
International Journal of Information Security (2020) 19:623–638
https://doi.org/10.1007/s10207-019-00481-8

REGULAR CONTRIBUT ION

After you, please: browser extensions order attacks
and countermeasures

Pablo Picazo-Sanchez1,2 · Juan Tapiador3 · Gerardo Schneider1,2

Published online: 21 November 2019
© The Author(s) 2019

Abstract
Browser extensions are small applications executed in the browser context that provide additional capabilities and enrich
the user experience while surfing the web. The acceptance of extensions in current browsers is unquestionable. For instance,
Chrome’s official extension repository has more than 63,000 extensions, with some of them having more than 10M users.
When installed, extensions are pushed into an internal queue within the browser. The order in which each extension executes
depends on a number of factors, including their relative installation times. In this paper, we demonstrate how this order can
be exploited by an unprivileged malicious extension (i.e., one with no more permissions than those already assigned when
accessing web content) to get access to any private information that other extensions have previously introduced. We propose
a solution that does not require modifying the core browser engine, since it is implemented as another browser extension.
We prove that our approach effectively protects the user against usual attackers (i.e., any other installed extension) as well as
against strong attackers having access to the effects of all installed extensions (i.e., knowing who did what). We also prove
soundness and robustness of our approach under reasonable assumptions.

Keywords Web security · Privacy · Browser extensions · Malware · Chrome

1 Introduction

Web browsers have become essential tools that are installed
on nearly all computers. The most popular browsers as
of this writing (April 2018) are Chrome (77.9%), Firefox
(11.8%), Internet Explorer/Edge (4.1%), Safari (3.3%) and

This work was partially supported by the Swedish Research Council
(Vetenskapsrådet) through the Grant PolUser (2015-04154), the
Swedish funding agency SSF under the Grant Data Driven Secure
Business Intelligence, the Spanish Government through MINECO
Grant SMOG-DEV (TIN2016-79095-C2-2-R) and by the Comunidad
de Madrid under the Grant CYNAMON (P2018/TCS-4566),
co-financed by European Structural Funds (ESF and FEDER).

B Pablo Picazo-Sanchez
pablop@chalmers.se

Juan Tapiador
jestevez@inf.uc3m.es

Gerardo Schneider
gersch@chalmers.se

1 Chalmers University of Technology, Göteborg, Sweden

2 University of Gothenburg, Göteborg, Sweden

3 Universidad Carlos III de Madrid, Madrid, Spain

Opera (1.5%) [35].Most browsers allow users to install small
applications, generally developed by third parties, that pro-
vide additional functionality or enhance the user experience
while browsing. Such plug-ins are known as browser exten-
sions and they interact with the browser by sharing common
resources such as tabs, cookies, HTML content or storage
capabilities. As of May 2017, the Chrome Web Store1 (the
official repository where all Chrome extensions are stored
and distributed) contains more than 135,000 extensions,
whereas for the case of the second most popular browser
(Firefox), its extension store contains almost 70,000 items.2

When an extension is installed, the browser often pops
up a message showing the permissions this new extension
requests and, upon user approval, the extension is then
installed and integrated within the browser. Extensions run
through the JavaScript event listener system. An extension
can subscribe to a number of events associated with the
browser (e.g., when a new tab is opened or a new book-
mark is added) or with the content (e.g., when a user clicks
on a HTML element or when the page is loaded). When a

1 https://chrome.google.com/webstore/category/extensions.
2 https://addons.mozilla.org/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-019-00481-8&domain=pdf
http://orcid.org/0000-0002-0303-3858
https://chrome.google.com/webstore/category/extensions
https://addons.mozilla.org/

624 P. Picazo-Sanchez et al.

JavaScript event is triggered, the event is captured by the
browser engine and all extensions subscribed to this event
are executed.

In this paper, we focus on Chromium [23], which is an
open source browser and the basis for Chrome, Opera, Brave,
Edge Chromium or Yandex browsers. Extensions installed in
Chromium can also run in all mentioned browsers. The exe-
cution engine is exactly the same in all the browsers and
follows the same pipeline model that will be explained in
some detail later (Sect. 3.1). For this reason, we will refer
to Chrome and Chromium interchangeably. Extensions in
Chromium can be of three types: content scripts, background
pages or both. In what follows, our main focus is on con-
tent scripts, which are JavaScript files that run in the context
of the loaded web page. It is important to emphasize that
the main aim of content scripts is to access and interact
with the Document Object Model (DOM). This fact alone
raises a fundamental privacy question, since it is explicitly
assumed that extensions will have full access to any (sen-
sitive or not) content that the user is accessing. Browsers
(including Chromium) dodge this issue by assuming that the
user should trust the extension before installing it. In this
paper, we do not address this problem, which is essentially
related to determining if an extension’s behavior is benign or
malicious, but a related one described in what follows.

1.1 Extension order attacks

When analyzing the security and privacy implications of
browser extensions, one question that has been largely
overlooked is the potential leakage of information among
extensions. In nearly all browsers, each content script uses
its own wrapper of the DOM to read and make changes to
the page loaded by the browser. They also run in a dedicated
sandbox that the browser provides for security reasons. How-
ever, there is no isolation in terms of privacy, since all changes
an extension performs in its ownDOMare automatically syn-
chronized with the main DOM. One straightforward—but
nonetheless important—consequence of this is that a mali-
cious extension could eavesdrop on other extensions (i.e., it
can get access to the data they put on the DOM and observe
their actions) and evenmanipulate their behavior by acting on
their DOM elements (e.g., clicking on elements introduced
by another extension). An attacker can exploit this using two
different strategies:

1. Exploiting the order Theway Chromiummanages exten-
sions (see Sect. 3.1) introduces a default execution order
among extensions with undesirable consequences. One
key issue is that the nth extension in the pipeline can
learn all contents introduced by the first n − 1 exten-
sions in the HTML document. Thus, extensions located
at the end of the pipeline enjoy more privacy than ones

installed earlier. More importantly, the order could be
explicitly exploited, eventually producing privacy leaks
and security problems.

