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Abstract—Android is one of the major smartphone platforms
today. One reason for this success is that many interesting
applications are made available through Google Play. The increas-
ing functionality, however, entails new risks. To defend against
attacks, Android provides a sophisticated security architecture
based on permissions which must be granted to applications
at installation time. Since the Android source code is publicly
available, the security community has the chance to assess the
security mechanisms of Android. Due to its large code body, a
completely manual code review is tedious and hence tool support
for this task is desirable. As a first step in this direction, we
propose to extract the implemented access control policy from
the code for Android system services with the help of program
slicing. After this abstraction phase, we analyze the extracted
policy against the documentation. For this purpose, we use the
Java Modeling Language (JML) in conjunction with extended
static checking. We applied this approach to core system services
of Android 4.0.3 and identified some inconsistencies between the
documentation and the implementation.

I. INTRODUCTION

Smartphones become more and more popular, with a steadily
growing market share among mobile phones. One reason for the
success of smartphones lies in the possibility to conveniently
download small programs (called “apps”) from application
repositories, such as Apple’s App Store or Google Play. In
particular, the Android platform has become one of the major
smartphone operating systems. The fact that smartphones
store and process sensitive information, such as location data,
passwords for applications, or device IDs, makes them attractive
for attackers [9]. Specifically, malicious apps can harm the end
user’s phone by trying to exploit security holes on the phone
or tricking the user to grant excessive permissions.

Due to the fact that Android is open source and supports
rich inter-process communication means, it has attracted much
attention in the security research community [12], [23], [15],
[4], [34], 8], [13], [20], [10], [29]. Most of the current
works focus on enhancing the security functionality of the
Android platform or statically/dynamically analyzing Android
applications w.r.t. security and privacy aspects. Interestingly, not
many approaches address the security analysis of the Android
platform itself, although its source code has been published.
Due to the complexity of the source code, however, approaches
are desirable that help one better understand the implemented
security architecture of Android. This is even more important as
no sufficiently detailed documents on the security architecture
are publicly available.
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As a first step to better understand the implemented security
architecture of Android, we propose an approach to statically
extracting and analyzing the access control policy of Android
system services. The Android platform makes available about
30 system services, which run under a privileged user ID
and provide critical functionality, such as managing installed
applications, providing access to location information, offering
Bluetooth connectivity, and managing user accounts.

The access control policy of the system services is
largely implemented by means of specific access control
checks, which are also called ‘“service hooks” [14]. These
service hooks use predefined Android APIs, such as
the enforceCallingPermission () method of the
Context class and several variants [22]. More than 350
service hook calls exist within the system services, for
example, the statement

mContext.enforceCallingPermission (BLUETOOTH) ;

enforces the BLUETOOTH permission. If necessary, these
checks are augmented with additional access conditions.

Due to the complexity of the source code, we propose
a two-step analysis technique. In the first step, we extract
the access control checks as well as their data and control
dependences automatically from the source code. This step
allows an analyst to better comprehend the implemented access
control policy because she can focus on the implemented
policy and does not have to consider unrelated code. We
employ interprocedural program slicing for this purpose, which
is a well-studied technique for program comprehension [24].
Due to the fact that program slicing respects data as well
as control dependences, we can consider those program
statements which influence the access control decision. In
particular, through control dependences, we can capture
conditional enforcement. Here, the access control checks
depend on certain additional conditions, e.g.,

if(callingUid != Process.SYSTEM_UID)
mContext.enforceCallingPermission (perm) ;

We have implemented our slicing tool based on the WALA
analysis tool-suite, a mature source and bytecode analysis
framework for Java, which makes available sophisticated slicing
algorithms [11]. The main motivation behind this extraction
process is to simplify the subsequent analysis step, although



program slicing can be utilized on its own to better understand
the access control policy.

The analysis step aims to detect flaws and inconsistencies in
the implemented access control policy of the system services,
e.g., allowing access to functionality without the required
permissions. For this purpose, we employ the extended static
checker ESC/Java2 [18], [2], which is based on the principle of
design by contract (DBC) and allows an analyst to automatically
check method specifications, which are in the form of pre- and
post conditions, against the implementation. Extended static
checking is a kind of light-weight verification, which allows
one to analyze real-world applications [18]. ESC/Java2 uses the
Java Modeling Language (JML) [26] for the specification of pre-
and postconditions. DBC-based specification languages like
JML let one conveniently define access control rules as logical
formulae, which is more powerful and declarative than rule
languages of commercial static code analyzers, such as Fortify
SCA [19]. Code annotations are a useful format to redocument
the security architecture of a software system unambiguously.

We examined core system services with the help of this
approach and detected some inconsistencies. In addition, our
technique helped us extract the implemented access control
policy of system services and is independent of the Android
version, although we concentrated on Android 4.0.3. We
employed a static analysis approach as we intend to utilize
our analysis infrastructure for future security analyses of
the Android Framework. In this way, our work differs from
the approach by Felt et al., who generated a permission
map for Android 2.2 dynamically [34], [35]. Specifically, we
give concrete examples in which the aforementioned map is
incomplete due to limited test coverage.

In the end, we believe that our analysis technique can be
generalized to show that applications use security APIs to
meet their security requirements. Our contribution lies in the
combination of slicing and extended static checking and their
application to the problem of separating and analyzing access
control code of real-world software. In particular, we utilize
specific knowledge on the software framework to initialize the
analysis tools. Also, our proposed technique can serve as a
basis for the redocumentation and comprehension of security-
relevant code that is distributed over a larger code base.

The remainder of this paper is organized as follows. Sec-
tion II gives a detailed overview of Android security, JML
and extended static checking. We describe our approach in
Section III, whereas we report on implementation aspects and
our results in Section IV. Section V discusses limitations as
well as further prospects of our approach. After a section on
related work, we conclude with a summary and an outlook.

II. BACKGROUND

In the following, we briefly describe JML and extended
static checking. Thereafter, we present the Android security
concepts relevant to this paper in more detail.

A. The Java Modeling Language

JML is a formal behavioral interface specification language,
specifically designed for specifying the functional behavior of

Java programs [26]. Due to the fact that JML specifications
are written by the Java programmers themselves at the source
code level, JML uses a Java-like syntax and is relatively easy
to understand by an average programmer. JML provides a
rich set of language constructs that are necessary to precisely
specify the functional behavior of Java programs, mostly, in the
form of class invariants, and methods’ pre- and postconditions.
This way, JML is based on the DBC principle introduced by
Eiffel [30]. JML specifications are written in special annotation
comments in the form of /x@...@x/ orusing //@... if a
single line specification is intended. JML uses requires and
ensures clauses to specify method’s pre- and postconditions,
respectively. The preconditions enforce the client’s obligations,
whereas postconditions enforce the implementer’s obligations.
JML provides a logical variable \result, which represents
the value returned by a method; the variable \o1d refers to
the pre-state of the current method and is used in ensures
clauses. The fact that exceptions can be thrown is expressed
by the signals clause and by exceptional_behavior
statements. The keyword pure indicates that a method is free
of side effects.

B. Extended Static Checking

There is a variety of tools available that allow one to check
the JML constraints at run-time or (in part) statically [2]. These
tools usually check that the code corresponds to the JML
specifications. One such tool is ESC/Java2, which can statically
detect inconsistencies between the code and the specification
using the built-in theorem prover Simplify [18]. However,
due to the fact that such conformance checking in general
is undecidable, false positives and negatives may be produced.
ESC/Java2 employs modular reasoning, which is regarded as
an effective technique when used in combination with static
checking. Code sections, e.g. Java methods, can be analyzed
one at a time and their JML-based specifications can be proved
by inspecting the specification contracts (and not the code) of
the methods they call within their bodies [18].

