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Abstract One rapidly growing application of Internet of
Things (IoT) is the protection of public health and well-
being through enabling environmental monitoring services.
In particular, an IoT-enabled health/accessibility monitor-
ing service (HAMS) can be consulted by its users to query
about the status of different areas so as to optimize their trip
throughout a geographic region. Given the high cost asso-
ciated with a vast deployment of totally trusted information
sources, the IoT-enabled monitoring services also subsist on
citizen engagement and on (possibly untrusted) users sens-
ing apparatus for data collection. However, trust manage-
ment becomes a key factor in the success of such services
because they might be misled by malicious users through
altered or fake sensor data. In this paper, we consider a mon-
itoring service, and propose a hybrid entity/data trust com-
putation scheme which relies on Bayesian learning to score
the users (as data reporters), and on Dempster-Shafer theory
(DST) for data fusion and for the computation of the trust-
worthiness of the data itself. In order to provide resiliency
against behavioral changes, the probability masses used in
DST are dynamically updated using the freshly estimated
user scores as well as the contextual properties associated
with the reported data. We conduct simulation experiments
to evaluate the performance of our scheme. Compared to
prior work, the results demonstrate superior performance in
terms of accuracy and resilience against malicious behavior

Behshid Shayesteh
E-mail: behshid.shayesteh@gmail.com
Vesal Hakami
E-mail: vhakami@iust.ac.ir
Ahmad Akbari
E-mail: akbari@iust.ac.ir
1 School of Computer Engineering, Iran University of Science and
Technology, Tehran, Iran

Keywords Accessibility · Bayesian learning · Dempster-
Shafer theory (DST) · Environmental Monitoring · Health ·
Internet of Things (IoT) · Trust Management

1 Introduction

1.1 Research Background

The origination and aggravation of health problems due to
environmental exposures are complex and multifactorial. Nu-
merous environmental exposures have been identified as con-
tributing factors, including food and water safety, ambient
levels of respirable particulate matter, hazardous chemicals
such as pesticides and allergens, etc. [7]. An increased atten-
tion needs to be paid to the complex environmental issues
that affect the health and well-being of people, and recent
research suggests greater civic engagement in processes that
shape public health. In fact, a successful health/accessibility
monitoring service (HAMS) should be a partnership approach
that involves, for example, community members, organiza-
tional representatives, and clinical social workers. These ser-
vices are becoming increasingly common thanks to the rapidly
growing deployment of Internet of Things (IoT) along with
a synergistic adoption of smart sensing and cloud computing
paradigms [5] [1].

In an IoT-enabled HAMS, there is a cloud-computing-
based remote aggregator in which the data emanated from
multiple device sensors and/or human observers, covering
one or more than one place, are collated, analyzed, contex-
tualized (including with other non-sensor data) and summa-
rized as appropriate. This central server can then be queried
to provide information and to support decision-making tasks
of various kinds. Consider the parents of a child with asthma,
they could consult the monitoring service to obtain knowl-
edge of places where the concentration of respiratory irri-
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tants is high. Similarly, the service can be used to dynami-
cally discover, assess and classify urban accessibility issues,
generating valuable information to improve citizens quality
of life. Examples are the presence/absence of an accessibil-
ity barrier/facility (e.g., steps and stairs that can be detected
by walking pedestrians, ramps and curb cuts that can be de-
tected by wheelchair users, etc.).

Owing to their inclusive nature, IoT-enabled monitor-
ing systems opt for contributions from people of all back-
grounds, effectively from anyone possessing a
sensing-capable device. However, the volume, potential for
anonymity, and lack of context can make the information
derived from citizen participation hard to trust, and its in-
tent and origin hard to discover. The lack of control mech-
anisms to guarantee source validity and data accuracy can
result in information credibility issues. For example, ma-
licious individuals may intentionally contribute erroneous
sensing data for their own benefit. Therefore, it is neces-
sary to develop trust preservation and abnormality detection
technologies to ensure the quality of the obtained data. Re-
alizing this requirement, in this paper, we study the issue of
trust management for IoT-enabled environmental monitor-
ing services. Before stating our contributions, we first give
an overview of the state of the art on trust management in
IoT to highlight their strengths and shortcomings.

1.2 Related Works

Trustworthiness in IoT-enabled services arises as a crucial
concern because these services might be misled by mali-
cious users through altered or fake sensor data. Nonetheless,
coming up with an effective trust management scheme for
IoT applications is challenging primarily due to the issue
of data inconsistency; in fact, it is quite common that reli-
able sensors, faulty or compromised sensors generate dis-
tinct readings for the same observed phenomenon. As a re-
sult, the truth must be inferred from fusing (contradictory)
data, originating from untrustworthy sources describing dy-
namic and uncertain phenomena for which we may not have
a fine-tuned prior statistical description or model. Even more
challenging is the need to assess and sift faulty data with-
out any assumption on the trustworthiness of their source.
In what follows, we survey the research works that have ad-
dressed the issue of trust in IoT-enabled services.

In one broad taxonomy, we may categorize the research
on IoT trust management into three areas: entity-centric, data-
centric, and hybrid schemes. We elaborate on each category
with references to some representative research in general
as well as in the context of health-IoT and urban crowd-
sensing.

1.2.1 Entity-centric Trust Management

The entity-centric trust management focuses on assessing
the trust in the participants of the IoT system considering
their behavioral tendencies. The purpose of computing entity-
centric trust is to identify the malicious or selfish users, which
may tend to initiate an attack or compromise the service be-
ing provided. In [8], a survey is conducted on the entity-
centric trust management, and the authors provide a clas-
sification of trust computation techniques in IoT. In fact,
we may further sub-classify the entity-centric schemes de-
pending on whether trust computation is performed in a dis-
tributed fashion or otherwise by a centralized authority:

In distributed trust computation, it is most common that
the social relationships between entities are taken into ac-
count. For example, the study in [20] provides a trust ser-
vice platform for the social IoT, which uses recommenda-
tion and reputation trust metrics, as well as knowledge trust
metrics. They estimate trust scores for the entities in their
system, using a fuzzy-based approach. Bao and Chen in [3]
propose a dynamic trust management to deal with misbe-
having nodes whose behavioral tendencies change dynami-
cally in an IoT environment, and adjust the trust parameters
adaptively using a static weighted sum approach. Similarly,
Chen et al. provide an adaptive trust management system
based on the common community of interests for social IoT
in [4], which uses a dynamic weighted sum method to assess
the trust scores. The work in [15] provides one subjective
and one objective trustworthiness management model for
social IoT using the static weighted sum approach. In sub-
jective trustworthiness model, users or entities compute the
trustworthiness of their friends; however, in objective trust-
worthiness model, the trust is computed globally. Chen et
al. propose an adaptive trust management system to support
service composition application in SOA-based IoT systems
in [6]. They compute trust value for service providers, which
can be the users devices, based on experience and recom-
mendations to offer a trust-based service composition. They
adopt a Bayesian framework for evaluating direct trust, and
a dynamic weighted sum for indirect trust.

