Outsourced Pattern Matching

Sebastian Faust!*, Carmit Hazay?, and Daniele Venturi®**

! Security and Cryptography Laboratory, EPFL, Switzerland
2 Faculty of Engineering, Bar-Ilan Univeristy, Israel
3 Department of Computer Science, Aarhus University, Denmark

Abstract. In secure delegatable computation, computationally weak
devices (or clients) wish to outsource their computation and data to
an untrusted server in the cloud. While most earlier work considers the
general question of how to securely outsource any computation to the
cloud server, we focus on concrete and important functionalities and give
the first protocol for the pattern matching problem in the cloud. Loosely
speaking, this problem considers a text 1" that is outsourced to the cloud
S by a client Cr. In a query phase, clients C1, ..., C) run an efficient pro-
tocol with the server S and the client Cr in order to learn the positions
at which a pattern of length m matches the text (and nothing beyond
that). This is called the outsourced pattern matching problem and is
highly motivated in the context of delegatable computing since it offers
storage alternatives for massive databases that contain confidential data
(e.g., health related data about patient history). Our constructions offer
simulation-based security in the presence of semi-honest and malicious
adversaries (in the random oracle model) and limit the communication
in the query phase to O(m) bits plus the number of occurrences — which
is optimal. In contrast to generic solutions for delegatable computation,
our schemes do not rely on fully homomorphic encryption but instead
uses novel ideas for solving pattern matching, based on efficiently solv-
able instances of the subset sum problem.

1 Introduction

The problem of securely outsourcing computation to an untrusted server gained
momentum with the recent penetration of cloud computing services. In cloud
computing, clients can lease computing services on demand rather than main-
taining their own infrastructure. While such an approach naturally has numerous
advantages in cost and functionality, the outsourcing mechanism crucially needs
to enforce privacy of the outsourced data and integrity of the computation. Cryp-
tographic solutions for these challenges have been put forward with the concept
of secure delagatable computation [LIGITTI2IK].

* Supported in part by the BEAT project 7th Framework Research Programme of the
European Union, grant agreement number: 284989.

** Supported from the Danish National Research Foundation, the National Science
Foundation of China (under the grant 61061130540), the Danish Council for In-
dependent Research (under the DFF Starting Grant 10-081612) and also from the
CFEM research center within which part of this work was performed.

F.V. Fomin et al. (Eds.): ICALP 2013, Part II, LNCS 7966, pp. 545-p56] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

546 S. Faust, C. Hazay, and D. Venturi

In secure delegatable computation, computationally weak devices (or clients)
wish to outsource their computation and data to an untrusted server. The ulti-
mate goal in this setting is to design efficient protocols that minimize the compu-
tational overhead of the clients and instead rely on the extended resources of the
server. Of course, the amount of work invested by the client in order to verify the
correctness of the computation shall be substantially smaller than running the
computation by itself. Indeed, if this was not the case then the client could carry
out the computation itself. Another ambitious goal of delegatable computation
is to design protocols that minimize the communication between the cloud and
the client.

Most recent works in the area of delegatable computation propose solutions
to securely outsource any functionality to an untrusted server [TJ6ITII2]. Such
generic solutions often suffer from rather poor efficiency and high communica-
tion overhead due to the use of fully homomorphic encryption [12]. An exception
is the randomized encoding technique used by [I] which instead relies on garbled
circuits. Furthermore, these solution concepts typically examine a restricted sce-
nario where a single client outsources its computation to an external untrusted
server. Only few recent works study the setting with multiple clients that mutu-
ally distrust each other and wish to securely outsource a joint computation on
their inputs with reduced costs, e.g., [I517]. Of course, also in this more complex
setting recent constructions build up on fully homomorphic encryption.