C. Android Security Concepts

We briefly describe the Android programming model and
thereafter discuss Android’s security concepts in more detail
as far as they are related to this paper’s topic.

1) The Android Programming Model: Android provides
a specific programming model for application development.
Android applications consist of components, which are ac-
tivities, services, content providers, and broadcast receivers.
Activities represent an application’s user interface, whereas
services implement the application logic. Content providers
allow an application to share data (e.g., calendar data, phone
lists) with other applications. Broadcast receivers can subscribe
to broadcast messages from other applications. Android com-
ponents/applications interact with other applications via Inter
Process Communication (IPC), which is internally implemented
by the Binder protocol.
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2) Android Security: Android applications are separated
from each other by assigning a different Linux user ID to each
application [14]. Due to the fact that such a strict isolation
prevents one from developing many useful applications, the
IPC concept has been introduced. However, this IPC must be
adequately secured. In Android, an application’s components
can only be accessed if the caller has sufficient permissions.
Permissions are usually granted by a user at installation time via
a specific user interface; other permissions can be gained by an
application depending on code-signing certificates. Android’s
permission-based security model has several refinements, such
as delegation (e.g., pending intents, URI permissions), shared
User IDs, and service hooks [14].

The concept of service hooks is relevant to our further
discussion. Service hooks allow a developer to secure single
methods of a service with permissions rather than the whole
service component. This way, more fine-grained access control
policies for a service are possible. The Android Framework
Classes provide several APIs in the Context class for this
purpose. checkCallingPermission (perm) checks if
the permission perm has been granted to the calling ap-
plication. enforceCallingPermission () enforces this
access decision and throws a security exception if the calling
application does not hold the appropriate permission. check—
CallingOrSelfPermission (perm) is less restrictive
in that it additionally returns PERMISSION_GRANTED if
the callee (“self”) holds perm and no IPC is currently
being processed. This point is interesting as the Android
Framework also uses the clearCallingIdentity () and
restoreCallingIdentity () API calls for privilege
management. clearCallingIdentity () sets the user ID
of an incoming IPC to the current process’ user ID, whereas
restoreCallingIdentity () restores the original user
ID. If this privilege management is used wrongly, check-
CallingOrSelfPermission () will grant the requested
permission, although this was not intended. In case of a hole
in privilege management, all code locations can be attacked
that use this service-hook variant. Consequently, it is important
to know where checkCallingOrSelfPermission () is
called. A tool for the comprehension of the access control policy
of the Android Framework should provide enough information
to distinguish between the different kinds of service hook calls.

» h()

RPCs with Android system services.

3) Securing System Services: Service hooks are heavily used
by Android system services, although third-party applications
can also employ this security feature to secure their exported
APIs. Android makes available about 30 system services, which
run under the system user ID and export a rich set of APIs.
Typical examples are the PackageManagerService, the
BluetoothService, the TelephonyRegistry, and the
LocationManagerService.

A system service is started as a single instance at system
start-up. Android applications can access these service instances
through APIs, which are implemented as remote procedure
calls (RPCs). The Android Framework Classes provide a facade
for each system service, e.g., the PackageManager class.
Each facade contains a proxy object which actually makes the
RPCs to the remote system service instance via the Binder
device. From a security point of view, this facade is not relevant
because it only implements the proxy for the remote system
service. In fact, the proxy is under the control of the calling
applications and hence of a possible attacker, who can access
the proxy via Java reflection.

From the security viewpoint, the exported interface of a
system service is of importance. It contains those methods of
the system service for which a Binder transaction is defined,
i.e., which are remotely accessible. The exported methods
are defined in a Java interface, which is a subinterface of
android.os.IInterface and is implemented by the
system service. Summarizing, these exported methods belong
to the attack surface of the system services and consequently
of the system user ID. Fig. 1 gives an overview of how the
access to system services in Android works.

The Android platform secures the exported methods of
system services by placing service hooks before security-critical
code. A typical example is the getBluetoothState ()
method of the BluetoothService:

public int getBluetoothState () {
mContext.enforceCallingOrSelfPermission (BLUETOOTH) ;
return mBluetoothState;

}

The Android documentation describes for each API method
(of a system service’s facade) if and which permissions are
needed. This information gives one a hint which permissions
the corresponding system service must actually enforce by



High-level algorithm: Abstraction, annotation, and verification of a system service

(e.g., enforceCallingOrSelfPermission(),

Input: The source file of an Android system service
Step 1: Construct an SDG and generate instructions in SSA form from the source,
with the exported methods as the entry points.
Step 2: Search for all service hook statements
and checkCallingPermission()) with the help of the SDG’s call graph part
as well as the SSA representation and add them to the slicing criterion.
Step 3: Do context-sensitive backward slicing on the SDG with respect to the slicing criterion.
Step 4: Create a new source file from the SDG/SSA representation.
Step 5: Insert JML annotations for each method (automatically inferred or via a user interface).
Step 6: Call the extended static checker on the annotated code.

Result: A static checker’s report on specification violations of the access control policy

Fig. 2. Algorithm for extracting and analyzing the implemented access control policy of a system service.

mapping the API methods to remote calls of a system service.
Please note that there is not much documentation available
in the source code of the system services, so we can deduce
this permission map only indirectly. Also, there are further
methods exported by a system service which are only called
by hidden and not the official APIs. For example, this is the
case for methods of the DevicePolicyManager.

Having extracted the policy, one interesting task is to verify
if this expected policy has been implemented correctly with
the help of service hooks. For example, in an earlier Android
version, a bug was introduced which allowed applications
to access the Android camera without any permission. The
Android developer responsible for fixing this problem noted:

Some debugging code was added to camera service. Later
it was # ifdef’d out, but this change also removed the camera
permission check. [36]

Certainly, the problem occurred at the C++ level as the
camera service is implemented by native code. However,
permission checks exist at the C++ level which are similar
to the Java-based service hooks. In general, extracting and
verifying the implemented access control policy of the system
services is a main topic of the rest of this paper.

III. OUR APPROACH

Our approach aims to better understand the access control
policy of Android system services. We are not the first ones
dealing with this topic. In fact, our work was inspired by Felt et
al. who generated a permission map for the Android Framework
Classes dynamically by means of code instrumentation [34].
One difference is that we use static analysis. In addition, we
take a more long-term perspective in providing an analysis
infrastructure for the Android Framework, which can be
employed for other security analyses as well (beyond checking
the service hooks). In contrast, Felt et al. used their map
for their Stowaway tool, which aims to detect overprivileged
Android applications [34]. There are also approaches to provide

a permission map statically that are based on call graphs (e.g.,
[20]). We also compare our technique with these approaches
in the course of the paper.

Our analysis technique comprises two steps. First, we extract
the implemented access control policy from the system services’
source code by program slicing. The second step performs
the lightweight verification with the help of extended static
checking on the sliced version of the system service. The
innovation lies in the combination of both software engineering
techniques and the fact that we exploit Android Framework
know-how (about service hooks) to adequately initialize the
slicer. Both steps are now explained in more detail. Fig. 2
depicts the overall algorithm used for the abstraction and
verification tasks—this figure is described later.

