
Int. J. Inf. Secur. (2011) 10:201–212
DOI 10.1007/s10207-011-0136-3

REGULAR CONTRIBUTION

Integrating identity-based and certificate-based authenticated
key exchange protocols

Berkant Ustaoğlu

Published online: 28 May 2011
© Springer-Verlag 2011

Abstract Key establishment is becoming a widely deployed
cryptographic primitive. As such, there has been extensive
research on designing algorithms that produce shared secret
keys. These protocols require parties to either hold certif-
icates or rely on identity (ID)-based primitives to achieve
authentication. Chain and cross certifications allow users
trusting different certification authorities to interact. Simi-
larly, there are methods to extend ID-based solutions across
multiple key generation centers (KGC). However, there has
been no dedicated work on interoperability between the two
settings. A straightforward solution would require each user
to maintain certificates and ID-based static keys to accom-
modate all peers. The cost of maintaining many secret keys;
matching keys with protocols; and preventing undesired
interference would arguably make such a solution imprac-
tical. In this work, we offer an alternative where a user needs
to keep a single static key pair and can subsequently engage
in a session key establishment with peers holding certificates
or identity-based keys. Thus, the proposed solution has none
of disadvantages of maintaining multiple static private keys.

Keywords Authenticated key establishment ·
Certificate-based protocols · ID-based protocols ·
Shared static state · ID-PKI integration

1 Motivation

Authenticated key exchange (AKE), along with public key
encryption and digital signatures, is a basic cryptographic
primitive used to establish authenticated and confidential

B. Ustaoğlu (B)
NTT Information Sharing Platform Laboratories,
Tokyo 180-8585, Japan
e-mail: bustaoglu@cryptolounge.net

communication channel between two users. It allows Alice
and Bob to agree on a shared secret over a public chan-
nel. Diffie and Hellman [10] proposed the first key agree-
ment protocol, which became known as the ephemeral
Diffie–Hellman protocol. There are many certificate-based
modifications of the original protocol that provide additional
properties, e.g., [1,16–18,24]. For authentication, these pro-
tocols need certificates: Each party is required to obtain a
certificate binding a public key to its identity and at the same
time verify validity of peer certificates. Certificate manage-
ment is a non-trivial procedure that requires extra care as
flawed management can result in severe weaknesses.

Shamir [22] proposed the alternative idea of ID-based
primitives, where the public key is the identity. The cor-
responding private key is generated by a designated key
generation center. Thus, ID-based primitives dispense with
certificate management and the need to assert binding
between users and public keys.

Early ID-based AKE (ID-AKE) protocols were pro-
posed by Okamoto and Tanaka [20] and Günther [13].
In the former protocol, the key generation relies on an RSA
[21]-based technique to issue static private keys; the latter
uses ElGamal [11] type algorithms to create static private
keys. In both cases, the actual key establishment relies on
the Diffie–Hellman [10] type shared secret computation. As
many early key establishment schemes, these protocols do
not meet modern security goals. Furthermore, before engag-
ing in a protocol run, a party must possess a static private
key, without which the party cannot prepare outgoing mes-
sages. Consequently, the application of these protocols and
their variants is limited.

More recently, Smart [23] used pairings to devise an
identity-based key agreement protocol; the idea was further
developed by Chen and Kudla [8]. Identity-based protocols
were also proposed in [3,9,19,25–27] but are not all secure;

123

202 B. Ustaoğlu

further discussion is available in [2,7,9]. Security argu-
ments for these protocols are in models that are weaker in
comparison with latest certificate-based models. Huang and
Cao [14] showed that there is no inherent difficulty to devise
ID-AKE protocols that are resilient to test session ephemeral
leakage, something not considered in previous ID-AKE pro-
tocols. It follows that ID-based and certificate-based AKE
protocols can provide similar level of security assurances.

ID-based primitives are not as widely deployed as certifi-
cate-based primitives. On the one hand, there is not much
incentive for a company or a single party to use the services
of an external KGC to generate static private keys as it implies
external entities possess the static private keys. It is therefore
unlikely that there will be a few widely accepted KGC cen-
ters to distribute private keys. On the other hand, within a
single company, it is reasonable to deploy ID-based solu-
tions to achieve confidentiality and dispense of certificate
management and possibly provide assistance in identifica-
tion of external entities. There are also methods to extend
ID-based solutions across multiple KGC domains [8], thus
allowing members of different KGC domains to communi-
cate with each other. Interoperability between certificate- and
ID-based primitives is less studied.

Boyd et al. [3] proposed an authenticated key agree-
ment protocol relying on key encapsulation mechanisms
(KEMs). The proposal is generic in the sense that the KEMs
can be identity based. Therefore, parties could establish a
shared secret even if one uses certificate-based and the other
ID-based primitive. However, to provide further security
properties, the protocol needs to be augmented. For example,
forward secrecy is guaranteed only if the parties essentially
run an ephemeral Diffie–Hellman protocol along with the
basic protocol; it is unclear whether ephemeral leakage resil-
ience can be achieved.

We propose a collection of protocols that allow two par-
ties to establish a session key under the following conditions:
(i) each party has a single static key pair dedicated to key
establishment; (ii) the key pairs can be both ID based or both
certificate based or combination of the two; (iii) at the onset,
the protocol initiator need not know what type of key the
other party has; and (iv) the protocol initiator also need not
know the exact identity of the other party, only a destination
to send messages. These conditions imply that a static key
is used for more than one protocol. Sharing state between
different protocols is in general not a sound cryptographic
practice as discussed by Kelsey, Schneier, and Wagner [15].
Even if static keys are shared only among key agreement
protocols, security is not necessarily guaranteed as exposed
in [6]. Moreover, it is hard, if not impossible, to prevent a
party from using the same public key in different protocols,
especially if these protocols provide the same functional-
ity. For this reason, our design specifically allows sharing
static keys. The strength of this relaxation is perhaps best

described with the following scenario: Bob has a certificate
(an ID-based primitive works in the same way) and wants
to establish a session key with an entity that belongs to a
company. It suffices for Bob to be able to send the mes-
sage to the company (essentially a destination address) and
await the response. When responding the company represen-
tative, Alice can supply a public key along with a certificate
that binds the identity “Alice” to a public key or inform that
“Alice” is part of an ID-based primitive; and if desired can
delegate verification of Bob’s credential to a dedicated entity
within the company while keeping the session key secret. At
the same time, the request send by Bob and the subsequent
session computations do not depend in any way on what static
public keys Alice supplies in the response. This is in contrast
with Boyd et al. [3], where the initiator needs to know a priori
the peer’s static public key.

2 Notation and outline

We introduce the notation in use, but do not present the formal
definitions that are widely available.