Centralized trust computation, on the other hand, is mo-
tivated by the high costs associated with a fully distributed
scheme in terms of processing power, memory, bandwidth,
and energy consumption given that each node not only has
to monitor the behaviors of other nodes but also manage the
trust records for them, which do not meet the resource con-
straints of the network. In [18], a trust management scheme
is proposed for service-oriented IoT using a dynamic
weighted sum approach, in which a node is provided with
the best service assistant node in a specific context. A rec-
ommendation trust score is calculated for the recommenda-
tion provider entity, based on the deviation of this report
from the majority. Also in [9], a medical sensor network has
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been considered for which an attack-resistant lightweight
trust management protocol has been proposed. Each node
submits all its trust records to a base station which runs an
alerts reasoning algorithm to detect the malicious nodes us-
ing a weighted sum method.

1.2.2 Data-centric Trust Management

The data-centric trust management focuses on assessing the
trustworthiness of data or events in IoT and on detecting er-
roneous data. Since data analysis is an important phase in
IoT solutions, it is essential to make sure that the data used
in the decision making process, or in the actuators, are trust-
worthy and reliable. However, compared to entity-centric
trust management, fewer works have approached IoT trust
computation purely from a data-centric perspective.

In [13], an IoT agriculture scenario has been considered
and the authors devise a procedure to distinguish reliable
sensor data from unreliable data to be further used in data
analysis. In this scenario, the temperature and humidity data
are gathered from the sensors deployed in a greenhouse to a
central unit. It is argued that the sensors may gradually be-
come unreliable due to the changes in the environment, and
thus the authors have proposed to compute the trustworthi-
ness of data using a dynamic Bayesian approach. However,
the work in [13] does not consider temporal or spatial con-
text parameters for assessing data trustworthiness, and there-
fore, it is only applicable to a subset of IoT scenarios with no
user participation. In [16], a data trustworthiness assessment
method has been proposed for a system that collects data
from crowdsourcing and sensing to map urban and architec-
tural accessibility. This work evaluates the trustworthiness
of each report about a barrier/facility based on the contex-
tual parameters of the reporter using a static weighted sum
approach.

1.2.3 Hybrid Trust Management

As the IoT environment consists of entities interacting with
the services, and also abundant data is generated and used
for the decision making process, a trust management system
would be most effective if it computes trust values for both
the entities and the data. In hybrid trust management, the en-
tity trust is maintained over time and it will be utilized as one
important factor in determining data trustworthiness. How-
ever, there are other aspects such as timeliness, locality, and
other contextual properties unique to data which also affect
data quality, and thus need to be factored into the calculation
of data trustworthiness.

The work in [10] extends the entity-centric trust scheme
in [20] by proposing a framework in which data trust metrics
such as: completeness, uniqueness, timeliness, accuracy, etc.

are used to assess the data trustworthiness in a social IoT en-
vironment using a dynamic weighted sum method. However,
the paper does not elaborate on the specifics of some critical
parameters for trust calculation, and also lacks experimen-
tal evaluations. In [12], a policy-based hybrid trust manage-
ment model called RealAlert has been proposed for smart
city scenarios in IoT. The authors use a statistical outlier de-
tection approach to identify malicious nodes and abnormal
data in a distributed manner. They also devise some policies
to find the cause of the abnormalities. The Dempster-Shafer
Theory (DST) [19] has been applied to aggregate the abnor-
mality reports that each node receives from it is neighbor;
however, the paper is not clear on how to derive the basic
probability masses for its DST-based data fusion. The au-
thors in [14] introduce a neuro-fuzzy based brain-inspired
trust management model to secure IoT devices and relay
nodes, and to ensure reliable data communication between
devices. The method in [14] evaluates both node behavioral
trust (entity trust) and data trust. The entity trusts are com-
puted in a distributed manner, and the social relationships
between IoT devices are taken into account. However, un-
like our proposed scheme in this paper, the method in [14]
focuses on the brain data and neuroscience-related applica-
tions.

A more closely related work to our study is [2] which
provides a trust-based decision making for health-IoT solu-
tions. In this work, users in an IoT environment contribute
reports about health factors in an area. The central authority
evaluates the trust of reporting users (i.e., entity trust), and
spots the malicious users who may contribute false reports.
The users may also query the central authority prior to en-
tering an area to prevent worsening their health condition.
The central authority then answers each query considering
the data trustworthiness of the gathered reports to compre-
hend the healthiness of an area, and the health classification
of each user, to minimize the risks for users health. While
[2] proposes a hybrid trust management for health-IoT ap-
plications, the authors use a simplistic method for comput-
ing entity trust scores. The basic idea is to compare a given
nodes feedback with the majority of feedbacks about the
same phenomenon in a location. Also, they have not eval-
uated their scheme in the presence of high percentage of
malicious nodes in the system. It can be argued, however,
that as more and more users exhibit unreliable behavior, the
majority-based rationale is bound to become worse. More-
over, some parameters used for trust estimation in [2] are
not clearly specified (e.g., the parameters dealing with the
temporal freshness of data and device capabilities).

1.3 Motivations and Contributions

Major prior works on trust management in IoT rely on the
notion of entity-centric trust, trivially taking the trust level of
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the data to be the same as the trust level of the data source. To
the best of our knowledge, the only hybrid trust management
scheme for health-IoT applications is [2]; however, despite
being a comprehensive framework, there is still room for
enhancements to obtain more accurate trust estimates, es-
pecially in the presence of higher percentages of malicious
users. In this paper, we propose a novel trust management
scheme to run as a subsystem of a health/accessibility mon-
itoring service (HAMS). Similarly to [2], we consider the
case where there is a centralized server collecting observa-
tional reports on different environmental phenomena from
individual IoT devices. The users can also query the sys-
tem about the health/accessibility status of different areas
to protect their health/well-being while traversing the en-
vironment. Despite the similarity in use case scenario, our
trust management scheme differs from [2] when it comes to
the computation of the entity trust scores as well as the data
trustworthiness. In particular, we come up with the follow-
ing contributions:

• In contrast to the trivial majority-based estimate in [2],
we propose a Bayesian learning approach for scoring the
system entities. In particular, a given entitys trust score
is estimated according to its history of contributing be-
havior, gradually increasing the score for well-behaving
nodes towards the high value, and thwarting misbehav-
ing entities by lowering their value, ensuring the soft ex-
clusion of their observations from the reasoning proce-
dure. Also, unlike [20, 3, 4, 15, 6] we propose a cen-
tralized scheme for estimating the entity trusts that of-
floads the overhead from the resource-constrained IoT
devices to a central unit (possibly running in the cloud),
and avoids much of the communication overhead.