A. Extracting the Access Control Policy with Slicing

For extracting the access control policy, we use a technique
called “slicing”, first introduced by Weiser [39]. A backward
slicing algorithm starts from a statement, the “slicing criterion”,
and calculates all statements which (transitively) influence the
slicing criterion. Slicing is often used for program compre-
hension and debugging tasks in order to focus only on those
code parts that are relevant to the analysis. Technically, slicing
is usually implemented based on system dependence graphs
(SDGs) [24]. SDGs contain the statements in static single
assignment form (SSA), an intermediate representation well-
suited to data and control flow analyses, as well as call graph
information. An SDG represents methods via special nodes.
Context-sensitive slicing only allows accessible execution paths,
i.e., a method must return to the site where the method has
been called and not to other call sites of the method.

We now discuss the slicing approach in the context of
the Android system services. Our task is to extract the
access control policy implemented by the service hooks,
i.e., we, for example, use checkCallingPermission (),
checkCallingOrSelfPermission (), and enforce-
CallingOrSelfPermission () statements as slicing cri-
teria. We employ the SDG for automatically finding these



public void removeActiveAdmin (ComponentName adminReceiver) {
ActiveAdmin admin = getActiveAdminUncheckedLocked (adminReceiver);
if (admin == null) return;
if (admin.getUid() != Binder.getCallingUid()) {
mContext.enforceCallingOrSelfPermission (BIND_DEVICE_ADMIN, null);

long ident = Binder.clearCallingIdentity();
try{
removeActiveAdminLocked (adminReceiver) ;

Hinally {
Binder.restoreCallingIdentity (ident);
}

}

ActiveAdmin getActiveAdminUncheckedLocked (ComponentName who) {

ActiveAdmin admin = mAdminMap.get (who) ;

if (admin!= null && who.getPackageName () .equals (admin.info.getActivityInfo () .packageName) &&

who.getClassName () .equals (admin.info.getActivityInfo () .name)) {

return admin;

}

return null;

}
Fig. 3.

criteria statements. Starting from the entry points of a system
service (i.e., the remote interface), we visit all reachable
methods in the call graph. Within each visited method, we loop
through all statements in SSA form until we find service hook
calls. We collect all these statements from different methods
into one slicing criterion.

Starting from this slicing criterion (the access checks),
we compute all influencing statements via backward
slicing, i.e., the statements which influence the access
decision. Fig. 3 depicts an example taken from the
DevicePolicyManagerService, a system service
providing device management functionality. In our example,
the slicing criterion is

mContext.enforceCallingOrSelfPermission
(BIND_DEVICE_ADMIN) ;

The underlined statements in Fig. 3 belong to the slice. Please
observe that we also descend into methods called on the slicing
path, such as the getAct iveAdminUncheckedLocked ()
method because we use interprocedural slicing. In the appendix,
we present a more complete example to give the reader a feel
how the sliced and annotated code looks like.

B. Verification of the Access Control Policy

Our approach to the light-weight verification of system
services works as follows. For each exported method of a
system service, we provide a JML specification (which is
discussed shortly). We use the sliced method rather than the
original method for verification as we would like to focus on
the implementation of the access control policy.

In principle, we could have carried out this task without the
aforementioned abstraction step, i.e., directly on the original
source code. However, as pointed out by Lloyd and Jiirjens, for
example, this can lead to performance problems. In particular,
the verification conditions, which are generated by ESC/Java2
for each method, will become large or even cannot be generated
at all [28], [18]. The background is that ESC/Java2 is based

An example of a slice taken from the DevicePolicyManagerService.

on the Simplify theorem prover, which needs the verification
conditions representing each analyzed method as input [18].
Having a smaller source code at hand makes the problem more
tractable if methods are large, which is often the case in the
implementation of the Android Framework (there are methods
with more than 800 lines of code, which show dependencies
with many other methods and classes).

Fig. 4 displays a sliced method, which is taken from the
BluetoothService class, together with its JML annota-
tion. The annotation expresses that the normal behavior of
the method requires that checkCallingOrSelfPermis—
sion (BLUETOOTH) returns PERMISSION_GRANTED, oth-
erwise a security exception must be thrown because the
caller does not possess the permission to execute the method.
This kind of specification pattern can be used for most
of the system services’ methods, only with the appropriate
permissions inserted. Additional patterns, for example, are
that two permissions or one of two permissions are required.
One can also see that the annotation distinguishes between
the different versions of service hook calls; in this case,
checkCallingOrSelfPermission () is used and not
the more secure variant checkCallingPermission ()
(see Section II-C).

In Fig. 4, we also give the annotation for the enforce-
CallingOrSelfPermission () method, which guaran-
tees that a security exception is thrown if checkCalling-
OrSelfPermission (perm) does not return PERMIS-—
SION_GRANTED. The method checkCallingOrSelf-
Permission () has the postcondition true, which is the
weakest postcondition and is trivially satisfied.

1) Static checking based on modular reasoning: We as-
sume that enforceCallingOrSelfPermission () and
checkCallingOrSelfPermission () have been imple-
mented correctly. The verification of these methods is a
different and complex task, e.g., RPCs with the system
services ActivityManagerService and PackageMan-—
agerService must be handled. We abstract from these
details and define stub methods (not displayed). The simplified



stub methods must only satisfy the contract of the original
methods. Our task is to show that they are used correctly
rather than proving the correctness of their implementation.
We rely on modular reasoning, a central concept of extended
static checking, as mentioned in Section II-B. The contract
of a callee and not its implementation is important for static
checking. Consequently, we have decomposed the analysis task
into two parts.

Calling ESC/Java2, we can identify all exported API calls
which do not satisfy their specification, i.e., we attempt to
detect violations of the access control policy. ESC/Java2 then
emits warnings which show possible violations (e.g., this is the
case for the specification of the get TrustState () method
shown in Fig. 4). Due to the fact that ESC/Java2 may produce
false positives, these results must then be cross-checked. Please
note that we here employ ESC/Java2 as an annotation checker
rather than searching for null pointer dereferences and array
bounds errors [18].

2) Permission inference: One problem while working with
extended static checking is the annotation burden [18]. To give
an analyst a starting point, we implemented the following fea-
ture. Since the SDG comprises the call graph, we can determine
and tabulate the service hook calls (enforced permissions) for
each entry point—this serves as a hypothesis for the enforced
access control policy. We perform this step when we collect
the service hook calls as slicing criteria (see Section III-A). If
more than one service hook call is noted, we conservatively
assume the “logical and” of the corresponding permissions.
Please notice that approaches that generate a permission map
statically normally use an approach based on the call graph [20].
Additionally, the SDG provides information on the statement
level which allows us to perform analyses on the code level
as well in contrast to techniques that only use the call graph.

If a permission check is not called in an entry point, but later
in a method along a call path, then all methods of this path
are also automatically annotated with a corresponding JML
specification. In the special case that the permission parameter
of the service hook call is a variable and not a string constant,
we cannot directly deduce the called permission (as there is
no concrete value). Using the SDG, we have implemented
an analysis to determine the permission value. We walk back
through the call graph until we find method calls with concrete
permission values (of the namespace Manifest.Permis—
sion) as parameters. The discussed situation occurred in two
of the analyzed system services where the security checks have
been factored out in specific methods.

Certainly, the aforementioned permission inference produces
imprecise results, but if ESC/Java2 gives a warning, then we
have interesting special cases that can be further analyzed, e.g.,
by inspecting the code. Often such cases are not mentioned in
available permission maps as we discuss below. Furthermore,
we later describe a user interface where an analyst can enter
additional specifications or select specification templates to
improve these results.