2. Order-independent attacks Some attacks enabled by the
absence of effective isolation among extensions’ actions
do not require exploiting the execution order (i.e., getting
the malicious extension to be placed at the end of the exe-
cution pipeline). However, exploiting the order provides
the attacker with a privileged position that facilitates such
attacks, which will result in a simpler code for the mali-
cious extension that will increase the chances of passing
the analysis performed by official stores [17]. Further-
more, not all attacksmight involve adding event handlers,
since access to information put in the DOM will only be
possible once the attacked extension has executed.

We have experimentally verified the previous attacks and
demonstrated, for instance, that an extension with no priv-
ileges can learn which pictures a user likes in Pinterest or
change the picture a user wants to share; that it can tamper
with the notes and events provided by the popular Evernote
Web Clipper; or that it can profile the user’s video brows-
ing preferences in YouTube (see Sect. 3.3 for details.) This
lack of effective isolation is not only inherent to Chromium’s
extensionmodel, but also explicitly acknowledged. Browsers
such as Chrome do not even attempt to guarantee some form
of “non-interference” among extensions. On the contrary,
developers are encouraged to implement appropriate mecha-
nisms to protect any sensitive information that ends up in the
DOM, since it is assumed that other extensions could simply
read or manipulate it. Even if browsers do not factor this into
their threat model, we believe that this is a serious vulnera-
bility that has not been discussed before. More importantly,
it can be easily exploited by a malicious extension, regard-
less of the fact that it is explicitly assumed in the browser’s
extension model or not.

1.2 Our contributions

In this paper, we make the following contributions:

1. We discuss a vulnerability inherent to the way extensions
are handled in Chromium. The problem originates in the
fact that extensions can effectively interfere with each
other, which can be exploited by an attacker to access
sensitive information injected by other extensions, and
also to manipulate their implemented event handlers. To
the best of our knowledge, this is the first work that dis-
cusses this security and privacy threat.

2. We formalize this problem in terms of knowledge gained
by the attacker. In particular,we establishwhat thedefault
knowledge any extension has, and then define what an
attacker might get to know based on her attacking capa-

123

After you, please: browser extensions order attacks and countermeasures 625

bilities. A usual attacker is basically any other installed
extension just taking advantage of its position in the exe-
cution pipeline, while a strong attacker has the capability
of knowing the effect of the execution of each extension.

3. Wepropose a solution that provides practical security iso-
lation among extensions and does not require altering the
core browser engine. The key idea is to replace the exten-
sion pipeline by a (simulated) parallel execution model
in which all extensions receive the same input page (see
Fig. 1). An additional component identifies the changes
introduced by each extension and applies all of them to
the original input page. We prove properties (soundness
and robustness) of our solution and also discuss limita-
tions of this approach.

4. To facilitate the reproducibility of our results, we make
our implementation freely available.3

The rest of this paper is organized as follows.A brief back-
ground on browser extensions and the architecture is given in
Sect. 2. In Sect. 3, we describe Chromium’s extension model
in some detail, characterize the threat posed by a pipeline-
based execution model for extensions and discuss attacker
models. Section 4 describes our solution and discusses the
main advantages, properties and limitations of our approach.
Section 5 reports the experimental results obtained with our
implementation. Finally, Sect. 7 discusses related work and
Sect. 8 concludes the paper.

2 Chrome browser extensions

Abrowser extension is basically a collectionof packagedfiles
which can perform specific operations in the client browser
and that can interact with the HTML file accessed by the
user. In Chrome, it is mandatory for browser extensions to
have a JSON file named manifest.json that contains
information about the extension such as its name, permis-
sions and capabilities that it is allowed to use, and meta-data,
among others. Browser extensions may consist of one or
more JavasScript or HTML files, as well as of additional
resource files such as Cascading Style Sheets (CSS), text,
fonts or images. Table 1 shows the most used file types in
Chrome extensions. This statistic has been obtained by run-
ning a static analysis over 173,553 extensions and some of
their versions found in Chrome’s official repository (Chrome
Web Store).

Browser extensionsmaybe formedbybackground scripts,
content scripts, or both. Roughly speaking, the main differ-
ence between background pages and content scripts is that
the former is not allowed to directly interact with the DOM,
but it can use the chrome API to interact with the browser

3 https://github.com/Pica4x6/Ghost_Extensions.

Table 1 Files frequency in Chrome extensions

File type Number File type Number

JSON 173,564 MIN 46,810

PNG 167,831 SVG 29,394

JS 137,325 GIF 27,771

HTML 106,383 TTF 24,885

CSS 86,772 WOFF 24,761

events, e.g., get the number of installed extensions, the user’s
history, retrieve the browser cookies, be able to know when
the user opens/closes tabs. In contrast, content scripts are
focused on the final representation and basically interact with
the content. (Content scripts can also use a small subset of the
chrome API.) In content scripts, extensions can modify the
DOM and be run when some events are fired such as clicks
on elements, when the page is loaded or when a form is sent,
among others.

Extensions that follow a background page architecture
means that there is an HTML file that implements the exten-
sion behavior. It is worth noting that it is mandatory to
have at least one HTML file, which may eventually contain
JavaScript code (or links to other JavaScript files that can be
stored in the same extension or allocated in external servers).
Moreover, there are two different types of background page
extensions: persistent background pages and event pages.
Persistent background pages are extensions that are always
running as soon as the browser is opened, while event pages
are extensions than run only when needed, i.e., extensions
can subscribe to some JavaScript events (addListener),
and they remain idle until any of those events is fired.