• As for the computation of data trustworthiness, we resort
to the DST formalism for data fusion and to suppress
malicious contributions and/or unintentionally noisy sens-
ing data. The probability masses used in the DSTs rule of
combination are derived from the freshly estimated en-
tity trust scores as well as the contextual properties asso-
ciated with the reported data. Compared to [2], where the
aggregated trust is simplistically computed by a
weighted average procedure, DST is equipped by design
to handle uncertainty or lack of complete information.
Also, besides the usual contextual elements such as time
and location (which have also been considered in [2]),
as an additional element, our work incorporates the se-
mantic correlation between the groups of users and the
phenomenon under observation.

• We conduct extensive simulation experiments to explore
the convergence behavior, the accuracy, and the resiliency
of the proposed scheme, and to compare its performance
with prior work.

1.4 Outline

The rest of the paper is organized as follows: In Sect. 2,
we describe the system model, remark on some typical use
case scenarios, and then lay out the main assumptions un-
derpinning our scheme. In Sect. 3, we present our hybrid
trust management subsystem for adoption in a HAMS. In
particular, we first present our proposed scheme for the dy-
namic computation of entity trust scores, and then discuss
how these scores, along with the contextual properties asso-
ciated with each reported observation, can be incorporated
into assessing data trustworthiness. Sect. 3 ends with our
proposed DST-based scheme for the computation of data
trustworthiness. In Sect. 4, we present the simulation results
along with comparisons that have been made against related
prior work. Sect. 5 concludes the paper.

2 System Model and Assumptions

2.1 Overview and Use-case Scenario

Fig. 1 illustrates our IoT system model. It is assumed that
the IoT environment is divided into L different areas A =

{a1, . . . ,aL} based on their geographical coordinates. A to-
tal of N users U = {u1, . . . ,uN} exist in the environment
who can generate observations about a set of environmental
health/accessibility factors F = { f1, . . . , fK}. Besides direct
human-triggered input, there may be specialized sensor de-
vices under the control of the users such as: environmental
and weather sensors, either fixed (e.g., at home, in buildings,
rooftops, etc.) or mobile (e.g., vehicle-mounted or held/worn
by commuting user). It is further assumed that the environ-
mental health/accessibility factors can be categorized into Q
different classes CF = {c1, . . . ,cQ} such as the factors re-
lated with urban health (e.g., the concentration of air pollu-
tants, temperature, humidity, noise pollution, radiation etc.)
or those impacting urban accessibility (e.g., facility maturity
for disabled, sidewalk condition like narrowness or presence
of rest areas, etc.). As for the users, we are mainly concerned
with the following three assumptions:

• Each user un owns an up-to-date health profile and the
system has access to the user’s latest records in hospitals,
cancer, and clinical registries to subsequently link health
status data with environmental risks. This database will
provide all relevant information from the very basics (e.g.,
the user’s age, gender, etc.) to more specific information
like whether the user suffers from any special kind of
disorder/disease. As also envisaged in [2], the medical
database can be maintained with real-time information
on the users’ health level by way of recent technologies
such as wearable sensors and using personal (body) area
networks.



A Trust Management Scheme for IoT-Enabled Environmental Health/Accessibility Monitoring Services 5

Fig. 1: IoT System Model

• Users are categorized into P different classes
CU = {c1, . . . ,cP}. Such classification can be done ac-
cording to different criteria; for instance, if a user is a
healthcare professional, the most relevant criterion is
his/her authority level or scope of practice (e.g., physi-
cian, EMT, paramedic, etc.). Similarly, there can be city
health officials (CHOs) tasked specifically with public
health monitoring. In case of regular people, where no
official classification applies, other relevant user classes
can be defined (e.g., patients, vulnerable-groups, elderly,
etc.).

• Each user is associated with one or more home areas,
which are the areas that the user frequently visits; e.g.,
the user’s residential area or the user’s working place.
More formally, we use the function home : U → A as a
mapping between a given user and its home area.

After user un enters area al , the user makes an obser-
vation about the environmental factor fK . It is further as-
sumed that the users own smart phones which can be used
as a personal gateway to transmit the observation data to a
central unit called Health/Accessibility Monitoring Service
(HAMS) through a local IoT gateway. By receiving different
observations from different users about the environmental
factors of a specific area, HAMS can reason about the health
rate of that area. In fact, such reasoning can be subsequently
exploited to reduce personal health risks, especially to the
benefit of patients or other vulnerable classes of users; for
instance, a user who is suffering from a chronic cardiopul-
monary disease like asthma can consult HAMS and check
the status of environmental health of some area to decide
whether or not to enter that area.

Remark 1. HAMS could assist a user in making a de-
cision about entering an area, considering the user’s health
level and the health rate of the area, aiming to reduce the
risk of having an attack or worsening user’s health condi-
tion. As discussed in [2], a simple threshold process (such
as the decision plane concept [11]) could be used by the
system to relate the risk factors with the users’ health sta-
tus, and to assess the probability of health loss in each case.
However, in this paper, we mainly focus on the issues of trust
management and are not concerned with the specifics of any
particular decision support system.

2.2 User-System Interactions and Timings

Besides recruiting users, HAMS must also retain them by
offering accurate and useful information. In fact, at any in-
stant in our system model, a user can take on either of the
two roles: to contribute observations or just query for the
health/accessibility rate of an area in an on-demand fash-
ion. We consider the case where besides honest users, there
may also be several malicious/compromised users in the sys-
tem who either deliberately contribute wrong observations
or have faulty sensors that provide incorrect readings. We
assess the trust value of each user to distinguish good users
from the malicious. We assume that HAMS updates these
trust values periodically in discrete epochs with length tupdate
and indexed by t = 1,2,3, . . . . This trust value is called en-
tity trust as users are end entities in our system and is de-
noted by Te,t(un). Furthermore, it is also necessary to assess
data trustworthiness of HAMS responses to users’ queries as
HAMS aggregates correct and incorrect observations about
the factors of an area to infer the environmental health of that
area. As such, if HAMS states that area al is not healthy con-
sidering factor fk, a data trustworthiness indicator T k

d,t(al)

denotes the trustworthiness of this claim. The trust manage-
ment module placed in HAMS is in charge of computations
of both entity trust and data trustworthiness.