– ∈R means selected uniformly at random;
– G = 〈P〉 is an additive group of order q; the function

“log” denotes the discrete logarithm base P;
– ê : G × G → Gt is a non-degenerate pairing;
– Gt = 〈g〉 = 〈ê(P, P)〉; g = ê(P, P) is the multiplica-

tive group that is the range of ê;
– the gBDH assumption holds if no polynomially bounded

algorithm can produce glog U log V log W , given (U, V, W)

and an oracle that distinguishes tuples (x1 P, x2 P, x3 P,

gx1x2x2) from (x1 P, x2 P, x3 P, gy), where y ∈R Z∗
q ;

– Hid : {0, 1}∗ → G is a random oracle mapping binary
strings to G;

– F∗ : G → [1, q] is a random oracle1 mapping G elements
to integers in the interval [1, q];

– H : {0, 1}∗ → {0, 1}γ is a random oracle mapping binary
strings to binary strings of length γ , where γ is a security
parameter;

– Key generation center (KGC) has static public key
Z = z P ∈ G and private key z ∈ Z∗

q ;
– a certification authority (CA) is responsible for creating

certificates;
– users are denoted as UA, UB…; user UA has an associated

identifier Â;
– certificate Â belongs to UA and binds identifier Â to a

public key A; the static private key corresponding to A is
a = log(A);

1 For F∗ the random oracle can be substituted with an efficiently com-
putable function. However, in that case, protocol analysis requires more
technical details, and hence, we opt to use a random oracle.

123

Integrating identity-based and certificate-based authenticated key exchange protocols 203

– for identity string Â, the corresponding public key is
IDA = Hid(Â); private key is idA = zIDA;

– UA’s ephemeral public–private key pair is (X A, xA) ∈
(G,Z∗

q);

– ŨA a possibly anonymous destination address that can be
used to reach UA;

– C P is a set of parties with certificate-based public keys,
each UA from the set C P has a certificate Â that binds
UA’s identity to a static public key A;

– I P is a set of parties with identity-based public keys, each
UA from the set I P has identity Â and associated static
public key IDA = Hid(Â);

– I and R fixed strings denoting the initiator and responder
roles, respectively, in a session.

Outline Next section motivates and describes the security
model that incorporates protocols between users with ID-
based private keys and users with certificates. We then pro-
ceed to describe a set of AKE protocols between different
type of users. Afterward, we provide the security argument
and conclude our discussion.

3 Model

3.1 Model motivations

A typical AKE protocol usually identifies a party with a prob-
abilistic Turing machine that is assigned a certificate or an
ID-based key pair depending on the protocol. For example,
the CK01 model [4] assigns a certificate to a Turing machine
(called party) and initiates protocols with two identities. The
CK02 model [5] improves over CK01 by allowing a party
to initiate a protocol without knowledge of its peer identity.
Recently, Chatterjee, Menezes, and Ustaoğlu [6] showed that
Bob’s static information use influences security of session
keys at Alice should Alice and Bob engage in sessions. In
particular, if Bob uses the same static key for more than one
key agreement protocol, then session keys at Alice could
become insecure. Thus, it is important to consider the impli-
cations of sharing static information where peers have either
certificates or use ID-based static keys and engage in different
protocols: either purely certificate- or ID-based or mixture
of these.

In our model, we identify a party UA with a probabilistic
Turing machine. The set of all parties is divided into two:
C P and I P; for description of parties in C P and I P see
the previous section. We focus on Diffie–Hellman type pro-
tocols that exchange random ephemeral keys in G with the
first messages.

A certificate authority (CA) issues a certificate Â that
binds the public key A to an identifier Â. We require that

the identifier is part of the certificate. Note that in practice,
nothing prevents A from being used in multiple certificates.
A user could potentially obtain multiple certificates with dif-
ferent identifiers but with the same public key. Such practice
is not cryptographically sound, see for example [15], but hard
to prevent. Moreover, parties that want to maintain a small
number of static private key to reduce the likelihood of static
key leakage may adopt such approach without any malicious
intent. For a key A, it is the user’s responsibility to create
the corresponding static private key (say by first selecting
the static private key and then computing the corresponding
static public key). For simplicity in our model, a party in C P
has one certificate.

In practice, there are multiple CA authorities. We abstract
by assuming a single CA that performs static public key val-
idation and issues certificates binding any valid public key
with any identifier provided by the party. Thus, we leave out
issues of chain certification and allow an adversary to obtain
certificates without knowledge of the corresponding private
key. This is a widely used approach in key establishment.

The “equivalent” of cross-certification in the ID-based set-
ting is domain extension. The feasibility of this idea was
demonstrated in [8], and therefore, we assume a single KGC
center where ID-based protocols utilize domain extension
techniques wherever necessary. We assume that the adver-
sary can obtain a static private key for an identity of its choice
but is limited to identities that are not used by honest users.
For example, the adversary may collaborate with a malicious
KGC to request the key for the string “Alice”. However, in
the actual protocol, any honest user could and should use
“Alice” concatenated with a string that identifies the KGC
that issued the static key. Thus, our adversary can obtain pri-
vate keys only for identifying strings that are not bound to
honest parties.

In our proposal, we explicitly consider four protocol types:
between parties that use ID-based algorithms, parties that use
certificates, and the mixture of the two.2 As said, [6] dem-
onstrated that using certificates and corresponding keys in
distinct AKE protocols may lead to security failures. There
is no a priori reason why in the ID-based or integrated sce-
nario such vulnerabilities would not be present. Therefore,
it is important to consider simultaneously all protocols that
access the same static key pair in case reduced number of
those keys is to be maintained.

Note that while the adversary cannot obtain the private
key corresponding to Hid (“Alice”) if the string belongs to a
non-malicious entity, it is feasible for the adversary to obtain
a certificate that binds “Alice” to any group element and in
particular to Hid (“Alice”). This is a subtle point that we take
into account in our model. While the security of our proposed

2 Accounting for whether the session initiator has a certificate or not.

123

204 B. Ustaoğlu

protocols is not affected, it is plausible to believe that there
are protocols that can be affected.

3.2 Model description

Setup In the previous section, we introduced the parties,
the CA, and the KGC. We next proceed to describe sessions
and the adversary.

Session creation A party UA can be activated via an
incoming message3 to create a session. The incoming mes-
sage has one of the following forms: (i) (�i,UA,UB) or
(ii) (�i,UA,UB, X B), where �i identifies which protocol
is activated. If activated with (�i,UA,UB), then UA is the
session initiator; otherwise, the role of UA is responder. Each
of UA and UB is a certificate or an identifier or an address
that carries sufficient information to direct the message to the
right destination.

Session initiator If UA is the session initiator, then UA cre-
ates a separate session state where session-specific short-
lived data are stored and prepares a reply that includes an
ephemeral public key X A. The session is labeled active and
identified via a (temporary and incomplete) session iden-
tifier s = (�i,UA,UB, I, X A). The outgoing message is
(�i,UB,UA, X A).