To move towards more practical schemes, we may focus on particularly effi-
cient constructions for specific important functionalities. This approach has the
potential to avoid the use of fully homomorphic encryption by exploiting the
structure of the particular problem we intend to solve. Some recent works have
considered this question [3I22]20]. While these schemes are more efficient than
the generic constructions mentioned above, they typically only achieve very lim-
ited privacy or do not support multiple distrusting clients. In this paper, we
follow this line of work and provide the first protocols for pattern matching in
the cloud. In contrast to most earlier works, our constructions achieve a high-
level of security, while avoiding the use of FHE and minimizing the amount of
communication between the parties. We emphasize that even with the power of
fully homomorphic encryption it is not clear how to get down to communication
complexity that is linear in the number of matches in two rounds/l

Pattern Matching in the Cloud. The problem of pattern matching considers a
text T of length n and a pattern of length m with the goal to find all the locations
where the pattern matches the text. In a secure pattern matching protocol, one
party holds the text whereas the other party holds the pattern and attempts
to learn all the locations of the pattern in the text (and only that), while the
party holding the text learns nothing about the pattern. Unfortunately, such
protocols are not directly applicable in the cloud setting, mostly because the

1 A one-round solution based on FHE would need a circuit that tolerates the maximal
number of matches — which in the worst case is proportional to the length of the
text.

Outsourced Pattern Matching 547

communication overhead per search query grows linearly with the text length.
Moreover, the text holder delegates its work to an external untrusted server and
cannot control the content of the server’s responses.

In the outsourced setting we consider a set of clients Cr, (Cy,...,C;) that
interact with a server S in the following way. (1) In a setup phase client Crp
uploads a preprocessed text to an external server S. This phase is run only
once and may be costly in terms of computation and communication. (2) In a
query phase clients C1, . .., C; query the text by searching patterns and learn the
matched text locations. The main two goals of our approach are as follows:

1. Simulation-based security: We model outsourced pattern matching by
a strong simulation-based security definition (cf. Section 2). Namely, we de-
fine a new reactive outsourced functionality Fopym that ensures the secrecy
and integrity of the outsourced text and patterns. For instance, a semi-honest
server does not gain any information about the text and patterns, except of
what it can infer from the answers to the search queries. If the server is ma-
liciously corrupted the functionality implies the correctness of the queries’
replies as well. As in the standard secure computation setting, simulation-
based modeling is simpler and stronger than game-based definitions.

2. Sublinear communication complezrity during query phase: We consider an
amortized model, where the communication and computational costs of the
clients are reduced with the number of queries. More concretely, while in the
setup phase communication and computation is linear in the length of the
text, we want that during the query phase the overall communication and the
work put by the clients is linear in the number of matches (which is optimal).
Of course, we also require the server running in polynomial-time. Clearly,
such strong efficiency requirement comes at a price as it allows the server
to learn the number of matches. We model this additional information by
giving the server some leakage for each pattern query which will be described
in detail below.

1.1 Owur Contribution

To simplify notation we will always only talk about a single client C' that interacts
with Cp and S in the query phase.

Modeling Outsourced Pattern Matching. We give a specification of an ideal exe-
cution with a trusted party by defining a reactive outsourced pattern matching
functionality Fopm. This functionality works in two phases: In the preprocessing
phase client C uploads its preprocessed text T' to the server. Next, in an itera-
tive query phase, upon receiving a search query p the functionality asks for the
approvals of client Cr (as it may also refuse for this query in the real execution),
and the server (as in case of being corrupted it may abort the execution). To
model the additional leakage that is required to minimize communication we ask
the functionality to forward to the server the matched positions in the text upon

548 S. Faust, C. Hazay, and D. Venturi

receiving an approval from Cp. Our functionality returns all matched positions
but can be modified so that only the first few matched positions are returned 2