To better elucidate the user-system interactions, consider
a sample epoch t. We assume that a valid contributing be-
havior is for each user un to send a total of Ml,k observations
on factor fk in area al during each epoch t. Following the
receipt of OBl,k,i

n,t , i.e., the i-th observation of user un about
factor fk in area al , HAMS evaluates this observation by
making a binary decision about its authenticity. More for-
mally, we use bl,k,i

n,t to denote the reporting behavior of user
un. Now, bl,k,i

n,t =C indicates that the user has contributed cor-
rect observations on factor fk in area al , and bl,k,i

n,t = W is
used to indicate the action of sharing wrong observations.
We use E l,k

n,t = {e
l,k,i
n,t }i=1:Ml,k to collect the set of binary eval-

uations that HAMS has made about all these observations
shared by user n. In other terms, if el,k,i

n,t = C , it means that
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Fig. 2: Interaction Sequence of a User and HAMS

HAMS decides that user un has shared correct information,
and conversely for el,k,i

n,t = W.
It can be safely assumed that a HAMS relies partially on

limited but totally trusted information sources (e.g., traffic
cameras, environmental sensors deployed and managed by
the authorities, etc.). These sources can offer accurate infor-
mation but at a high deployment cost and with limited spatial
coverage. Also, there may be some prior statistical descrip-
tion or model of the environmental factors. Overall, while
HAMS can evaluate the received observations, its evalua-
tions are prone to detection error and might deviate from the
truth. In order to capture the possibility of misdetections, we
introduce fP and fN to denote the probability of false posi-
tives (i.e., to mistakenly decide that a user has shared false
observations) and false negatives (i.e., to mistakenly decide
that a user has shared true observations) in HAMS’s eval-
uations, respectively. Accordingly, the value of el,k,i

n,t can be
expressed probabilistically as follows:

P
[
el,k,i

n,t |b
l,k,i
n,t =C

]
=

{
fP, el,k,i

n,t =W
1− fp, el,k,i

n,t = C
(1)

P
[
el,k,i

n,t |b
l,k,i
n,t =W

]
=

{
fN , el,k,i

n,t = C
1− fN , el,k,i

n,t =W
(2)

Assumption 1. For ease of expositions, it is assumed
(without loss of generality) that for all users un, the report-
ing behavior bn is characteristic of un alone, and is inde-
pendent of the area or the specific factor the user un is re-
porting on. Similarly, It is assumed that the parameters fP
and fN are identical across all areas al ∈ A as well as all
health/accessibility-related factors fk ∈F. As such, for nota-
tional convenience, we may henceforth drop the superscripts
from the evaluation set E l,k

n,t and the reporting behavior bl,k
n,t .

Remark 2. The parameters fP and fN can be obtained
using training data and by way of a standard statistical pa-
rameter estimation method such as a Hidden Markov Model
(HMM) process [17]. More specifically, since the true user
behavior bn,t is never observable, the system can exploit the
observed process OBn,t to estimate the hidden behavior se-
quence, either by finding the most likely one, or alternatively
by using a-posteriori distributions over states. However, the
specifics of such estimation are beyond the scope of this pa-
per as we are mainly concerned with the higher level com-
putations of entity trust and data trustworthiness.

The left half of Fig. 2 depicts an example observation
processing during an epoch. At the beginning of the t-th
epoch, En,t = { /0}. A user un within area al , reports OBl,k,i

n,t
which is the user’s i-th observation about the k-th factor.
HAMS then updates the set En,t with the evaluation of this
observation. On the other hand, the right half of Fig. 2 shows
how HAMS responds to an incoming query within another
epoch t ′: Consider another user un′ who issues a query Ql

n′,t ′

regarding the overall health status of area al . HAMS re-
sponds to this query based on the data trustworthiness in-
dicator T k

d,t ′(al).
At the end of each epoch t, T k

d,t(al) and Te,t(un) will get
updated, and the system proceeds to the next interval. Trust
updates are carried out according to a computation proce-
dure which we discuss in Sect. 3.

3 The Proposed Trust Management System

In this section, we introduce our proposed trust management
(TM) subsystem to be employed in HAMS. As explained
in the Introduction, we opt for a hybrid approach to trust
management, where trust computations are carried out for
both the system entities (as data observers) as well as for
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the values of each environmental factor (as aggregation of
data observations). In hybrid trust management, the entity
trusts need to be maintained over time, while at the same
time they will be dynamically integrated into the evalua-
tion of data trustworthiness. Our proposed TM subsystem
operates in a central manner, i.e., all trust computations are
performed by HAMS (e.g., using cloud computing), which
relieves the end-users from extra computational burdens.

Our presentation of the TM subsystem in HAMS is or-
ganized as follows: In sect. 3.1, we introduce a notion of
“scores” to capture the users’ contributing behavior, and
model the entity trust as the user’s score. We then propose
a Bayesian learning-based scheme for the dynamic compu-
tation of these scores over time. Next, in sect. 3.2, we intro-
duce our proposed scheme for computing data trustworthi-
ness. In particular, we discuss how to incorporate the entity
trusts as well as the contextual properties associated with
each received observation to obtain an overall trustworthi-
ness weight for the observation. These weights are then used
in a standard Dempster-Shafer framework [19] to fuse the
observations reported by different users, and to compute the
trustworthiness for the values of each environmental factor.
Table 1 summarizes the important notations used throughout
the paper.

3.1 Entity Trust

In the system model described in Sect. 2, the entities are
the users who provide observations about the environmen-
tal factors. HAMS has to estimate the entity trust Te,t(un)

by judging the users’ contributing behavior over time. In or-
der to perform this estimation, we propose that each user
un be given a probabilistic score Sn which indicates un’s in-
clination towards sharing correct/falsified observations. As
the history of observations gathered from un grows larger,
HAMS incrementally updates the probability distribution of
Sn. At the end of each epoch t, the entity trust Te,t(un) can
then be updated as the mean of un’s score, which is com-
puted based on the latest statistical distribution derived from
the entire history of interactions. We discuss the details of
this entity trust computation process in two parts: learning
users’ scores and updating the entity trusts.

3.1.1 User Score Computation via Bayesian Learning

In this section, we discuss how a user’s score Sn can be
learned by the system from its rounds of interactions with
user un. We define Sn as the probability of user un sharing
correct observations, i.e.,

Sn=P [bn = C] . (3)

Table 1: Notations

Notation Description
Te,t(un) The entity trust of user un during epoch t

T k
d,t(al)

The data trustworthiness for environmental factor
fk in area al during epoch t

OBl,k,i
n,t

The i-th observation of user un about factor fk in
area al during epoch t

bn,t The contributing behavior of user un

Ml,k
n,t

The total number of observations that user un
makes on factor fk in area al during epoch t

E l,k
n,t

The set of binary evaluations that HAMS makes
about observations of user un on factor fk in area
al during epoch t

el,k,i
n,t

The evaluation that HAMS makes about i-th ob-
servation of user un on factor fk in area al during
epoch t

fN
The probability of false negatives in HAMS’s
evaluations

fP
The probability of false positives in HAMS’s
evaluations

Sn The score of user un
tupdate The time length of trust update interval

CU The set of user classes
CF The set of environmental factor classes

Nt(C)
The number of HAMS’s evaluations on user un
sharing correct observations during epoch t

Nt(W)
The number of HAMS’s evaluations on user un
sharing wrong observations during epoch t

µL (.) The spatial context weight function
µT (.) The temporal context weight function
µC (.) The semantic context weight function

w
(

OBl,k,i
n,t

) The overall trustworthiness weight assigned to
the i-th observation of user un about factor fk in
area al during epoch t.

