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Abstract 
One of the most important goals in an organization is to have risks under an acceptance level along the time. All organizations 
are exposed to real-time security threats that could have an impact on their risk exposure levels harming the entire organization, 
their customers and their reputation. New emerging techniques, tactics and procedures (TTP) which remain undetected, the 
complexity and decentralization of organization assets, the great number of vulnerabilities proportional to the number of new 
type of devices (IoT) or still the high number of false positives, are only some examples of real risks for any organization. 
Risk management frameworks are not integrated and automated with near real-time (NRT) risk-related cybersecurity threat 
intelligence (CTI) information. The contribution of this paper is an integrated architecture based on the Web Ontology 
Language (OWL), a semantic reasoner and the use of Semantic Web Rule Language (SWRL) to approach a Dynamic 
Risk Assessment and Management (DRA/DRM) framework at all levels (operational, tactic and strategic). To enable such 
a dynamic, NRT and more realistic risk assessment and management processes, we created a new semantic version of 
STIX™v2.0 for cyber threat intelligence as it is becoming a de facto standard for structured threat information exchange. We 
selected an international leading organization in cybersecurity to demonstrate new dynamic ways to support decision making 
at all levels while being under attack. Semantic reasoners could be our ideal partners to fight against threats having risks under 
control along the time, for that, they need to understand the data. Our proposal uses an unprecedented mix of standards to 
cover all levels of a DRM and ensure easier adoption by users. 
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1 Introduction 

Motivation 
Current frameworks and methodologies for risk assess­

ment (RA) processes [1,2] follow an iterative approach in 
which a partial snapshot of the organization assets and busi­
ness processes is periodically taken for the estimation of 
its risk exposure and it is primarily based on expert and 

subjective theories. Risk management (RM) and its counter-
measures, are also identified during these periodical reviews 
with the intent to keep the risk below an acceptable level. 

On the other hand, cyberthreat landscape and the attack 
surface of any organization change constantly. Then, its cor­
porate risk level (which is based on probability and potential 
impact of such threats) changes too. This real and dynamic 
behavior renders these legacy frameworks and methodolo­
gies highly ineffective and unreliable for any organization or 
risk analyst. 

None of probability and impact variables used for risk 
estimation can depend just on a specific person experience. 
Experience is relevant and necessary but it is not enough, and 
we should take into account the real threats in order to address 
them by investing in countermeasures as earlier as possible 
at the same time we measure their effectiveness. There is just 
one reality of an organization but current approaches, even by 



international recognized organizations in the cybersecurity 
arena, are not addressing RA/RM processes by considering 
NRT (near real time) threats. 

It can be worse because of the adoption of the Internet of 
Everything (IoE) as it multiplies the number of devices, data, 
connections and processes as never expected. The more num­
ber of assets to protect, the larger attack surface, so increasing 
automation is encouraged. It does imply a more complex and 
heterogeneous context. Discovery protocols and processes 
play an important role; however, they lack of standardiza­
tion. 

Unintentional incidents might increase as well, while 
more complex contexts are considered. New risk measures 
have to be included during change management processes in 
order to prevent either unintentional or intentional incidents 
before they happen. At the same time, a small cybersecurity 
flaw is usually enough for an attacker to success. Further­
more, it can be easier for an attacker when such a flaw is 
not part of the RA/RM scope, as it could lack of specific 
countermeasures. 

As an example, social engineering attacks are based on 
people cheating other people in order to overcome specific 
countermeasures of the organization. An attacker can directly 
get access to a specific password during a phone call with the 
victim, and this is usually easier than launching a specific 
cyberattack. The victim will simply provide it to the attacker 
if it supposes to be talking to the IT admin or any other 
trusted person. Other example is to bypass the perimeter by 
providing a malicious USB stick outside of the perimeter to 
a victim, who will potentially connect it inside the perimeter 
despite all efforts and investments made by the organization 
at the perimeter level. 

In our case, a top manager (with enough access rights 
to classified data) is usually reading a specific third-party 
news Web site on a daily basis. Web surfing to these exter­
nal systems is not part of the organization RA/RM scope. 
Then, despite all efforts at the perimeter and risk man­
agement countermeasures, a watering hole attack could 
affect not only the victim data and its laptop but also 
any data accessible by the victim like the classified data. 
Furthermore, usually risk assessments (as demonstrated in 
our work by the example of an international lead orga­
nization), are not updated dynamically once a security 
event, an attack or an incident is detected. RA/RM pro­
cesses are usually disconnected from incident handling 
or from any other real-time cybersecurity threat intelli­
gence system. It also implies limitations to have more 
effective prevention safeguards, better detection mecha­
nisms and more real ROI (return of investment) calculations 
over safeguards. 

On the other hand, cyber threat intelligence domain has its 
own challenges as well. Until today there is an asymmetric 
battle, common vendors try to fight against the unknown by 

using products that were designed only to fight the known 
threats, that is, using IoCs (indicators of compromise) of 
threats. At the same time, there is a need of a common lan­
guage as most vendors use vendor specific taxonomies along 
their data models. Sometimes, the reason provided is related 
to efficiency; however, all vendors realized the importance 
of information sharing as they cannot fight alone against 
increasing unknowns. They realized that having additional 
and reliable information, coming from any other partner or 
external source, will benefit their own customers. Their own 
intelligence data will be then enriched by additional and 
external data. In order to share data efficiently, there is a 
need of a common language, if possible, based on standards 
like STIX™. 

IoCs (indicators of compromise) like hashes, IP addresses, 
domains and vulnerabilities are in the bottom part of the 
"Pyramid of Pain" [3] which means that, if Altered or blocked, 
the threat actor will easily overcome those Alters by simple 
tasks. On the other hand, we would be in the top of the pyra­
mid when our defense is based on Altering the TTP of the 
attack. That will cause enough "pain" to the attacker, that is, if 
our measures are very difficult to overcome by the attacker, 
it will certainly decide to give up the attack, or at least it 
will have to completely change the whole TTP which is a 
complex and difficult task and it can have high associated 
costs. If vendors are responding to attacks by blocking cer­
tain hashes, IP or domains, attackers will make lateral and 
easy movements to change such known artifacts into new 
(unknown) ones. It is quite easy for threat actors to modify 
such variables. If we really want threat actors to give up, we 
need to force them to change their TTP (techniques, tactics 
and procedures). Then, solutions should be focused to filter 
sequences, patterns and behaviors instead of static IoCs 
(indicators of compromise). 

Threat intelligence speciAcation drafts like CybOX™, 
STIX™or TAXII™by OASIS, between others, are becoming 
de facto standards with great involvement from the commu­
nity willing to share threat data. Current implementations of 
such protocols evolved from XML schema to JSON format 
in v2.0 [4]; however, their authors are proposing a potential 
future research direction into a more expressive standard (like 
semantic RDF/OWL mentioned at implementations' section 
of [5]) as there are still important limitations to describe more 
complex concepts like TTP (tactics, techniques and proce­
dures) [6], campaigns [7] or incidents [8], between others. 

Information sharing nowadays is more than just a proac­
tive individual initiative; as an example, the Directive on 
Security of Network and Information Systems (the NIS 
Directive) [9] was adopted by the European Parliament on 
2016, July the 6th. In its Communication of 2016, July the 
5th, the European Commission encourages member states to 
enhance cross-border cooperation in case of a major cyber-
incident. The directive establishes a baseline for a formal 



cooperation between member states and beyond; however, 
confidentiality, data protection and national security must 
be guaranteed, while incident information is being shared 
between interested parties. National Competent Authori­
ties and/or CSIRTs (Computer Security Incident Response 
Teams) are empowered by the directive to assess essential 
services operators and digital service providers risk level 
exposure. They are also forced to notify relevant incidents 
as a mandatory legal requirement. The directive is also open 
for voluntary information sharing to other types of organiza­
tions in case of significant impacts caused by cyberattacks. 

With regard to standardization, article 19 of the direc­
tive promotes convergent implementation without imposing 
or discriminating in favor of the use of a particular type of 
technology. It encourages the use of European or interna­
tionally accepted standards and specifications. Now, being 
information sharing mandatory, the same cybersecurity con­
cepts at European level (related to risk and threat intelligence 
domains) are probably in risk of not having the same under­
standing around the globe. 

In this work, we propose a mix of 3 standards to overcome 
all described limitations: STIX™ [5] as an industry-driven 
standard, as well as OWL [10] and SWRL [11] to overcome 
all semantic expressiveness and limitations of STIX [6-8]. 
We consider that if our proposal is based on standards, it will 
be easier to implement and deploy by several organizations 
in the future. 

Semantic ontology [12], supported by scientific language 
researchers as well as the World Wide Web Consortium 
(W3C), is a standard solution to create formal models, defi­
ning concepts, domains and relationships (even complex 
ones) guaranteeing unequivocal meaning. 

They are considered building blocks for semantic infe­
rence [13], which is a mechanism to discover new relation­
ships, to automatically analyze the content of the data and 
to manage knowledge. These inference-based techniques are 
also important in discovering possible inconsistencies in the 
(integrated) data. The role of ontologies is to help data inte­
gration when, for example, ambiguities may exist on the 
terms used in the different datasets, or when a bit of extra 
knowledge may lead to the discovery of new relationships. 
Consider, for example, the application of ontologies in the 
field of health care. Medical professionals use them to re­
present knowledge about symptoms, diseases and treatments. 
Pharmaceutical companies use them to represent information 
about drugs, dosages and allergies. Combining this know­
ledge from the medical and pharmaceutical communities 
with patient data enables a whole range of intelligent appli­
cations such as decision support tools that search for possible 
treatments, systems that monitor drug efficacy and possible 
side effects, and tools that support epidemiological research. 

We selected the OWL Web Ontology Language [10] which 
is designed for the use of applications that need to process the 

content of information instead of presenting information to 
humans. OWL facilitates a greater machine capacity of inter­
pretation of Web content than the one supported by XML, 
RDF and RDF schema (RDF-S). It is because it provides 
additional vocabulary along with formal semantics. OWL 
has three increasingly expressive sublanguages: OWL Lite, 
OWL DL and OWL Full. 

Semantic Web needed a separate language due to the 
nature of its applications. Interoperability is one of the pri­
mary goals of the Semantic Web, and there is a significant 
interest in its standardization. 

The goal of sharing rule bases and processing them with 
different rule engines has resulted in RuleML, SWRL, Meta-
log, and ISO Prolog, and other standardization efforts. One of 
the key steps to rule interoperability on the Web is SWRL [11] 
which was designed to be the rule language of the Semantic 
Web. SWRL is based on a combination of the OWL DL and 
OWL Lite sublanguages of the OWL Ontology Web Lan­
guage, the Unary/Binary Datalog (Datalog is a query and 
rule language for deductive databases that syntactically is 
a subset of Prolog) and Sublanguages of the Rule Markup 
Language. 

SWRL permits users to write hornlike rules expressed in 
terms of OWL concepts in order to reason about OWL indi­
viduals. The rules can be used to get new knowledge from 
already existing OWL knowledge bases. The SWRL specifi­
cation does not impose restrictions on how reasoning should 
be performed with SWRL rules. Thus, developers are free to 
use a variety of rule engines to reason with the SWRL rules 
stored in an OWL knowledge base. 

In SWRL [11] each rule has an antecedent (body) and a 
consequent (head). Once all conditions in the antecedent are 
verified, all the consequent conditions are also fulfilled. 

"antecedent -> consequent" 
As an example, in the following SWRL rule: 

hasParent(?xl,?x2) AND hasBrother(?x2,?x3) -> 
-> hasUncle(?xl,?x3) 

If two individuals ?xl and ?x2 have a relationship where 
?xl has a parent ?x2 and, at the same time, ?x2 has a brother 
?x3, then ?xl will have an uncle which is ?x3. 

From this rule, if John has Mary as a parent and Mary has 
Bill as a brother, then John has Bill as an uncle. 

Variables used in consequent (in our case: ?xl, ?x3) have 
to be defined in antecedent. 

Atoms in SWRL can be of the form C(x), P(x,y), 
sameAs(x,y) or differentFrom(x,y), where C is an OWL 
description, P is an OWL property, and x,y are either vari­
ables, OWL individuals or OWL data values. 

In SWRL [11], there are different types of atoms to express 
different meanings: 



- belonging to an instance (a variable can be used instead) 
to a class extension, 

- a literal to a data type listed in OWL DL, 
- a relation between two instances of object type through 

a property of type ObjectProperty, 
- relationship between a copy of type object (in the subject 

position) and a literal (in the object position) through a 
property of type DatatypeProperty, 

- or equality and inequality between two copies. 

SWRL [11] increases the OWL expression ability to define 
rules and restrictions It includes a high-level abstract syn­
tax for conditional rules (Horn-like rules) in both the OWL 
DL and OWL Lite sub languages of OWL. SWRL allows 
defining complex conditions to be fulfilled in the antecedent 
of the rules, through the built-ins, the AND operator and the 
use of atoms. The use of variables in atoms allows defining 
constraints that are not possible in RDF or in OWL. 

Taking into account that we developed the complete 
ontology version of STIX™v2.0 as well as a complete 
DRM ontology, there are several options to create enriched 
antecedent (body) and enriched consequent (head) rules as 
seen in this work. 

Reasoners [14] are tools than can perform automatic and 
continuous reasoning tasks like inferencing, deriving new 
facts from existing ontologies and guaranteeing data consis­
tency. They are based on RDF, OWL [10] or some rule engine 
like SWRL [11]. 

We selected Pellet incremental reasoner [15] for our work, 
based on Ontology Web Language (OWL) and SWRL to 
manage all our cybersecurity threat intelligence and risk data. 

Interoperability, standardization, expressiveness as well 
as the need of automation are some of our reasons to pro­
pose a model based on ontologies to either minimize the 
impact of different threat and risk management interpreta­
tions among different countries; at the same time, it enables 
effective automation via machine to machine communica­
tion. 

Related work Since 2007, different authors have been 
investigating the usage of ontologies for risk domain. 

It is the case of Herzog et al. [16] where authors define a 
generic security domain ontology specified in OWL which 
covers most of the aspects of an information security domain. 
It provides a detailed vocabulary as well as it supports rea­
soning capabilities. It is built on classical risk assessment 
concepts: asset class, threat class, vulnerability class, coun-
termeasure class, security goal class, defense strategy class. 
Authors provide with some detailed subclasses and relation­
ships between them. 