On the other hand, extensions that follow a content script
architecture are aimed for an explicit interaction with the
DOM. This means that such extensions can access all the
information of the HTML and, thus, they might interact
(alter, delete, insert, etc.) with the page contents. This kind of
extensions, however, cannot directly modify the DOM of the
extension (the background part). So, a content script is some
JavaScript file(s) injected in the context of a page that has
been loaded into the browser, and it may be seen as part of
that loaded page, not as part of the extension it was packaged
with (its parent extension).

Content scripts and background extensions work in two
different worlds where direct communication between them
is banned to avoid possibleCross-Site Scripting (XSS) attacks
and information leakages. Nevertheless, they are not totally
separated from each other. Both kind of architectures can
share information and collaborate through some predefined
extension message passing. Figure 2 illustrates the architec-
ture of browser extensions that can work as a background to
interact with the browser, as a content script to interact with

123

https://github.com/Pica4x6/Ghost_Extensions

626 P. Picazo-Sanchez et al.

Fig. 1 Modified extension
execution pipeline in our
solution

HTML0

HTML1

HTML0

HTML3

E3E2E1

E3

E1

E2

Fig. 2 Browser extension
taxonomy

Content_Script.js

background.html

Message Passing

Browser Extension

the content, or both at the same time and communicate with
each part by using message passing.

2.1 Events order in JavaScript

In JavaScript, the event propagation mechanism determines
in which order an event is received by HTML elements. For
instance, when two nested elements are subscribed to the
same event (e.g., div1 and div2 subscribes to click in
Fig. 3), and this event is fired, there are basically two ways
to propagate the event in the DOM: bubbling and captur-
ing. By using capturing, the event is initially handled by the
root element and propagated to its children. In contrast, with
bubbling the event is initially captured and handled by the
children (leaves nodes in the DOM tree) and then propagated
to their parents.

In JavaScript, extensions subscribe to events by using the
addEvenListener() function. In our example above,
we use capturing, so the first alert() will correspond to the
<divid="1">. In case of using bubbling, then the first
alert() will correspond to the <divid="2"> element.

Apart from the JavaScript event propagation mechanism,
extensions developers can define one additional order level

through a property named run_at in the manifest.
json file that allows them to control at which moment
the extension will be injected. That property has three pos-
sible values: document_start, document_end and
document_idle. When the value is set to document_
start, the extension is injected when the document ele-
ment is created. Setting it to document_end would cause
the extension to be injected when the DOM is completed
but before any other subresources are loaded, such as
e.g., images, iframes, etc. Internally, Chromium loads the
extension when the DOMContentLoaded() is triggered.
Finally, the document_idle value would cause the exten-
sion to be injected after document_start and before
document_end, that is, once the page has been created
and after the DOM is loaded. Internally, Chromium loads
the extension after the window.onload() is fired.

Additionally, Chrome currently works by delegating to
the HTML parser the way the content scripts are inserted
when they are tagged as either document_start or
document_end. Thus, if the HTML parser schedules
document_startordocument_end as tasks, then con-
tent scripts are inserted in separate tasks. However, content

123

After you, please: browser extensions order attacks and countermeasures 627

Fig. 3 JavaScipt event flow

scripts tagged as document_idle are always injected in
separate tasks.

Despite the existence of the aforementioned strategies to
control the execution order of extensions, explicitly writing
them does not unequivocally determine the order in which
they will be executed. Whenever two or more extensions
have the same configuration parameters, the Chrome exten-
sion engine decides which one will be executed based on the
extensions’ installation date. This behavior follows a FIFO
policy: The oldest installed extension will be the first to be
executed whereas the newest will be the last one to be exe-
cuted.

Apart from the event management mechanism explained
above, it isworthmentioning howChromemanages tasks and
microtasks. A task—a click event, for instance—is run in its
own thread and is composed of a set of JavaScript sentences,
actions to handle the event, which belong to the event loop.
All tasks are queued and executed sequentially. Moreover,
when a setTimeout is used in the event loop, the callback
function that is executed asynchronously is queued as a new
task.This is specially useful formonitoringdelayed functions
in browser extensions.

Nevertheless, some operations can be also executed in the
middle of a task execution, e.g., to make something asyn-
chronous without being scheduled as a new task and queued
in the tasks queue. Those operations are called microtasks
(composed of promises and mutation observers) and are
executed intermediately after the task execution. The main
reason for this new types of queues is to enrich the user
experience. However, microtasks are not executed when the
event loop is not empty, e.g., if two click events are fired
using JavaScript code and the function that handles the click
event uses promises, those microtasks will not be run until
both clicks events are executed. We refer the reader to [8] for
more information and practical examples about how tasks,
microtasks and how their execution queueswork. In thiswork

however, we are not takingmicrotasks into consideration and
they are left as future work as it is mandatory to modify the
Chromium’s source code to take them under control.

2.2 Extensions in Chromium’s source code

The security model of browser extensions in Chromium is
based on isolated worlds in (JavaScript) V8. Its main pur-
pose is to isolate the execution of different untrusted content
scripts (with a wrapper of the original DOM) while keeping
the main DOM structure synchronized.

Essentially, a world is a “concept to sandbox DOMwrap-
pers among content scripts” [12]. Each world has its own
DOM wrapper, yet there might be different instances from
one particular world and, thus, all of them would share the
same Blink C++ DOM object. The main reason for this
partition is that instances belonging to the same world can-
not share DOMs but can share C++ DOM objects, i.e., no
JavaScripts can be shared between different worlds but C++
DOMobjects can be, thus permitting to run untrusted content
scripts on shared DOM.