/%@
public normal_behavior
requires checkCallingOrSelfPermission (BLUETOOTH)
== PERMISSION_GRANTED;
also
public exceptional_ behavior
requires ! (checkCallingOrSelfPermission (BLUETOOTH)
== PERMISSION_GRANTED) ;
signals_only SecurityException;
@x/
public synchronized boolean getTrustState (String addr) {
if (!BluetoothAdapter.checkBluetoothAddress (addr)) {
mContext.enforceCallingOrSelfPermission (BLUETOOTH) ;
}
return true;

}

/%@

public normal_behavior

requires checkCallingOrSelfPermission (perm)
== PERMISSION_GRANTED;

also
public exceptional_behavior
requires ! (checkCallingOrSelfPermission (perm)

== PERMISSION_GRANTED) ;
signals_only SecurityException;
@x/
public/*@ purex/void enforceCallingOrSelfPermission (
String perm) {
// ... code omitted
}

Fig. 4. Annotated sliced source code.

C. Putting It All Together

Fig. 2 depicts the overall algorithm. Input of this algorithm
is the Java source code of the system services. From the Java
interface, which each system service exports, we obtain all
methods which are remotely accessible. These are the entry
points for the slicer. The slicer then builds the intermediate
representation (SDG) and performs the slicing. Afterwards, the
sliced (intermediate) code is translated back to the source code.
For each method, the tool automatically inserts the inferred
annotations by means of the tool or manually via a graphical
user interface. Thereafter, we call the static checker which
(possibly) emits warnings that are interpreted by an analyst.

IV. IMPLEMENTATION AND RESULTS

We now describe implementation aspects in more detail and
discuss some of the results we achieved by our project.

A. Implementation

WALA: We implemented the concepts described in the
previous section in a tool. For the slicing part, we used WALA,
a tool-suite developed by IBM [11]. WALA supports slicing
in several variants (e.g., forward and backward slicing, thin
slicing). Furthermore, WALA is mature and support is still
available. Last but not least, WALA lets one implement new
kinds of analyses and can serve as the basis for other security
analysis tasks (see Section V).

Generating sliced source files: We implemented the anal-
ysis concept illustrated in Fig. 2 with WALA and ESC/Java2
as follows. First, we compile the Java source code of a
system service into bytecode and load it into WALA, which
generates the SDG (including the statements in SSA form) as



an intermediate representation (IR). Please notice that WALA
lets one define an analysis scope such that we can restrict our
analyses to the system services and do not need to consider
the whole Android Framework.

In the next step, we collect all the statements of the slicing
criterion as described in Section III-A. For this purpose, we
implemented a depth-first search (DFS) on the call graph part
of the SDG. We then traverse the call graph with the help of
the DFS and for each visited graph node, we loop through
its statements. Proceeding this way, we find all service hook
calls, which form the slicing criterion. We finally conduct a
backward slicing w.r.t. this criterion.

We chose a slicing option which ignores data dependence
edges to/from heap locations because otherwise too large SDGs
are generated [37]. The slicer’s control-flow option, however,
is fully enabled, which is needed for considering, e.g., if-
statements (see Section IV-B1).

Since WALA is an analysis tool-suite rather than a transfor-
mation and code generating tool, we could not translate the
generated slice (which is in the form of WALA’s IR) back to
source code or at least to bytecode. To address this problem,
we use a mapping between the statements belonging to the
slice and the source code’s line numbers. This mapping is
provided by WALA.

Based on this mapping, we build a new source file containing
the sliced code. For this task, we employ WALA’s IR as
well as the original source code of the system service under
investigation. All the information of the class (name, parent
class, declared fields, and method information, such as the
signature and the name) can be retrieved from the IR via
WALA'’s API and is written to the new source file. We then walk
through all the statements of the slice (which are represented
by the IR) and obtain the line number for each statement. Using
this line number, we can select the corresponding line in the
original source file and copy it to the newly created source
file. This step is quite simple because the statements appear in
increasing order w.r.t. the line number in the IR.

On employing this basic approach, one technical issue still
remains. Not all lines of the slice represent complete Java
statements, which leads to syntactically incorrect code. For
example, consider the following if-statement

if (checkPermission(...)==PERMISSION_GRANTED) {
. some code

}

If we slice the code w.r.t. the criterion checkPermis—
sion () and employ the aforementioned approach, only the
first line will be added to the slice—the body does not appear
in the slice as it does not influence the criterion. To address
this issue, we decided to transform the source code with a
Java parser [32] into an abstract syntax tree rather than using
the original source file. This additional step allowed us to
determine and emit the minimum complete Java statement
which contains the line in question.

Graphical User Interface: To improve the results of the
automated inference process (see Section I1I-B2), we display a

dialog window. Here, an analyst can select methods of a system
service to be analyzed. For a method, the user can choose
between one of three predefined patterns (one permission,
logical and of two permissions, logical or), which must be
filled in with the concrete permissions to be checked. This way,
in most cases, the user is not confronted with JML annotations.
Furthermore, she can apply a pattern to a collection of methods
rather than a single method, which leads to a higher degree
of automation, as there are often many methods requiring the
same permission. The user can also insert JML specifications
manually because in some situations specific security checks
exist in addition to the service hooks (see also Section IV-B3).
An analyst can can obtain such information from consulting
the Framework documentation or available permission maps.

B. Experiments and Results

In this section, we present the results and experience we
gained from our approach. Beyond the analysis of service hooks,
we report on three other experiments conducted with the help
of our slicing infrastructure, i.e., extracting the permission
enforcement for whole Android components, identifying loca-
tions in which security exceptions are thrown, and identifying
privileged regions. We conclude with observations that we
made during the analysis of the system services.

1) Service Hooks: We analyzed ten system services, among
them the two most complex ones, ActivityManager—
Service. java and PackageManagerService. java,
with about 50k LoC in total (see Table I). From Table I, one can
conclude that the sliced files become considerably smaller. In
total, as an approximation, they are about 11% of the original
code. Due to WALA’s NO_HEAP option and the possibility to
restrict the search space, each file was sliced on an ordinary
laptop within a few seconds. Also, the verification step took
only a few seconds, which shows that slicing enabled us to
apply extended static checking to a real-world application.

We now describe some of our findings. Almost all system-
service checks behaved as expected, but we found a few
inconsistencies. We also detected conditional security checks,
i.e., the enforcement is only carried out under certain conditions.
The last point is interesting from the viewpoint of program
comprehension to understand the implemented policy in detail.

a) Conditional enforcement: One example of conditional
enforcement is given in Fig. 3 where the access control check
is only executed if the condition

admin.getUid() != Binder.getCallingUid()

holds, i.e., if the current app runs under a user ID different
from the administrator app. ESC/Java2 helped us detect such
cases during the automated annotation and validation process
(see Section III-B2). If there is a condition, ESC/Java2 displays
a warning because there are paths through the method which do
not satisfy the postcondition. Then, one can look into the source
code to understand the situation better and provide more precise
annotations (see also Appendix, removeActiveAdmin ())
via the user interface. As a result, we found that in most of the



analyzed services, such specific cases exist, although they are
not mentioned in the API documentation nor in Java comments.
In the services listed in Table I, 65 hooks depend on additional
conditions. This is about 27% of the total number of hooks in
these services.