Fenz et al. in [17] contribute with ontologies for a quan­
titative risk analysis in which authors visualize the damage 
caused by specific threats, outage costs and the recovery time. 
Running the program with added safeguards shows their ben­

efits and offers objective data for decision making: which 
safeguards to implement and to avoid installing countermea-
sures that are not cost-effective. Authors thus justify the need 
to have a security ontology to clarify the meaning and interde­
pendence of unambiguous IT security relevant terms which 
then can be used to facilitate qualitative risk analysis and 
decision processes. 

Fenz in [18] contributes with ontologies to define IT 
security metrics. Author plans to align it with ISO 27004 
standards and to apply it in real-world audit scenarios as 
well as to go further in the degree of automation. 

Fenz et. al. in [19] integrate an ontological information 
security concept in risk-aware business process management. 
The ontology is based on NIST, and authors provide threat, 
vulnerability and control sub-ontologies. Authors propose 
to improve and extend the threat classification in order to 
consider the threat for human life as the main priority in case 
of any risk. In addition to this, supplemental information 
to be considered by the ontology can provide valuable and 
essential details for decision makers. 

More recent work like Villagra et al. [20] is used to pro­
pose a model based on ontologies to integrate and share alerts 
between different Security Information Management Sys­
tems. 

Villagra et al. [21] propose an Automated Intrusion 
Response System (AIRS) based on ontologies, that is, to use 
reasoning to select optimum responses. The system will infer 
the optimum responses at network level (e.g., intrusion pre­
vention systems). This time, they work at network domain. 

Obrst et al. [22] introduce a proposed ontology for cyber­
security, especially as an extension of MAEC (Malware 
Attribute and Enumeration Characterization). Authors use 
as a reference the Diamond Model of Malicious Activity. 

Singapogu et al. [23] describe a proposed ontology for 
making enterprise risk assessment by supporting the IT secu­
rity risk analysis process. 

Erbacher [24] developed a packet-centric ontology named 
PACO which allowed them to represent and capture the 
atomic elements of network communication, i.e., packets and 
sequences of packets. It is a proposed model as a basic for 
more holistic approaches. 

Syed et al. [25] worked on an integration between 
STIX™and ontologies for situational awareness which is a 
very interesting approach. They demonstrated the benefits 
for different use cases (vulnerabilities associated with PDF 
readers, suggestion of similar SW, etc.) as a very interesting 
contribution, for example, to check the impact of changing 
vendors. 

With regard to querying the data, some approaches [26,27] 
suggest semantic, but they are still semantic-agnostic nor 
using standards. 

Meszaros et al. in [28] propose a framework for online 
service cybersecurity risk management applied to a large 



enterprise. The risk model is providing simplicity to ma­
nage by either providers or consumer's viewpoints. It is also 
aligned with standards [1,2]. 

One of the most recent as well as interesting works is 
the work of Qamar et al. [29]. Authors implemented the 
ontology version of STIX™(version 1 .X), together with CVE 
and network ontologies to build STIX analyzer, a framework 
to perform data-driven analytics for threat intelligence and 
information sharing. It is based on known shared and threat 
data from threat repositories. One of its main use cases is 
working on attribution. Authors also provide a way to simu­
late and calculate some risks based on exposure levels. It is 
not focused on leveraging an organization threat intelligence 
data having a near-real-time detection, protection and risk 
management. 

We propose a complete dynamic risk management frame­
work compatible with any widespread risk assessment and 
management standard. We also provide the needed expres­
sivity and granularity for risk management frameworks, for 
example, considering the differences between the likelihood 
of threats based on knowledge, access rights and behaviors of 
each of our users. Our proposal is also focused on behavioral 
detection of new and still unknown threats (when IOCs are 
still not available in any intelligence repository or feed) and 
complex TTP behaviors. We also work with the new version 
of STIX™2.0 which has several improvements from version 
l.X, like an integration between CyBox™and STIX™. 

Poolsappasit et al. in [30] proposed a very interest­
ing dynamic risk management model based on Bayesian 
attack graphs, using conditional probabilities to encode the 
contribution of different security conditions during system 
compromise. They estimate an organization security risk 
from different vulnerability exploitations based on the met­
rics defined in the Common Vulnerability Scoring System 
(CVSS) [31]. 

Mozzaquatro et al. in [32] provide an interesting approach 
based on some of our building blocks like OWL, SWRL and 
a reasoner for detecting, identifying and classifying vulnera­
bilities (or bad configurations) of IoT devices. They propose 
3 layers (design, run time and an integration layer). The 
reasoner is used to propose specific measures to improve 
vulnerabilities or bad configurations (e.g., if a WEP con-
fig is detected, then it is best to use WPA2). At the same 
time, authors use signature matching sensors and DVIDEF 
format. However, it is not oriented to a risk assessment or 
management framework like our work, and it can potentially 
be connected with our framework to benefit from it. At the 
same time, our proposal goes beyond IoT, vulnerabilities and 
EVIDEF. We implemented the whole STIX™ spec draft cre­
ating its ontology version to cover as much types of threats 
as possible leveraging from that standard draft. We also use 
STIX™ along the whole system (sensors work, understand 
and deliver STIX™ format data). We also propose a fully 

integrated domain of STIX™ threat and the risk domain. In 
our case, using SWRL and the reasoner we are able to use it 
for detection at sensors level, but we are also able to detect 
malicious patterns without knowledge of specific signatures. 
We create rules based on SWRL following a certain pattern 
to make reasoning proposals within risk management and 
CTI domains once those patterns have been detected. As a 
future research direction, authors in [32] propose the usage 
of artificial intelligence and Bayesian networks to overcome 
the limited detection capabilities of signature-based match­
ing sensors. As demonstrated in our work, we consider that 
ontologies, SWRL and reasoners can be used together with 
STIX™ to handle the needed expressiveness to detect pat­
terns of unknown IOCs. 

Despite all references, no one is providing a solution 
to have a near-real-time dynamic risk framework based on 
dynamic threat detection. Even all of them are based on threat 
data (mostly IOCs), but they are not based on patterns or 
behaviors. Semantics has been used in some of the refer­
ences provided even in very recent works as a good solution 
for the current lack of expressiveness. 

Both domains need to be connected (cybersecurity threat 
intelligence and risk domains) completely, and the connec­
tion should be based on standards to enable risk and threat 
information sharing. 

By using and developing the entire STIX™ new version 2 
in OWL format, we are promoting the widespread industry-
driven taxonomy for threats but in its semantic version to 
overcome their limitations with regard to expressiveness [5-
8]. 

Inference [13] by our Pellet reasoner [15] will enable 
automatic threat and risk data discovery. At the same time, 
the usage of SWRL [11] rules will also enable the usage of 
extended and enriched algorithms. 

As an example, we could provide the automation needed 
to detect unknown threats based on patterns like detect­
ing any technique, tactic and procedure (TTP) [6] with 
enough expressivity. This kind of detection techniques will 
go beyond current approaches based on known IoCs (indica­
tors of compromise). At the same time a detection is done, 
the system will infer risk re-calculations dynamically. SWRL 
rules will be able to give solution to any type of algorithm, 
and it can be a cybersecurity threat intelligence algorithm, a 
risk domain algorithm or a mixed CTI-risk one. 

By using SWRL [11], we will also simplify the creation 
of either threat or risk algorithms specially for non technical 
people. A one-day training on domain ontologies and the 
usage of SWRL will be enough. Until today, those who create 
algorithms needed development skills [33]. 

Approach and results 
Our approach is based on OWL ontologies [10] and 

Semantic Web Rule Language (SWRL) [11] as seen, for 
example, in Figs. 1 and 3, respectively. It provides a coherent 
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Fig. 1 Ontology representation of our integrated (OWL and STIX™based) cyber threat intelligence and dynamic risk management architecture, 
e.g., CybersecurityExpert User instance, its data access, personal computer, CyberObservables, user-related NetworkTraffic related to a malicious 
dropper 

and integrated solution to the needed expressiveness of such 
concepts and rules but also to inference [13] new knowledge. 
They could also resolve the lack of interoperability between 
existing risk management frameworks and methodologies 
under a common language and a common understanding in 
order to expand risk context into a global and more realistic 
picture. 

Ontologies [12] are an explicit and formal way to repre­
sent concepts, their meaning and their relationships. Explicit 
because it defines concepts as classes, properties, relation­
ships, functions, taxonomies, axioms as well as rules and 
restrictions. It is formal because it is defined by a language, 
which is interpretable by machines. It is a conceptualization, 
because it is an abstract model for a simplified view of the 
domain to be represented (e.g., structure). It is also shared by 
the community for consensus. 

By connecting both domains (risk and cyber threat intelli­
gence) semantically, we demonstrate the ability to dynam­
ically assess organizational risks based on near-real-time 
(NRT) threat data. 

We propose a model based on layers (data, business logic, 
services/applications and visualization) as well as to inte­
grate both domains and ontologies to approach both domains 
simultaneously. 

In order to test our proposal, we selected a specific inter­
national recognized organization in the cybersecurity arena. 
Its current static risk assessment and management (RA/RM) 
approach has been improved by our model into a dynamic 

risk framework which is successfully reacting and respond­
ing to real-time threats. 

We have simulated a well-known watering hole attack 
from July to August 2017 targeting our selected organiza­
tion (however, it was not the target of the real attack) in 
order to test how our model provides with a more effective 
way to prevent, detect and respond against a watering hole 
TTP (techniques, tactics and procedures). Once the TTP is 
detected, security events are created. Those security events 
would trigger specific risk re-assessments dynamically. 

Now that we are able to model any TTP with enough 
expressiveness, we would be able to model any TTP like 
those of [34]. 

Contributions (i) Layered architecture for dynamic risk 
assessment and management (DRA/DRM) based on STIX™, 
OWL ontologies, SWRL and a Pellet semantic reasoner. (ii) 
Evolution and integration of cyber threat intelligence data 
within DRA/DRM processes. For that, we implemented the 
OWL of a complete version of STIX™v2.0 [4] de facto 
standard (STIX2.owl ontology that was imported by our 
DRM.owl ontology), (iii) Definition of several SWRL rules 
as algorithms and axioms to support all the business logic 
made by the Pellet incremental semantic reasoner used in 
this work. 

Paper organization In Sect. 1, we introduce the problem, 
the motivation, related work as well as the summary of our 
approach and main contributions. 



In Sect. 2, we give details about the problem and how 
the selected (and internationally recognized) organization 
is addressing each domain by giving partial details of the 
methodology used as well as each of the layers involved (data, 
business logic, services/application, visualization). We also 
make a detailed description of our proposal by taking into 
account all specificities of the selected organization inside. 

In Sect. 3, we describe the selected attack (TTP and moti­
vation) to test how our proposal would benefit the selected 
organization threat detection, risk assessment and risk man­
agement processes dynamically and in an integrated way. In 
this case, we test how it performs under an attack situation of 
type watering hole, which are usually very difficult to detect. 
Our framework will implement pattern detection techniques 
without their indicators of compromise (IoCs). At the same 
time, the integrated approach will enable an automatic re­
assessment of our organization cybersecurity risks triggered 
by each particular (new) knowledge. 

In Sect. 4, we describe the implementation. 
In Sect. 5, we describe our main results. 
In Sect. 6, we describe our main conclusions. 

2 The problem and our proposal 

We present the cyber threat intelligence (CTI) model consid­
ered in this work also as an evolution of current offering in 
the market. Main purpose of threat intelligence is to have as 
much sophisticated knowledge as possible about unknown 
threats either for having better detection capabilities or hav­
ing better prevention ones. For example, an emerging threat 
which is affecting similar entities would be able to affect our 
organization with high probability if we share the same threat 
actors' motivation. Detecting this type of complex connec­
tions by inference and expressiveness will allow us to provide 
enhanced prevention and detection services. 

Automation is needed due to the evolution in the number of 
threats, services to protect, lack of resources and complexity 
of each organization. Some of the most relevant and common 
cybersecurity needs with regard to automation are related to: 

- Enrichment of threat information context. 
- Security event detection. 
- Security incident detection and prevention. 
- Incident triage by severity (incident handling). 
- Information sharing control (why, what, when and how). 
- Risk assessment and risk management. 

In addition to this, incidents and risks are usually managed 
by different teams due to the specificity of each domain and 
levels involved (operation tactical or strategic levels), and 
their tools are in most of the cases not integrated as they 
should. Threat intelligence data are sometimes connected to 

incident handling; however, none of them are connected to 
enterprise risk management by default. 

Each domain has its specificity also with regard to the 
concepts they manage. There are different initiatives either 
in cyber threat intelligence (CTI) [22,25] or risk management 
(RM) [16-18,23] trying to define clear taxonomies of each 
domain, but all of them in an isolated way. They are only 
targeting one domain at the same time, and in most of the 
cases, it is a partial approach. Querying approaches [26,27] 
are suggesting semantics, but they are semantic-agnostic nor 
using standards. 

The most relevant and advanced products in CTI are 
started to use open standards like STIX™ that will allow 
them to share threat intelligence information based on a com­
mon taxonomy that is accepted by the maj ority of the industry 
as a standard format. STIX™ is offering real benefits by 
its taxonomy of cybersecurity threat domain concepts but 
also defining relationships between their objects. However, 
some concepts inside STIX™ cannot be represented yet, due 
to their limitations to describe more complex concepts like 
TTP (tactics, techniques and procedures) [6], campaigns [7] 
or incidents [8]. STIX™ version 2 has evolved into a more 
integrated approach (e.g., cyberobservables are represented 
inside) as well as it uses JSON instead of XML (used in 
STIX™ v 1.1) for better automation with current product 
offering. It still lacks full expressiveness; however, vl. 1 white 
paper [5] suggested RDF/OWL as a potential future solution 
for it. 

Despite this evolution, we need formal models to describe 
meaning of even complex concepts that cannot be described 
by today. At the same time, formal models would enable 
machines to also understand those concepts and relationships 
for a better and more effective automation [12,13]. 