Roughly speaking, in terms of browser extensions this
world concept means that the content scripts of each exten-
sion will run its own JavaScripts over different DOMs.
However, all these DOMs are synchronized so that all
changes made by each individual JavaScript will automat-
ically be sent to other DOMs (other wrappers and the main
DOM the user sees).

According to the official documentation, V8 has three dif-
ferent worlds: a main world, an isolated world and a worker
world. A main world is where the original DOM with all its
original scripts are executed. An isolated world is where the
content scripts of the extensions are executed—all of them
can access themainDOM through Blink C++ shared objects.
Finally, a worker world is associated with threads in such a
way that each isolated world is associated with one worker,

123

628 P. Picazo-Sanchez et al.

i.e., the main thread is the main world plus each of the con-
tent scripts. Figure 4 represents how Chrome manages and
isolates content scripts of browser extensions.

Overall, this isolation mechanism prevents Chrome from
being vulnerable to attacks such as the one recently demon-
strated in [26] against Firefox, whose security model lacks
isolation. Nevertheless, Chrome’s security model has not
considered privacy between extensions as part of its architec-
ture. This allows, for instance, that if the Pinterest extension
inserts a element on each picture contained in the
DOM, then all these changes will automatically be visible to
the rest of the extensions, regardless of whether they run in
isolated worlds. This observation is the basis for the attack
discussed in this paper.

3 Attacker model

In this section, we describe how the extension engine that
Chromium implements introduces both privacy and security
risks by default. In particular, we show how a simple mali-
cious browser extension can exploit those issueswith nomore
privileges than having access to the DOM.We then introduce
a formal model for the execution pipeline of extensions and
describe our threat model.

3.1 Chromium’s extension executionmodel

Chromiummanages all installed extensions through the class
ExtensionRegistry implemented in extension_registry.cc and
the associated header file extension_registry.h. This class
implements methods to add, remove or retrieve all exten-
sions that for a particular browser context have been enabled,
disabled, blocked, blacklisted, etc. Each set of extensions is
internally managed through the ExtensionSet class imple-
mented in extension_set.h and extension_set.cc. This is just
a standard C++ map to manage sets with methods to insert,
remove and retrieve items. Importantly, it also provides a
standard C++ iterator to enumerate all set elements. Overall,
this means that installed extensions in Chromium are placed
in a pipeline and are called sequentially to inject the content
script(s) in the DOM. Apart from that, the position at which
the browser injects content scripts is determined by a number
of factors:

1. First, by the implicit order declared in the run_at property
in the manifest.json file.

2. If two or more extensions have the same run_at value,
the browser tries to determine their execution order using
the JavaScript event propagation mechanism [18].

3. Finally, if the event propagation order is the same, exten-
sions are executed according to their installation time: A
executes before B if B was installed after A.

This pipeline works as illustrated in Fig. 5. The content script
of the first extension is inserted and then it is executed in an
isolated world by using the method executeScriptInIsolated-
World (see [12] for more details about worlds in Chrome).
The output of an extension is automatically synchronized
with the shared DOM, so when the next extension is exe-
cuted its wrapper DOM already contains all the changes that
previous extensions have made.

3.2 Manipulating the execution pipeline

We assume that the attacker gets one malicious extension at
the end of the execution pipeline. Even if the extension is
not the last to be installed, Chromium’s extensions model
provides various mechanisms that an attacker can exploit to
modify the order in which parts of the extension code will
run. For example, a malicious extension can be marked to
run once the DOM is loaded. This is achieved by setting the
run_at property to document_end in the manifest.json file.
Additionally, the extension can use the capturing JavaScript
event propagation property to force that the fired event would
execute the extension in the return journey of the event prop-
agation (check [18] for further details about this). Moreover,
modifying the default execution order could be done by fol-
lowing two different approaches:

1. Through another extension’s management permissions,
similarly to what the Extensity extension does [11].
Essentially, this extension enables and disables exten-
sions automatically in the browser. The attacker will
disable all installed extensions and then re-enable them
again, but putting the malicious extension at the end. For
this to work in practice, the user must explicitly approve
themalicious extension requirement to extend its permis-
sions (namely, management). Since many users do not
pay attention to requested permissions, this could guar-
antee success for the attacker.

2. Modifying the Secure Preferences file. This is a JSON
configuration file that was initially thought to bemodified
only by the browser [6]. However, Chrome allows devel-
opers to distribute extensions as part of other software so
this file could also be externally modified by other pro-
cesses. This is the basis for most of the malware installed
in the browser because of its deficient security [15]. The
attacker can thus modify the install_time property in the
Secure Preferences file, and put her extension at the end
of the pipeline. See [32] for a detailed explanation on
how to modify the manifest file.

123

After you, please: browser extensions order attacks and countermeasures 629

Fig. 4 Browser extensions
architecture in chromium

Blink

DOM Object

V8

Isolated World (Content Scripts)Main World

DOM
Wrapper

DOM
Wrapper

DOM
Wrapper

Main Thread

CS1
CSN

DOM Object

Worker Thread

DOM
Wrapper

Worker World

Fig. 5 Chromium’s execution
model for extensions

head

html

body

div1 div2

p

aa

DOM

Main World

Web Page Script

Isolated World (ExtensionN)

Content ScriptN

Isolated World (Extension1)

Content Script1

3.3 Attack examples

To exemplify the problem, we tested the attack in a Chrome
browser with four extensions already installed: Pinterest,
Evernote, vidIQ Vision for YouTube and our custom exten-
sion. Our malicious extension subscribes to all possible
JavaScript events in the browser (i.e., in the web page con-
text). This guarantees that the extension will always be
executed whenever any event is fired.