Session responder If UA is the session responder, then UA

creates a separate session state and prepares a reply that
includes an ephemeral public key X A. The session identifier
is s = (�i,UA,UB,R, X B , X A) and the outgoing message
is (�i,UB,UA, X B, X A).

Session update A party UA can be activated to update a ses-
sion via an incoming message of the form (�i,UA,UB, X A,

X B). Upon receipt of this message, UA checks that UA owns
an active session with identifier s = (�i,UA,UB, I, X A);
except with negligible probability, UA can own at most one
such session. If no such session exists, then the message is
rejected, otherwise UA updates s to (�i,UA,UB, I, X B ,

X A). For two-pass protocols as proposed in the next session,
the above description suffices. The model can be extended
to accommodate different number of exchanged messages.
When the protocol specifies that no further messages will be
received, the session completes and accepts a session key.
Note that along the run of the protocol, the information UA

in the session identifier can be updated from a destination
address to either a certificate or identity. Such change can
occur once.

3 We assume all messages are represented as binary strings.

Aborted sessions A protocol may require parties to perform
some checks on incoming messages, e.g., the protocols pro-
posed here require public key validation. If a party is acti-
vated to create a session with an incoming message that does
not meet the protocol specifications, then that message is
rejected and no session is created. If a party is activated
to update an active session with an incoming message that
does not meet the protocol specifications, then the party
deletes all information specific to that session (including
the session state and the session key if it has been com-
puted) and aborts the session. Abortion occurs before the
session identifier is updated. At any given time, a session is
in exactly one of the following states: active, completed, and
aborted.

Matching sessions Since ephemeral public keys are
selected at random on a per-session basis, session identifiers
are unique except with negligible probability. For a session
(�i,UA,UB, ∗, ∗, ∗), we say UA is the session owner and
UB the session peer; together UA and UB are referred to as the
communicating parties. Let s = (�i,UA,UB,rA,commA)

be a session owned by UA, where rA ∈ {I,R}. A session
s∗ = (�j,UC ,UD,rC ,commC), where rC ∈ {I,R}, is
said to be matching to s if �i = �j, UC = UB , UA = UD ,
rA �= rC , and either commC is a substring of commA or
vice versa. The equality of two parties implies either same
identities or certificates, or a destination address and either
a certificate or an identity that can be reached at that des-
tination address. It can be seen that the session s, except
with negligible probability, can have more than one match-
ing session if and only if commA has exactly one component,
i.e., is comprised of a single outgoing message.

Adversary The adversary M is a probabilistic Turing
machine and controls all communications. Parties submit
outgoing messages to M, who makes decisions about their
delivery. The adversary presents parties with incoming mes-
sages via Send(message), thereby controlling the activation
of parties. The adversary does not have immediate access
to a party’s private information; however, in order to cap-
ture possible leakage of private information, M is allowed
to make the following queries:

– RevealStaticKey(UA): M obtains UA’s static private key.
– RevealMasterKey(): M obtains the master secret key

used by the KGC to generate private keys. Consequently,
M can obtain private keys for all identities used by all
parties.

– RevealEphemeralKey(s): M obtains the ephemeral pri-
vate key held by session s. We will henceforth assume
that M issues this query only to sessions that hold an
ephemeral private key.

123

Integrating identity-based and certificate-based authenticated key exchange protocols 205

– RevealSessionKey(s): If s has completed, then M
obtains the session key held by s. We will henceforth
assume that M issues this query only to sessions that
have completed.

– RevealEphemeralPublicKey(UA): M obtains the ephem-
eral public key that UA will use the next time a session is
created within UA.

– EstablishID(M̂): This query allows M to register an
identifier M̂ and obtain the corresponding private key
from KGC.

– EstablishCert(M̂,M): This query allows M to obtain a
valid CA certificate that binds identifier M̂ to the public
key M .

Identities and certificates that were established by M using
EstablishID and EstablishCert are called corrupted or adver-
sary controlled; otherwise, they are said to be honest. This
adversary interaction with KGC and CA permits the model-
ing of malicious insiders.

Remark A session with identifier (�i, . . .) will be called
�i session.

Adversary goal To capture indistinguishability, M is
allowed to make a special query Test(s) to a ‘fresh’ session
s. In response, M is given with equal probability either the
session key held by s or a random key. If M guesses cor-
rectly whether the key is random or not, then the adversary is
said to be successful and meet its goal. Note that M can con-
tinue interacting with the parties after issuing the Test query,
but must ensure that the test session remains fresh through-
out M’s experiment. The adversary can obtain a static private
key corresponding to an identity either by explicitly querying
for it or by obtaining the KGC master private key. In the fol-
lowing definition, we assume that RevealMasterKey implies
that RevealStaticKey has been issued against all identities but
not certificates.

Definition 1 (�-fresh) Lets be the identifier of a completed
�-session, owned by an honest party UA with peer UB , who
is also honest. Lets∗ be the identifier of the matching session
of s, if the matching session exists. Define s to be �-fresh
if none of the following conditions hold:

1. M issued RevealSessionKey(s) or RevealSessionKey(s∗)
(if s∗ exists).

2. s∗ exists and M issued one of the following:

(a) Both RevealStaticKey(UA) and RevealEphemer-
alKey(s).

(b) Both RevealStaticKey(UB) and RevealEphemer-
alKey(s∗).

3. s∗ does not exist and M issued one of the following:

(a) Both RevealStaticKey(UA) and RevealEphemer-
alKey(s).

(b) RevealStaticKey(UB).

Definition 2 Let �1,�2…,�d be a collection of d distinct
key agreement protocols. The protocol collection is said to be
secure in the shared model if the following conditions hold:

1. For any i ∈ [1, d] if two honest parties complete match-
ing �i-sessions, then, except with negligible probability,
they both compute the same session key.

2. For any i ∈ [1, d], no polynomially bounded adversary
M can distinguish the session key of a fresh �i-session
from a randomly chosen session key, with probability
greater than 1

2 plus a negligible fraction.

Remark In the session identifiers, ŨA can be updated only
once. This is to prevent potential attacks where the adver-
sary updates the identity of dishonest party to an honest
party and thus distinguish the session key of a “fresh” ses-
sion from a randomly chosen session key. Similarly, sessions
are aborted before updating the session identifier to prevent
potential attacks where the adversary forces a “matching”
session to become non-matching via modification of incom-
ing messages.

Remark The model is extension of the combined model
presented in [6], which in turn is based on the model
presented in [17]. Here, we contribute I C and C P , thus
allowing protocols with ID-based primitives running along
with traditional certificate primitives. Observe also that via
RevealEphemeralPublicKey query, the adversary can obtain
the next ephemeral public key of a party and then decide
which protocol to initiate at the party. Thus, the model covers
the scenario described in the introduction where Bob does not
know in advance which protocol will be executed yet reveals
the ephemeral public key Bob will use in the session.