Difficulties with Simulating Fopm. The main challenge in designing a simulator
for this functionality is in case when the server is corrupted. In this case the sim-
ulator must commit to some text in a way that later allows him (when taking
the role of the server, given some trapdoor) to reply to pattern queries in a con-
sistent way. More precisely, when the simulator commits to a preprocessed text,
the leakage that the corrupted server obtains (namely, the positions where the
pattern matches the text) has to be consistent with the information that it later
sees during the query phases. This implies that the simulator must have flexi-
bility when it later matches the committed text to the trapdoors. This difficulty
does not arise in the classic two-party setting since there the simulator always
plays against a party that contributes an input to the computation which it can
first extract, whereas here the server is just a tool to run a computation. Due to
this inherent difficulty the text must be encoded in a way, that given a search
query p and a list of text positions (i1,...,%:), one can produce a trapdoor for
p in such a way that the “search” in the preprocessed text, using this trapdoor,
yields (i1,...,4;). We note that alternative solutions that permute the text to
prevent the server from learning the matched positions, necessarily require that
the server does not collude with the clients. In contrast, our solutions allow such
strong collusion between the clients and the server.

Solutions Based on Searchable/Non-Committing Encryption. To better moti-
vate our solution, let us consider a toy example first. Assume we encrypt each
substring of length m in T using searchable encryption [4], which allows running
a search over an encrypted text by producing a trapdoor for the searched word
(or a pattern p). Given the trapdoor, the server can check each ciphertext and
return the text positions in which the verification succeeds. The first problem
that arises with this approach is that searchable encryption does not ensure the
privacy of the searched patterns. While this issue may be addressed by tweaking
existing constructions of searchable encryption, a more severe problem is that
the simulator must commit in advance to (searchable) encryptions of a text that
later allow to “find” p at positions that are consistent with the leakage. In other
words: all the plaintexts in the specified positions must be associated with the
keyword p ahead of time. Of course, as the simulator does not know the actual
text T it cannot produce such a consistent preprocessed text. An alternative
solution may be given by combining searchable encryption with techniques from
non-committing encryptions [5]. Note that it is unclear how to combine these
two tools even in the random oracle model.

2 This definition is more applicable for search engines where the first few results are
typically more relevant, whereas the former variant is more applicable for a DNA
search where it is important to find all matched positions. For simplicity we only
consider the first variant, our solutions support both variants.

Outsourced Pattern Matching 549

Semi-Honest Outsourced Pattern Matching from Subset Sum. Our first construc-
tion for outsourced pattern matching is secure against semi-honest adversaries.
In this construction client Cp generates a vector of random values, conditioned
on that the sum of elements in all positions that match the pattern equals some
specified value that will be explained below. Namely, Cr builds an instance T’
for the subset sum problem, where given a trapdoor R the goal is to find whether
there exists a subset in T that sums to R. More formally, the subset sum prob-
lem is parameterized by two integers £ and M. An instance of the problem is
generated by picking random vectors T « 7% My S {() 1}* and outputting

(T R =T -smod M). The problem is to find s given T and a trapdoor R.
Looking ahead, we will have such a trapdoor R, for each pattern p of length
m, such that if p matches T' then with overwhelming probability there will be
a unique solution to the subset sum instance (T, R,). This unique solution is
placed at exactly the positions where the pattern appears in the text. The client
C' that wishes to search for a pattern p obtains this trapdoor from Cr and will
hand it to the server. Consequently, we are interested in easy instances of the
subset sum problem since we require the server to solve it for each query. This
is in contrast to prior cryptographic constructions, e.g., [18] that design crypto-
graphic schemes based on the hardness of this problem. We therefore consider
low-density instances which can be solved in polynomial time by a reduction to
a short vector in a lattice [I6JIO0N7].

We further note that the security of the scheme relies heavily on the unpre-
dictability of the trapdoor. Namely, in order to ensure that the server cannot
guess the trapdoor for some pattern p (and thus solve the subset problem and
find the matched locations), we require that the trapdoor is unpredictable. We
therefore employ a pseudorandom function (PRF) F on the pattern and fix this
value as the trapdoor, where the key k for the PRF is picked by Cr and the two
clients Cr and C' communicate via a secure two-party protocol to compute the
evaluation of the PRF.