In addition, the aforementioned example also reveals some
weaknesses of the permission map provided by Felt et al.! The
removeActiveAdmin () method is not listed?, i.e., the map
assumes that no permission is required. It is likely that testing
has difficulty in dealing with conditions. The dynamic approach
only considered a test case in which the aforementioned
condition is false. Similarly, several APIs of the Window—
ManagerService, such as addWindowToken (), enforce
the permission MANAGE_APP_TOKENS only if the caller’s
process ID is different from the system process ID. This
condition again is not noted in the map.

b) Inconsistencies: On analyzing system services,
we detected some inconsistencies w.r.t. the Android
Framework documentation. As an example, we subsequently
show a code extract of the setTrust () API of the
BluetoothService:

public boolean setTrust (String addr, boolean val) {

if (!BluetoothAdapter.checkBluetoothAddress (addr)) {

mContext.enforceCallingOrSelfPermission (
BLUETOOTH_ADMIN) ;

return false;

}

if (!isEnabledInternal ()) return false;

return setDevicePropertyBooleanNative(...);

}.

The permission enforcement is called within an if-statement
and after this check, the method returns. checkBluetooth-
Address () validates a Bluetooth address. If addr is syn-
tactically correct, then the required BLUETOOTH_ADMIN
permission is not enforced, whereas only if the address is
wrong, there is a permission check. Our tool also flagged this as
well as the get TrustState () and getRemoteClass ()
methods, which show the same behavior. ESC/Java2 issues
a warning here because not all paths through these methods
enforce the permission. Conversely, we found through man-
ual inspection that getRemoteUuids () implemented the
expected enforcement (the access control check is before the if-
statement) and hence was not flagged by our tool. We reported
the aforementioned inconsistencies to Google; Google will fix
them in the future. Interestingly, the permission map produced
by Felt et al. also did not cover this issue.

Another inconsistency stems from the fact that the Android
documentation explicitly notes that one needs the BLUE-
TOOTH permission to exercise BLUETOOTH_ADMIN [21].
This statement is not supported by the current implementation
of the BluetoothService. We found about ten methods
secured by BLUETOOTH_ADMIN, not enforcing BLUETOOTH,

I Certainly, in other cases, the dynamic approach works better than a static
one, e.g., it considers the INTERNET permission, which is enforced by Unix
groups rather than service hooks.

ZPlease note that the map only indirectly lists the interface of the system
services by enumerating the proxy methods.

Source Code File [.java] Lines [k] Lines per Slice [k]
AccountManagerService 2.5 0.3
ActivityManagerService 15 1.1
BluetoothService 2.8 0.7
PackageManagerService 0.3
DevicePolicyManagerService 1 0.1
TelephonyRegistry 0.5 0.1
LocationManagerService 2.5 0.4
BackupManagerService 5.5 1.3
PhonelnterfaceManager 0.7 0.2
WindowManagerService 10.1 0.6
In Total 49.6 5.1
TABLE I

LoC FOR SYSTEM SERVICES AND THE SLICED FILES.

e.g., startDiscovery (), cancelDiscovery (), and
enable (). We also verified via the Android manifest that
there is no additional protection of the whole Bluetooth—
Service with the BLUETOOTH permission.

2) Permission Enforcement for Components: In this and
the following section, we show how to employ our slicing
infrastructure for the task of security program comprehension.
This task allows an analyst to better understand additional
security checks and mechanisms which are implemented in the
Android platform and are often undocumented.

In Section II-C2, we mentioned that entire Android
components can be secured by permissions. The Android
Framework also implements this concept with the help of
service hooks, but does not use publicly available methods
here. In particular, these checks are performed by the
package-scope method checkComponentPermission ()
of the ActivityManagerService class. All these checks
(about 15) are executed within this class. We have examined
only one of them, namely, a check which is responsible for
controlling access to content providers. Here, we used the
slicing criterion:

checkComponentPermission (cpi.writePermission,
callingPid, callingUid, cpi.exported ? -1 :
cpi.applicationInfo.uid) .

This check is called by the method checkContentPro-
viderPermissionLocked (), which returns null if it
succeeds and otherwise an error message. Following the back-
ward slice, we reach the getContentProviderImpl ().
Here, a security exception is thrown if the error message is non-
null (which is a hack). Further traversing the backward slice, we
finally reach the method getContentProvider (), which
is a publicly accessible method of the ActivityManager—
Service class.

The current implementation of getContentProvider—
Impl () suggests that one permission is sufficient to open
a content provider (regardless if it is a read, write or URI
permission); this check must be supplemented by additional
checks in the code at the content provider side to decide whether
it is a read or write access. In summary, our approach reveals



that there is a specific API to open a content provider with the
aforementioned security check and that additional checks are
required to secure the content provider appropriately.

3) Security Exceptions: Many additional security checks
exist in the Android Framework, which are not of the form
of service hooks and are mostly undocumented. They range
from ensuring that certain security-critical operations can
only be performed by the system process to checking code-
signing certificates for code instrumentation. We found about
50 additional checks within the examined system services.

Slicing helps one understand and redocument these security
mechanisms. We can locate these checks within the code
by searching for throw new SecurityException();
statements with the help of WALA and carry out back-
ward slicing, i.e., we use these throw statements as slicing
criteria. Technically, WALA represents throw statements as
SSAAbstractThrowInstruction and and hence we can
search for them in a similar way as we have done for the
security hooks. In the following, we discuss three different
slicing tasks, which we performed on the system services.

a) Protected broadcasts: We traced one additional con-
cept, which is called “protected system broadcasts” and which
is also mentioned in the security literature [12], [34]. The
Android Framework prevents specific system broadcasts, such
as “battery low”, from being sent from third-party applications
in order to prevent denial-of-service attacks. Specific security
checks are inserted into the code for implementing this feature.
We identified the code location in the ActivityManager—
Service class, which realizes this concept, and attempted to
track its dependences by means of backward slicing.

Starting from a throw  statement with a
SecurityException, which occurs in the
broadcastIntentLocked() method, we located

the following security check via the backward slice:

ActivityThread.getPackageManager () .
isProtectedBroadcast (intent.getAction()) .

We further followed the slice to the public method broad-
castIntent () of the ActivityManagerService
class. The method broadcastIntent () is then called
by the Context .send*Broadcast () methods, the public
API calls for sending broadcasts, via RPCs. Since our slicing al-
gorithm currently does not support RPCs, we manually followed
this last call. Similarly, the slicing algorithm cannot conclude
that the aforementioned isProtectedBroadcast () call
is an RPC with the PackageManagerService.

In the future, we will enhance our approach to support
RPCs by inserting additional edges into the call graph. For
example, we can replace the corresponding invokespecial
instructions of the IPackageManager interface with the
invokevirtual instructions of the PackageManager—
Service. These modifications allow us to directly connect
different system services in case of RPC calls.

b) Account authenticators: We examined the Account—
ManagerService, which provides centralized access to

a user’s accounts. To interface with this service, specific
authenticator apps must be implemented, e.g., for Google
and Facebook accounts. Authenticators store user passwords
as well as account information locally and handle credential
validation. This way, an app can request reusable authentication
tokens to access a server without sending passwords repeatedly.
The AccountManagerService provides methods, which
should only be called from authenticators. For example,
to call AccountManagerService.setPassword (), an
app needs the permission AUTHENTICATE_ACCOUNTS and
must have the same user ID as the account’s authenticator app.
Only the authenticator is allowed to store passwords for its
account locally; authenticators with other user IDs may not
access the account’s password.