In this work, we introduce the evolution of STIX™v2.0 
JSON [4] into a semantic STIX™2.0 OWL (ontology) ver­
sion and associated SWRL (Semantic Web Rule Language) 
rules as a formal model of a CTI framework to solve above 
needs. 

On the other hand, risk assessment (RA) and risk man­
agement (RM) domain is using a different taxonomy to 
describe the type of risks, asset dependencies but also the 
appropriate controls (safeguards or countermeasures). We 
implemented and used the international standard ISO2700X 
family [1] as well as the ISO31000 [2]. Because there are 
different reference standard models, the creation of a formal 
model would also enable us to have interoperability between 
themselves. 

Another relevant factor that could be one of the most 
important reasons for not having any effective integration 
between RA/RM and CTI frameworks yet is that both 
domains are using different timing. 



RA/RM is usually using Deming cycle (plan, do , check, 
act) as an improvement life cycle that is not real time, which 
is different from the reality of cyber threat intelligence and 
incident handling as they have to be at least NRT (near real 
time) or if possible, RT (real time). 

Not having NRT/RT risk assessment and risk management 
nowadays mean that our management is not well informed 
of their exposure levels on time as well as investments are 
based usually on annual external consultants estimations 
(e.g., standard threat probability estimations) not consider­
ing the reality of our organization's threat landscape. Risk 
calculations are then only taking place few times per year. 
Mostly, one per cycle. 

Dynamic risk assessment (DRA) and dynamic risk man­
agement (DRM) are new concepts to describe the real need to 
have knowledge of our risk exposure level close to NRT/RT. 

In this work, we also introduce a new semantic DRA/DRM 
OWL (ontology) and associated SWRL rules leveraging CTI 
as a formal model of a DRA/DRM framework to solve all 
problems described above. 

The main contribution of the present work would be the 
integrated (CTI + DRA/DRM) architecture to cover all above 
needs of different domains at the same time. It is based 
on ontologies, SWRL rules and the use of a reasoner. All 
domains are now integrated with regard to concepts (ontolo­
gies STIX2.owl and DRM.owl) but also with regard to timing 
(NRT/RT). 

2.1 Organization under study: a National CSIRT 

Here we introduce the organization selected to test our work. 
We selected a National CSIRT (Computer Security Incident 
Response Team) as we consider it an international reference 
for its corporate maturity (risk management framework certi­
fied under ISO and under a National Cybersecurity Scheme) 
and the maturity of their CSIRT services (incident prevention 
and incident response services based on cyber threat intelli­
gence services). 

This public organization is responsible to provide nation­
wide preventive and incident response services affecting 
citizens and private sector audience, including critical infras­
tructures. 

At the same time, this organization has its own SOC 
(security operation center) to protect its corporate IT infras­
tructure. As described above, it is certified under ISO2700X 
Information Security Management standards but also under 
a new National Risk Management Standard which is a must 
for public entities like our selected organization. 

Several attacks are targeting our organization (e.g., hack-
tivism, state-sponsored, etc.) dynamically. Security events 
are received and handled by its SOC; however, there is still 
not connection between those threats and its risk manage­
ment framework. 

2.1.1 Cyber threat intelligence model of the organization 
under study 

Here we describe the current CTI model of the selected orga­
nization based on layers (bottom-up). 

With regard to the data layer, the organization has different 
international agreements with partners as well as differ­
ent providers to gather valuable threat information affecting 
their customers. Several IOCs (indicators of compromise) 
are received from external sources with regard to different 
threats. Some examples are: malicious URL, domain, sub-
domains, IP addresses, bots, botnet servers, defacements, 
vulnerable assets, vulnerabilities, malware samples, hashes, 
SPAM emails, phishing campaigns. 

The organization has its own threat data coming from their 
advanced sensors: honeypots (low, medium but also high 
interaction ones), dark/deep Web monitoring systems, and 
so forth. 

Threat data information (internal and external) is parsed 
into its own data model through a SIEM (Security Informa­
tion and Event Management), and it is persisted on a Big 
Data architecture (Apache Spark+ Hadoop). SIEM vendor 
provides a restricted proprietary data model so there is a need 
to persist a parsed version into the Big Data under STIX™-
format. 

Each organization will have a different CTI dataset 
depending on its own interests CTI data will range from 
their own collection of data to external interested data from 
business partners/feeds. As an example, we consider a CTI 
dataset for our work that includes different types of data like: 

- Incident handling attacks received. 
- Intelligence analyst data. 
- Other internal data like strange patterns of traffic of spe­

cific users. 
- External CTI data provided by third parties (e.g., supply 

chain, business partners, other CSIRT, equivalent entities 
within the sector, etc.) but in the same format (STIX™). 

- Any data of any STIX™ object/concept. 

The idea is to keep a coherent dataset in a semantic version 
of STIX™to be able to run SWRL rules. We are really open 
to any type of possibilities but limited to that taxonomy. 

The business logic layer is formed by algorithms and rules. 
Today, logic is widespread between sensors, security event 
information management (SIEM), as well as in the Big Data. 
It has mainly three problems: isolation (data not shared, API 
not available, proprietary language), limitations (static, pre­
defined and not touring complete logic) and complexity [33] 
(SCALA language for Big Data, vendor specific for SIEM). 

Services/application layer is where actions (e.g., alerts, 
notifications, etc) are taken to cover all potential use cases 
(incident prevention, incident detection notification, incident 



handling, information sharing, KPI updates being triggered, 
etc). It uses the business logic and data layers. As an exam­
ple, the SIEM is used to open incident tickets automatically 
into their incident response ticketing system for its NRT/RT 
capability. 

For example, the information sharing application helps 
partners and stakeholders of our selected organization. TLP 
(traffic light protocol) tag is used to keep confidential infor­
mation safe, and it is equivalent to an ACL (access control 
list). TLP avoids cybersecurity information to be shared 
without consent; at the same time, we benefit the whole 
cybersecurity community when the info can be shared with 
a broader audience. Different levels will apply depending on 
the confidentiality of the information. 

In case of the visualization layer, the organization is cur­
rently migrating into a business intelligence platform to 
guarantee effective visualization to the three different levels 
(operation, tactical and strategic levels). Nowadays visual­
ization is provided only to operational level via Web access 
to data storage (SIEM logger and Big Data). Tactical and 
strategic levels have been approached partially, still without 
business intelligence, flexibility to deploy new algorithms 
and interactive drill down options to explore the data. This is 
something that we will have by definition by using ontolo­
gies (e.g., graphs). As data model is not completely standard 
yet (still using some vendor specific data model), tactical 
and strategic levels could experience some problems when 
new indicators need to be provided. In this case, there are 
situations where data meaning is not clear enough (e.g., com­
promised resources versus incidents). By using ontologies 
[12], we will address these inconsistencies. 

2.1.2 Risk assessment and risk management model of the 
organization 

Here we describe our organization risk assessment and risk 
management model: 

Risk assessment has limited scope as only a few (but busi­
ness essential) services or projects are in the scope of the risk 
assessment process. Risk owners usually give the service or 
project context by Ailing down a form and/or an interview. 
The scope includes the context, that is to say, assets and 
dependencies either internal or external. The context also 
includes the compliance, legal, politics factors. Risk owners 
have to evaluate each service by different dimensions: 

- Information security: confidentiality, integrity, account­
ing, authenticity, availability. 

- Business impact assessment (recovery time objective, 
recovery point objective). 

- Strategy. 
- Satisfaction. 

Dependencies are usually manually defined by risk owners 
which is considered a big limitation, as they are usually not 
experts on their corporate network topology to clearly define 
IT dependencies between assets (better known by IT staff). 
They evaluate the importance of each service with regard 
to different dimensions. That valuation is then considering 
all dependencies. As a result in a top-down approach, all 
assets inherit the valuation from above. An asset which is 
providing support to two different services in scope will have 
inheritance from both services. Services in risk assessment 
scope will depend on data, which at the same time will depend 
on SW/HW and later will depend on their users who will be 
using those assets. 

Threat inventory is taking place again by hand, identify­
ing most relevant threats that can threaten our service/project. 
Those threats can harm the image of our organization some­
times, so those risks have also to be manually entered. After 
that, safeguards have to be manually identified as well. They 
could partially mitigate our risks depending on the threat and 
the countermeasure. 

Risk should be a function of probability and impact as 
suggested by most of the methodologies and standards today. 

The organization under study decided to follow the follow­
ing formula where risk is a combination of probability and 
impact, reduced by availability of certain countermeasures: 

Ri = Pi + Ii-Cli-C2i (1) 

where 

- Ri is the residual risk of threat /, 
- CI; is the decreasing value of the impact (severity) / 

or Probability P of threat / due to a countermeasure 1 
(specific control established in the organization), 

- C2¿ is the decreasing value of the impact (severity) / or 
Probability P of threat / due to a new proposed counter-
measure 2 (specific new control to be established), 

- Pi is the probability P of threat /, 
- k is the impact (severity) / of threat / when it is materi­

alized. 

Threats could be of different types (strategic, compliance, 
physical security, IT security, quality and process manage­
ment, others). 

Because the assignment of each safeguard to each threat is 
not really done in the organization today (it had to be done by 
hand and high level of granularity), the formula is simplified 
in the organization under study by using average values. 

Depending on the new risk value after all new counter-
measures are setup, risk is classified in the following scale 
(from 1 to 10): 



- Extreme (8-10): risk is unacceptable, 
- High (6-7): risk is undesirable, 
- Medium (5): risk is tolerable, 
- Low (1-2-3-4): risk is acceptable. 

A mitigation strategy is recommended for extreme and 
high risks with different possibilities: 

- to reduce, 
- to avoid, 
- to share, 
- to transfer the risk. 

An investigation strategy is recommended for medium 
risks with different possibilities: to assume or to reduce the 
risk. 

A monitoring strategy is recommended for low risks where 
usually risks are assumed. 

In addition to this, all strategies should take into account 
potential actions of different impact in different dimensions: 

- Image and reputation. 
- Compliance. 
- Security. 
- Budget and costs. 
- Operations (Ops). 

Other special response to risk strategies can also be con­
sidered where 

- attack, deception, deterrent, information sharing, aware­
ness, are some examples. 

Summarizing, being the selected organization an inter­
national recognized CSIRT which is providing nationwide 
advanced cybersecurity services, it has its own risk as organi­
zation. Still CTI and RA/RM processes are isolated between 
themselves, the reason behind after some interviews is that 
they are supposed to belong to different domains and they 
are managed by different teams inside the organization (as 
usual in most organizations). 

Data, business logic, services/applications and visualiza­
tion from each of these domains are completely separated. 
RA/RM is using static tools (Excel, etc.) different from CTI 
tools, but they are also using different taxonomies, level 
access and a different timing, when they should not be iso­
lated. 

2.2 Our proposal: integrated CTI and DRA/DRM 
architecture 

Here we introduce our proposal as an integrated and layered 
architecture. 

2.2.1 Semantic data model 

Here we created two main OWL ontologies (OWL—Web 
Ontology Language) for the two domains: 

- STIX2.owl for all threat intelligence data in STIX™v2.0 
[4] format, 

- DRM.owl for dynamic risk data. 

Both are connected as DRM.owl directly imports and 
extends STDQ.owl. 

OWL DL (description logic) is designed to provide the 
maximum expressiveness as possible while retaining compu­
tational completeness (either <P or -^<P holds), decidability 
(there is an effective procedure to determine whether <P is 
derivable or not), and the availability of practical reasoning 
algorithms. 

STI2.owl is a contribution to help STIX™v2.0 [4] to solve 
their current problems with regard to the representation of 
more complex concepts like TTP (techniques, tactics and 
procedures) [6], campaigns [7] or incidents [8] but also to 
make automation easier by using semantic reasoners. We 
followed all OASIS open standard specification of its ver­
sion 2.0 translating the whole standard, that is to say, all 
requirements and restrictions from the STIX™specifications 
are now ontology classes, property objects, data types and 
axioms in OWL format. 

DRM.owl imports STIX2.owl leveraging CTI into a more 
comprehensive and meaningful DRA/DRM architecture. 

Taxonomies and domains are fully integrated: concepts 
are related between themselves, and relationships are for­
mally established between all types in order to help us to 
solve initial challenges but also providing us the capability 
to use a reasoner (this time we used Pellet incremental rea-
soner) [14]. Data types are formally defined as well. 

We then have a graph and meaningful data model to con­
nect a specific IOC, threat or security event to an asset. We 
also have the possibility to calculate associated risks around 
each service, based on dependencies, as seen in Fig. 1. 

The framework presented is a formal model which enables 
the representation of any CTI or DRM context despite its 
complexity and previous limitations like the ones still not 
solved in STIX™XML and JSON format [6-8] evolving 
threat intelligence data until today into real TTP meaningful 
patterns and representations (graphs beyond connected IOC). 



Name 

Enrichment"! Auto IPv4 assignment by Domain match iDNSl 

Comment 

I 
Status 
|Ok 

|stix2;IPv4Addr(?ip) A stix2;belongToRefs(?ip. ?ref) A stix2:DomainName(?ref) - > stix2;DomainName(?ref) A 

st¡x2;resoÍvesToRefs(?ref. ?¡p) 

Fig. 2 SWRL DNS enrichment 

Due to our contribution of a complete DRM framework 
leveraging a complete version of STIX™v2.0 ontology, any 
STIX™related data can be parsed into our ontology. 

In our work, all the relevant data for our use case at all 
levels (operational, tactic, strategic) were parsed into our 
DRM ontology as a central data storage. All SWRL rules 
handle or evaluate these data. On the other hand, we limited 
to STIX™the different types of data to be collected as future 
sensors will probably provide data in a format compatible 
with this taxonomy. We have then focused our contribution 
to the processing of data but not about its collection. 

2.2.2 Semantic business logic (reasoning) model 

Now that all data (threat intelligence and risk data) are based 
on OWL and relationships are formally established, we pro­
pose to use SWRL (Semantic Web Rule Language) which 
will enable us to express rules as well as logic combining 
OWL DL, OWL Lite and RuleML (Rule Markup Language). 

Rules are of the form of an implication between an 
antecedent (body) and consequent (head). The intended 
meaning can be read as: Whenever the conditions specified 
in the antecedent hold, then the conditions specified in the 
consequent must also hold. 