Efficiency Considerations. The scheme described above does not yet satisfy the
desired properties outlined in the previous paragraphs and has a very limited
usage in practice. Recall that the server is asked to solve subset sum instances
of the form (T R,), where T is a vector of length £ = n — m + 1 with elements
from Zj; for some integer M. In order to ensure correctness we must guarantee
that given a subset sum instance, each trapdoor has a unique solution with high
probability. In other words, the collision probability, which equals 2¢/M (stated
also in [13]), should be negligible. Fixing M = 25" for a security parameter
Kk, ensures this for a large enough k, say whenever £ > 80. On the other hand,
we need the subset sum problem to be solvable in polynomial time. A simple
calculation (see Eq. (1)), yields in this case a value of £ = /k. This poses an
inherent limitation on the length of the text to be preprocessed. For instance,
even using a high value of k ~ 10 (yielding approximately subset sum elements
of size 10 KByte) limits the length of the text to only 100 bits. This scheme
also requires quadratic communication complexity in the text length during the
setup phase since client Cr sends O(n? + kn) bits.

550 S. Faust, C. Hazay, and D. Venturi

An Improved Solution Using Packaging. To overcome this limitation, we employ
an important extension of our construction based on packaging. First, the text
is partitioned into smaller pieces of length 2m which are handled separately
by the protocol, where m is some practical upper bound on the pattern length.
Moreover, every two consecutive blocks are overlapping in m positions, so that we
do not miss any match in the original text. Even though this approach introduces
some overhead, yielding a text T” of overall length 2n, note that now Eq. ()
yields £ = 2m —m+1 =m+1 < y/k, which is an upper bound on the length of
the pattern (and not on the length of the text as before). Namely, we remove the
limitation on the text length and consider much shorter blocks lengths for the
subset sum algorithm. As a result, the communication complexity in the setup
phase is O(mn+ kn), whereas the communication complexity in the query phase
is O(km). For short queries (which is typically the case), these measures meet
the appealing properties we are sought after.

This comes at a price though since we now need to avoid using in each block
the same trapdoor for some pattern p, as repetitions allow the server to extract
potential valid trapdoors (that have not been queried yet) and figure out in-
formation about the text. We solve this problem by requiring from the function
outputting the trapdoors to have some form of “programmability” (which allows
to simulate the answers to all queries consistently). Specifically, we implement
this function using the random oracle methodology on top of the PRF, so that a
trapdoor now is computed by H(F(k, p)||b), for b being the block number. Now,
the simulator can program the oracle to match with the positions where the
pattern appears in each block. Note that using just the random oracle (without
the PRF) is not sufficient as well, since an adversary that controls the server
and has access to the random oracle can apply it on p as well.

Malicious Outsourced Pattern Matching. We extend our construction to the
malicious setting as well, tolerating malicious attacks. Our proof ensures that the
server returns the correct answers by employing Merkle commitments and zero-
knowledge (ZK) sets. Informally speaking, Merkle commitments are succinct
commitment schemes for which the commitment size is independent of the length
of the committed value (or set). This tool is very useful in ensuring correctness,
since now, upon committing to T, the server decommits the solution to the
subset sum trapdoor and client C' can simply verify that the decommitted values
correspond to the trapdoor. Nevertheless, this solution does not cover the case
of a mismatch. Therefore, a corrupted server can always return a “no-match”
massage. In order to resolve this technicality we borrow techniques from ZK sets
arguments [19], used for proving whether an element is in a specified set without
disclosing any further information. Next, proving security against a corrupted C'
is a straightforward extension of the semi-honest proof using the modifications
we made above and the fact that the protocol for implementing the oblivious
PRF evaluation is secure against malicious adversaries as well.