The permission check can be extracted by our slicing ap-
proach using the criterion checkCallingOrSelfPermis—
sion (AUTHENTICATE_ACCOUNTS). The second condition
(the user ID check), however, does not influence the permission
check. For this reason, we performed a second slicing task
with the corresponding throw statement as slicing seed. With
this slicing task, we detected that an app does not need to
have the same user ID as the authenticator. It suffices that
the authenticator and the calling app are signed by the same
developer. The reason for this more liberal access policy is
unclear. Probably, it allows two or more apps of the same
developer to share authentication tokens without additional user
interaction. However, the incomplete documentation may lead
to confusion. For example, although Facebook uses the account
manager, the Facebook app and the Facebook Messenger app
share tokens via a content provider rather than using the
account manager as we found out by manual inspection of the
decompiled code.

c) Enabling components: In the PackageManager—
Service, we also found conditional access checks, which
we identified via a slice w.r.t. a throw statement. For
example, the setApplicationEnabledSetting () and
setComponentEnabledSetting () methods can be
called without a permission if the caller has the same ID as
the application/component to be changed. The following code
fragment depicts the corresponding slice:

final int uid = Binder.getCallingUid();
final int permission = mContext.checkCallingPermission
(CHANGE_COMPONENT_ENABLED_STATE) ;
final boolean allowedByPermission=
(permission==PERMISSION_GRANTED) ;
if(!allowedByPermission && (uid!=pkgSetting.userId)) {
throw new SecurityException(...);

This example again shows that the combination of service hooks
and throw statements as slicing criteria allows an analyst to
extract undocumented security checks from the code. Certainly,
most of these checks are reasonable and pose no security
problem, but documenting them gives an analyst a clearer and
more comprehensive picture of Android’s access control policy.

This last point becomes apparent when applying Fortify
SCA on Android apps. The latest release of Fortify SCA
supports some specific analyses for Android, e.g., to detect un-



derprivileged applications. On analyzing the e-mail app K9Mail,
for example, Fortify SCA reports that this app calls set—
ComponentEnabledSetting () without the permission
CHANGE_COMPONENT_ENABLED_STATE. However, this is
a false positive because the permission is not needed due to
uid==pkgSetting.userId as code inspection revealed.

4) Identification of Privileged Code: Our analysis
infrastructure allows us to detect mistakes in privilege
management. This topic has been discussed in the security
community for a long time, e.g., in the context of Unix
systems [5]. As mentioned in Section II-C2, Android makes
available the method pair clearCallingIdentity () and
restoreCallingIdentity () for privilege management.
We search for privileged regions in the system services. Then,
we instruct ESC/Java2 as a protocol checker [27] to make
sure that for each clearCallingIdentity () call, a
corresponding restoreCallingIdentity () call exists
on each execution path. For this purpose, we define the
following specification:

//Q@ ensures Binder.callingID==\old(Binder.callingID);

This annotation ensures that the calling ID is reset on
method return. We only examined a few services to demon-
strate the feasibility of this analysis. For instance, in the
unbindFinishedService () and publishService ()
methods of the ActivityManagerService, restore-
CallingIdentity () is erroneously called within the body
of an if-statement. If the condition of this statement is false,
the user ID is not reset. We could not find an exploit of
this vulnerability because the method returns immediately
and control goes back to the calling app. However, since
clearCallingIdentity () is called in many places all
over the Android Framework (ca. 140 locations in the examined
system services), it is important to handle privilege man-
agement carefully. getCallingUid () and checkCall-
ingOrSelfPermission () depend on correct privilege
management.

5) Observations: We made the following observations on
analyzing core system services:

1) The implementers of the Android OS heavily used
their own framework to secure system services, e.g.,
the check*Permission () and enforce*Permis—
sion () methods as well as the clearCallingIden—
tity () or getCallingUid () APIs. The fact that
framework functionality is used simplifies the compre-
hension and analysis of the implemented access control
checks. In particular, this specific structure allows one to
automatically select slicing criteria. Plus, one can employ
the semantics of these APIs to check whether these API
calls are used correctly to enforce the intended policy.

2) The consideration of the service hooks as well as
throw statements gives one a comprehensive picture
of the in-code access checks of the system services
as the conducted slicing tasks indicate. These results
complement already available permission maps [35].

3) Many security checks in the system services depend
on determining the calling user or process ID (e.g.,
via Binder.getCallingUid () ). Hence, the Binder
component, which determines the user ID, is an inter-
esting target for further security analyses; flaws in this
component may allow an attacker to compromise all
installed apps, including system apps.

4) Each system service must guarantee specific security
requirements, which are often not explicitly or only
vaguely described in the developer documentation. The
comprehension of system services helps a developer
better understand the security implications of using
Android APIs. Software security comprehension is a
first step beyond current static code analyzers and a
completely manual code review.

V. DISCUSSION OF THE APPROACH

In this section, we discuss some problems related to the
currently available tool support. We also describe how and to
which extent our approach can be extended.

a) Limitations of the current tool support: We have
already mentioned that the static checking approach can
produce false positives and negatives. At least, the questionable
code locations mentioned in Section IV-B1 were found this
way. In general, one must thoroughly select the annotations
which can be used by ESC/Java2. Another restriction was
that only Java versions up to 1.4 are supported, i.e., Java
generics cannot adequately be handled. For this reason, we had
to manually replace Android code, which uses these generic
types (however, only at a few places because slicing eliminated
most dependences).

In addition, WALA’s NO_HEAP option can also be a source
of false negatives as data dependences related to heap locations
might be lost. We manually checked that such situations did
not occur in the services depicted in Table 1. Furthermore, due
to the control-dependence option all locations with conditional
enforcement could be identified. Even if one does not consider
the analysis with ESC/Java2, program comprehension w.r.t.
security is eased due to slicing as our experiments with slicing
demonstrate.

b) Support of native system services: Our current pro-
totype does not cover native system services, which are
implemented in C++, such as the CameraService or
AudioFlinger (see Section II-C3), and which use the
C version of checkCallingPermission (). In case of
native code, we can resort to tools supporting C/C++, such as
the commercial CodeSurfer slicer [1] and the static checker
Eau Claire [7]. We do not see any fundamental obstacles which
prevent one from applying our technique to native services.

c) Improved inference of JML annotations: In Sec-
tion III-B2, we have described how to automate the annotation
process, but the result is a coarse estimation. As a further
improvement, we can, for example, collect all the if-conditions
on which the slicing criterion (e.g., service hook call, throw
statements) depends since the SDG contains all program



1 public boolean addAccount (Account account,
2 // checkAuthenticateAccountsPermission (account);
3 long identityToken = clearCallingIdentity();

4 try{

String password, Bundle extras) {

return insertAccountIntoDatabase (account, password, extras);

5
6 }

7 finally{
8 restoreCallingIdentity (identityToken);
9 }

10 }

12 /+Q@ public normal_behavior

13 requires mAccessInsertAccountIntoDatabase == true ==>

14 checkCallingOrSelfPermission (AUTHENTICATE_ACCOUNTS) == PERMISSION_GRANTED;
15 also

16 public exceptional_behavior

17 requires ! (mAccessInsertAccountIntoDatabase == true ==>

18 checkCallingOrSelfPermission (AUTHENTICATE_ACCOUNTS) == PERMISSION_GRANTED) ;
19 signals_only SecurityException;

20 @«/

21 public boolean addAccount (Account account, String password,Bundle extras) {

22 mAccessInsertAccountIntoDatabase = false;

23 try/{

24 mAccessInsertAccountIntoDatabase = true;

25 return true; // dummy

26 }

27 finally({}

28 }

Fig. 5.

statements. Then we can add the logical “and” of all collected
conditions to normal or exceptional behavior statements.