We will use SWRL to create semantic algorithms and rules 
that will use semantic data to provide value added and to 
cover all use cases defined above, like: 

(a) Enrichment of threat information context, for example, 
by using the SWRL rule of Fig. 2, we can represent a simple 
DNS data enrichment to make relationships between IP and 
domain concepts. By knowing an IP address belonging to a 
DomainName, we create a reverse relationship, that is, the 
DomainName to IP is the "inverseOf" IP to DomainName. 

The rule has an antecedent (body) indicating that all IP 
addresses in IPv4 format belonging to a specific domain name 
will then create an inverse relationship in the consequent 
(head), that is to say, the same domain names will then resolve 
back to those IP addresses. This is a DNS versus reverse DNS 
behavior. 

As we implemented the whole STIX™v2.0 [4] taxonomy, 
the rule uses the unambiguous concept (classes) "IPv4Addr" 
to differentiate from "IPvóAddr", also in STIX™taxonomy 
the property named belongToRef and the domain name is the 
concept DomainName (without spaces). 

Name 

[Threatlnventory#5 Auto Deliberated Malicious SW Distribution Threat 

Comment 

Status 

S 
drm:evaluates(?av, ?rs) A drm:Users(?u) A swrlb:lessThanOrEqual(?e, 3) A drm:AssetValuation(?av) A 

drm:Software(?sw)A drm:Data(?data)A drm:hasCybersecurityExperience(?u, ?e)A drm:RiskScope(?rs}A 

drm:dependsOn(?data, ?u) A drm:dependsOn(?rs, ?data) A drm:dependsOn[?data, ?sw) A swrlx:makeOWLThing(?x, 
?sw) - > drm:DeliberatedMaliciousSWDistributionl?x)A drm:threatens(?x, ?sw) A drm:probability(?x. 
"4.0"AAxsd:float)A drm:impact(?x. "3.0"AAxsd:float)A stix2:type(?x. "Threat Deliberated Malicious SW 
Distribution"]! 

Fig. 3 SWRL rule to make automatic inventory of deliberated mali­
cious SW distribution threat inventory when a service in scope of our 
risk management framework depends on data and later on SW (OS, 
Browser, AdobeFlashPlugin) but also on HW (Personal Computers) 
used by internal users with little cybersecurity experience < = 3 

Once this SWRL rule is created and imported as an axiom 
into the ontology, the reasoner, when active, will make auto­
matic reasoning by filling and enriching all new domain 
names or IP addresses if there is enough info related to the 
antecedent to execute the consequent (head). 

This is a very simple example, but we can also create more 
complex enrichment rules by using SWRL as our semantic 
business logic model. 

Anyway, SWRL rules are quite easy to understand and to 
create by non-experience users. A 4-h briefing about SWRL 
and the namespace domains used (e.g., OWL ontologies: 
classes, properties and data types of both domains) should 
be enough to start creating business oriented SWRL rules. 
Until today, complex rules had to be created by programmers 
with high SW programming skills [33]. We propose SWRL 
rules to solve this problem and to enable any person (oper­
ator (operational), manager (tactical) or director (strategic)) 
to create its own rules. 

(b) Enrichment of risk assessment and risk management 
context. We are now able to work in all phases dynamically; 
for example, by using the SWRL rule presented in Fig. 3, we 
automatically make an automated threat inventory of "Delib­
erated Malicious SW Distribution Threats" type. 

This will make an automatic inventory of threats by a 
more advanced pattern which is useful to risk owners if it 
can be automatically detected by reasoners. The algorithm 
is taking into consideration specific patterns when potential 
deliberated malicious windows executables are dropped dur­
ing Web surfing traffic. However, part of this behavior could 
happen with licit content, and strange Javascript redirections 
together with lack of cybersecurity expertise by the end user 
will be also considered in the business logic of the algorithm 
as shown inside the SWRL rule. That is to say, the same 
algorithm will not create automatic threats with that level of 
probability if the end user navigating is an expert (the sys­
tem understands that the probability of a fake installer to be 
executed by an expert is residual). 



The algorithm antecedent of the figure will take into 
account the situation when an essential service depends on 
specific data which also depends on SW used by an internal 
(corporate) user who has access to it at the same time he/she 
has low cybersecurity experience (cybersecurity experience 
< = 3). The threat is then recognized as a potential risk in 
specific situations. Situations can be of any type as we count 
with enough expressivity to define patterns and behaviors in 
our framework. 

Taking into account the level of cybersecurity experience 
of an end user, it is clear that it will influence the probability to 
execute (or not) a specific malicious installer or dropper. The 
risk level for this type of threats (malicious SW distribution) 
will be different if the end user has different levels of exper­
tise (the impact could be the same but not the probability of 
occurrence). 

In this rule, we can see that most concepts used are defined 
into the drm ontology (see drm: prefix before the concept 
used, the prefix defines the ontology where is defined). We 
also use built-in features like swrlb and swrlx prefixes used 
for different purposes, like comparison features, math calcu­
lations or even to create new individual instances. In the rule, 
we also use a class property defined in stix2 (see stix2 prefix 
in the rule). At the end, we have an integrated framework 
where either stix2 or drm can be used in the same business 
logic (algorithm) together with SWRL built-in functions. 

In Fig. 4, we implemented a rule to detect real malicious 
events related to this type of risk. This specific SWRL rule 
checks redirection after redirection until an executable file is 
dropped, all events following STIX™standard. SWRL per­
mits enhanced rules to describe a specific semantic pattern 
in the network traffic without having knowledge about spe­
cific IOC involved in the attack. The SWRL rule is then IOC 
agnostic with regard to domain name, IP or hashes. 

It is an effective cyber threat intelligence rule that can 
also be shared between mates without the risk of exposing 
your corporate data. This is one example of how two or more 
organizations can share intelligence and build trust without 
sharing real data or IOCs between them. By using ontologies 
(as a formal model) and standards, rules can be easily loaded 
into new organizations upgrading their detection capabilities 
rapidly. This is possible when the reasoner uses and under­
stands the same language which is a real contribution to the 
state of the art. 

This type of service/project will likely have more risk 
related to this type of threats when used by non expert users 
versus when they are used only by cybersecurity expert users. 
Risks are guessed automatically taking all this granularity 
into consideration. 

c) Automation of risk management like the automation of 
risk level classification, as aprevious step to decision making. 
The SWRL rule of Fig. 5 makes the automatic classification 

Name 

[Threatlntelligence#l Security Event Dropper Detection 

Comment 

Status 

|0k 

|stix2:NetworkTraffic(?ntl*stix2:dstPayloadRefGnt, ?pl)A stix2:Artifact(?pl) * stix2:mimeType(?pl, "javascript")* 

|slix2:redirection(?pl, 'red) * stix2:Ufti(?red) * stix2:NetworkTraffic(?nt2)* stlx2:dstRef(?nt2, ?red)A 

jstix2:dstPayloadRef(?nt2, ?pl2)A stix2:srcRef(?nt2, ?sr)A stix2:extensions(?pl2, "windows-pebinary-ext")A 

stix2:name(?pl2, ?nm)A swrlx:makeOWLThing(?x, ?nt2) - > drm:SecurityEvents(?x)A stix2:type(?x, "security-event") 
A stix2:srcReff?x, ?sr)A stix2:type(7x, "Dropper behaviour of Malicious Windows Executable")A stix2:dstRef(?x, 

?red)*stix2:relatedTo(?x, ?nt2)| 

Fig. 4 Pattern-based SWRL rule to detect a security event that will 
be triggered by a dropper executable delivered automatically after a 
network traffic redirection of an injected Javascript takes place. It has 
not specific IOC, and all individuals are variables 

Name 

|RiskSeverity#2 High Risk Classification 

Comment 

Status 

Ok 

drm:actualRisk(?rr, ?ar) A swrlb:greaterThanOrEqua!(?ar, 6)A drm:ResidualRisk(?rr) A swrlx:makeOWLThing(?x, ?rr) A 

drm:evaluates(?rr. ?ris)A swrltxlessThan(?ar, 8) -> drm:evaluates(?x, ?r is)A Stix2:type(?x. "High risk-severity")A 

¡drm:HighRiskSeverity(?x)A stix2:value(?x, ?ar̂  

Fig. 5 SWRL rule for auto classification of high severity risks 

of risks belonging to what it is defined by the organization 
as high risks along the time. 

By using SWRL, we are able to easily implement the 
business logic of our threat and risk domains. By using the 
integrated ontologies, our rules based on SWRL could handle 
any data from any domain within the same algorithm in either 
antecedent or consequent. It fulfills the needed expressivity. 
Once new data came in, our reasoner will make dynamic, 
automatic and semantic reasoning. This could help CTI or 
DRA/DRM domains, for example making automatic threat 
inventory explained in Fig. 3 or even more complex reason­
ing like triggering an alert in the services/application layer 
when a TTP occurs like the pattern explained in Fig. 4. 

As an example of potential efficiency, nowadays, to miti­
gate one threat, there are always multiple rules and Alters if 
they are based on IOCs. By using our model, a threat's TTP 
can be described into a SWRL rule to have the same effect 
that multiple IOC-based rules (matching IOC). As a result, 
we can be more efficient as we can cover and filter multiple 
mutations of the same threat in a single pattern-based rule. 
From an operator point of view, less rules and a reasoner are 
better team mates than multiple IOC-based rules to block one 
threat. 

2.2.3 Semantic services/application model 

Here we provide services and applications for both domains. 
We can also give answer to more complex scenarios and 



use cases in the services/application layer by using SWRL 
expressivity as well. 

As an example, we propose a rule for CTI security event 
detection. By using a more sophisticated SWRL rule, we can 
represent a security event detection based on a TTP (which 
now can be represented without semantic limitations [5-8]) 
which business logic is based on a specific network traffic 
pattern. The pattern, once it matches, will increase dynami­
cally the risk level of those risks of type deliberated malicious 
SW distribution. 

The following SWRL alert will analyze and represent 
a TTP when an injected Javascript is loaded after visit­
ing a compromised Web site, and it redirects an internal 
corporate user to a different URL where a Windows exe­
cutable file (*.exe) is automatically retrieved. The SWRL 
rule in Fig. 4 creates an individual instance of class Securi-
tyEvent (meaning a security alert). The creation is done at 
"swrlx:makeOWLThing" using variable x (?x means). After 
that, a drm:SecurityEvents(?x) is defining the class of the 
individual instance of that variable. This rule will analyze 
two different network traffics: One depends on the other: 
first connection made a redirection into another URL which 
destination is dropping an executable artifact as dstPayload-
Ref. All this naming convention came from STIX™standard 
by OASIS that we implemented in OWL as proposed in 
STIX™white paper as potential future research and imple­
mentation [5]. 

We are also able to solve challenges like security inci­
dent detection and prevention, for example based on security 
events like the example described in Fig. 4. 

Other types of CTI challenges like incident triage by sever­
ity (incident handling) and information sharing control (why, 
what, when and how) will have their corresponding SWRL 
rules, but also they will be meaningful (SWRL with OWL 
DL graph-based data) also for reasoners. 

Information sharing application could also be better guar­
anteed by implementing STIX™v2.0 [4] Marking definition, 
for example, to control how data can be used and shared. For 
example, implementing TLP as a marking definition restric­
tion where data may be shared with the restriction that it must 
not be re-shared, or that it must be encrypted at rest. 

We implemented a concrete example of a risk manage­
ment action at tactical level and other example of a risk 
management action at strategic level to demonstrate how 
our framework enables the connection from CTI into a com­
plete DRM, at all levels. 

With regard to the tactical level, we propose to share risk 
intelligence information as a preventive action once we are 
receiving a specific attack in one office to protect other remote 
offices and/or partners. In our case, we will create an instance 
of class "Information Sharing Control" dynamically once 
this situation is happening. In our case, we have two options 
either to share details about IoC or to send the intelligence 

1 iRiskManagemenfib Intelligence Information Sharing of specific pattern detection when attack is golng-on 

[Tactical approach 
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. pOk 

i drm:SecurityEvents(?S> * Slix2:type(?s, "Dropper behaviour of Malicious Windows ExecuIable"AArdf:PlainLiteral) A 
. swrlx:createOWLThingC?x. ?s) - > drm:lnformationSharingControl(?x) A stix2:name{?x. "Intelligence SWRL to detect 
i Watering hole attacks pattern'A^rdfPlainLiteral) A stix2:descriptionf?x. "Decode by using Base64 
I (4oCcKHN0aXgyOk5ldHdvcmtUcmFmZmljKD9udCkgXiEzdGI4Mjpkc3RQYX1sb2FkUmVmKD9udCwgP3EsKSBelHNua 
•• XgvOkFydGlmYWN0KD9wbCkgXiBzdCI4MjptaWllVHIwZSg/cCwslCJqYXZhc2NyaXB0IISecmRmOIBsYWIuTCI0ZXJhbC 
: kgXIBzdGI4MjpyZWRpcmVjdGlvbig/cGwslD9yZWQplF4gc3RpeDI6WJfvlKD9yZWQplF4gc3RpeDI6TmV0d29yalRyYWZ 
I maWMoP250MikgXiBzdGI4Mipkc3RSZWYoP2 50MiwgP3JIZCkgXiBzdGI4Mjpkc3RQYXIsb2FkUmVrnKD9udDlslD9wbDI 
I plF4gc3RpeDI6c3JjUmVmKD9udDlslD9zcikgXIBzdGI4MjpleHRIbnNpb25zKD9wbDlslCJ3aW5kb3dzLXBIYmluYXJ5LW 
: V4dCJeXnJkZjpQbGFpbkxpdCVvYWwplF4gc3RpeDI6bmFtZSg/cGwyLCA/bm0plF4gc3dybHg6bWFrZU9XTFRoaW5nK 
i D94LCA/bnQyKSAiPiBkcm06U2VjdXJpdHIFdmVudHMoP3gplF4gc3RpeDI6dPllwZSg/eCwglnNIY3VyaXR5LWV2ZW50ll 
i 5ecmRmOIBsYWIuTCI0ZXJhbCkgXIBzdCI4MjpzcmNSZWYoP3gslD9zcikgXIBzdGI4Mjp0eXBIKD94LCAiRHJvcHBIciBiZW 
i hhdmlvdXlgb2YgTWFsaWNpb3VzlFdpbmRvd3MgRXhlY3V0YWJsZSJeXnJkZjpQbGFpbkxpdGVyYWwplF4gc3RpeDI6ZH 
i N0UmVmKD94LCA/cmVkkSBelHN0aXgyOnJlbGF0ZWRUbyg/eCwgP2S0Mikp4oCd)"AArdf:PlainLiteral]| 

Fig. 6 SWRL rule to implement a specific risk management tactic: 
Once a specific type of attack is detected, the detection algorithm (not 
the data or IOC) will be shared with the rest of the offices or partners 
to transfer knowledge (to improve their own detection capabilities). It 
enables the detection of the same attack even if using modified IOCs 
but the same TTP 

rule that is how receivers can detect by themselves the same 
incident if using our formal model framework. The SWRL 
rule that detects the pattern attack will be shared itself inside 
another SWRL information sharing rule dynamically once 
the attack is being received. This tactic will facilitate efficient 
and dynamic detection and protection during a campaign as 
part of our corporate tactics. The new rule will not include IoC 
but the rule itself (algorithm) in order to demonstrate other 
of our contributions (risk intelligence sharing rules without 
IOC/data). This changes the paradigm of information sharing 
until today. By using a formal model and ontologies, rules 
can be applied as plug and play if using the same framework. 