The official extension of Pinterest, which has more than
10Musers, parses the entire content and adds hidden
elements on each picture it finds in the DOM, as well as some
CSS elements. When the user triggers the onmouseover()
event by passing the mouse pointer over a picture, the span
becomes visible in the form of a button and, if the user clicks
on it, the picture is automatically shared on her Pinterest
board. Assume now that the user has some “secret boards”
defined in her Pinterest account to avoid sharing pictures

123

630 P. Picazo-Sanchez et al.

with all the world. Our malicious extension can carry out the
following actions:

1. It can add a listener to the same onclick() JavaScript event
to know which pictures the user adds to her account, and
thus the photographs will no longer be private.

2. It can learn what pictures the user likes and it could share
that information to an advertisement company [37].

3. It could generate a click JavaScript event on each picture,
automatically sharing all pictures in the user’s account
without any confirmation pop-up.

4. It can replace the picture the user wants to share by
another one.

EvernoteWebClipper has currentlymore than 4.5Musers.
The extensionparses thewebpage and inserts someCSScode
and hidden elements on each picture contained in
the DOM. Additionally, it adds a contextual menu when the
user performs a right click either on a single tag or in the
whole document. Using this contextual menu, the user can
add items such as meetings, personal notes, or any other
information to her calendar. Our malicious extension can
subscribe to the click events and, in addition to the attacks
described for the Pinterest scenario, it could also learn all
details about the notes or calendar entries added by the user.

Finally, we tested it against vidIQ Vision for YouTube.
This extension has more than 500,000 users. Among other
actions, it inserts a<div> element in the right banner of the
screen when a user visits Youtube in order to provide her
with richer information and track her viewed videos. When
the user visits Youtube for the first time, this extension asks
her for her username and password. (As a matter of fact, all
extensions subscribed to either onkeydown(), onkeypress() or
onkeyup() events may get both the username and password.)
Our malicious extension, apart from getting the username
and password, could also get all viewed videos and profile
the user’s habits.

3.4 Modeling extension effects

Before formally defining our attacker model, we first intro-
duce some notation and definitions. In what follows, E =
〈E1, . . . , Ei , . . . , En〉 (n > 0)4 will denote the “set” of
extensions already installed in the browser, where the index
indicates their default execution order (i.e., E1 is the first to
be executed).

When extensions are executed, they have an effect. For
our purposes, we split such effects into two parts: a func-
tional effect that is reflected on the changes done to the
DOM the extension acts on, and some side-effects that are not

4 All the discussion below assumes that there is at least one extension
installed.

directly reflected in the DOM (e.g., sending information to
other servers, interactingwith the browser, executing external
scripts, etc.). The functional effect of an extension Ei when
applied to a DOMwill be denoted by fi (DOM) = DOMi . In
this paper, we are only concerned about the functional effect
of DOMs, so all the results that follow only apply to what
extension can do on the DOMs and, thus, no claim is done
concerning extensions’ side-effects.

Extensions can perform four different types of high-
level operations while being executed: insertions, deletions,
updates, and simply doing nothing. An extension Ei does
nothing when the result of its execution is the same as the
input. As expected, the effect of the other operations (inser-
tions, deletions and updates) implies that the new DOM is
modified by the corresponding change.

Definition 1 Let E = 〈E1, . . . , Ei , . . . , En〉 with n > 0,
be the set of extensions that a browser has already installed
and DOM0 the original content provided as input. We define
the execution pipeline as the result of the execution of the n
extensions as composite functions: fn ◦ . . . ◦ f1(DOM0) =
DOMn .

DOMs can be seen as trees [7]. We will use this fact to
define the above operations in terms of operations on trees.
Thus, if extension Ei only inserts elements in theDOM, then,
DOM ⊆ fi (DOM). In case Ei only deletes something from
DOM, then, fi (DOM) ⊆ DOM. Finally, if Ei only updates
DOM, then fi (DOM) = DOMi where DOM is equal to
DOMi except for the field that has been updated.5

We assume a tree operation that allows us to compare
DOMs and give us the difference between them: DOM −
DOM′. Moreover, we say that DOM is smaller or equal than
DOM’ (denoted DOM ≤ DOM’) if and only if DOM is a
subtree of DOM’.6

Finally, we say that the default knowledge of an extension
is the amount of information it can get from the DOM at the
moment of its execution. Note that the actual knowledge of
an extension might not be equal to the default knowledge.

Note that the real knowledge of an extension might not
be equal (and neither a subset nor a superset) of the default
knowledge. The reason is that, as wewill see, this knowledge
might be affected by attacks or by a solution to those attacks.
The concept is in any case useful as it characterizes what
the extension knows by default, if no external interference is
added to the expected behavior of how the browser works.

If an execution pipeline is such that the overall functional
effect of all extensions is only insertions or doing nothing,
we say that the execution pipeline is monotonic with respect
to the structure of the DOM (or simply, that it is monotonic).

5 Note that, to avoid over-formalization, we are not giving formal defi-
nitions for these operations in terms of trees as they are rather intuitive.
6 We define <, >, and ≥ as expected.

123

After you, please: browser extensions order attacks and countermeasures 631

Conversely, if any extension Ei in the execution pipeline
deletes or updates information, then it is generally impossible
to make any statement about whether any other extension
knows more or less than Ei . For instance, an extension Ei−1

could delete something while extension Ei adds it back, in
which case any other extension E j (j > i) will not be able
to detect that there has been a deletion in the past.