It is further assumed that Sn takes values from a discrete
set of J levels Sdef

={s1, . . . ,sJ}. HAMS can incrementally es-
timate Sn based on the binary evaluations of observations
received from user un by the end of each epoch t. In par-
ticular, the evaluation set is empty initially, and accordingly
we assume that the initial value of P0 [Sn = s j] is equal to
1
J , i.e., it follows a uniform distribution (since in the begin-
ning, no observations are available disclosing the user’s be-
havior). As time progresses, a history begins to build up for
each user, and we may use standard Bayesian updating rule
recursively to update the conditional distribution of Sn:

Pt [Sn = s j|En,t ] =
Pt−1 [Sn = s j]×Pt [En,t |Sn = s j]

∑s j∈SPt−1 [Sn = s j]×Pt [En,t |Sn = r j]
,

(4)

where Pt [En,t |Sn = s j] is calculated from Eq. 5 in Theorem 1.

Theorem 1 Define Mdef
= ∑l,k Ml,k. Also let Nt(C) (resp.,

Nt(W)) represent the number of HAMS’s evaluations on
user un sharing correct (resp., false) observations during
epoch t, where Nt (C)+Nt (W) = M. It then holds that:
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Pt [En,t |Sn = s j] = s j× ( fP)
Nt (W)× (1− f P)

Nt (C)+

(1− s j)× ( fN)
Nt (C)× (1− f N)

Nt (W).
(5)

Proof. See Appendix A. �

3.1.2 Updating Entity Trust

At the end of each epoch t, the value of entity trust Te,t(un)

for user un is updated as the mean value of Sn. Using the
latest conditional distribution of the user’s score, Te,t(un) can
be calculated as follows:

Te,t (un) = ∑
s j∈S

s j×Pt [Sn = s j|En,t ]. (6)

3.2 Data Trustworthiness

In the proposed scenario, data trustworthiness T k
d,t(al) indi-

cates how trustworthy HAMS’s claim about the healthiness
of area al according to factor fk is. We determine T k

d,t(al)

by taking into account the following four critical elements:
the trust in data contributor (i.e., entity trust), the semantic
trustworthiness of the environmental factor and its observer,
the consistency between the observer’s home location and
the observed area, and finally, the temporal freshness of the
generated observation. Our proposed method for the com-
putation of data trustworthiness consists of two phases: data
observation weight assignments and observation aggrega-
tions.

3.2.1 Data Observation Weight Assignment

Data trustworthiness is inferred from aggregating all the ob-
servations contributed by different users. Some of these ob-
servations are correct, and some of them are wrong either
due to users’ malice or simply because of inaccurate sen-
sor readings. The purpose of the weight assignment phase
is to weigh the contributions received from different users
considering both: the context in which each observation has
been created as well as the entity trust of the observer Te,t (un)

(as evaluated by the proposed entity-centric trust model). In
what follows, we introduce the contextual elements under-
lying data trustworthiness, and discuss how to factor these
elements into weighing the observations. We consider three
contextual elements associated with each submitted obser-
vation: spatial, temporal, and semantic context:

Spatial Context: It can be argued that a sensing mid-
dleware is more likely to collect the most informative data
when the users are in their home areas, i.e., the areas the
user visits more frequently, rather than other areas. This can

be mainly attributed to the fact that observations stemming
from a user’s home area are sufficiently localized so that the
sensors can be calibrated towards accuracy. In fact, many au-
tomated sensor calibration techniques leverage on machine
learning, and the number of contributed measures by the
sensor needs to be high enough to overcome the low accu-
racy of the ordinary sensors. Armed with this understanding,
Eq. 7 formulates a simple weighing function to capture the
impact of the spatial context on the observations made by
user un:

µL

(
OBl,k,i

n,t

)
=

{
HSP, al = ahome(un)

LSP, al 6= ahome(un)
, (7)

where HSP and LSP are system-specific parameters indicat-
ing high (resp., low) weights assigned to observations com-
ing from un’s home (resp., non-home) areas.

Temporal Context: The state of an event in a system
may change over time, and an event may only be relevant
for a limited portion of time. Hence, the observations that
are contributed more closely to the end of each tupdate inter-
val are more likely to be accurate. Let τ(OBl,k,i

n,t ) denote the
timestamp associated with a given observation. The weigh-
ing function µT : R+→ [0,1] as given by Eq. 8 uses simple
parametric thresholds to give more weights to more tempo-
rally fresh observations:

µT

(
τ(OBl,k,i

n,t )
)
=


HT , tupdate− τ(OBl,k,i

n,t ) < t1
MT , t1 < tupdate− τ(OBl,k,i

n,t ) < t2,

LT , t2 < tupdate− τ(OBl,k,i
n,t )

(8)

where t1 and t2 are defined as two interval indicators that can
be set according to the characteristics of each factor. Also,
HT , MT , and LT are system-specific parameters denoting
high, medium, and low grades to be given to observations
based on their recency.

Semantic Context: In order to capture the semantic trust-
worthiness of each user class in relation with each class
of environmental factors, we introduce a tabular function
µC : CU ×CF → [0,1]. For a given pair of user-factor class
(cp,cq), the function µC(cp,cq) indicates the inherent suit-
ability of a user belonging to class cp for generating observa-
tions on a factor of class cq. This table is meant to be preset
based on expert opinions and using empirical experiments.
For example, Table 2 is a very rough example of how the
function µC(.) can be formulated for two classes of environ-
mental factors concerning environmental health and urban
accessibility. The high, medium, and low weight values for
the semantic correlations are shown parametrically by HSM ,
MSM , and LSM , respectively. For instance, when it comes
to contributing observations about urban health, government
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Table 2: Semantic Context

User Class
Factor Class Environmental Health (e.g.,air

pollution, temperature,humidity,
noise pollution, etc.)

Urban Accessibility (e.g., facility
maturity, infrastructure, sidewalk

condition, etc.)
Healthcare professionals (e.g., physicians,

nurses, EMTs, etc.) HSM MSM

Vulnerable groups (elderly, disabled, patients,
carers, etc.) MSM HSM

Government professionals (e.g., CHOs) HSM MSM
Regular people LSM LSM

professionals that monitor the environment receive the high-
est weight followed by emergency management and health-
care professionals or responders that generally care for the
public health. On the other hand, patients, vulnerable groups
of users, and their carers who are more conscious towards
welfare-related issues, are supposedly more eligible to pro-
vide information on the accessibility factors in each area.
It should be noted however that semantic context only pro-
vides a startup template. In fact, although other observers
may initially have less trust associated with the data they
provide, but as discussed in Sect. 3.1, this initial bias may
be dominated by the user scores, given that these scores can
be adapted gradually based on the content the users create.