4 Protocol descriptions

We outline the protocol descriptions and then provide design
motivations.

4.1 ID-ID variant

The protocol described in this section was first described
in Fujioka, Suzuki, and Ustaoğlu [12]. In our description, UA

uses identity string Â, with static key pair (idA,IDA) and
is the session initiator; similarly, UB uses identity string B̂,
has static key pair (idB,IDB), and is the session responder.
The two-pass protocol variant is denoted by �ii.

123

206 B. Ustaoğlu

UA pre-computations: UA chooses at random an ephemeral
private key xA ∈R Zq , computes the ephemeral public key
X A = xA P , and stores the pair (X A, xA) in a temporary
memory.
UB pre-computations: UB chooses at random an ephemeral
private key xB ∈R Zq , computes the ephemeral public key
X B = xB P , and stores the pair (X B, xB) in a temporary
memory.

UA
M−→ UB : (�ii, Â, ŨB, X A).

UB
M−→ UA: (�ii, Â, B̂, X A, X B).

UA computations: UA verifies X B ∈ G; computes the shared
secrets

σ1 = ê(idA + xA Z ,IDB + X B),

σ2 = ê(idA,IDB),

σee = xA X B;
the session key κ = H(σ1, σ2, σ3, Â, B̂, X A, X B,�ii); and
completes by deleting (X A, x).
UB computations: UB verifies X A ∈ G; computes the shared
secrets

σ1 = ê(IDA + X A,idB + xB Z),

σ2 = ê(IDA,idB),

σee = xB X A;
the session key κ = H(σ1, σ2, σee, Â, B̂, X A, X B,�ii); and
completes by deleting (X B, xB).

Parties compute shared secrets

σ1 = gz(log(IDA)+xA)(log(IDB)+xB),

σ2 = gz log(IDA) log(IDB),

σee = xAxB P,

and therefore, compute the same session key κ .

4.2 Cert-Cert variant

The protocol described in this section was first described
in Ustaoğlu [24]. In our description, UA uses certificate Â
with static key pair (a, A) and is the session initiator; sim-
ilarly, UB uses certificate B̂ with static key pair (b, B) and
is the session responder. The two-pass protocol variant is
denoted by �cc.

UA pre-computations: UA chooses at random an ephemeral
private key xA ∈R Zq , computes the ephemeral public key
X A = xA P , and stores the pair (X A, xA) in a temporary
memory.
UB pre-computations: UB chooses at random an ephemeral
private key xB ∈R Zq , computes the ephemeral public key
X B = xB P , and stores the pair (X B, xB) in a temporary
memory.

UA
M−→ UB : (�cc, Â, ŨB, X A).

UB
M−→ UA: (�cc, Â, B̂, X A, X B).

UA computations: UA verifies X B ∈ G; computes the shared
secrets

σA = (xA + a)(X B + FX B B),

σB = (xA + FX A A)(X B + B);
the session key κ = H(σA, σB, Â, B̂, X A, X B ,�cc); and
completes by deleting (X A, xA).
UB computations: UB verifies X A ∈ G; computes the shared
secrets

σA = (xB + b)(X A + FX A A),

σB = (xB + FX B B)(X A + A);
the session key κ = H(σA, σB, Â, B̂, X A, X B ,�cc); and
completes by deleting (X B, xB).

Parties compute shared secrets

σA = (xA + a)(xB + FX B b)P,

σB = (xA + FX A a)(xB + b)P,

and therefore, compute the same session key κ .

4.3 Cert-ID combinations

4.3.1 Cert-ID variant

In the description, UA uses certificate Â with static key pair
(a, A) and is the session initiator; UB uses identity B̂, has
static key pair (idB,IDB) and is the session responder. The
two-pass protocol variant is denoted by �ci.

UA pre-computations: UA chooses at random an ephemeral
private key xA ∈R Zq , computes the ephemeral public key
X A = xA P , and stores the pair (X A, xA) in a temporary
memory.
UB pre-computations: UB chooses at random an ephemeral
private key xB ∈R Zq , computes the ephemeral public key
X B = xB P , and stores the pair (X B, xB) in a temporary
memory.

UA
M−→ UB : (�ci, Â, ŨB, X A).

UB
M−→ UA: (�ci, Â, B̂, X A, X B).

UA computations: UA verifies X B ∈ G; computes the shared
secrets

σ1 = ê(IDB + X B, (a + xA)Z),

σ2 = ê(IDB, aZ),

σse = aX B,

σee = xA X B;
the session key κ = H(σ1, σ2, σse, σee, Â, B̂, X A, X B,�ci);
and completes by deleting (X A, xA).

123

Integrating identity-based and certificate-based authenticated key exchange protocols 207

UB computations: UB verifies X A ∈ G; computes the shared
secrets

σ1 = ê(idB + xB Z , A + X A),

σ2 = ê(idB, A),

σse = xB A,

σee = xB X A;
the session key κ = H(σ1, σ2, σse, σee, Â, B̂, X A, X B ,�ci);
and completes by deleting (X B, xB).

Parties compute shared secrets

σ1 = g(a+xA)z(log(IDB)+xB),

σ2 = gaz log(IDB),

σse = axB P,

σee = xAxB P,

and therefore, compute the same session key κ .

4.3.2 ID-Cert variant

In the description, UA uses identity Â with static key pair
(idA,IDA) and is the session initiator; UB uses certificate
B̂ with static key pair (b, B) and is the session responder.
The two-pass protocol variant is denoted by �ic.

The protocol computations are symmetrical to the Cert-
ID variant with the computations of UA and UB reversed.
Omitting details, parties compute shared secrets

σ1 = gz(log(IDA)+xA)(b+xB),

σ2 = gz log(IDA)b,

σse = xAbP,

σee = xAxB P,

and therefore, compute the same session key κ .

4.4 Design motivation

We concentrate on the design considerations for the ID-Cert
protocol variants.

The shared secret σee ensures that the protocol inherits the
original Diffie–Hellman properties. On the one hand, in the
case of ID-AKE, it may be desirable to allow the KGC to
be able to generate past session keys. Within a single entity,
such property has value since it is a problem of trust that con-
cerns a single company. On the other hand, an external party
may target a specific division and be unwilling to place its
trust in other divisions. We believe that this approach is more
sensible and hence include σee in the key derivation func-
tion which is a standard measure to prevent the KGC center
from computing past session keys. Should it be desired, it is
possible to consider protocol variants that do allow KGC to
recover past session keys. Such variant could either dispense

with σee or modify σee in a way that allows KGC to compute
the value σee, e.g., σee = gzxAxB.

Protocols �ci and �ic are symmetrical and we concen-
trate on �ci, where the initiator provides a certificate. Next,
we will informally argue that if the initiator UA believes
that the initiator’s static or initiator’s ephemeral private key
has not been leaked, then any peer UB that can compute the
session key must know both idB and xB . Similarly, if the
responder is assured that idB or xB has not been exposed,
then the purported initiator UA must know both a and xA.