3.5 Attacker model

Weconsider two different types of attackers: strong and usual
attackers. Intuitively, a strong attacker is a malicious exten-
sion that has access to the output of all executions in the
pipeline. Note that this provides the attacker not only with
the effect of all extensions, but also with knowledge about
which extension did what. Alternatively, a usual attacker is a
browser extension that only has access to the corresponding
DOM that the extension receives as input when it is executed
(plus the original DOM). More formally:

Definition 2 A strong attacker (As) is an extension EAs that
is interleaved in the execution pipeline such that fAs ◦ fn ◦
fAs ◦ · · · ◦ fAs ◦ f1 ◦ fAs (DOM) = DOMn . This is the
strongest attacker because it can know all the changes that
all extensions have performed. A usual attacker (Au) is an
extension EAu that is executed in the j th position of the
pipeline (j ≤ n) such that fn ◦ . . .◦ fAu ◦ · · · ◦ f1(DOM0) =
DOMn , having the default knowledge any other extension
in position j could have. Note that j > 1 as otherwise the
attacker would learn nothing.

A strong attacker has definitively more knowledge than
any other in the pipeline and can thus take advantage of that.
Note that, in particular, a strong attacker gets to know which
extension did what changes since it can calculate the effect
of each extension. The usual attacker can only infer partial
information about the other extensions by diffing DOM0 and
the DOMAu that it receives as input. However, this attacker
will know neither the number of extensions nor which opera-
tions they have performed over the content. Note that the gain
of knowledge is not much over previous extensions except if
DOMAu is part of a monotonic subsequence.

An interesting consequence of our threat model is that all
extensions which are installed on the browser are potential
usual attackers because they might have access to the origi-
nal DOM and to the input DOM received from the previous
extension in the execution pipeline.

Remember that despite our proposed attack might be
performed without exploiting the order, i.e., a malicious
extension could subscribe to all possible events in the DOM,
the amount of needed source code to tackle all possible pri-
vacy attacks would be incredibly huge and infeasible due to
the amount of possible extensions and attacks.

In thiswork,we remark the existence of this security threat
which is transparent even for the automatic static analysis
of the source code that official repositories perform [17].
Notice that by using our attack, the simplest dummy exten-
sion installed just after, for instance the official Pinterest
extension, would detect the existence of the former one, and
thus, it can communicate to an external server to retrieve the
customized exploit performing thus an adaptive attack.

Additionally, our scenario can handle situations where,
two browser extensions developed by the same person/
company but placed for instance at the beginning and at
the end of the execution queue will actually access to dif-
ferent information and thus, collaborate to perform attacks
like browser hijacking [25,27,37], or fingerprinting [21,31]
attacks.

4 Our solution

In this section, we describe our solution to address the non-
isolation problem among extensions described previously.
We first provide a general overview that sketches the main
ideas behind our approach. We then describe in more detail
our approach and discuss its main advantages, properties and
limitations.

4.1 Approach

Our solution introduces the notion of a monitor extension,
whose goal is to prevent regular extensions from learning
from each other. Intuitively, monitor extensions are used to
detect all changes that an extension makes; log those modi-
fications; delete them from the DOM passed on to the next
extension in the execution pipeline; and, at the end of the
pipeline, merge all changes to produce a final DOM. Fig-
ure 6 shows the four main components of our scheme:

– TheDiffmodule takes apair ofDOMs (namely, (DOMi−1,
DOMi) and performs the difference between them
(Diff = DOMi − DOMi−1).

– The Store module is shared between all monitor exten-
sions and collects all changes in a table. This table can
be seen as a patches table with the following format:
<Operation>, <Position>, <Action>.

– The Del module removes all changes from DOMi , that
is, DOMi = DOMi−1 − Diff .

– The Apply module, which is placed at the end of the
pipeline, takes all stored differences and patches the
DOM by applying them in order.

Note that our solution could be simplified by removing
the Del method. Thus, once the difference has been com-
puted, the DOM passed on to the next extension would be

123

632 P. Picazo-Sanchez et al.

just the original DOM (DOM0). However, by implementing
a Del module, our approach is more general since it allows
to introduce some policies to share limited amounts of infor-
mation among extensions. This point, however, is not further
explored in this work.

4.2 Extension-based implementation

Our extension-based implementation is slightly different
from the architecture described above. This is due to some
constraints related to the scope of the information that can be
filtered out (i.e., diffed) and to issues on how to isolate exten-
sions without modifying the browser’s source code. Because
of that, we need to differentiate between four types of exten-
sions:

1. A special initial extension that must be placed in the
first place of the execution pipeline to get the origi-
nal content (DOM0). This extension might be forced
to be in the first place by using the capturing event
handler and “run_at”:“document_start” in the mani-
fest.json file. Since we cannot guarantee that this special
extension will be placed in the first position, we can then
force it to be first by manually modifying the order, i.e.,
disabling all extensions and start enabling them in the
order we want them to be executed.

2. Official extensions, i.e., those extensions that the user can
install from the Chrome Web Store.

3. Monitor extensions which are interleaved between each
pair of official extensions. They are in charge of perform-
ing the diff/store and del operations.

4. A special final extension that must be placed in the last
position of the execution pipeline to merge (patch) all
changes that all official extensions have performed pre-
viously.

More formally, this solution implements the follow-
ing transformation over the input DOM : fE f inal ◦ fEn ◦
fEmonitorn−1

◦. . .◦ fEmonitor1
◦ fE1 ◦ fEinitial (DOM0) = DOMn .