In detail, once we have a detection of a security event of 
type "Dropper behavior of Malicious Windows Executable," 
we will create an instance of a IS027K control sharing class 
named "Information Sharing Control" to share it with our 
mates. The new instance will include inside the related algo­
rithm for detection (SWRL detection rule) in order to transfer 
knowledge about how to detect it. It will help others to better 
prevent similar incidents with different IOCs but the same 
TTP by improving their detection capabilities beyond spe­
cific IOCs. 

We decided to encode the algorithm or SWRL rule being 
shared into base64 (it could also be ciphered if needed). The 
rule to share is the same as in Fig. 4. 

The SWRL rule at tactic risk management level that will 
create an information sharing control to manage intelligence 
sharing is the one in Fig. 6 

With regard to the strategic level, the same security inci­
dent will trigger specific "Awareness trainings" as a dynamic 
RM decision proposed by the reasoner using NRT and the 
claimed expressiveness. That is to say, the reasoner pro­
poses dynamically specific awareness trainings only to those 
employees which are receiving real and specific security 
threats (security event instances), and at the same time, they 
still do not count with enough experience in cybersecurity 
(rating equal or below 3 out of 5). This allows the organization 



Name Property assertions: owl:#dca2579d db7r_ 4a34 8c53 32LEHHI 
¡RiskManagementiS New Awareness Training based on SecurityEvents targeting! nonExpert users 

Comment 

[Strategic approach 

Status 

IK 

drnvSecurityEventsfi) * stix2:srcRef(?s, ?src) * stix2:observableOf(?src, ?pc)A drm:Computerf?pc) * 
stix2:isUsed8yl?pc. ?u)A drm:lnternalUsers(?ulA drm:hasCybersecurityExpehence(?u, ?ex) ' 
swrlb:lessThanOrEquall?ex, 51 A swrlx:createOWLThing(?x, ?u) - > 
drm:HRRelatedSecurityAwarenessEducationAndCybercapabilitiesControl(?xl * drm:protects(?x, ?u) 

Fig. 7 SWRL rule to propose a specific and detailed risk management 

strategy: Once a specific type of attack is detected, the reasoner will 

propose a specific awareness training to those specific users which are 

affected by the threat, and at the same time, they do not have enough 

cybersecurity experience 

to launch more efficient trainings with so much granularity 
and dynamically. In this case, the SWRL rule is shown in 
Fig. 7. 

In detail, the reasoner instances new strategic safeguards 
or controls dynamically of class "HR Related Security 
Awareness Education and Cyber capabilities control" indi­
cating the need to protect (property drm:protects) each 
specific user (class drm:InternalUsers) associated with real­
time threats. We also consider in the rule that only non-
experience users in cybersecurity will be eligible for the 
training (rating equal or below 3 out of 5, for that we 
use drm:hasCybersecurityExperience property AND swrlb: 
lessThanOrEqual operator). Additionally, we can create 
content-oriented SWRL rules to make specific types of train­
ing depending on the threats (e.g., social engineering, Web 
surfing, etc.). With this expressiveness, there could be cus­
tomized trainings proposed by the reasoner based on real but 
specific classification of threats. 

Another interesting benefit is that we could leverage sen­
sors into more intelligence sensors by letting them access 
structured OWL data as well as using SWRL rules or even 
using SQWRL (Semantic Query Web Rule Language that 
will be explained in the next section) to query the formal 
model by using a syntax close to SQL. There would be high 
benefits if all the topology is using the same data model stan­
dards and ontologies, even sensors. 

2.2.4 Semantic visualization model 

Because our data, business logic and services/applications 
are based on semantic OWL data, SWRL and reasoners; our 
visualization model could benefit from enriched semantic 
graphs. We have different options by using Protege tool cre­
ated by Stanford. 

- OntoGraph plug-in to render interactive graphs of our 
integrated formal model (CTI + DRA/DRM classes, prop­
erties and data types). It also includes individual instances 

Object property assertions C 3 

HsrcRef IP_192.168.1.10 

relatedTo 

NefTraffic_PC_CFO_Redirection_Dropper_C 

HdstRef 
URL_https:/ /bro wser.updateplugin.org: 844 

Data property assertions C3 

• type "Dropper behaviour of Malicious 
Windows Executable" AAxsd:string 

• type "security-event" AAxsd:string 

oooo oooo 
E 

oooo 

oooo 
oooo 

Fig. 8 Screenshot in Protege tool of the security event created by the 

SWRL rule seen in Fig. 4 when our CFO browser has been redirected 

into a fake Flash (exe) installer. The pattern, redirections + dropper are 

part of the TTP definition 

Name 

'Dynamic Risk ReAssessment after a Security Event of type Dropper by a less experienced User 

Comment 

The case of Droppers behaviour when end user is unexperienced the probability of risk/damage increases 

Status 

Jjic 
|drm:SecurityEvents(?sel * stix2:type(?se, "Dropper behaviour of Malicious Windows Executable")A stix2:srcRef(?se, 
p ) A drm:PersonalComputer(?pc) * stix2:hasCyberObservable(?pc, ?i) * stix2:isUsedBy(?pc, ?u| * drm:Users(?u)A 

|drm:hasAccessTo(?u, 'data) * drm:Data(?datalA drm:ResidualRisk(?rr)A drm:threatens(?rr, ?data)A 

|drm:evaluates(?rr, ?evl * drm:Riskl?ev) * drmdamagesPev, drm:AdobeFlashPlayerPlugin)A stix2:type(?rr, 
¡"Deliberated Malicious SW Distribution Risk")A drm:probability(?rr, ?p)A drm:potentialRisk(?rr, ?pr)A 

IdrroctualRiskPrr, ?ar)A swrlb:add(?newp, 'p, 1)A swrlfcaddpnewpr, ?pr, 1)A swrlkaddpnewar, 'ar, 1)A 

!stix2:islncreasedBy(?rr, ?se) -> sqwrhselectpu, 'rr, ?p, ?newp, 'pr, ?newpr, ?ar, ?newar) 

Fig. 9 SQWRL rule for risk re-calculations after a security event is 

detected 

(threat intelligence and risk-related data) as shown in 
Fig. 1. Equivalent plug-ins could be VOWL and Onto Viz. 

- Protege standard interface where object and data property 
assertions can be read (Fig. 8). - SQWRL query language 
to query our data model or instances. An example of 
query is shown in Fig. 9 and results of that query are 
shown in Fig. 13. When consequent belongs to a query, 
"sqwrl:select" is used. 

With regard to risk assessment and risk management pro­
cesses, our model is able to accommodate the specificities 
of the selected organization (the National CSIRT) whose 
risk assessment and risk management model is described in 
Sect. 2.1.2. 

CTI data is already integrated with risk assessment and 
risk management data. Some examples of this NRT (near real 
time) integration can be shown in Fig. 4 where prefix "stix2" 
represent our new ontology implementation of STIX™v2.0 
[4] data and prefix "drm" represent our new ontology imple­
mentation of DRA/DRM (dynamic risk assessment and 
dynamic risk management) as well as their relationships, 
rules and axioms. 

https://bro
http://wser.updateplugin.org


!RiskManagement#2 Mitigation Strategy for High Risk Severity 

Comment 

Status 

Ok 

lrm:HighRiskSeverityPer)»stix2:value('er, >sev) * ttaevaluatesper, ?risex)A swrlx:makeOWLThingl?x, ?er) - > 

lrm:RiskMitigation(?x)A stix2:type(?x, "Risk Mitigation Strategy")A stix2:valuei?x. ?sev)A drm:manages(?x, ?risex) 

Fig. 10 SWRL rule used in risk management for automatic classifica­
tion. Once a high severity risk is detected, it is automatically classified 
for a mitigation strategy because the risk is not acceptable for the orga­
nization as is 
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Fig. 11 Screenshot in Protege tool of the instance created dynamically 
of class information sharing control which at the same time is including 
the encoded version of the SWRL attack detection TTP 

Another example of a dynamic risk management process 
is the automation of the better strategy depending on the risk 
and its severity. The SWRL rule for this can be shown in 
Fig. 10. 

As seen in Figs. 9 and 13, our dynamic risk assessment 
approach would also allow risks to be updated along the time 
due to special security events. The one shown in Fig. 4 is an 
example of an event that will increase the risk once it is 
detected. Risks can be increased by changes on two factors 
or variables: impact or probability. In this case, the probabil­
ity will change as something strange is close to become an 
incident related to that type of risk. 

As seen in Fig. 6, specific algorithms have been imple­
mented to help the reasoner to propose specific tactics. In 
our case, once a security event is detected of a specific type, 
the reasoner will create an instance to share the detection 
algorithm as a risk intelligence sharing practice. The algo­
rithm encoded in base64 will be shared to other offices or 
partners once an attack has been detected in our office. We 
are then transferring knowledge and detection capabilities 
by transferring the algorithm or SWRL rule inside another 
SWRL rule. They will be able to detect the same pattern 
once the SWRL rule shared is loaded in their systems even 
if attack IoC has changed. The only condition is that the 
TTP pattern remains the same as our rule is an algorithm to 
detect a TTP pattern. There will be different SWRL rules to 
detect different TTP patterns. The instance created automat­
ically (prefix owl followed by a hash means automatically 
generated instances) can be seen in Fig. 11 together with the 
contents of the instance; in this case, it includes the base64 
encoding version of rule seen in Fig. 4. 

At the same time, in Fig. 7, specific algorithms have 
been implemented to help the reasoner to propose specific 
strategies about HR awareness trainings. In our case, once 
a security event is detected of a specific type, the reasoner 
will create an instance of recommended awareness train­
ing to specific users which are receiving real-time attacks 
and can be vulnerable to those attacks due to their cyber-
security experience. As seen in Fig. 12, a new instance of 
the suggested control class (HR Related Security Awareness 
Education and Cyber capabilities control) is created dynam-

•ooooI 
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Fig. 12 Screenshot in Protege tool of the instance created dynamically 
of class HR Related Security Awareness Education and Cyber capabil­
ities control as recommended training by the reasoner due to real-time 
security events 

ically by the SWRL rule of Fig. 7 considering the specific 
internal user that is recommended for the training. 

2.2.5 Feasibility of a new dynamic risk equation 

By using our framework, we can then improve the selected 
organization's equation 1 to leverage risk assessment into 
something dynamic (depending on timei and security events) 
and affordable with enough flexibility and granularity like: 

Rit = Pit + lit ~ S(Cli , , C2it,..., CNit) 

Rt = ~ERit 

being: 

Pit = Pit-i + V(EPlit,EP2it, 

/;, = / ; , _ !+ E ( £ / 1 ¡ Í , £ / 2 ¡ Í ) . 

where: 

..,EPNit) 

.,EINit) 

(2) 

(3) 

(4) 

(5) 

Pit is the probability of threat / at time t, 
lit is the impact of threat / at time t, 
CNit is the decreasing value of the impact (severity) / or 
probability P of threat / at time t due to countermeasure 
N, 
EPNn is the increasing value of the probability P of 
threat / at time t due to the security event N, 
EI Nit is the increasing value of the impact (severity) / 
of threat / at time t due to the security event N, 
Rit is the residual risk associated with threat /, at time t, 



- ~£Rit is the sum of all type of residual risks associated 
with threats / = 1 , . . . , Z, at time t, 

- Rt is the total residual risk at time t of all type of threats 
i = 1, . . . ,Z, 

We are finally able to implement the dynamic risk assess­
ment equation 2 by using our model. We use SWRL rules to 
decrease values when a safeguard (CN) mitigates that risk. 
There are also rules to increase values when a security event 
(EPN or EIN) increases the same risk. 

In our case: 

Rit=l — Pit=l + ht=\ 

Pit=l = Pit=0 + 1 

/¿Í=I = /¿Í=O + 0 

where: 

E(C1 ¡ Í = 1 ,C2 ¡ Í = 1) (6) 

(7) 

(8) 

- / is the "Threat of Deliberated Malicious SW Distribu­
tion," 

- Pit=\ is the probability of that threat at time t = 1, that 
is "newp" of Fig. 13, 

- kt=i i s the impact of that threat at time t = 1, which is 
equal to the impact at t = 0 because the recent security 
event is only updating the probability, 

- CI it—i is the decreasing value of the Impact (severity) 
i or probability P of that threat / at time t = 1 due to 
countermeasure 1 which is the "Antivirus" (reducing 0.5 
float), 

- C2it=i is the decreasing value of the impact (Severity) 
/ or Probability P of that threat / at time t = 1 due 
to countermeasure 2 which is the "LDAP" (reducing 0.0 
float as it is not considered a countermeasure for this type 
of threats), 

- EPN, (=i which is equal to 1 because it is the increasing 
value of the probability P of that threat / at time t = 1 
due to the security event N = 1; in our case, it is 1.0 float 
once the security event of a dropper has been detected, 

- EINit=i which is equal to 0 because it is the increasing 
value of the impact (severity) / of that threat / at time 
t due to the security event N = 1; in our case, it is 0.0 
float, and the security event updates the probability not 
the impact variable. 