Overall, once the context-related weights are assigned to
an observation, we use Eq. 9 as a simple convex combination
(with α , β , and θ as coefficients) to integrate the impact of
contextual properties of a received observation with the en-
tity trust of the observer. In particular, the overall trustwor-
thiness weight w

(
OBl,k,i

n,t

)
is assigned to the i-th observation

of user un about factor fk in area al during epoch t:

w
(

OBl,k,i
n,t

)
= α

(
Te,t (un) .µC

(
OBl,k,i

n,t

))
+β µL

(
OBl,k,i

n,t

)
+θ µT

(
OBl,k,i

n,t

)
,α +β +θ = 1.

(9)

3.2.2 Observation Aggregation

In this step, the weights of all observations about area al
are aggregated to assess T k

d,t(al). This value gets updated
periodically after each tupdate. Considering the fact that the
observations about area al can be contradictory due to mali-
cious behavior of the users, it is essential to utilize a method
that can handle the aggregation of contradicting uncertain
evidence. We leverage on Dempster-Shafer Theory of evi-
dence (DST) to aggregate different observations from dif-
ferent users about the environmental factors in each area.
DST is a general framework for reasoning with uncertainty.
The theory allows one to combine evidence from different
sources and arrive at a degree of belief (represented by a

mathematical object called belief function) that takes into
account all the available evidence.

DST’s formalism starts with a set of possibilities under
consideration, for instance the numerical values of a vari-
able. In DST’s jargon, this set is called frame of discernment,
and is similar in concept to the notion of state space in prob-
ability. In our case, for each factor fk, we need to define a
frame of discernment which we denote by Ωk. In particular,
we assume that the entire range of possible numerical values
for each observation can be quantized into a total of Γk real
intervals. HAMS is then able to map the value of each re-
ported observation OBl,k,i

n,t to its corresponding interval from
within Ωk, where

Ωk
def
=

{
ωk,1

def
=[−∞, rk,1),ωk,2

def
=[rk,1rk,2), . . . ,

ωk,Γk
def
=[rk,Γk +∞)

}
.

(10)

This quantization can be done using expert opinion and
in a meaningful fashion for each factor; for instance, the
range of observations about air pollution factors can be quan-
tized to levels indicating different health grades such as:
“healthy”, “borderline”, “unhealthy for sensitive groups”,
“unhealthy”, “very unhealthy” and “hazardous”.

Now, a hypothesis in DST is represented by a subset of
the frame of discernment. For each Ωk, there are 2Γk hy-
potheses (including the hypotheses null /0 and universal Ωk).
We denote this set of hypotheses by power set 2Ωk . In a
first step, subjective probabilities (masses) are assigned to
all subsets of the frame; usually, only a restricted number
of hypotheses (namely, focal elements) have non-zero mass.
In our case, if the received observation OBl,k,i

n,t from user un
happens to belong to interval ωk,γ ∈Ωk (γ = 1,2, . . . ,Γk), we
exploit the observation weights from Eq. 11 to assign mass
to every hypothesis h ∈ 2Ωk as follows:

ml,k,i
n,t (h) =


w
(

OBl,k,i
n,t

)
, h = ωk,γ

1−w
(

OBl,k,i
n,t

)
, h=Ωk

0, Otherwise

. (11)
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In fact, since each user can only contribute a single value
for a given factor fk, and there is no overlap between the
quantization intervals, the only non-universe hypothesis that
can have positive mass is the interval entailing the numerical
value of OBl,k,i

n,t . Also, in DST, the mass assigned to the uni-
versal set Ωk refers to the proportion of evidence that can’t
be assigned to any of the other hypotheses.

Now, at the end of each update epoch t when different
users have expressed their beliefs over the frame, Demp-
ster’s rule of combination can be used by HAMS to com-
pute the combination (called the joint mass) of all sets of
masses corresponding to any interval ωk,γ ∈ Ωk of numer-
ical values for each factor fk in area al . For simplicity, in
order to explain the DST’s fusion operator, we consider the
combination of two sets of masses ml,k,i

n,t and ml,k, j
ń,t corre-

sponding respectively to the masses assigned to the i-th ob-
servation of user un, and the j-th observation of user uń. Ac-
cording to DST’s rule, for each interval of numerical values
ωk,γ ∈Ωk,γ ∈ {1,2, . . . ,Γk} , we have that:

ml,k,i
n,t
(
ωk,γ

)⊕
ml,k, j

ń,t

(
ωk,γ

)
=

∑h ∩h́= ωk,γ
ml,k,i

n,t (h)×ml,k, j
ń,t

(
h́
)

1− ∑ h∩h́= /0 ml,k,i
n,t (h)×ml,k, j

ń,t

(
h́
) , h, h́ ∈ 2Ωk .

(12)

In fact, DST derives a common shared belief between
multiple users, while ignoring all the conflicting (non-shared)
belief through a normalization factor. An advantage of DST
is that its fusion operator can be interpreted as an approxi-
mate generalization of Bayes’ rule, in which (unlike tradi-
tional Bayesian methods) the priors and conditionals need
not be pre-determined.

Although we have expressed DST’s fusion operator in a
pairwise fashion, but the operator

⊕
can be applied repeat-

edly to fuse any number of observations. In fact, starting
from the outset, it suffices to combine the mass of a third
observation with the joint mass computed for the first two.
The final joint mass obtained in this fashion indicates the
trustworthiness of HAMS’s claim that the value of fk for
area al falls within the range ωk,γ ∈Ωk. More formally, since
each user un contributes a total of Ml,k observations over the
course of an epoch t, we use the symbol ml,k

n,t to denote the
joint mass derived from fusing all observations reported by
un. Now, the combined mass for user un is computed as fol-
lows:

ml,k
n,t
(
ωk,γ

)def
=
⊕Ml,k

i=1
ml,k,i

n,t
(
ωk,γ

)
,ωk,γ ∈Ωk,

∀ γ ∈ {1,2, . . . ,Γk} .
(13)

Accordingly, we use the symbol ml,k
t to denote the joint

mass derived from fusing the observations from the users

who contributed observations about the factor fk in area al

during epoch t. ml,k
t can be computed from

{
ml,k

n,t

}
n=1,...,N

as follows:

ml,k
t
(
ωk,γ

)def
=
⊕

n∈U(t)
ml,k

n,t
(
ωk,γ

)
, ωk,γ ∈Ωk,

∀ γ ∈ {1,2, . . . ,Γk} ,
(14)

where U (t)⊆U denotes the subset of users who actually
contribute observations during the t-th epoch.

Finally, the data trustworthiness T k
d,t (al) associated with

factor fk is a vector containing the joint masses associated
with all the intervals ωk,γ ∈Ωk; i.e.,

T k
d,t (al) =

{
ml,k

t
(
ωk,γ

)}
γ=1,2,...,Γk

. (15)

4 Performance Evaluation

In this section, performance measurements using an in-house
simulator are provided using different scenarios to demon-
strate the systems properties. After introducing the simula-
tion setting in Sect. 4.1, we present the results in two sec-
tions: Sect. 4.2 demonstrates the convergence and the accu-
racy properties of our scheme as well as its resilience against
changes in users behavior. Sect. 4.3 is devoted to a compar-
ative evaluation of our proposed method against [2], which
is a recent trust management scheme, proposed specifically
for health IoT applications.