The information flow is as follows. Assume that Alice
accesses a web page. The browser requests the URL and,
once the DOM0 tree is retrieved, the first isolated world
corresponding to the initial extension (Einitial) is executed.
This first extension is not part of the general solution (see
Fig. 6), but we found out that, when we tried to imple-
ment it in a real setting, it is needed because Chrome—and
other browsers in general—do some pre-processing to the
DOM (e.g., closing forgotten open HTML tags, adding some
mandatory HTML tags or changing everything into lower
case). This initial extension does not add any changes to the
DOM.Wenote that an extension can request the same content
directly by using the XMLHttpRequest JavaScript object, but

the received DOM could be completely different from the
current DOM because of that browser pre-processing.

After that, the output of the initial extension DOM0 and
the rest of the DOMs wrappers are synchronized. At this
point, the first official extension is run and may perform
some actions over the content. The resulting (DOM1) is the
input to the next monitor extension, plus the initial DOM
(DOM0) needed to get the difference between both DOMs:
Diff = DOM1 −DOM0. All the possible resulting values of
this operation are stored (Store) for the final post-processing
(patch operation), and the difference Diff is then removed
from the output of the extension DOM1. It is worth noting
that this newDOMwill be equal to the original DOM inmost
cases, i.e., our solution will be valid whenever the execu-
tion pipeline follows a monotonic sequence. This process is
repeated until the last official extension eventually produces
the final DOMn output. This last DOM is then provided as
input to the final extension (E f inal), whichwill take all stored
changes and will apply them to the DOMn , thus generating
the final document.

We have produced two different implementations of this
architecture. In our first simple approach, in order to check
which operation each extension performs over the content,
we insert a <textarea> element in the DOM to keep track
of all changes. It also shows all sensitive information that
extensions have access to. This <textarea> is only avail-
able to gather meta-information during the experimentation
and should be removed from the deployed version. For the
second implementation, we created an extension which com-
municates with an external server to store all differences
between two DOMs. This was needed to emulate what an
adaptive attack could achieve by analyzing externally (i.e.,
out of the browser) the information gathered locally from
other extensions. For this, we used the simplest version of
a Flask server—a lightweight server written in Python—and
a library named difflib [10], which is part of the standard
Python library. Alternatively, we could have implemented a
full client-based solution by using JavaScript libraries such as
jsdiff [19], though our implementation proved to be enough
for a proof-of-concept prototype.

The source code of the initial extension can be seen in
Fig. 7. Note that the property run_at of the manifest.json
file is set to document_start (see Fig. 7a), whereas the
original content, i.e., DOM0, is retrieved in line 5 of the
ContentScript.js file of the extension (see Fig. 7b). Once
the<textarea> area is created, each monitor extension sim-
ply checks the current content against the original one to
extract what official extensions do, delete such changes (if
any) and stores them in the<textarea> for the final extension
to include them. Similar to the initial extension, we include
a simplified version of the source code we use to execute the
final extension at the end of the pipeline (see run_at prop-
erty set to document_end in Fig. 8a) and our JavaScript (see

123

After you, please: browser extensions order attacks and countermeasures 633

Fig. 6 Architecture of our
solution and its four main
modules

E1 EN

Diff Del Diff Del

Store

Apply
DOM0 DOMn−1

DOM1 DOMN

DOMn+1

(a) (b)

Fig. 7 Manifest and content script of the initial extension

(a)
(b)

Fig. 8 Manifest and content script of the final extension

Fig. 8b). Our aim was to extract the effects that the execution
of the extensions generate to the DOM and thus the knowl-
edge the extensions have. Additionally, recall that the order
in which extension are executed can be easily modified by
using existing proposals [33]. Our proof-of-concept imple-
mentation is used for experimental purpose only and should
not be considered as a final solution for deployment.

5 Experimental results

We next discuss the experimental results obtained after eval-
uating our solution. We have focused on the first proposed
solution where a<textarea> is used in the client side instead
of using an external server. We have studied the following
performance indicators according to [16] and the W3C con-
sortium [34]: (1) memory consumption; (2) time needed to
parse the HTML; (3) when the onLoad event is fired (many
JavaScript files wait for this event); (4) the processing time
which means that all resources have been loaded (DOM is
completed i.e., the loading spinner has stopped spinning);
and (5) a final test to show the total time that Chrome needs
to generate the onLoad event, i.e., the page is ready. All the
experiments but the memory consumption were carried out
accessing the Alexa’s Top 30 web sites and averaging the

results over 50 runs. Additionally, in order to measure all
the time-based metrics, we have used the DevTools profiling
tools provided by the browser.

Our extension-based solution inserts a middle monitor
extension between every two original extensions, plus the
initial and the final ones. Thus, the number of total extensions
is 2n + 1 (n original extensions plus n + 1 added monitor
extensions, including the initial and final ones). In order to
test what impact these additions have on both Chrome’s per-
formance and the user experience, we have installed a set
of original extensions in a MacBook Air with 2.2GHz Intel
Core i7 CPU and 8 Gb of RAM. The Chrome version where
all test have been run is 60.0.3112.78 (Build official) (64 bits).
We used the 10 most downloaded browser extensions from
the Chrome Web Store, since according to [5], the average
number of installed extensions per user is 5.