Suppose at least one of xA and a is known only4 to the
initiator, and hence xA + a is known only to initiator. On
the one hand, if xA is private to the initiator, to compute the
session key any entity needs σee and hence xB . Computing
the session key also requires σ1 in this case, since xA + a
is private to the initiator computing σ1 implies knowledge
of z(log(IDB) + xB)P . With xB and z(log(IDB) + xB)P ,
anyone can derive idB = z log(IDB)P . Thus, in this case,
the initiator is assured that his peer has both xB and idB . On
the other hand, if a is private to the initiator to compute the
session key, any entity needs σse and hence xB . The previous
reasoning applies to deduce that the entity that computes the
session key can obtain both xB andidB . Consequently, if the
KGC center does not behave maliciously and z has not been
leaked the initiator holding a certificate is assured about the
identity of its peer.

Suppose now at least one of xB and idB is known only
to the responder, and hence gz(log(IDB)+xB)) is available only
to the responder. On the one hand, if xB is private to the
responder, to compute the session key, any entity needs σse

and σee, and hence xA and a. On the other hand, if idB is
private to the responder and since log(IDB) is hard to com-
pute, an entity that can compute all shared secrets can also
compute gxAz log(IDB) and gaz log(IDB); σse is crucial to extract
these two values. If z is not used with malicious intent, the
responder is assured that the peer has xA and a.

The above reasoning shows that σse prevents KGC from
impersonating parties with certificates to parties with
identity-based private keys. Such impersonation does not
arise in purely id-based protocols, where the KGC can derive
any static private key and therefore can impersonate any
user. Thus, key compromise impersonation (KCI) attacks
with respect to KGC are not considered. In the mixed vari-
ant, however, such attacks can be incorporated in the model.
We believe that there is a close relation between key escrow
and KCI attacks: if KGC can recover past keys, the KGC
can trivially impersonate users with certificates. While it is
worth considering protocol variants that allow key escrow
in the purely ID-based setting, in the mixed ID-based and
certificate-based setting key escrow is less desirable.

4 In other words xA or a has not been compromised.

123

208 B. Ustaoğlu

5 Security

Theorem 1 If F(·), Hid , and H are random oracles and the
gBDH assumption holds in (G, Gt), then protocols �ii,
�cc, �ci, and �ic are secure in the combined model.

Argument To argue the validity of Theorem 1, we have to
verify the conditions of Definition 2. Condition 1 is straight-
forward; we verify Condition 2. A successful adversary M
is an adversary that distinguishes the session key of a fresh
session from a randomly chosen session key. The event that
M is successful is denoted by M . Let γ denote the security
parameter and assume by contradiction there exists an adver-
sary M that can distinguish the session key of a fresh session
with probability

1

2
+ p(γ) ≤ Pr(M), (1)

where p(γ) is non-negligible function in γ . Let the test
session be

1. st = (�t,UA,UB, I, X A, X B) or
2. st = (�t,UA,UB,R, X B , X A),

where �t is one of �ii, �cc, �ci, or �ic, and depending
on �t, UA and UB are certificates or identities. Let H be the
event that M queries the random oracle H with

1. (σt,UA,UB, X A, X B,�t) in the former
2. and with (σt,UB,UA, X B , X A,�t) in the latter case.

In the query, σt is the collection of shared secrets used in
protocol �t, and UA and UB are as defined by �t. Let H be
the complement of H . We have that

Pr(M) = Pr(M ∧ H) + Pr(M ∧ H). (2)

The key derivation function includes the complete session
identifiers, and therefore, non-matching sessions have dif-
ferent inputs to the key derivation function. Since H is a ran-
dom oracle, M cannot obtain any information about the test
session key from session keys of non-matching sessions. In
event M ∧ H , the adversary does not issue RevealSessionKey
against the test session and its matching session and hence
Pr(M ∧ H) ≤ 1

2 . Combined with Eqs. 1 and 2, it follows
that

p(γ) ≤ Pr(M ∧ H). (3)

In the remainder of this argument, M∗ denotes M ∧ H .
Let M succeeds in an environment with ni + nc parties,

where ni parties obtain their static keys from a KGC and the
remainder obtain certificates from a CA. Let s be an upper
bound on the number of sessions activated within each party.

The following conventions will be used in the security
argument. The BDDH oracle on input

(x P, y P, z P, gr)

returns the bit 1 if ê(P, P)xyz = gr and the bit 0 otherwise.
A decisional Diffie–Hellman oracle for G can be simulated
using standard pairing techniques; we assume a DDH oracle
is available to the gBDH solver S. Also,

ξ : G × G × G → Gt

is a random function known only to S such that

ξ(X1, X2, X3) = ξ(Xi , X j , Xk)

for any permutation i jk of 123. Similarly,

μ : G × G → G

is a random function known only to S, such that

μ(X1, X2) = μ(X2, X1).

The algorithm S uses ξ and μ to represent BDH(·, ·, ·) and
CDH(·, ·), respectively, in situations when S does not pos-
sess the discrete logarithms of the elements involved. Except
with negligible probability of guessing ξ and μ, the adversary
will not detect their usage.

Let st denote the test session and sm its matching if it
exists. We consider the following complementary events.

1. Event M∗ ∧ ev1: st has a matching session sm , and M
queries the ephemeral private keys of neither st nor sm .

2. Event M∗ ∧ ev2: M does not query for st ’s ephemeral
private key and does not query for the static private key
of the test session peer.

3. Event M∗ ∧ ev3: st has a matching session sm and M
queries neither the static private key of the test session
owner nor the ephemeral secret of sm .

4. Event M∗ ∧ ev4: M does not query for the static private
keys of the test session peers.

If any of the peers uses an identity-based static key and M
does not query for the corresponding static private key, then
M also does not query for KGC’s master static private key.
Note also that Events M∗ ∧ ev2 and M∗ ∧ ev4 include the
case where sm does not exist. It is straightforward to verify
that

Pr(M∗) =
4∑

i=1

Pr(M∗ ∧ evi) (4)

The goal of S is to produce a solution to a BDH challenge
(U, V, W).

Remark If the argument is restricted only to the Cert-ID
variant, then using the protocol notation the embedding of
the BDH challenge corresponds to:

123

Integrating identity-based and certificate-based authenticated key exchange protocols 209

Event M∗ ∧ ev1 xA = u and xB = v;
Event M∗ ∧ ev2 xA = u, logidB = v and z = w

Event M∗ ∧ ev3 a = u and xB = v;
Event M∗ ∧ ev4 a = u, logidB = v and z = w.