- Rit=i is the residual risk associated with that threat /, at 
time t = 1, it is "newar" of Fig. 13, 

Figure 13 shows how the probability changes after a sus­
picious pattern is detected as it increases the probability of a 
speciflc threat type. 

New values are calculated, and they can be seen in Fig. 13 
after a dropper has been detected inside network traffic of the 

SQWRL Queries 0 W L 2 R L Dynamic Risk ReAssessmeit after a Security 

drmXFO 

drnrCFO 

drmXFO 

drmCFO 

drm:CF0 

drmXFO 

drmXFO 

drmCFO 

drmXFO 

drm:CF0 

drmCFO 

drmXFO 

drmXFO 

drmCFO 

drmCFO 

rr 

BUtogen2:bbeOeZ99_00. 

autogen2:bbe0e299_00. 

autogen2:bbe0e299_00. 

Mogen2:bbe0e299_00. 

autogen2:bbe0e299_00. 

au togen70 :dcOb56 jbc . 

aHogen/0:dcOb56.ebc. 

autogen70:dcOb56_ebc. 

autogen70:dcQb56_ebc. 

awogen70:dcObS6_ebc. 
autogen2:dB7bBbea_fi7. 

autogen2:d87bSbea_ff7. 

autogen2:d87b8bea_ff7. 

autogen2:d87b8bea_ff7. 

au[ogeri2:dB7bBbea_ff7. 

P 
"4.0"AA«d:f loat 

•4 ,0 " " "«d : f l oa t 

"4.0"AAxsd:float 

í.O •••'xíd float 

"4.0"AAxsd:float 

"4.0"AAxsd:float 

"4.0"Artxsd:float 

"4 .0 'A i«d : f l oa t 

"4.0"Artxsd:float 

"4.ü"A*xsd:float 

"4.0"AAXsd:float 

"4.0"AA¡(sd:float 

"4.0"AAxsd:float 

"4 .0"A"«d: f loat 

"4.0"A' lxsd:float 

newp 

"S.O"AAxsd:float 

"S.O"AAxsd:float 

"5.0"AAxsd:float 

"S.0"AAxsd: float 

'5.0"AAxsd:float 

"S.O"AAXsd:float 

'S.O'AAXsd:float 

"5.0"^^xsd:(loat 

•5.0"AAxsd:float 

"S.O"AAxsd:float 

"S.OMAAxsd:float 

'S.O'AAXsd:float 

"5.0"AAxsd:float 

"S.O"AAxsd:float 

"5.0"AAxsd: float 

Event of type Dropper by a less experienced User 
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7.0"AAxsd:float 

"7.0"AAxsd:float 

7.0"AAx5d:float 

"7.0"AAxsd:float 

"7.0"AAxsd:float 

"7.0"AA¡(Sd:float 

"7.0"AAxsd:floal 

"7.0"AAxsd:float 

7.0"AAxsd:float 

7.0"AAxsd:float 

7.0"AAXsd:f loat 

7.0"AAxsd:float 

7.0"AAxsd:float 

7.0"AAxsd:f loai 

7.0"AAxsd:float 

newpr 

8.0"AAxsd:float 

8.0"AAXsd:float 

8.0"AAxsd:float 

8.0"AAXsd:float 

8.0"AAxsd:float 
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8.0"AAXsd:(loat 
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8.0"AAxsd:float 
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ar 

"6.5"AAxsd:float 

"6.5"AAxsd:float 

"6.5"AAxsd:float 

"6.S"AAxsd:float 

"6,S"AAxsd:float 

•6.S"AAxsd:float 

'6.S'AAxsd:float 

"5,S"AAxsd:float 

"S.S'AAxsdifloat 

"6.S"AAXsd float 

"6.S"AAXsd:float 

'6.5'AAxsd:float 

"6.5"AAxsd:float 

"e.i 'A'Axsdifloat 

"6.S"AAxsd:float 

newar 

7.5"AAxsd:float 

7.5"AAxsd:float 

7,S"AAxsd:float 

7,S"AAxsd:float 

7.5"AAxsd:float 

7.S"AAxsd:float 

7.5"AAxsd:f loal 

7,S"AAxsd:float 

7,S"AAxsd:float 

7.5"AAxsd:float 

7.S'AAxsd:float 

7.5"AAxsd:float 

7.5"AAxsd:float 

7.S"AAxsd:float 

7.5"AAxsd:float 

Fig. 13 Results of querying rule at Fig. 9 

CFO User (see Fig. 9 to check its related SQWRL query). 
As an example: 

- p=previous probability ->- newp=new probability , 
- pr=previous potential risk ->- newpr = new potential risk 

and 
- ar=previous actual risk ->- newar = new actual risk. 

Risks assessments will be updated dynamically, so does 
its risk management classification and their recommended 
treatment. 

Until today, our selected organization is re-assessing risks 
once a year. Risks considered by our organization are also 
related to threats identified by hand by risk owners. Those are 
usually reflected in an Excel file or any other static file. By 
using our proposal, we are providing to our organization the 
benefit to leverage their CTI into a dynamic risk management 
framework. The proposal is based on standards [4,10,11], and 
then, any other organization who will be working under these 
standards will have the same benefit as well. 

In our case, a risk that had been identified as a medium-
level risk by the organization is dynamically re-classified 
under high-level risk once a threat is detected that will poten­
tially be affecting a classified data. The reasoner will provide 
reasoning evidences for that, in our case, a speciflc user 
(CFO) with low-level cybersecurity expertise but, with high-
level access to that classified data, is under attack. As this 
user has inherently more probability to accept this malicious 
fake installer, the dynamic risk framework will trigger a re­
classification of the risk with that granularity (details) in 
that speciflc moment, before it becomes a real incident. It 
is then a proactive and preventive response with again, dif­
ferent options or alternatives. 

Semantics would allow a pseudo-automated response exe­
cution where complex and/or special actions would require a 
balanced human supervision and interaction (HMI). This is 
our recommendation for all decision-making actions related 
to cybersecurity domain. 

As a result, here we propose some examples of different 
types of automated responses within a dynamic risk manage­
ment framework: 



- Security policy changes (e.g., blocking traffic, increase 
password robustness, etc.). 

- Patching remediation and reprioritization queues. 
- Risk transfer to a third party. 
- New rules or signatures for networking devices. 
- Risk Information Sharing. 
- Alert notification. 
- Launch honeypot and counterintelligence (deception) 

measures. 
- Distributed topology based on software-defined networks 

(as a joint) response (e.g., sensing, monitoring, or even 
taking offensive actions). 

- Risk exposure escalation to management including visu­
alization to support decision making based on historical 
action and responses. 

- Etc. 

3 Use case: watering hole attack 

We selected a real attack from August 2017 that affected a 
popular middle east news site. The attacks of type watering 
hole are usually very sophisticated attacks as well as they are 
very difficult to detect. 

This is the main reason for us to select this specific attack 
in this work. There is a difficulty to detect this type of attacks 
if our detection techniques are only based on knowns IOCs 
(indicators of compromise), it forces us to deploy new detec­
tion techniques based on behavioral patterns to detect and 
fight the still unknown and dangerous attacks. Our proposal 
is based on standards, and it adds so much expressiveness 
by using ontologies, so it will allow us to create any pat­
tern detection rule in SWRL beyond watering hole attacks. 
It will help us to detect any other emerging unknown attack 
based on patterns. At the same time, all risk information will 
be updated dynamically after a dynamic re-assessment. It 
will be presented accordingly to tactical and strategic man­
agement, but it will also may include any type of automatic 
responses. Here we propose a pseudo-automatic response, at 
least for offensive ones, as we consider that a human should 
take the ultimate decision in this type of attacks. 

A watering hole attack is a computer attack strategy, in 
which the victim is a particular group (organization, industry, 
or region). In this attack, the attacker guesses or observes 
which Web sites the group often use and infect one or more of 
them with malware. Eventually, some member of the targeted 
group becomes infected. 

Hacks looking for specific information may only attack 
users coming from a specific IP address (same request from 
different IPs might result in different responses), so malware 
will be only delivered to our victims. On the other hand, stan­
dard responses are sent back to http requests coming from 
non-interesting users or entities (e.g., researchers investigat­

ing this attack from a different source IP address). This also 
makes the hacks harder to detect and research. The name is 
derived from predators in the natural world, who wait for an 
opportunity to attack their prey near watering holes. 

Our selected organization (a national CSIRT) did not suf­
fer from such known attack; however, we will test our work 
into the organization by simulating the same watering hole 
attack to our selected organization. We will then introduce 
the same traffic formatted in STIX™and OWL. The reason 
for this is because this type of attacks is really by-passing 
the perimeter, being one of the most probable attacks against 
leading organizations in cybersecurity arena that are usually 
implementing good solutions at the perimeter. These attacks 
are targeting the people directly despite the perimeter, attack­
ers try to have some interaction by the end user to help them to 
get into the system (e.g., like accepting a malicious installer 
from a trusted source like their usual news Web site) 

We will use our integrated and semantic model to manage 
all related data in an integrated and effective way. Our objec­
tive is to better protect our organization risks dynamically by 
improving our detection and prevention capabilities based on 
leveraged cyber threat intelligence data. 

All relevant information is managed by our model at all 
levels: data, business logic, services/applications, visualiza­
tion and risk assessment/risk management. 

Another objective it is to facilitate the investigation by a 
new enriched data model. 

For that, all CTI data are parsed into standards STIX™and 
OWL (stix2.owl). Risk owners will define their services 
under scope and evaluate their importance as usual (in any 
other risk management framework like [1]); however, this 
time they will define that in DRM (drm.owl) not in Excel or 
any other static file. The rest will be automatically done by 
our reasoner (e.g., asset dependencies, threats identification, 
inventory, inherited assessment, etc.) 

3.1 TTP of the attack 

On July the 8th, a news Web site was compromised. The tar­
get organization was used to have traffic to that news Web 
site from different internal (corporate) users. Since that date 
(firstSeen=2017-07-08 as timestamp in STIX™), a mali­
cious Javascript artifact (CyberObservable of class artifact 
and mimetype="javascript" in STIX™) was injected in the 
homepage, affecting a specific company (e.g., our company) 
but not any other companies. 

That was possible because of the business logic behind the 
Javascript. All users navigating through http network traffic 
(NetworkTraffic in STIX™) to that domain name (Domain-
Name in STIX™) where loading the Javascript that was 
automatically redirecting to load another (second) malicious 
Javascript. Our company users (and not other connections 
with a different source IP (srcRef in STIX™) were again 
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Fig. 14 Graphical description representing the TTP of the watering hole attack 

redirected into a different Malicious URL where a Windows 
(exe) Installer (CyberObservable of Class URL in STIX™) 
was dropped as a fake Flash update. The rest of the users 
were redirected to the original Adobe Flash update instead 
of the malicious one. 

The attack started to get victims from its targeted organi­
zations and was persisted at least until August the 1st, where 
the Javascript was modified again to provide different pay-
loads. 

Once a victim executes such a fake update, its personal 
computer would be compromised, so threat actor would have 
access to the user data from its personal computer (e.g., 
stealing credentials, connecting to any other system from 
its computer, etc.). 

A graphical representation of the attack TTP can be seen 
in Fig. 14. 

3.2 The target (and motivation) 

The target is to get access to the organization "Classified 
Data." That means that the attackers are interested in those 
users with enough access level to any classified data. Attack­
ers could have investigated specific users behavior like the 
news Web site they are usually reading. This information 
gathering is usually done by using social networks (e.g., 
continuous post in Twitter referencing this source). We will 
simulate the interest of the attackers around some classified 
data only accessible by specific internal (corporate) users. 
We will define a data property named hasAccessLevel in our 
ontology to define the access level of each user of our orga­
nization. That property will have a value between 1 and 5 
(from low to high-level access, respectively). We can then 
use this variable in any SWRL rule. 

4 Implementation 

We used Protege Tool by Stanford [35] to test our CTI/DRM 
integrated model with the proposed use case at Sect. 3. 

All data related to this TTP description will be under 
STIX™and OWL. At the same time, all DRM data will be 
under OWL. As a result, all data in our work are under a 
semantic data model. 

4.1 Architecture 

As described in Sect. 2.2, we propose a layered approach 
with some characteristics: 

The whole architecture is based on a mix of standards 
(STIX™[4], OWL [10], SWRL [11]) as a standard pro­
posal oriented to have a quick and widespread adoption 
by the industry with the needed expressivity. 
STIX™ v2.0 standard is used to handle all threat and 
traffic data (really any CTI data) but under OWL format 
(stix2.owl is the ontology that we have created for that). 
It is an integrated architecture. Our dynamic risk manage­
ment framework is leveraging cyber threat intelligence 
data. For that, DRM.owl ontology imports STIX2.owl. 
There are relationships between objects and our reasoner 
together with SWRL will create new knowledge based 
on those relationships. 

SWRL is used for all business logic: algorithms and rules. 
It is a layered approach, a use case at service / application 
layer will need some business logic layer to access the 
data layer. The same happens with DRA/DRM or any 
other type of service (e.g., an alert). 



- It is a semantic approach, which means that a semantic 
reasoner (in our case, Pellet incremental reasoner [14]) 
will understand the meaning of data and all their relation­
ships to infer new knowledge dynamically. 

- Relevant data (e.g., events, traffic) collected for this work 
were necessarily parsed into our ontologies to demon­
strate the benefits of using semantics. On the other hand, 
we limited our data collection to STIX™which is becom­
ing a de facto standard. Future sensors will probably 
collect data under this new standard without the need 
to parse data (e.g., logs). 

- The collection of all data used in a SWRL rule has not 
necessarily to be done on real time. 

- We used a unique central data storage to implement and 
validate our work. 

- The purpose of our work is to demonstrate the benefits to 
have all data under semantics and standards like STIX™, 
but it is neither the collection/parsing of the data nor the 
additional overhead in case of new type of sensors to 
collect STIX™related data. 

Our data model is based on five types of concepts (enti­
ties): 

- Classes/subclasses to represent the concepts, objects, 
families or classes of the ontology. 

- Object Properties to represent the relationships between 
objects. 

- Data properties to represent the variables, values or fields 
of each object. 

- Data types to represent the types of the data (float, integer, 
string, dateTimeStamp, custom, etc.). 

