that our cryptosystem is computationally secure against lattice-based attacks and presented

an application of these cryptosystems in defining an efficient RFID security and privacy solution.
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A The Okamoto-Tanaka-Uchiyama Cryptosystem

Here we show the basic version of the OTU cryptosystem [24]. Note the use of a quantum computation in

step 3 of the key generation, which our system avoids.

Key Generation:

1. Fix size parameters n,k from Z
+

2. Randomly choose a prime p, a generator g of the group Z
∗
p, and n coprimes 1 < p1, . . . , pn < p

such that ∏k
j=1 pi j

< p for any subset {pi1 , pi2 , . . . , pik} of {p1, p2, . . . , pn}.

3. Use Shor’s quantum algorithm to compute ai = logg pi in Z
∗
p for 1 ≤ i ≤ n.

4. Randomly choose an integer d ∈ Z/(p−1)Z.

5. Compute bi = (ai +d) (mod p−1), for each 1 ≤ i ≤ n.
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6. The public key is (n,k,b1,b2, . . . ,bn), and the secret key is (g,d, p, p1, p2, . . . , pn).

Encryption:

1. Let the message M = (m1, . . . ,mn) be a binary vector with exactly k ones. The ciphertext is

computed as

c =
n

∑
i=1

mibi = ∑
i∈M′

bi

where M′ is the set of nonzero indices of m.

Decryption:

1. Compute r = (c− kd) (mod p−1).

2. Compute u as the least positive representative of gr (mod p).

3. For i from 1 to n, if pi | u then mi = 1, otherwise mi = 0.

Proof of Soundness

In decryption,

u ≡ gr ≡ gc−kd ≡ g∑n
i=1 mibi−kd ≡ g∑n

i=1 mi(ai+d)−kd (mod ts+1)

= g∑n
i=1 miai = ∏

i∈M′
gai = ∏

i∈M′
pi

Now, by testing which pi | u, one can recover the k nonzero bits of M.
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[11] P. Erdős. Problems and results from additive number theory. Colloq. Théorie des nombres, Bruxells,

pages 127–137, 1955.

[12] R. K. Guy. Unsolved Problems in Number Theory. Springer-Verlag, New York, 2 edition, 1994.

[13] T. Izu, J. Kogure, T. Koshiba, and T. Shimoyama. Low-density attack revisited. Designs, Codes and

Cryptography, 43(1):47–59, April 2007.

[14] A. Joux and J. Stern. Improving the critical density of the Lagarias-Odlyzko attack against subset sum

problems. In 8th International Symposium on Fundamentals of Computation Theory, pages 258–264,

1991.

[15] A. Juels. RFID security and privacy: a research survey. IEEE Journal on Selected Areas in Communi-

cations, 24(2):381–394, 2006.

[16] J. Lagarias and A. Odlyzko. Solving Low-Density Subset Sum Problems. In IEEE Symposium on

Foundations of Computer Science, pages 1–10, 1983.

[17] M. Lai. Knapsack Cryptosystems: The Past and the Future. Technical report, Department of Infor-

mation and Computer Science,University of California, 2001. http://www.ics.uci.edu/~mingl/

knapsack.html.

[18] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring Polynomials with Rational Coefficients.

Mathematische Annalen, 261:515–534, 1982.

[19] A. May and J. H. Silverman. Dimension Reduction Methods for Convolution Modular Lattices. In

Cryptography and Lattices, International Conference (CaLC), pages 110–125, 2001.

[20] R. Merkle and M. Hellman. Hiding Information and Signatures in Trapdoor Knapsacks. IEEE Trans-

actions On Information Theory, 24(5):525 – 530, 1978.
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