The case of a corrupted C7 is more challenging since we first need to ex-
tract the text T', but also verify Cr’s computations with respect to the random
oracle when it produces T. The only proof technique that we are aware of for

Outsourced Pattern Matching 551

proving correctness when using a random oracle is cut-and-choose (e.g., as done
in [I4]), which inflates the communication complexity by an additional statisti-
cal parameter. Instead, we do not require that the server can verify immediately
the correctness of the outsourced text, but only ensure that if Cp cheats with
respect to some query p, then it will be caught during the query phase whenever
p is queried. The crux of our protocol is that the simulator does not need to
verify all computations at once, but only the computations with respect to the
asked queries. This enables us to avoid the costly cut-and-choose technique since
verification is done using a novel technique of derandomizing Cp’s computations.
We notice that this requires us to slightly adjust the description of our idealized
functionality. For space reasons, we defer the details to the full version [9] and
focus on the semi-honest case here.

We remark that all the solutions described above can be combined together
into a single protocol which is secure even in the case of a collusion between
S and client C. When a collusion between S and client Ct occurs we cannot
guarantee either privacy or correctness since the simulator cannot extract the
text, as the preprocessed protocol is “run” between the two corrupted parties.
We stress that collusion does not imply that security collapses into the standard
two-party setting.

2 Modeling Outsourced Pattern Matching

The outsourced pattern matching consists of two phases. In the setup phase a
client C7 uploads a (preprocessed) text T to an external server S. This phase is
run only once. In the query phase client C queries the text by searching patterns
and learn the matched text locations. We formalize security using the ideal/real
paradigm. Denote by T} the substring of length m that starts at text location j.
The pattern matching ideal functionality in the outsourced setting is depicted
in Fig. [We write |T'| for the bit length of 7" and assume that client C' asks a
number of queries p; (i € [A], A € N).

The Definition. Formally, denote by IDEAL £\ sim(z) (5, (=, T, (1, -, PA)))
the output of an ideal adversary Sim, server S and clients Cp,C in the above
ideal execution of Fopy upon inputs (—, (7', (p1,...,px))) and auxiliary input z
given to Sim.

We implement functionality Fopm via a protocol m = (7pre, TQuery; TOpm) €CON-
sisting of three two-party protocols, specified as follows. Protocol mp. is run
in the preprocessing phase by Cr to preprocess text T' and forward the out-
come T' to S. During the query phase, protocol mQuery is run between Cr and
C' (holding a pattern p); this protocol outputs a trapdoor R, that depends on
p and will enable the server to search the preprocessed text. Lastly, protocol
Topm is run by S upon input the preprocessed text and trapdoor R, (forwarded
by C); this protocol returns C' the matched text positions (if any). We denote
by REAL; adv(z) (%, (=, T, (p1,...,px))) the output of adversary Adv, server S
and clients Cr,C in a real execution of m = (7pre, TQuery, Topm) Upon inputs
(=, (T, (p1,-..,px))) and auxiliary input z given to Adv.

552 S. Faust, C. Hazay, and D. Venturi

Functionality Foprwm

Let m, A € N. Functionality Fopm sets the table B initially to the empty and
proceeds as follows, running with clients Cr and C, server S and adversary Sim.

1. Upon receiving a message (text, T, m) from Cr, send (preprocess, |T|,m) to S
and Sim, and record (text,T).

2. Upon receiving a message (query, p;) from client C (for ¢ € [\]), where message
(text, -) has been recorded and |p;| = m, it checks if the table B already contains
an entry of the form (p;, -). If this is not the case then it picks the next available
identifier id from {0,1}* and adds (ps,id) to B. It sends (query, C) to Cr and
Sim.

(a) Upon receiving (approve, C) from client Cr, read (p;,id) from B and send
(query, C, (i1, ...,1¢),id) to server S, for all text positions {i;};c such
that T;;, = p;. Otherwise, if no (approve,C)) message has been received
from C'r, send L to C and abort.

(b) Upon receiving (approve,C') from Sim, read (pi,id) from B and send
(query, pi, (i1, . ..,it),id) to client C. Otherwise, send L to client C.