5.1 Event M∗ ∧ ev1

For Event M∗ ∧ ev1, S begins by establishing a set C P of
nc parties and a set I P with ni parties. In addition, S selects
a master static private key z and corresponding static public
key Z . Parties in C P are given static key pairs (a, A = a P);
parties in I P are given static key pairs (idA = zIDA,IDA).
Technically, for this event, the adversary can be allowed to
set party identifiers. For each honest party UA, S maintains
a list of at most s ephemeral key pairs, and two markers – a
party marker and an adversary marker. The markers initially
point to the first entry of the list. Whenever UA is activated
to create a new session, S checks if the party marker points
to an empty entry. If so, then S selects a new ephemeral key
pair on behalf of UA as described in the pre-computation
steps of the protocols. If the list entry is not empty, then S
uses the ephemeral key pair in that list entry for the newly
created session. In either case, the party marker is updated
to point to the next list entry, and the adversary marker is
also advanced if it points to an earlier entry. If M issues
an RevealEphemeralPublicKey query, then S selects a new
ephemeral key pair on behalf of UA as described in the pre-
computation steps of the protocols. S stores the key pair
in the entry pointed to by the adversary marker, returns the
public key as the query response, and advances the adversary
marker.

In addition to the above steps, S randomly selects two
parties UC , UD and two integers i, j ∈R [1, s] subject to the
condition that (UC , i) �= (UD, j). S selects ephemeral key
pairs on behalf of honest parties as described above, with the
following exceptions. The i th ephemeral public key selected
on behalf of UC is chosen to be U , and the j th ephemeral
private key selected on behalf of UD is V . The sessions with
outgoing ephemeral public keys U and V will be denoted by
su and sv , respectively; S does not possess the correspond-
ing ephemeral private keys.

In the simulation,S responds to all adversary queries faith-
fully except when sessionsu orsv is activated. If any of those
session is activated, S deviates by setting the shared secrets
via the functions ξ and μ. If M queries for the ephemeral
private key of either su or sv , then S aborts with failure. In
addition, S aborts if the test session and its matching session
are not su and sv . If a key derivation H-query involving su

and sv is issued, and in that query the shared secrets are not
equal to ξ and μ, then S uses the decisional BDH and DH
oracles to provide consistent H query responses. That is, if
DBDH and DDH both return 1, then S responds with H value
that is equal to the H query using ξ and μ. Possibly, ξ and μ

have not yet been defined, but S is successful in solving the
BDH challenge when both decisional oracles return bit 1 for
the st or sm query.

With probability at least 1
(s(ni +nc))

2 , S guesses correctly

the test session and its matching session activation as sessions
su and sv . Suppose this is indeed the case and so S does not
abort during the test session query. Under Event M∗∧ev2, M
does query for the ephemeral secrets of st and sm , and there-
fore, S does not abort at any RevealEphemeralKey query.
Furthermore, in Event M∗, M queries H with shared secrets
that satisfy the decisional oracles. When such query is made,
S who detects it during the H query response terminates the
adversary and returns ê(σee, W) if �t is one of �ii, �ic,
or �ci. If �t is �cc, then

σee = CDH(U, V) = σA − a
(
X B + FX B B

) −FX B bX A,

where {U, V } = {X A, X B}, and UA and UB are session peers,
and so S is also successful. The success probability of S in
Event M∗ ∧ ev1 is bounded by

Pr(S) ≥ 1

(s(ni + nc))
2 Pr(M∗ ∧ ev1) = p1

(s(ni + nc))
2 ,

(5)

where p1 = Pr(M∗ ∧ ev1).

5.2 Event M∗ ∧ ev2

For Event M∗ ∧ev2, S begins by establishing a set C P of nc

parties and a set I P with ni parties. Furthermore, S selects
two parties UC and UD at random from the set C P ∪ I P and
an integer i ∈R [1, s].

If UD ∈ I P , then S sets Z = W and IDD = V . Note
that this implies Hid(D̂) = IDD , and hence, in this and sub-
sequent events, S selects identifiers for parties. For other Hid

values, S defines Hid(Â) = a P = IDA, where a is a random
integer selected by S from the set [1, q]. The static private
key corresponding to IDA is idA = aW . Except with negli-
gible probability, M cannot distinguish the simulation ofHid

from a true random oracle. If UD ∈ C P , then S sets D = V
and the remaining parties are set up as in Event M∗ ∧ ev1.
Note that S does not possess the static private key of UD .

As in Event M∗∧ev1, for each honest party, S maintains a
list of s ephemeral key pairs and the two markers. S deviates
from the protocol specifications by setting the i th session
ephemeral public key of UC equal U ; S does not possess the
corresponding ephemeral private key. This session will be
denoted by su .

In the simulation,S responds to all adversary queries faith-
fully except when sessionsu is activated or if UD is activated.
In either case, S deviates by setting the shared secrets via the
functions ξ and μ. If M queries for the ephemeral private key
of su , then S aborts with failure; S also aborts with failure

123

210 B. Ustaoğlu

if M queries for the static private key of UD . Furthermore,
if UD ∈ I P , then S also aborts if M queries for the master
static private key.

If the test session st is not su with peer UD , then S aborts.
If aH query involvingsu is issued and in that query the shared
secrets are not equal to ξ andμ, then similar to Event M∗∧ev1

S uses the decisional oracles to provide consistent query
responses.

With probability at least 1
s(ni +nc)

2 , S guesses correctly

the test session and its peer. Suppose this is indeed the case
and so S does not abort during the test session query. Under
Event M∗ ∧ ev2, M does query for the ephemeral secrets
of su and the static private key of the test session peer UD .
If UD ∈ I P , then M does not query for the master static
private key of the key generation center. Therefore, S does
not abort with failure during the simulation. Furthermore, in
Event M∗, M queries H with shared secrets that satisfy the
decisional oracles. When that H query is made S terminates
M and

ifst is (�ii, Â, B̂, I, X A, X B) or (�ii, Â, B̂,R, X B , X A)

S returns

BDH(U, V, W) = σ1

σ2ê (σee + log(IDA)X B, W)
;

ifst is (�cc, Â, B̂, I, X A, X B) or (�cc, Â, B̂,R, X B , X A)

S obtains

CDH(U, V) = (σA − a(X B + FX B B))

FX B − 1

− (σB − FX A a(X B + B))

FX B − 1
,

and returns

BDH(U, V, W) = ê (CDH(U, V), W);
ifst is (�ic, Â, B̂, I, X A, X B) or (�ci, Â, B̂,R, X B , X A)

S returns

BDH(U, V, W) = ê(σse, W);
if st is (�ic, Â, B̂,R, X B , X A) or (�ci, Â, B̂, I, X A, X B)

S returns

BDH(U, V, W) = σ1

σ2

(
ê(σse + σee, W)

) .

In Event M∗∧ev2 the success probability of S is bounded by

Pr(S) ≥ 1

s(ni + nc)
2 Pr(M∗ ∧ ev2) = p2

s(ni + nc)
2 , (6)

where p2 = Pr(M∗ ∧ ev2).