- Individuals to represent the "instances" of the different 
Classes. 

Because all data will be parsed into semantic OWL data, 
all the business logic, services/applications, as well as all 
the dynamic risk assessment and management models are 
implemented using SWRL rules and a reasoner. We selected 
Pellet incremental reasoner [14] for this work to provide live 
semantic reasoning. 

As described earlier, we developed STIX2.owl (as the 
semantic and complete version of STIX™v2.0 [4]) and 
DRM.owl ontologies. By today, we have about 453 Classes 
and above 11565 axioms. We also developed different fam­
ilies of SWRL rules to support all levels of the model 
presented in this work. Thirty-four SWRL rules were cre­
ated to test all of our implementation. 

Visualization model is based in Protege plug-ins, espe­
cially OntoGraph. With regard to querying the data, we used 
SQWRL as a standard query language by using its corre­
sponding Tab in Protege [35]. 

4.2 Instances of our threatened organization 

With regard to the organization, we describe the setup to test 
the behavior against the watering hole attack (use case) in the 
following subsections. Due to the motivation of the attack 
(access to classified data), we will describe in detail those 
instances on risk as well as the corresponding relationships. 
This will help the reader to understand the attack vector. 

Internal (corporate) users: We use two main profiles of 
the organization, both belonging to class InternalUsers as 
SubClassOf Users: 

Victim_0 will be the CFO user which is the Chief Finan­
cial Officer of the organization. IthasAccessLevel 5 out 
of 5, so it would have access to all ClassifiedData in our 
company. However, it will not have so much Cyberse-
curityExperience (3 out of 5), so that characteristic will 
be taken into account for dynamic risk assessment as 
this type of users will likely execute a fake SW update 
with more probability than a cybersecurity expert (like 
the AdobeFlashUpdate described as part of the TTP). 

Victim_l will be the CybersecurityExpert user which 
is the Head of cyber threat intelligence of the organi­
zation. It hasAccessLevel 3 out of 5, so it would not 
have access to ClassifiedData in the organization, but 
it would have access to threat intelligence data and any 
other type of data equal or below its hasAccessLevel 
data type. It will have high CybersecurityExperience 
(5 out of 5), so that characteristic will be taken into 
account for dynamic risk assessment as this type of 
users will likely not execute a fake SW update (like 
the AdobeFlashUpdate described as part of the TTP). 
Rejecting the execution (rejectExecution action in our 
model) is semantically equivalent as not executing the 
fake update. As part of its reaction, it could also create 
an IOC (indicator of compromise) after detecting and 
investigating its malicious behavior. It will be shared 
within the CTI community to avoid future attacks, 
this time, based on knowns (IOC data). Furthermore, 
it could also open an internal security investigation 
together with the CISO (Chief Information Security 
Officer) and the quality team in charge of the informa­
tion security certification based on ISO2700X. 

Data: It is a subClassOf Asset. We selected five specific 
instances of data of our organization, all belonging to class 
data, but only two of them belonging to the subClass Classi­
fiedData. 

There are five instances in our work: 

- Data_l instance has a requiredAccessLevel of 3, 
- Data_2 instance has a requiredAccessLevel of 2, 



- DataClassifled_l instance has a requiredAccessLevel of 
5, 

- DataClassifled_2 instance has a requiredAccessLevel of 
5, 

- FileFlashPlayer instance of the malicious executable 
dropper. 

Risk scope is the class representing all the services or 
projects in scope of the organization risk management certi­
fication. 

There are different instances of risk scope (RiskScope con­
cept in our ontology) representing all the different services 
or projects in scope of the risk management certification 
of the selected organization (based on ISO2700X). By 
using semantics, our framework will enable interoperabil­
ity between any risk management framework or standard as 
all of them will use equivalent concepts. 

For the testing of this work, we selected some relevant 
and interesting services of our organization, especially two 
services that depends on (property) ClassifiedData (class) 
named: 

- GDPR-compliance instance of class RiskScope, which 
depends on Data_Cassified_l. This service is 

- CyberThreatlNTEL-service instance of class RiskScope, 
which depends on DataClassified_2 and Data_2. 

Software is the class representing the installed SW on the 
PC computers of users to access any data. 

To validate this work, we selected the following SW 
instances: 

- OperatingSystem instance of class software representing 
the operating system installed on the PC, 

- Browser instance of class software representing the 
browser installed on the PC, 

- AdobeFlashPlayerPlugin instance of class software rep­
resenting the browser installed on the PC, 

Personal Computer is the class representing the computers 
of the different users which will be used to access the data. 

To validate this work, we selected just the following 
instances: 

- PC-CFO instance of class PersonalComputer represent­
ing the PC of the CFO, 

- PC-CybersecurityExpert instance of class PersonalCom­
puter representing the PC of the head of cyber threat 
intelligence. 

CyberObservable is the class representing all of the 
STIX™cyberobservables. 

To validate this work, however, we implemented the 
entire STIX™v2 standard, and our watering hole attack only 
needed instances belonging to the following subclasses of 
class CyberObservable: 

- Artifacts class representing malicious Javascript artifacts, 
- Domain name/subdomains classes representing domains 

and subdomains, 
- IPv4Addr class representing IP addresses, 
- URL class representing URLs, 
- Network traffic class representing the network traffic. 

Safeguards represent the class for countermeasures. They 
represent the controls setup by the organization as, for exam­
ple, in equations 1 and 2. 

To validate this work, we selected just the following safe­
guards' instances: 

- LDAP-Group-And-Roles-Control instance of class safe­
guards representing the access control based on LDAP 

- Antivirus instance of class safeguards representing the 
antivirus of the organization. 

- Information sharing control instances which are created 
automatically by the reasoner for the tactical scenario of 
Fig. 11. 

- HR Related Security Awareness Education and Cyber 
capabilities control instances which are created automat­
ically by the reasoner for the strategic scenario of Fig. 12. 

AssetValuation, Threats, Risk, RiskAssessment, Risk-
Severity, SecurityEvents classes are also used; however, their 
instances are created automatically by using SWRL rules. 
This is one of our main contributions as errors by hand are 
frequent in risk management frameworks nowadays. Organi­
zations are also addressing risk management by simplifying 
relationships because until today they were difficult to con­
sider if done by hand. Our reasoner could understand the 
meaning of our data, so does its relationships. When risk 
owners evaluate the service in scope, all related dependen­
cies are considered. An automated dependency tree is created 
because of static or even inferred relationships. All their 
values are updated and inherited thanks to automatic asset 
valuation SWRL rule. The same happen when a datum is of 
type ClassifiedData, and the reasoner understands that dif­
ferent types of risks are associated with such data because 
it is classified. Associated risks to that data are identified 
automatically. Risks are ranging from bad reputation risk (if 
someone leak that data) to deliberated malicious SW distri­
bution (if someone has access to that data, but it does not 
have enough cybersecurity expertise to reject a malicious sw 
distribution intent) depending on the context around. In order 
to make this happen, rules should allow enough expressivity 



which is the main reason we use OWL as suggested by STIX 
white paper (RDF/OWL) [5]. 

Dependencies are a key factor to define the different sce­
narios or contexts. 

Some examples of SWRL rules have been shown during 
this work (see Figs. 2, 3,4, 5, 6,7). They implement most of 
the business logic; however, there are different families, and 
some of them are: 

- Asset valuation rules to automatically calculate the asset 
value based on inheritance (risk frameworks usually eval­
uate the importance of the service and depending on asset 
dependency tree, there are cascading effects). This is 
done automatically to avoid errors (errors by hand are 
frequent) as well as to have a broader, consistent and a 
more standardized picture. 

- Enrichment rules to enrich all our data model (e.g., for 
example filling down IP-domain relationships (like a 
DNS/Reverse DNS). Once some data are missing, rela­
tionships between data would help the reasoner to infer 
the missed data. See Fig. 2 for an example. 

- Threat inventory rules to automatically identify threats 
depending on our topology. As an example, instances of 
class "Deliberated Malicious SW Distribution Threat" 
will be created around our company data when specific 
users that have access to that data have, at the same time, 
a cybersecurity experience below 3 (3 out of 5). See Fig. 3 
to see the SWRL rule. 

- Risk inventory rules to make an automatic inventory of 
all risks. It uses identified threats to guess associated risks 
to them dynamically. It is important to have enough and 
accurate information for decision makers along the time. 

- Risk assessment rules to make the assessment of each 
risk which depends on each threat. As an example, see 
Fig. 16 for residual risk calculation. 

- Risk management rules to decide the best strategy 
depending on the organization policy. An example can 
be seen in Fig. 10 where we implemented the organiza­
tion policy for high-level risks in SWRL. In this case, any 
high-level risk will have associated a mitigation strategy 
instance. The specific action to be performed could also 
be automated. Also in this category, we created a tactical 
level rule (see Fig. 6) to implement a dynamic informa­
tion sharing once an attack is detected. The whole SWRL 
detection rule will be shared instead of IOC. On the other 
hand, a strategic level rule was also created (see Fig. 7) to 
implement new knowledge for the reasoner. In this case, 
new awareness training programs are recommended for 
those users being threatened, and at the same time, they 
are not experts in cybersecurity. 

- Risk severity rules to make another type of automated 
classification depending on the severity and the policy 
defined by the organization. 

Name 

|SecurityPolicy#l Data-Access-Control Rule (automated compilation of allowed users to each data) 

I Comment 

I drm:llsers(?u)< drm:Data(?datal * drm:hasAccessLevel(?u, ?alA swrlb:greaterThanOrEqualf?a, ? r ) ' 

| drm:requiredAccessLevel(?data, 'r) -> drm:hasAccessTo(?u, ?data)| 

Fig. 15 SWRL security policy to know data access of users depending 
on requiredAccessLevel of data and hasLevelAccess of users 

- Security policy rules, for example, to automatically 
make an inventory of users and their data access rights. 
Depending on hasAccessLevel property of each user and 
requiredAccessLevel property of each data, the reasoner 
will keep an updated version of access rights database, 
that is, who has (or could have) access to what. Thanks 
to that, the reasoner is able to associate risks in a granular 
a detailed way. (See Fig. 15) 

- Threat intelligence rules to detect security events instances 
like the SWRL rule shown in Fig. 4. We created it to detect 
a security event dynamically once it fulfills the antecedent 
pattern of our rule. The algorithm will detect a mali­
cious TTP pattern when any user from our organization 
is being redirected after another redirection to an URL 
which is dropping a (potential malicious) exe installer (in 
our case a fake Flash installer). By using this behavioral 
pattern rule, we are detecting a security event related to 
the TTP of the selected watering hole attack. This security 
event will trigger a risk re-assessment to recalculate the 
new risk level automatically. The risk probability will be 
increased by this security event accordingly and dynam­
ically. As a result, there would be a new instance of class 
high risk coming from an instance of medium risk due to 
its probability has changed. The risk is of type deliber­
ated malicious SW distribution. Now it is worse as there 
has been a security event. An event like this will trigger 
our reasoner to open or instance a new (proactive) secu­
rity incident although the end user still has not executed 
the installer. Once the end user executes it, the proactive 
incident will become a reactive incident. Recommended 
actions will differ between proactive or reactive state, but 
most of them could be automated by our framework. 

- Etc. 

5 Results 

In our case, as the Victim_l (cybersecurity expert) does not 
have access to any classified data, its instance will not have 
access or dependencies from this type of data neither Dat-
aClassified_l nor DataClassified_2. In our model, we can 
confirm the users having access to classified data anytime by 



querying the ontology dataset using SQWRL for example. 
We can check it out also by using any graph visualiza­
tion plug-in expanding all relationships around any classified 
data's instances. 

The selected watering hole attack was motivated due to 
the interest of the threat actor to access this type of data, but 
in our organization only the CFO has access to it. Then, the 
CFO (Victim_0) is classified automatically by our framework 
as a potential victim of this type of attack. Different types of 
risks related to any unauthorized access to classified data will 
be created by the framework automatically due to the nature 
of the data (e.g., bad reputation risk when classified data 
are accessed and leaked, data protection risk, corporate bad 
image, etc.). In addition to this, once the framework detects 
that there is an end user which has low cybersecurity expe­
rience with access to this classified data, the framework will 
make automatic connections (relationships) between both 
types of risks (risk of unauthorized access to classified data 
and risk of deliberated malicious SW distribution to the user 
who has access to that data). This type of connections are 
possible due to different reasons: 

- Our model, based on ontologies, SWRL and STIX™, is 
able to provide enough expressivity to any type of rule 
that will be understood by the reasoner. 

- A SWRL rule is creating automatic dependencies between 
classified data and the CFO. The rule acts as an access 
control security policy rule as seen in Fig. 15. The rule 
understands that if CFO hasAccessLevel of 5 (out of 5), 
it will have then access to all data, including all classified 
data. 

- A SWRL rule is automatically detecting a potential risk 
of unauthorized access to classified data due to a potential 
deliberated malicious SW distribution threat (as an attack 
vector) associated to the CFO user. This user has high 
probability to install a malicious SW based on its low 
experience on cybersecurity. In the selected attack, once 
the attacker infects the CFO by using a watering hole 
pattern, there will be an identity theft granting access 
to any classified data. This complex TTP pattern is now 
possible to be written as a threat detection algorithm by 
using our semantic framework. (See the SWRL rule in 
Fig. 3 as an example) 

- Although the CFO becomes our main target as victim 
due to the TTP of this attack, other relevant staff with 
similar access level from the organization could also be 
a potential target of the ThreatActor. Then, our GDPR-
compliance service in scope of our DRA/DRM will 
identify this dependency as well. On the other hand, the 
CyberThreatlNTEL service is also dependent of classi­
fied data as well as non-classified data. This service will 
have the same type of risk associated with it. In this case, 
the reasoner will explain that the risk comes from the 

probability to get access to Data_Classified_2 in case the 
CFO is being hacked by a deliberated malicious SW dis­
tribution threat. 

- Based on the same security events, our reasoner initi­
ates the sharing of the SWRL rule to detect such TTP 
pattern within other offices and partners. It is a shift of 
paradigm because IoCs are not shared (they are simple 
to be changed by attacker) but the intelligence algorithm 
itself. Knowledge about how to detect specific patterns is 
shared. This is an implementation of a tactical level risk 
management action. See SWRL rule at Fig. 6 and created 
instances at Fig. 11. 