Fig. 1. The outsourced pattern matching functionality

Definition 1 (Security of outsourced pattern matching). We say that
m securely implements Fopwm, if for any PPT real adversary Adv there exists
a PPT simulator Sim such that for any tuple of inputs (T, (p1,...,px)) and
auxiliary input z,

{IDEAL}—OPM,Sim(Z)(Hv (73 T, (pla cee ap)\)))}neN
é {REALW,AdV(z) (K/a (_a T7 (plv v ap)\)))}KEN-

The schemes described in the next sections, implement the ideal functionality
Fopwm in the random oracle model.

3 A Scheme with Passive Security

In this section we present our implementation of the outsourced pattern matching
functionality Fopm that is formalized in Fig. [l and prove its security against
semi-honest adversaries. A scheme with security against malicious adversaries
is described in the full version of this paper [9], building upon the protocol in
this section. Recall first that in the outsourced variant of the pattern matching
problem, client Cr preprocesses the text T' and then stores it on the server S in
such a way that the preprocessed text can be used later to answer search queries
submitted by client C. The challenge is to find a way to hide the text (in order
to obtain privacy), while enabling the server to carry out searches on the hidden
text whenever it is in possession of an appropriate trapdoor.

Outsourced Pattern Matching 553

Protocol sy = (7pre, TQuerys TOpm)

Let k € N be the security parameter and let M, m,n,u be integers, where for
simplicity we assume that n is a multiple of 2m. Further, let H : {0,1}* — Zn
be a random oracle and F : {0,1}" x {0,1}™ — {0,1}* be a PRF. Protocol msn
involves a client Cr holding a text T' € {0,1}", a client C' querying for patterns
p € {0,1}™, and a server S. The interaction between the parties is specified below.

Setup phase, mpr. The protocol is invoked between client Cr and server S.
Given input T and integer m, client Cr picks a random key k € {0,1}" and
prepares first the text 7" for the packaging by writing it as

T' = (Bi,...,Bu) = (T[1],...,T[2m]),
(TIm +1],...,T[3m]),...,(T[n - 2m +1],..., T[n])),

where v = n/m — 1. Next, for each block By and each of the m + 1 patterns
p € {0,1}™ that appear in B, we proceed as follows (suppose there are at
most ¢ matches of p in By).

1. Client Cr evaluates R, := H(F(k,p)||b), samples a1,...,at—1 € Zn at
random and then fixes a; such that a; = R, — Z;: a; mod M.

2. Set Bylv;] = a; for all j € [t] and v; € [m + 1]. Note that here we
denote by {v;};jep (vj € [m + 1]) the set of indexes corresponding to the
positions where p occurs in By. Later in the proof we will be more precise
and explicitly denote to which block v; belongs by using explicitly the
notation vy, .

Finally, we outsource the text T' = (gl, cee éu) to S.

Query phase, Tquery. Upon issuing a query p € {0,1}™ by client C, clients Cr
and C engage in an execution of protocol mquery Wwhich implements the oblivious
PRF functionality (k,p) — (—, F(k,p)). Upon completion, C learns F(k, p).

Oblivious pattern matching phase, mo,m. This protocol is executed between
server S (holding T) and client C' (holding F(k,p)). Upon receiving F(k,p)
from C, the server proceeds as follows for each block By. It interprets
(H(F(k,p)||b), By) as a subset sum instance and computes s as the solution
of By -s = H(F(k,p)||b). Let {vj}jery denote the set of indexes such that
s[vj] = 1, then the server S returns the set of indexes {©(b,v;)}selu),jefy to
the client C.