5.3 Event M∗ ∧ ev3

The setup and simulation in Event M∗∧ev3 is the same as for
Event M∗ ∧ ev2, except the abortion conditions for the test

session. More precisely, if the test session st is not owned
by UD or is not matching to su , then S aborts.

With probability at least 1
s(ni +nc)

2 , S guesses correctly the

test session owner and the session matching to the test ses-
sion. Suppose this is indeed the case and so S does not abort
during the test session query. Under Event M∗∧ev3, M does
query for the ephemeral secrets of su and the static private
key of the test session owner UD . If UD ∈ I P , then M does
not query for the master static private key of the key gener-
ation center. Furthermore, in Event M∗ ∧ ev3, M queries H
with shared secrets that satisfy the decisional oracles. When
such query is made, S who detects it during the H query
response terminates the adversary and

ifst is (�ii, Â, B̂, I, X A, X B) or (�ii, Â, B̂,R, X B , X A)

S returns

BDH(U, V, W) = σ1

σ2ê (σee + log(IDB)X A, W)
;

ifst is (�cc, Â, B̂, I, X A, X B) or (�cc, Â, B̂,R, X A, X B)

S obtains

CDH(U, V) = (σB − b(X A + FX A A))

FX A − 1

− (σA − FX B b(X A + A))

FX A − 1
,

and returns

BDH(U, V, W) = ê (CDH(U, V), W);
ifst is (�ic, Â, B̂, I, X A, X B) or (�ci, Â, B̂,R, X B , X A)

S returns

BDH(U, V, W) = σ1

σ2

(
ê(σse + σee, W)

) ;

if st is (�ic, Â, B̂,R, X B , X A) or (�ci, Â, B̂, I, X A, X B)

S returns

BDH(U, V, W) = ê(σse, W).

In Event M∗∧ev3 the success probability of S is bounded by

Pr(S) ≥ 1

s(ni + nc)
2 Pr(M∗ ∧ ev3) = p3

s(ni + nc)
2 , (7)

where p3 = Pr(M∗ ∧ ev3).

5.4 Event M∗ ∧ ev4

For Event M∗ ∧ ev4, the setup of parties is the same as for
Event M∗∧ev2. In this case, S selects two parties UC and UD

and sets their static public keys as U and V , respectively. If
either party comes from the set I C , then S sets static private
keys of parties in I C as in Event M∗ ∧ ev2, otherwise as in
Event M∗ ∧ ev1. For parties UC and UD , S does not possess
the corresponding static private keys and hence aborts if M
queries for them. In case either party is in I C , then S also

123

Integrating identity-based and certificate-based authenticated key exchange protocols 211

aborts if M queries for the master static private key of the
key generation center. Lastly, S aborts if M selects a test
session with peers that are not UC and UD .

With probability at least 1
(ni +nc)

2 , the test session commu-

nicating partners are UC and UD . Suppose this is indeed the
case and so S does not abort during the test session query.
Under Event M∗ ∧ ev4, M does not query for the static pri-
vate key of the test session peers or the master static private
key if any of the peers is in I C . In Event M∗, M queries H
with shared secrets that satisfy the decisional oracles. When
such query is made, S who detects it during the H query
response terminates the adversary and

ifst is (�ii, Â, B̂, I, X A, X B) or (�ii, Â, B̂,R, X B , X A)

S returns

BDH(U, V, W) = σ2;
ifst is (�cc, Â, B̂, I, X A, X B) or (�cc, Â, B̂,R, X B , X A)

S obtains

CDH(U, V) = FX A (σA − xA(X B + FX B B))

FX A FX B − 1

− (σB − xA(X B + B))

FX A FX B − 1
,

and returns

BDH(U, V, W) = ê (BDH(U, V), W);
otherwise S returns

BDH(U, V, W) = σ2

In Event M∗ ∧ ev4, the probability of success is bounded by

Pr(S) ≥ 1

(ni + nc)
2 Pr(M∗ ∧ ev4) = p4

(ni + nc)
2 , (8)

where p4 = Pr(M∗ ∧ ev4).

5.5 Analysis

Combining Eqs. 5–8, the success probability of S is bound by

Pr(S) ≥ 1

(ni + nc)
2 max

(p1

s2 ,
p2

s
,

p3

s
, p4

)
,

which is non-negligible if M is successful with non-
negligible probability. Furthermore, the actions of S in
response to M queries are executed in polynomial time.
Therefore, S is a polynomially bounded algorithm that solves
a BDH instance with non-negligible probability contradict-
ing the assumption in the theorem. �

5.6 Reflections

In the simulations of M∗ ∧ev4, it is assumed that UC and UD

are distinct parties. More precisely, if the test session owner

and peer are the same party, then S may fail as M may pro-
duce CDH(U, U) or CDH(V, V) instead of CDH(U, V) or
produce BDH(U, U, W) or BDH(V, V, W). The case UC =
UD can be encompassed by a reduction from the square vari-
ants of the CDH and the BDH problems, where some of
the element U or V or W are the same group element. To
do so, S’s actions are modified as follows: given U = u P ,
S selects v,w ∈R [1, q − 1] and computes V = vU and
W = wU . Given BDH(U, V, W), v and w it is straightfor-
ward to compute BDH(U, U, U). Therefore, in the event that
the test session’s initiator and responder are the same party
can be used to solve a square variant of the BDH problem.

5.7 Identifier selection

In the security model, we briefly mentioned selection of
identifiers and said that in Events M∗ ∧ ev2, M∗ ∧ ev3

and M∗∧ev4 S selects party identifiers. It is possible to allow
M to set party identifiers via the first Send query to the party.
In that case, S must guess which Hid queries to match with
U and V , equivalently, guess which of M’s Hid queries will
be used as the identifiers for UC and UC . Consequently, the
reduction tightness decreases. For simplicity sake, we allow
S to set honest party identifiers.

6 Concluding remarks

In this work, we motivated and described a collection of
algorithms that allow users to establish secure session keys
independent from what type of static public key they use. In
particular, we proposed a method whereby a user who has a
certificate can establish a session key with a user that is part
of an ID-based infrastructure. The security of the established
session is not violated even if the same identities and certifi-
cates are also used in purely ID- and purely certificate-based
settings. As such, our algorithms are interesting since they
do not require users to manage additional static private keys.

Both pure variants of our protocols �ii and �cc have
been shown to be efficient protocols. The mixed variants
could potentially be optimized to reduce the number of
group exponentiations, while interesting such modifications
will imply more complicated security arguments and possi-
bly loss of tightness. Since pairing computations are more
expensive than group exponentiations, we kept extra group
exponentiations but obtained a protocol with more intuitive
security. It is worth noting that the pairing computations are
the same across protocols and so potential implementations
are easier to devise.