4.1 Parameter Settings

For the sake of experiments, we consider an IoT environ-
ment comprised of N = 40 users distributed uniformly in
L = 100 areas. Given that our scheme prescribes an identi-
cal procedure for all environmental factors, for simplicity,
we assume that only one environmental health factor, e.g.,
the concentration of PM2.5 in the air, is being observed by
the users. Each user is able to query HAMS about the health
factor of one area before entering the area, and contributes
an observation about this health factor. Again, for simplic-
ity, we consider only two levels of quantization for the val-
ues of the factor under observation (Γk = 2), indicating very
coarsely whether it is currently within a healthy range or not.

The percentage of malicious users (PMU) in our system
ranges from 0 to 70% to demonstrate the effect of malicious
behavior of the users on the performance of our trust man-
agement system. The simulations are conducted using three
trust score levels, i.e., J = 3. As such, the score set consists
of three elements {s1,s2,s3}, which are proportionally set
to indicate the scores of the malicious, ignorant, and good
users. The trust scores of all users are initially set to 0.5 (i.e.,
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Table 3: Parameters for Performance Evaluation

Parameter Value Parameter Value
N 40 α 0.7
L 100 β 0.3
Γk 2 {s1,s2,s3} {0.05,0.5,0.95}
J 3 {HSP,LSP} {1,0.4}
fN , fP 0.2 {HSM ,MSM ,LSM} {1,0.8,0.6}

ignorance), and they should eventually converge to their true
score levels.

The coefficients used in Eq. 9 for assigning weights to
each observation are set as α = 0.7 and β = 0.3. As for θ

(the temporal context coefficient), we assume for simplicity
that the environment has a long timescale model so that an
unhealthy area stays unhealthy throughout the simulation;
therefore, the temporal context is not used for assessing data
trustworthiness, and we set θ = 0. The values chosen for the
parametric weights associated with the semantic correlation
function µC(.) and the spatial context µL(.) (used in Eq. 7
for data trustworthiness calculation) are demonstrated in Ta-
ble 3. The false positive and false negative parameters in our
system are set as fN = fP = 0.2. A more detailed discussion
on the impact of these two parameters is presented in the
next subsection.

The TM module in HAMS calculates both entity trusts
and data trustworthiness after each tupdate elapses; accord-
ingly, in our plots, the time axis shows the progression of
the algorithm in terms of tupdate-length epochs.

4.2 Convergence, Accuracy and Resiliency

In this section, we evaluate the convergence behavior and
the accuracy of our proposed TM scheme as well as its re-
siliency by exploring the impact of changes in users be-
havior. We also evaluate the accuracy of the assessed trust
against the ground truth as the population of the malicious
users increases.

Fig. 3 illustrates the evolution of the estimated entity
trust score for a good user randomly selected from the pop-
ulation. For this experiment, the parameters fN and fP are
set according to Table 3. We see that as time progresses and
more observations are gathered, the entity trust value of a
good user converges around the expected score for the good
users which is 0.95. Similarly, Fig. 4 shows how the estima-
tion of entity trust score for a malicious user progresses with
time. Again, we set the simulation parameters according to
Table 3, and the malicious user is randomly selected from
the population of the users. We see that as time passes, the
plot converges around the expected score for the malicious
users which is 0.05.Overall, these plots corroborate the ef-
ficacy of the proposed Bayesian learning procedure for esti-

Fig. 3: Convergence of the Estimated Trust Score for a Good
User

Fig. 4: Convergence of the Estimated Trust Score for a Ma-
licious User

mating the random user trust scores from the history of their
contributing behavior.

Next, We experiment with the impact of different mis-
detection error probabilities (i.e., false negative/positive pa-
rameters denoted by fN and fP) on our entity trust estima-
tion process. In Fig. 5, we compare the differences between
the estimated trust score and the expected trust score of ran-
domly selected malicious and good users, considering dif-
ferent fN and fP. We name this difference, user trust esti-
mation error. We plotted this figure in a log-scale format to
demonstrate the results more clearly. As can be seen, the
learning process is fairly robust against reasonable values
for the misdetection probabilities; however, the performance
ultimately suffers when the learning algorithm is equipped
with a poor detection capability (e.g., when the values of
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Fig. 5: User Trust Estimation Error

fN and fP are higher than 0.5, the error value jumps up to
0.48). As such, the performance of the entity trust compu-
tation method depends largely on the parameters fN and fP.
However, if the system is tuned with reasonably low values
of misdetection probabilities, the proposed scheme is very
effective in estimating the trust scores of the users, e.g., for
the value of fN and fP equal to 0.2, the user trust estimation
error is as low as 0.02.

To evaluate the resiliency of the proposed TM system,
we consider a case in which the users behavior changes in
the middle of one simulation, e.g., a good user turns into ma-
licious (or vice versa). This experiment is meant to demon-
strate the responsiveness of our proposed TM in detecting
and tracking such changes. Fig. 6 illustrates the entity trust
of a user whose behavior is subject to sudden change. We
consider two scenarios; in the first case, the users behavior
changes after the 10th epoch, and in the second case, the
users behavior changes after 20 epochs. In order to demon-
strate the impact of this behavioral change, the duration of
these experiments is considered to be longer than the setup
we mentioned earlier.

In the first scenario, given that the user is not malicious
at first, the estimated value for the entity trust score is high in
the beginning, i.e., around 0.95. Once the behavioral change
occurs at the 10th epoch, the estimated value for the en-
tity trust score drops quickly to the score of ignorant users
which is 0.5. After receiving more observations from this
user, the estimation picks up its downward trend till it con-
verges around the score of malicious users (which is 0.05).
Overall, as evidenced by this experiment, the estimation of
entity trusts is able to track the change in users behavior.

In the second scenario, the users behavior changes at the
20th epoch. Compared to the first case, we can see that it
takes more time for the TM module to detect that a behav-
ioral change has occurred. In particular, since the history of

Fig. 6: Tracking Entity Trust Scores under (User) Behavioral
Changes

previous observations is lengthier in this case, it takes more
time for the estimation process to forget the past behavior of
the user, and for the recent observations to manifest them-
selves. In fact, it has taken almost twice as long for the en-
tity trust value to converge around the score of the malicious
users (i.e., 0.05).