Fig. 2. Semi-honest outsourced pattern matching

We consider a new approach and reduce the pattern matching problem to
the subset sum problem. Namely, consider a text T of length n, and assume we
want to allow to search for patterns of length m. For some integer M € N, we
assign to each distinct pattern p that appears in T" a random element R, € Zy.
Letting £ = n — m + 1, the preprocessed text T is a vector in wa with elements
specified as follows. For each pattern p that appears ¢ times in T, we sample
random values ay,...,a; € Zy such that R, = 22:1 a;. Denote with i; € [/]

the jth position in 7" where p appears and set f[z]] = a;. Notice that for each
pattern p, there exists a vector s € {0,1} such that R, = T -s. Hence, the

554 S. Faust, C. Hazay, and D. Venturi

positions in T where pattern p matches are identified by a vector s and can be
viewed as the solution for the subset sum problem instance (R, T).

Roughly, our protocol works as follows. During protocol 7pre, we let the client
Cr generate the preprocessed text T' as described above, and send the result to
the server S. Later, when a client C' wants to learn at which positions a pattern
p matches in the text, clients C' and Cr run protocol mquery; at the end of this
protocol, C' learns the trapdoor R, corresponding to p. Hence, during mopm, client
C sends this trapdoor to S, which can solve the subset sum problem instance
(Rp, T). The solution to this problem corresponds to the matches of p, which are
forwarded to the client C'. To avoid that C needs to store all trapdoors, we rely
on a PRF to generate the trapdoors itself. More precisely, instead of sampling
the trapdoors R, uniformly at random, we set R, := F(k,p), where F is a PRF.
Thus, during the query phase C' and Cr run an execution of an oblivious PRF
protocol; where C' learns the output of the PRF, i.e., the trapdoor R,.

Efficiency. Although the protocol described above provides a first basic solution
for the outsourced pattern matching, it suffers from a strong restriction as only
very short texts are supported. (On the positive side, the above scheme does not
rely on a random oracle.) The server S is asked to solve subset sum instances
of the form (T, R,), where T is a vector of length £ = n — m + 1 with elements
from Zp; for some integer M. To achieve correctness, we require that each subset
sum instance has a unique solution with high probability. In order to satisfy this
property, one needs to set the parameters such that the value 2¢/M is negligible.
Fixing M = 2%t¢ achieves a reasonable correctness level.

On the other hand, we need to let S solve subset sum instances efficiently.
The hardness of subset sum depends on the ratio between ¢ and log M, which
is usually referred to as the density A of the subset sum instance. In particular
both instances with A < 1/£ (so called low-density instances) and A > £/ log?
(so called high-density instances) can be solved in polynomial time. Note that,
however, the constraint on the ratio 2¢/M immediately rules out algorithms for
high-density subset sum (e.g., algorithms based on dynamic programming, since
they usually need to process a matrix of dimension M). On the other hand, for
low-density instances, an easy calculation shows that £+ x > £2, so that we need
to choose k, £ in such a way that

£<;(\/1+4m—1). (1)

The above analysis yields a value of £ = y/k. This poses an inherent limitation on
the length of the text. For instance, even using £ ~ 10* (yielding approximately
subset sum elements of size 10 KByte) limits the length of the text to only 100 bits.

Packaging. To overcome this severe limitation, we partition the text into smaller
pieces each of length 2m, where each such piece is handled as a separate instance of
the protocol. More specifically, foratext T = (T'[1], ..., T[n])let (T[1],...,T[2m]),
(T'[m+1],...,T[3m]),...beblocks, each of length 2m, such that every two consec-
utive blocks overlap in m bits. Then, for each pattern p that appears in the text the

Outsourced Pattern Matching 555

client Cr computes an individual trapdoor for each block where the pattern p ap-
pears. In other words, suppose that pattern p appears in block By, then we compute
the trapdoor for this block (and pattern p) as H(F(k, p)||b). Here, H is a crypto-
graphic hash function that will be modeled as a random oracle in our proofs. Given
the trapdoors, we apply the preprocessing algorithm to each block individually.