Alternatively, we can employ tools, such as Daikon [16], that
automatically infer likely JML annotations and insert them at
the corresponding position in the code. Daikon infers the annota-
tions dynamically by code instrumentation. Proceeding this way,
we obtain a fully automated abstraction, annotation, and verifi-
cation process. However, we use exceptional_behavior
statements in our JML specifications, which are currently not
supported by Daikon. In the future, we will extend Daikon for
this purpose.

d) Regression testing: Our technique is also valuable
for regression testing. Here, an analyst can start from an
already analyzed version of the Android platform. Then only
the difference between both version needs to be analyzed with
the help of our approach. Typical changes in the policy may
occur when new APIs are added or new, more fine-grained
permissions are introduced.

e) Missing security checks: The approach described so
far has the drawback that we cannot handle situations in
which security checks are missing. Subsequently, we outline
an approach that allows us to address this situation.

If background knowledge on the implementation and ar-
chitecture of a system service is available (e.g., through an
architect of the service), one can identify the security-critical
private data and methods of a system service and map these
security-critical resources to the required permissions. We can
then carry out the following abstraction step. Introduce for each
security-critical resource X a newly-created Boolean member
variable mAccessX, which indicates access to X. Initialize
this flag with false at the beginning of a method and replace
each access of the corresponding resource with the statement
mAccessX=true;. This abstraction step simplifies the code

Code transformation with respect to a critical access.

while still keeping information on critical resources. Thereafter,
the two-phase analysis described in this paper can be applied.

The example depicted in Fig. 5 illustrates our technique. Only
for the discussion let us assume that the security check check—
AuthenticateAccountsPermission () has been com-
mented out (see line 2 of Fig. 5). At the bottom of this figure, we
display the transformed and annotated code. The annotation in
lines 12-20 states that the critical access can only be done if the
permission AUTHENTICATE_ACCOUNTS has been granted,
otherwise a SecurityException is thrown.

f) Other authorization APIs: Our approach is not re-
stricted to Android. For example, we can apply this technique
to Java-based Web applications which use programmatic access
control. For example, the Spring software framework makes
available certain authorization APIs such as hasRole ()
[33]. Fig. 6 depicts code that uses Spring and shows the
correspondence to Android access control. The access control
check allows the method to be successfully completed only if
the caller has activated the appropriate roles. The hasRole ()
calls correspond to the check*Permission () APIs and
can be automatically extracted from the code by slicing. In
general, all applications that use a similar security library can
be dealt with by our approach. The general idea is to check
whether security APIs are used correctly by an application
by extracting the security checks from the code. The security
APIs themselves do not need to be verified; we utilize modular
reasoning to prove that the contract is respected by the client
(preconditions) and the postconditions are strong enough to
guarantee the security requirements of the framework client.

VI. RELATED WORK

Static code analysis: There are several works on static
checking for software security. An overview, for example,



/%@

public normal_behavior

requires currentUser.hasRole ("Manager") ||
currentUser.hasRole ("Financial Officer");

also
public exceptional behavior
requires ! (currentUser.hasRole ("Manager") ||

currentUser.hasRole ("Financial Officer"));
signals_only SecurityException;
@x/
public int getBalance () {
if (! (currentUser.hasRole ("Manager")
hasRole ("Financial Officer")))
throw new SecurityException ("Access Denied");
return balance;

}

| | currentUser.

Fig. 6. Annotated Spring code.

is given by Chess and West [6]. In more recent work,
Felmetsger et al. employ Daikon to dynamically infer security
specifications for web applications. Thereafter, they use a model
checker to detect application logic vulnerabilities violating the
specifications [17]. This approach resembles our technique in
that it combines different analysis techniques and works on Java
code. We, however, focus on the understanding of Android’s
access control policy rather than analyzing web applications.

Furthermore, work exists that deals with the verification of
the correct authorization hook placement in Linux kernels, e.g.,
by Jaeger et al. [25]. They use runtime instrumentation as well
as a supplementing static analysis to detect deviations from
a normal access control behavior. Their approach utilizes the
specifics of Linux kernels, whereas we target at a Java-based
system. Furthermore, we focus on a program comprehension
task employing interprocedural-slicing algorithms.

DBC and security analysis: Eau Claire allows the formu-
lation of pre- and postconditions as code annotations for C
code [7]. Similarly to ESC/Java2, it is based on an automatic
theorem prover. Eau Claire can detect general security problems
such as buffer overflows and race conditions. Although Eau
Claire primarily focuses on common classes of security bugs in
C applications, it demonstrates the benefit gained by employing
extended static checking for security analysis.

Other works that employ JML in the application security
context are presented by Lloyd et al. (a biometric authentication
system) [28] and by Catafio et al. (an electronic purse imple-
mented as a Java Card application) [3]. Both works use JML
in conjunction with the static checker ESC/Java for an already
implemented application, facing several problems concerning
the limitations of extended static checking, specifically, too
large verification conditions. We address this problem by
automatically extracting the implemented access control policy
out of the code and leaving out all other code not related to
access control. In addition, our approach reduces the annotation
overhead, which is usually a burden. This automation is possible
because we employ a pattern-based mechanism for JML
annotations. JML patterns for security have been introduced
by Warnier, but they are not tailored to access control nor do
they reflect the Android Framework semantics [38].

Android security: There are several works dealing with
Android security; specifically, we have earlier commented
on the permission map by Felt et al. Enck et al. validate
Android manifest files containing the access control policy
of an application with the help of the Kirin tool [15]. Kirin
works at the manifest level and does not consider the source
code for the analysis. The Saint architecture extends Android’s
permission model to support context information for access
decisions [31]. TaintDroid tracks information flows through
the Android platform to detect privacy breaches [13].

There are also approaches to the static analysis of Android
applications. Enck et al. developed a tool which allows one
to decompile Android’s custom bytecode (DEX code) [12].
Thereafter, they employ Fortify SCA and write custom Fortify
rules to detect weaknesses or privacy violations in third-party
applications, such as sending IMEI numbers or location data to
the Internet. In contrast to their work, we use techniques, such
as slicing and extended static checking, which are not supported
by Fortify SCA [6]. The ComDroid tool leverages static
analysis to also consider IPC [8], working on DEX code. This
way, several weaknesses in applications have been detected,
e.g., through unprotected IPC. Grace et al. analyze system
applications, mostly made available by Google and smartphone
manufacturers, for leaking system permissions and discovered
several critical weaknesses [23]. Recently, Lu et al. tackled the
problem of component hijacking in Android apps by a static
analysis approach [29]. Gibler et al. presented AndroidLeaks
which aims to detect potential leaks of sensitive information in
Android applications by employing static analysis [20]. They
also constructed a permission map via static analysis using
the call graph, but did not consider conditional enforcement
nor additional access checks because the call graph does not
capture this information. In particular, the analysis of system
services was not the goal of that work.