In the next set of experiments, we demonstrate the per-
formance of the proposed scheme for estimating the data
trustworthiness. Again, the simulation settings complies with
Table 3. Fig. 7 plots the estimated mean data trustworthiness
of HAMSs claims about the healthiness of a given healthy
area vs. time. As can be observed, when only 10% of the
users in our system are malicious, the data trustworthiness is
nearly 1, which shows that HAMS could spot the healthy ar-
eas almost perfectly. As PMU increases, however, the mali-
cious behavior prevails gradually in the system, generally re-
sulting in a reduction of the data trustworthiness of HAMSs
claims; but still, even under high PMU values, T k

d,t(al) con-
verges to 0.8, (well above 0.5 as an obvious indecisive thresh-
old), which demonstrates that HAMSs claims about the health-
iness of an area can very well be counted upon as trustwor-
thy. Similarly, Fig. 8 plots the mean data trustworthiness of
HAMSs claims about the unhealthiness of an unhealthy area
vs. time. As can be seen, the value of T k

d,t(al) for all PMUs
is also well above 0.5, which indicates that HAMSs claims
about the unhealthiness of a given area are trustworthy.

4.3 Comparison with Related Work

In this section, we compare the proposed scheme for the
computation of data trustworthiness and entity trust with the
recent method presented in [2]. [2] uses a weighted sum ap-
proach to assess the entity trust of each user. Basically, [2]
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Fig. 7: The Mean Data Trustworthiness of a Healthy Area

Fig. 8: The Mean Data Trustworthiness of an Unhealthy
Area

compares each users observation about an area to the other
observations received about this area to estimate the correct-
ness of each observation. For the computation of data trust-
worthiness, this method assigns a weight to each observa-
tion, and finds the average of the observations weights for
each area. The weight is the entity trust of the contributor;
therefore, the data trustworthiness indicates the trustworthi-
ness of HAMSs claim about the health status of an area in-
ferred from users observations.

As for entity trust comparisons, we only present the re-
sults for the good subset of the users (the comparison for
malicious users is similar). Comparison with respect to data
trustworthiness is illustrated for the healthy areas consider-
ing one factor (the comparison for the unhealthy areas is
similar).

Fig. 9: Comparison of the Estimated Entity Trust Scores (the
Case of a Good User)

Fig. 10: Estimated Entity Trust Scores of a Good User As-
sessed by [2]

Fig. 9 compares the estimated entity trust score of a good
user with the results obtained by implementing the scheme
proposed in [2]. The simulation setup for this experiment
is in accordance with Table 3. As can be seen, the estima-
tion accuracy is higher compared to [2]. Also, as shown
in Fig. 10, the trust value assessed by [2] declines sharply
as PMU increases. In fact, [2] is very much susceptible to
the higher presence of malicious users to the extent that it
misidentifies good users as malicious for the PMU of 50%
and 70%. In comparison, as previously shown in Fig. 5 ,
when tuned with reasonable values for misdetection proba-
bilities, our proposed scheme for entity trust estimation per-
forms very well. The higher accuracy of our proposed scheme
can be attributed to our Bayesian learning approach for en-
tity trust estimation. The learning algorithm is very much
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Fig. 11: Comparison in Terms of Data Trustworthiness (the
case of a Healthy Area)

effective in identifying the users inclinations towards con-
tributing observations. The algorithm is also fairly robust
against the increase of misdetection probabilities. On the
contrary, the trivial majority-based judgment used in [2]
quickly loses its efficiency when malicious behavior begins
to dominate.

Finally, Fig. 11 shows the results of comparison in terms
of the data trustworthiness for truly healthy areas. As a gen-
eral observation, the accuracy drops as the value of PMU
increases. However, in the presence of a high percentage
of malicious users, the data trustworthiness in [2] is much
lower compared to the proposed method. The higher accu-
racy of the proposed scheme lies in the fact that it incor-
porates both the contextual parameters and the entity trust
of the contributor for assessing the weight of observations.
In contrast, apart from its lower quality estimates for entity
trust scores, [2] assigns weights to each observation merely
based on the entity trust of the contributor and aggregates
these weights using a simple averaging method.

5 Conclusion

In this paper, we have proposed a hybrid entity/data trust
management scheme for an IoT-enabled environmental
health/accessibility monitoring service. We envisaged a cen-
tralized service that collects observations from the users, and
evaluates their contributions. In return, it also responds to
user queries about the status of the geographic region under
surveillance. We proposed a Bayesian learning-based proce-
dure to estimate the trust score of the users (entities), which
is an effective procedure in identifying the behavioral in-
clinations of the users towards reporting correct/false ob-
servations. As for data fusion, we leveraged on Dempster-

Shafer Theory to fuse the observations, and to assess the
trustworthiness of the data by using the freshly estimated
users trust scores as well as the contextual properties asso-
ciated with the observations. We conducted simulation ex-
periments to evaluate the performance of our proposed trust
management scheme. More specifically, we evaluated the
accuracy of our scheme for both entity and data trust under
different misdetection probabilities and against increasing
population of malicious users. Moreover, we demonstrated
the resiliency of our proposed scheme against the behavioral
changes of the users. We also conducted a comparative eval-
uation against a closely-related prior work. The comparisons
have demonstrated the superiority of our trust management
scheme in terms of the accuracy of the estimated trust, and
its robustness against higher presence of malicious users. In
future, we plan to propose a trust management scheme that
utilizes both social and QoS metrics to compute trust scores
and will use both central and distributed propagation meth-
ods to estimate trust.

Appendix A: Proof of Theorem 1

Proof. Since a Markovian property holds between the fol-
lowing three events Sn = s j, bn,t and En,t , the future state of
each event is independent of the sequence preceded it and
only depends on the present state of the event; i.e.,

P [En,t ,bn,t |Sn] = P [En,t |bn,t ,Sn]×P [bn,t |Sn] =

P [En,t |bn,t ]×P [bn,t |Sn] .

Given that the users behavior in contributing observa-
tions is either correct or wrong, we can derive that:

P [En,t |Sn = s j] = P [En,t ,bn,t=C|Sn = s j]+

P [En,t ,bn,t =W|Sn = s j] = P [En,t |bn,t=C]s j+

P [En,t |bn,t =W] (1− s j).

Now, since E l,k
n,t = {e

l,k,i
n,t }i=1:Ml,k

n,t
, and all evaluations el,k,i

n,t

are independent of each other, it follows that:

P [En,t |bn,t ] =
Mn,t

∏
i=1

P
[
ei

n,t |bn,t
]
.

Furthermore, if a users behavior is to contribute correct
observations, it can be derived that:

P [En,t |bn,t=C] =
Nt (C)

∏
i=1

P
[
ei

n,t = C|bn,t = C
]
×

Nt (W)

∏
i=1

P
[
ei

n,t =W|bn,t = C
]
= ( f P)

Nt (W)×(1− f P)
Nt (C).
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Similarly, if the users behavior is to contribute wrong
observations, we have:

P [En,t |bn,t=W] = ( f N)
Nt (C)×(1− f N)

Nt (W).

Hence,

P [En,t |Sn = s j] = s j× ( fP)
Nt (W)× (1− f P)

Nt (C)+

(1− s j)× ( fN)
Nt (C)× (1− f N)

Nt (W).
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