The sub-protocols mqQuery and mopm work as described above with a small
change. In mquery client C' learns the output of the PRF F(k,p) instead of the
actual trapdoors and in mopm client C' forwards directly the result F(k, p) to S.
The server can then compute the actual trapdoor using the random oracle. This
is needed to keep the communication complexity of the protocol low. Note that in
this case if we let {v;, },c[,] be the set of indices corresponding to the positions
where p occurs in a given block By, the server needs to map these positions to
the corresponding positions in T (and this has to be done for each of the blocks
where p matches). It is easy to see that such a mapping from a position v;,
in block Bp to the corresponding position in the text T' can be computed as
@(b,v;) = (b — 1)m + v;. The entire protocol is shown in Fig. 2l

Note that now each of the preprocessed blocks By, consist of £ = m+1 elements
in Zp. The advantage is that the blocks are reasonably short which yields subset
sum instances of the form (B, R,). Combined with Eq. () this yields a value
of £ =2m —m+1=m+1 < /k, which is an upper bound on the length of
the pattern (and not on the length of the text as before). By combining many
blocks we can support texts of any length polynomial in the security parameter.
Finally, we emphasize that the communication/computational complexities of
TQuery depends on the underlying oblivious PRF evaluation. This in particular
only depends on m (due to the algebraic structure of the [2I] PRF). Using
improved PRF's can further reduce the communication complexity. On the other
hand, the communication complexity of mopm is dominated by the number of
matches of p in T which is optimal.

We state the following result. The proof can be found in the full version [9].

Theorem 1. Let k € N be the security parameter. For integers n,m we set
A = poly(k),u = poly(k), u =n/m — 1, £ = (m+ 1)u and M = 2™+~ We
furthermore require that r is such that 2™*1/M is negligible (in k). Assume
H : {0,1}* — Zpr is a random oracle and F : {0,1}" x {0,1}"™ — {0,1}* is a
pseudorandom function. Then, protocol wsy from Fig. [2 securely implements the
Fopwm functionality in the presence of semi-honest adversaries.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Efficient
verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152-163. Springer, Heidelberg (2010)

2. Asharov, G., Jain, A., Lopez-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483-501. Springer, Heidelberg (2012)

556

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.

S. Faust, C. Hazay, and D. Venturi

Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111-131.
Springer, Heidelberg (2011)

Boneh, D.; Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506-522. Springer, Heidelberg (2004)

Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC, pp. 639-648 (1996)

Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation us-
ing fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483-501. Springer, Heidelberg (2010)

Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.-P., Stern,
J.: Improved low-density subset sum algorithms. Computational Complexity 2,
111-128 (1992)

Damgard, I., Faust, S., Hazay, C.: Secure two-party computation with low com-
munication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54-74. Springer,
Heidelberg (2012)

Faust, S., Hazay, C., Venturi, D.: Outsourced pattern matching. Cryptology ePrint
Archive, Report 2013/XX, http://eprint.iacr.org/

Frieze, A.M.: On the lagarias-odlyzko algorithm for the subset sum problem. STAM
J. Comput. 15(2), 536-539 (1986)

Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465-482. Springer, Heidelberg (2010)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169-178 (2009)

Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptology 9(4), 199-216 (1996)

Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145-161. Springer,
Heidelberg (2003)

Kamara, S., Mohassel, P.; Raykova, M.: Outsourcing multi-party computation.
TACR Cryptology ePrint Archive, 2011:272 (2011)

Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J.
ACM 32(1), 229-246 (1985)

Lépez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219-1234
(2012)

Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives prov-
ably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 382-400. Springer, Heidelberg (2010)

Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS, pp. 80-91 (2003)
Mohassel, P.: Efficient and secure delegation of linear algebra. IACR Cryptology
ePrint Archive 2011:605 (2011)

Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: FOCS, pp. 458-467 (1997)

Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of oper-
ations on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 91-110. Springer, Heidelberg (2011)

http://eprint.iacr.org/

	Outsourced Pattern Matching
	1
Introduction
	1.1
Our Contribution

	2
Modeling Outsourced Pattern Matching
	3
A Scheme with Passive Security
	References