All approaches mentioned so far focus on the analysis of
apps rather than considering the Android Framework. Our
work differs from those approaches in that it focuses on
separating out and analyzing permission-enforcement code
from the Android platform (or more generally, from Java-based
software). Android apps do not seem to use sophisticated access
control features like service hooks, even not business apps such
as those from SAP as we checked by decompilation. Since
our goal is the comprehension of implemented access control
mechanisms, we address a different topic as the aforementioned
static analysis approaches for Android apps.

VII. CONCLUSION AND OUTLOOK

We showed in this paper how to extract the implemented
access control policy from Android system services by means
of slicing and thereafter verified the policy against security
specifications with extended static checking. We performed
our task with the original code and detected inconsistencies
between the Android documentation and implementation. Also,
this task contributes to a better understanding of Android’s
implemented security.



In the future, we will extend our work to cover further
security-relevant mechanisms of Android, such as URI per-
missions and pending intents. Also, we will provide a more
accurate inference mechanism for JML annotations based on
available tools such as Daikon or an own solution. The extracted
code and the inferred JML specifications give an analyst a
comprehensive picture of the implemented security architecture
of system services. The extracted architecture can then be used
for a further risk-analysis step on the Android Framework.
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APPENDIX

Subsequently, we give the sliced and annotated version
of the DevicePolicyManagerService as an example.
Due to the fact that generics are used, which are not sup-
ported by ESC/Java2, we had to replace the reference to
the HashMap<ComponentName, ActiveAdmin> class.
Some side effect-free methods had also to be declared pure
to assist ESC/Java2 in proving the verification conditions.



package com.android.server;

import java.util.HashMap;

import android.app.admin.DeviceAdminInfo;
import android.content.ComponentName;
import android.content.Context;

import android.content.pm.PackageManager;
import android.os.Binder;

public class DevicePolicyManagerService {

// final HashMap<ComponentName, ActiveAdmin> mAdminMap = new HashMap<ComponentName, ActiveAdmin>(); commented
out (Java 1.5)

final /*@ non_null @+/ HashMap mAdminMap = new HashMap () ; // Java 1.4; ESC/Java2

final /%@ non_null @x/ Context mContext;

public DevicePolicyManagerService (/@ non_null @x/ Context context) {
mContext = context;
}

/*@ pure @x/ ActiveAdmin getActiveAdminUncheckedLocked(/+@ non_null @x/ ComponentName who) {
//@ assume mAdminMap.get (who) instanceof ActiveAdmin;
ActiveAdmin admin = (ActiveAdmin)mAdminMap.get (who);

if (admin != null
&& who.getPackageName () .equals (
admin.info.getActivityInfo () .packageName)
&& who.getClassName () .equals (admin.info.getActivityInfo () .name)) {
return admin;

}

if (admin != null) {
return admin;
}

return null;

/+@ public normal_behavior
requires mContext.checkCallingOrSelfPermission (android.Manifest.permission.BIND_DEVICE_ADMIN) ==
PackageManager .PERMISSION_GRANTED;
also
public exceptional_ behavior
requires mContext.checkCallingOrSelfPermission (android.Manifest.permission.BIND_DEVICE_ADMIN) !=
PackageManager .PERMISSION_GRANTED;
signals_only java.lang.SecurityException;
@x/
public void setActiveAdmin (ComponentName adminReceiver, boolean refreshing) {
mContext.enforceCallingOrSelfPermission (
android.Manifest.permission.BIND_DEVICE_ADMIN, null);
}

/+@ public normal_behavior

requires getActiveAdminUncheckedLocked (adminReceiver) == null || mContext.checkCallingOrSelfPermission (android
.Manifest.permission.BIND_DEVICE_ADMIN) == PackageManager .PERMISSION_GRANTED || ! (
getActiveAdminUncheckedLocked (adminReceiver) .getUid() != Binder.getCallingUid()) ;

also

public exceptional_ behavior

requires ! (getActiveAdminUncheckedLocked (adminReceiver) == null || mContext.checkCallingOrSelfPermission (
android.Manifest.permission.BIND_DEVICE_ADMIN) == PackageManager.PERMISSION_GRANTED || ! (
getActiveAdminUncheckedLocked (adminReceiver) .getUid() != Binder.getCallingUid())) ;

signals_only java.lang.SecurityException;

@x/

public void removeActiveAdmin (/+@ non_null @+/ ComponentName adminReceiver) {
ActiveAdmin admin = getActiveAdminUncheckedLocked (adminReceiver);

if (admin == null) {
return;
}
if (admin.getUid() != Binder.getCallingUid()) {

mContext.enforceCallingOrSelfPermission (
android.Manifest.permission.BIND_DEVICE_ADMIN, null);



/+@ public normal_behavior

requires mContext.checkCallingOrSelfPermission (android.Manifest.permission.BIND_DEVICE_ADMIN) ==
PackageManager .PERMISSION_GRANTED;

also

public exceptional_behavior

requires mContext.checkCallingOrSelfPermission (android.Manifest.permission.BIND_DEVICE_ADMIN) !=
PackageManager .PERMISSION_GRANTED;

signals_only java.lang.SecurityException;

@x/
public void getRemoveWarning (ComponentName comp, final RemoteCallback result) {
mContext.enforceCallingOrSelfPermission (
android.Manifest.permission.BIND_DEVICE_ADMIN, null);
}

/+@ public normal_behavior
requires mContext.checkCallingOrSelfPermission (android.Manifest.permission.BIND_DEVICE_ADMIN) ==
PackageManager .PERMISSION_GRANTED;
also
public exceptional_behavior
requires mContext.checkCallingOrSelfPermission (android.Manifest.permission.BIND_DEVICE_ADMIN) !=
PackageManager .PERMISSION_GRANTED;
signals_only java.lang.SecurityException;
@x/
public void setActivePasswordState (int quality, int length, int letters,
int uppercase, int lowercase, int numbers, int symbols,
int nonletter) {
mContext.enforceCallingOrSelfPermission (
android.Manifest.permission.BIND_DEVICE_ADMIN, null);
}

/*@ public normal_behavior
requires mContext.checkCallingOrSelfPermission (android.Manifest.permission.BIND_DEVICE_ADMIN) ==
PackageManager .PERMISSION_GRANTED;
also
public exceptional_behavior
requires mContext.checkCallingOrSelfPermission (android.Manifest.permission.BIND_DEVICE_ADMIN) !=
PackageManager .PERMISSION_GRANTED;
signals_only java.lang.SecurityException;
@x/
public void reportFailedPasswordAttempt () {
mContext.enforceCallingOrSelfPermission (
android.Manifest.permission.BIND_DEVICE_ADMIN, null);
}

/*@ public normal_behavior
requires mContext.checkCallingOrSelfPermission (android.Manifest.permission.BIND_DEVICE_ADMIN) ==
PackageManager .PERMISSION_GRANTED;
also
public exceptional_behavior
requires mContext.checkCallingOrSelfPermission (android.Manifest.permission.BIND_DEVICE_ADMIN) !=
PackageManager .PERMISSION_GRANTED;
signals_only java.lang.SecurityException;
@x/
public void reportSuccessfulPasswordAttempt () {
mContext.enforceCallingOrSelfPermission (
android.Manifest.permission.BIND_DEVICE_ADMIN, null);
}

static class ActiveAdmin {
final /%@ non_null @+/ DeviceAdminInfo info;

ActiveAdmin (/+*@ non_null @x/ DeviceAdminInfo _info) {
info = _info;

}

/+@ pure @x/ int getUid() {
return info.getActivityInfo () .applicationInfo.uid;

}