- Also because of the same detection, our reasoner pro­
poses other action at strategic level. In this case, specific 
awareness training for workforce capacity building is 
selecting only the users being threatened which at the 
same time has low cybersecurity experience. See SWRL 
rule at Fig. 7 and created instances at Fig. 12. 

DRA/DRM is calculated properly as expected and risks 
are classified into different risk management strategies 
depending on the severity. 

VictimJ) and Victim_l browsed the Web site the day 
before it was compromised, but no security alerts were 
received (instanced). The rules were created, but that mali­
cious behavior was inexistent. 

The day after, when the press site was compromised, both 
users, as usual, started navigating to the infected domain, but 
after the homepage was loaded, an injected Javascript started 
to load different artifacts from different URLs making dif­
ferent redirections. After that, a payload was dropping a fake 
(exe) AdobeFlashPlayer installer as expected in our work to 
both users. 

Once our SWRL rule detected that traffic, it created a new 
instance of type SecurityEvent class classifying that behavior 
into a security event of type "Dropper behavior of Malicious 
Windows Executable," again for both users. The rule is then 
a pattern-like to detect the TTP of our watering hole attack. 

The SWRL TTP-like rule was designed by using a combi­
nation of sequential http request and response traffic analysis 
while being automatically redirected by malicious Javascript 
until an URL is dropping a fake windows installer. 

All security events triggered were using our proposed 
semantic architecture. Then, it was very easy to follow all 
new or established relationships. As an example, know­
ing the LAN IPv4Addr (CyberObservable) originating the 
http request connection, we could not only identify the user 
behind that connection but we were also able to identify all 
related risks (and only those related to this specific threat) 
to make a dynamic re-assessment (DRA). Risks related to 
other type of threats were kept unchanged as they did not 
have relationships within these type of security events. 



In our work, however, we had security events triggered 
from both users' network traffic (both were navigating and 
experiencing the same attack), our system considered that 
the Cybersecurity Expert was likely not going to execute 
the strange (fake) Flash update or any other strange update 
due to its cybersecurity experience. Risk re-assessment only 
took place for those risks which were belonging to those 
users whose experience in cybersecurity were less than 3 
(out of 5). The model was then able to accommodate such 
kind of specificities. More than that, if our CFO improves its 
cybersecurity experience in the coming future, once the value 
is updated in its end user instance, our framework will adapt 
itself to the new context. Some risks will then be removed as 
the same SWRL rules will consider that some past risks are 
no longer justified. The reasoner will identify inconsistencies 
over the data anytime. 

We are then moving forward from the original (static) risk 
assessment approach used by the organization until today 
(see Eq. 1) to a more feasible, meaningful, more effective, 
realistic, complete and dynamic approach (by implementing 
Eq. 2). 

For this evaluation, we limited the implementation mostly 
to "Deliberated Malicious SW Distribution Risks" (Fig. 16) 
but also to other type of non-IT-related risks, like strategic 
risks of type "Bad Reputation Risks" because their relation­
ships in case of potential data leak when unauthorized access 
to classified data take place. 

Again, due to this semantic approach, it is easy to follow 
risks relationships from a service/project to the users and vice 
versa, even to connect its network traffic to a specific service 
in risk dynamically. 

In our example, IP 192.168.1.10 belongs to our CFO user. 
In case it executes the fake Flash update, a new rule would be 
able, for example, to create an automated incident response 
with all the related context (security event, user potentially 
infected, dateTimeStamp, Services Affected, etc.). Without 
a malware analysis yet, or without more cyber threat intel­
ligence data, the incident could not have still the highest 
severity score (we still do not know if the dropped file is 
a malware and their motivation); however, it is a malicious 
pattern detected. 

But, when the binary file is identified as malware, the 
incident severity would then get the highest score as classified 
data could have been compromised already by using stolen 
credentials. 

One of the main challenges in cybersecurity it is to work 
against unknown or emerging threats (e.g., APT) having 
real-time visibility about our risk exposure along the time. 
Another challenge is to clearly define when a security event 
becomes an incident (preventive or reactive). 

By using our framework (as shown in Fig. 17), we have 
all the needed expressiveness to better know what is really 

,RiskAssessment#i Auto Residual Risk for Deliberated Malicious SW Distribution 

Comment 

0: 

swrlb:subtract(?ar, ?prisk, ?v) * drm:potentialRisk(?x, ?prlsk}A stlx2:type(?s, "contml-against-malicious-sw") A 

stix2:va!uel?s, ?v)A drm:Safeguards(?s)A drm:PotentialRisk(?x) A stix2:type(?x, "Deliberated Malicious SW 
Distribution Risk") -> drm:ResidualRisk(?xl A drm:actualRisk(?x, ?ar)A stix2:isMitigatedBy(?x, ?s) 

Fig. 16 SWRL residual risk calculation for deliberated malicious SW 
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Fig. 17 Screenshot of Protege tool [35] of an instance of class risk 

assessment and type "Deliberated Malicious SW Distribution Risk" 

whose risk has being increased automatically by different security 

events as well as mitigated by one countermeasure, the antivirus 

happening along the time; in this case, we know that there is 
a risk automatically identified of type deliberated malicious 
SW distribution which has been mitigated by one safeguard, 
but at the same time, it was increased by different secu­
rity events. We perfectly know the connection of this risk 
to the affected assets and services, and all information is 
consistent. We can query our model to know more about 
all the relationships and reasoner conclusions, but we can 
also use interactive graphs to see all the relationships as 
shown in Fig. 1. Apart from operational level, our frame­
work is able to work at tactical and strategic levels as seen in 
Figs. 11, 12. 



6 Conclusion References 

Today, risk assessment (RA) and management (RM) are 
mostly manual processes performed once per year by dif­
ferent experts based on their personal opinions. On the 
other hand, any entity is exposed to cybersecurity threats 
everyday. Unfortunately, these threats are not taken into 
consideration dynamically into the organization risk cal­
culation. Risk exposure level calculation, countermeasure's 
responses, projects or related investment plans should be 
updated dynamically and proportionally to the threat level 
and risk exposure of each organization along the time. There 
should not be treated as a static annual review process (by 
auditors). 

We developed a formal model based on standards to 
connect real-time threats to risk calculation and risk man­
agement processes which also provide better automation, 
enrichment, detection capabilities and simplicity by using 
standards STIX™ [4], OWL [10], SWRL [11] and a reasoner 
[14]. 

This paper presents the first practical DRA/DRM approach 
applied to up-to-date threat and risk processes of an interna­
tional reference entity, a national CSIRT. We have selected 
a real publicly known attack for the implementation, as we 
consider it a good example to test our proposal on leading 
organizations that could easily be impacted by this type of 
attack due to its nature. This type of attacks is very difficult 
to detect even by leading organizations. We implemented 
behavioral pattern rules in SWRL to detect and update our 
risk level exposure accordingly with so much expressivity 
to understand what is really happening either by humans or 
machines. At the same time, we demonstrated how a spe­
cific security event could trigger different actions beyond the 
operational level, like the tactical and strategic levels. In our 
case, at tactical level, the same attack produces an automatic 
risk intelligence sharing (share of TTP detection algorithm 
but not specific IoC) as a tactic to avoid bigger impact of a 
potential campaign against other remote offices or partners 
even if the IoCs are changed during the attack. As a future 
research direction, there is a need to improve incentives for 
intelligence sharing (IoC or algorithms). At strategic level, 
specific awareness training sessions were identified to those 
victims involved in the attack which at the same time have 
poor cybersecurity knowledge. 

Compliance with ethical standards 

Conflict of interest All authors declare that they have no conflict of 
interest. 

Ethical approval This article does not contain any studies with human 
participants or animals performed by any of the authors. 

1. ISO/IEC 27005:2008, Information technology—security tech­
niques and Information security risk management (2008) 

2. ISO 31000:2018, Risk management—guidelines (2018) 
3. Bianco, D.: "The Pyramid of Pain". http://detect-respond.blogspot. 

com/2013/03/the-pyramid-of-pain.html (2014). Accessed 15 July 
2018 

4. OASIS: "STIX™ 2.0 specifications". https://oasisopen.github. 
io/cti-documentation/resources#stix-20-specification. Accessed 7 
Aug 2018 

5. OASIS: "STIX™ White paper", https://stixproject.github.io/ 
about/STIX_Whitepaper_vl.l.pdf. Accessed 15 June 2018 

6. OASIS: "TTP (Techniques, Tactics and Procedures" by STIX™. 
https://stixproject.github.io/getting-started/whitepaper/#tactics-
techniques-and-procedures-ttp. Accessed 7 Aug 2018 

7. OASIS: "Campaigns by STIX™". https://stixproject.github.io/ 
getting-started/whitepaper/#campaigns. Accessed 7 Aug 2018 

8. OASIS: "Incidents by STIX™". https://stixproject.github.io/ 
getting-started/whitepaper/#incidents. Accessed 7 Aug 2018 

9. European Commission and European Parliament: "NIS Directive". 
http://data.europa.eu/eli/dir/2016/1148/oj. Accessed 7 Aug 2018 

10. W3C: "OWL". https://www.w3.org/OWL/. Accessed 1 June 2017 
11. W3C: "SWRL Semantic Web Rule Language", https://www.w3. 

org/Submission/SWRL/. Accessed 1 June 2017 
12. W3C: "Ontology", https://www.w3.org/standards/semanticweb/ 

ontology. Accessed 1 June 2017 
13. W3C: "Inference", https://www.w3.org/standards/semanticweb/ 

inference. Accessed 1 June 2017 
14. W3C: "Reasoner". https://www.w3.org/2001/sw/wiki/Category: 

Reasoner. Accessed 1 June 2017 
15. W3C: "Pelletreasoner". https://www.w3.org/2001/sw/wiki/Pellet. 

Accessed 1 June 2017 
16. Herzog, A., Shahmehri, N., Duma, C : An ontology for information 

security. Int. J. Inf. Secur. Priv. 1(4), 1-23 (2007) 
17. Ekelhart, A., Fenz, S., Klemen, M., Weippl, E.: Security ontologies: 

improving quantitative risk analysis. In: Proceedings of the 40th 
Hawaii International Conference on System Sciences (2007) 

18. Fenz, S.: Ontology-based generation of IT-security metrics. In: Pro­
ceedings of the 41st Hawaii International Conference on System 
Sciences (2008) 

19. Goluch, G., Ekelhart, A., Fenz, S., Jakoubi, S., Tjoa, S., and T. 
M.: Integration of an ontological information security concept in 
risk-aware business process management. In: Proceedings of the 
41st Hawaii International Conference on System Sciences (2008) 

20. de Vergara, J.E.L., et al.: A semantic web approach to share alerts 
among security information management systems. Commun. Com-
put. Inf. Sci. 72, 14-25 (2010) 

21. Mateos, V, Villagrá, V.A., Romero, F : Ontologies-based auto­
mated intrusion response system. Comput. Intell. Secur. Inf. Syst. 
2010, 99-106 (2010) 

22. Obrst, L. et al.: MITRE—developing an ontology of the cyber secu­
rity domain. In: MITRE (2012) 

23. Singapogu, S. et al.: Security ontologies for modeling enterprise 
level risk assessment. In: 2012 Annual Computer Security Appli­
cations Conference, Orlando (2012) 

24. Erbacher, R.F.: Ontology-based adaptive systems of cyber defense. 
In: Semantic Technology for Intelligence, Defense and Security 
Conference, Fairfax, VA (2015) 

25. Syed, Z. et al.: UCO—unified cybersecurity ontology. In: The 
Workshops of the Thirtieth AAAI Conference on Artificial Intelli­
gence. Artificial Intelligence for Cyber Security: Technical Report 
WS-16-03 (2016) 

http://detect-respond.blogspot
https://oasisopen.github
https://stixproject.github.io/
https://stixproject.github.io/getting-started/whitepaper/%23tacticstechniques-and-procedures-ttp
https://stixproject.github.io/getting-started/whitepaper/%23tacticstechniques-and-procedures-ttp
https://stixproject.github.io/
https://stixproject.github.io/
http://data.europa.eu/eli/dir/2016/1148/oj
https://www.w3.org/OWL/
https://www.w3
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/2001/sw/wiki/Category
https://www.w3.org/2001/sw/wiki/Pellet


26. Gao, P. et al.: AIQL: enabling efficient attack investigation from 
system monitoring data. In: USENIX Annual Technical Confer­
ence (2018) 

27. Gao, P. et al.: SAQL: a stream-based query system for real-time 
abnormal system behavior detection. In: USENIX Security Sym­
posium (2018) 

28. Meszaros, J., Buchalcevova, A.: Introducing OSSF: a framework 
for online service cybersecurity risk management. Comput. Secur. 
65,300-313(2017) 

29. Qamar, S., Anwar, Z., Ashiqur Rahman, M., Al-Shaer, E., Chu, 
B.-T.: Data-driven analytics for cyber-threat intelligence and infor­
mation sharing. Comput. Secur. 67, 35-58 (2017) 

30. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk man­
agement using Bayesian attack graphs. IEEE Trans. Dependable 
Secure Comput. 9(1), 61-74 (2012) 

31. Schiffman, M.: Common vulnerability scoring system (CVSS). 
http://www.first.org/cvss/cvss-guide. html (2011) 

32. Mozzaquatro, B.A. et al.: An Ontology-Based Cybersecurity 
Framework for the Internet of Things, Sensors (Basel, Switzer­
land), vol. 18,9 3053(2018) 

33. Zhang, J., Yang, J., Li, J.: When rule engine meets big data: design 
and implementation of a distributed rule engine using spark. In: 
IEEE Third International Conference on Big Data Computing Ser­
vice and Applications. BigDataService), San Francisco, CA (2017) 

34. Alrwais, S., Yuan, K., Alowaisheq, E., Liao, X., Oprea, A., Wang, 
X., Li, Z.: Catching predators at watering holes: finding and under­
standing strategically compromised websites. In: Proceedings of 
the 32nd Annual Conference on Computer Security Applications 
(2016) 

35. Stanford University "Protege", https://protege.stanford.edu/ 

http://www.first.org/cvss/cvss-guide
https://protege.stanford.edu/