Lastly, we observe that in the mixed protocol variant, it is
of interest to consider whether a malicious KGC can imper-
sonate honest clients that hold certificates to members of
the KGC domain. This idea has a natural extension in the

123

212 B. Ustaoğlu

ID-based domain extension. In particular, if an ID-based pro-
tocol is executed between two users that belong to different
KGC centers and standard domain extension techniques are
used, then it is worth to consider whether any KGC center
can impersonate users belonging to other domains to users
within its own domain.

References

1. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement pro-
tocols and their security analysis. In: Darnell, M. (ed.) 6th IMA
International Conference, vol. 1355 of LNCS, pp. 30–45. Springer,
Berlin (1997)

2. Boyd, C., Choo, K.-K.R.: Security of two-party identity-based
key agreement. In: Dawson, E., Vaudenay, S. (eds.) Progress in
Cryptology—Mycrypt 2005, vol. 3715 of LNCS, pp. 229–243.
Springer, Berlin (2005)

3. Boyd, C., Cliff, Y., González Nieto, J.M., Paterson, K.G.: Efficient
one-round key exchange in the standard model. In: Mu, Y., Susilo,
W., Seberry, J. (eds.) Information Security and Privacy—ACISP
2008, vol. 5107 of LNCS, pp. 69–83. Springer, Berlin (2008)

4. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols
and their use for building secure channels. In: Pfitzmann, B.
(ed.) Advances in Cryptology—EUROCRYPT 2001, vol. 2045 of
LNCS, pp. 453–474. Springer, Berlin (2001)

5. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-
based key-exchange protocol. In: Yung, M. (ed.) Advances in
Cryptology—CRYPTO 2002, vol. 2442 of LNCS, pp. 143–161.
Springer, Berlin (2002)

6. Chatterjee, S., Menezes, A., Ustaoğlu, B.: Reusing static keys in key
agreement protocols. In: Roy, B., Sendrier, N. (eds.) Progress in
Cryptology—INDOCRYPT 2009, vol. 5922 of LNCS, pp. 39–56.
Springer, Berlin (2009)

7. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement
protocols from pairings. Int. J. Inf. Security 6(4), 213–241 (2007)

8. Chen, L., Kudla, C.: Identity based authenticated key agreement
protocols from pairings. In: Proceedings of 16th IEEE Computer
Security Foundations Workshop, pp. 219–233 (2003)

9. Choo, K.-K.R., Chow, S.S.M.: Strongly-secure identity-based key
agreement and anonymous extension. In: Garay, J.A., Lenstra,
A.K., Mambo, M., Peralta, R. (eds.) Information Security—ISC
2008, vol. 4779 of LNCS, pp. 203–220. Springer, Berlin (2007)

10. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE
Trans. Inf. Theory IT-22(6), 644–654 (1976)

11. ElGamal, T.: A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Inf. Theory IT-
31(4), 469–472 (1985)

12. Fujioka, A., Suzuki, K., Ustaoğlu, B.: Utilizing postponed ephem-
eral and pseudo-static keys in tripartite and identity-based key

agreement protocols. Cryptology ePrint Archive, Report 2009/423
(2009)

13. Günther, C.G.: An identity-based key-exchange protocol. In:
Vandewaile, J., Quisquater, J.-J. (eds.) Advances in Cryptology
—EUROCRYPT’89, vol. 434 of LNCS, pp. 29–37. Springer,
Berlin (1989)

14. Huang, H., Cao, Z.: An ID-based authenticated key exchange pro-
tocol based on bilinear Diffie–Hellman problem. In: Safavi-Naini,
R., Varadharajan, V. (eds.) ASIACCS ’09: Proceedings of the 2009
ACM Symposium on Information, Computer and Communications
Security, pp. 333–342. ACM (2009)

15. Kelsey, J., Schneier, B., Wagner, D.: Protocol interactions and the
chosen protocol attack. In: Christianson, B., Crispo, B., Lomas,
M., Michael, R. (eds.) Security Protocols—5th International Work-
shop, vol. 1361 of LNCS, pp. 91–104. Springer, Berlin (1998)

16. Krawczyk, H.: HMQV: a high-performance secure Diffie–Hellman
protocol. In: Cramer, R. (ed.) Advances in Cryptology—CRYPTO
2005, vol. 3621 of LNCS, pp. 546–566. Springer, Berlin (2005)

17. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of
authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.)
Provable Security: First International Conference, ProvSec 2007,
vol. 4784 of LNCS, pp. 1–16. Springer, Berlin (2007)

18. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.A.: An
efficient protocol for authenticated key agreement. Des. Codes
Cryptogr. 28(2), 119–134 (2003)

19. McCullagh, N., Barreto, P.S.L.M.: A new two-party identity-based
authenticated key agreement. In: Menezes, A. (ed.) Topics in
Cryptology—CT-RSA 2005, vol. 3376 of LNCS, pp. 262–274.
Springer, Berlin (2005)

20. Okamoto, E., Tanaka, K.: Key distribution system based on identi-
fication information. IEEE J. Sel. Areas Commun. 7(4), 481–485
(1989)

21. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtain-
ing digital signatures and public-key cryptosystems. Commun.
ACM 21(2), 120–126 (1978)

22. Shamir, A.: Identity-based cryptosystems and signature sche-
mes. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryp-
tology—CRYPTO 84, vol. 196 of LNCS, pp. 47–53. Springer,
Berlin (1984)

23. Smart, N.P.: Identity-based authenticated key agreement proto-
col based on weil pairing. IET Electron. Lett. 38(13), 630–632
(2002)

24. Ustaoğlu, B.: Comparing SessionStateReveal and EphemeralKey-
Reveal for Diffie–Hellman protocols. In: Pieprzyk, J., Zhang, F.
(eds.) Provable Security: Third International Conference, ProvSec
2009, vol. 5848 of LNCS, pp. 183–197. Springer, Berlin (2009)

25. Wang, Y.: Efficient identity-based and authenticated key agreement
protocol. Cryptology ePrint Archive, Report 2005/108 (2005)

26. Xie, G.: An ID-based key agreement scheme from pairing.
Cryptology ePrint Archive, Report 2005/093 (2005)

27. Yuan, Q., Li, S.: A new efficient ID-based authenticated key agree-
ment protocol. Cryptology ePrint Archive, Report 2005/309 (2005)

123

	Integrating identity-based and certificate-based authenticated key exchange protocols
	Abstract
	1 Motivation
	2 Notation and outline
	3 Model
	3.1 Model motivations
	3.2 Model description

	4 Protocol descriptions
	4.1 ID-ID variant
	4.2 Cert-Cert variant
	4.3 Cert-ID combinations
	4.3.1 Cert-ID variant
	4.3.2 ID-Cert variant

	4.4 Design motivation

	5 Security
	5.1 Event M*ev1
	5.2 Event M*ev2
	5.3 Event M*ev3
	5.4 Event M*ev4
	5.5 Analysis
	5.6 Reflections
	5.7 Identifier selection

	6 Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