All figures related to the monitor extensions depend on
the number of original extensions installed in the browser
(2n + 1). In our experiments, the number of extensions
is related to the original extensions installed. This number
varies if the experiment is performed by using the original
extensions or our proposed solution. For instance, when we
say that with 5 extensions it takes 1.3 seconds to load all
the scripts of a entire page, it means that in reality there are
11 extensions installed in the browser: 5 original extensions,

123

634 P. Picazo-Sanchez et al.

Table 2 RAM consumption #Extensions Originally (Kb) Solution (Kb) #Extensions Originally (Kb) Solution (Kb)

2 217.9 255.0 7 420.9 513.1

3 331.6 379.7 8 492.0 595.2

4 348.7 407.9 9 504.3 618.5

5 374.1 444.2 10 527.1 652.3

6 392.1 473.3

plus 4 middle extensions, plus 1 final extension, plus 1 ini-
tial extension. On the contrary, 5 extensions on the original
extension experiment means that only the 5 original exten-
sions are installed in the browser. Additionally, for all the
experiments we have measured times without the browser’s
cache and by launching one new, fresh instance per experi-
ment, i.e., we have closed and opened Google Chrome each
time we added a new browser extension to measure RAM
consumption and user experience times.

5.1 RAM consumption

To measure memory consumption, we have used the devel-
oper tools provided by Chrome. Table 2 shows the impact on
the browser performance in terms of RAM consumed in KB.
We have isolated the execution of the original extensions and
themonitor extensions in order to show that the impact of our
proposed solution is almost negligible in comparisonwith the
performance of the original extensions. Moreover, both the
initial and the final extension consume 13 KB of RAM each,
whereas our monitor extensions consume 11 KB of RAM
on average. These extensions differ considerably from exten-
sions such as AVGWeb TuneUp, AdBlock or Ad Block Plus,
which consume 27.6 KB, 190.3KB, and 11.3KB of RAMon
average, respectively. Note that the size of such extensions
depends in fact on the content of the web page. For instance,
a page containing a substantial amount of advertisements
wouldmakeAdBlock to consumemuchmorememory. From
the results, we can conclude that the impact of our solution
is approximately linear in the number of extensions. More
concretely, our proposed solution decreases performance by
a factor of 1.15per installed extension in terms of RAM.

5.2 Impact on user experience

Figure 9a shows the time that Chrome needs to parse the
HTML. At this point, Chrome has already parsed the entire
HTML file and creates the DOM.We can observe that, in the
worst case (for 10 original extensions), our solution intro-
duces a delay of 5000ms. Similarly, Fig. 9b shows the time
needed for the browser to fire the event onLoad. This event
is critical because most of the extensions, jquery, and all
libraries based on jquery wait for that event to be executed.

From the results, it is remarkable that the inclusion of our
solution does not introduce undesired delays in the execu-
tion of this event in comparison to the default behavior.

The processing time measures when all resources have
been loaded. Currently, the way the user knows when a given
page has been totally loaded is when the spinner at the core of
most browsers stops spinning. There are a bunch of external
parameters that directly affect this time, such as the network
overhead or the number of resources previously stored in
the cache, among many others. All in all, we can conclude
that the number of installed extensions has a potentially large
impact on performance and, therefore, in the processing time
as it is depicted in Fig. 9c. This, however, is only relatively
critical as the average number of installed extensions is very
low for most users.

Finally, Fig. 9d shows the time needed to load the whole
web page. The total time is calculated from the sum of pro-
cessing and load times. This plot, together with the ones
discussed before, shows that content scripts of browser exten-
sions are not totally decoupled from the rendering process
and, therefore, they directly impact performance and user
experience.

From the above results, we can confirm that the bottleneck
of the browser extensions is, in general, the processing time,
i.e., all HTML resources that web pages have. One possi-
ble consequence of this is the non-monotonic behavior that
can be seen in all subfigures of Fig. 9. However, despite this
non-monotonic behavior, we can see how our proposed solu-
tion adds some delay (in average) with respect to the default
browser.

In general, our solution increases very moderately the
amount of time Chrome needs to render the content. This
problem might be solved by modifying the browser’s source
code.

6 Advantages, properties and limitations of
our approach

The primary aim of this paper is to demonstrate the feasibility
of a lightweight solution to avoid extensions getting sensi-
tive information about the user due to the order execution,
while still (substantially) preserving the main functionality
of the extensions. We next address a number of natural ques-

123

After you, please: browser extensions order attacks and countermeasures 635

(a) HTML Parse (b) on Load

(c) Processing Time (d) Total Time

Fig. 9 Evaluation of our proposal according to W3C parameters

tions related to its main properties. In particular, we show
that our approach does have some intruding effects, that in
fact mitigates both usual and strong attacks, and that our
approach is robust against strong attacks under certain rea-
sonable assumptions.

6.1 How intrusive is our solution?

That is, how much of the extensions’ (good and expected)
behavior do we modify while achieving our goal of preserv-
ing privacy? Our solution always preserves the behavior of
the original browser execution model (i.e., the final output
with or without our solution is exactly the same). In some
sense, we do want to make sure that the order of execution
is irrelevant with respect to the knowledge the extensions
should get (i.e., not accessing sensitive information they are
not allowed to as an effect of this information being passed
by other extensions), but we also know that the outcome of
the executions of such extensions might be modified by our
approach eventually modifying some of the expected output.
Let us consider an example showing the possible effects of
our solution. Let Ei be an extension that changes the DOM’s

background color to black. (Let us assume the original color
was white and that there is text both in black and blue.) Let
us consider that a later extension in the execution pipeline,
E j (1 ≤, i < j ≤ n) changes the background color to white.
It is clear that in the current order, the final outcome is that
the DOM’s background color is white and all the text is read-
able. That being said, it is clear that in case the extensions
were executed in different order (first E j and then Ei) the
outcome will be very different: not only the background will
be black (instead of white), which by itself does not seem to
be a big deal, but more importantly there will be some text
not visible to the user. This not only affects the usability of
the DOM (the black background will hide all the black text
so the user will not be able to see it), but may introduce some
security issues. (The hidden text might be clicked acciden-
tally producing undesired effects.)

This is, however, an inherent behavior of the browser and
our proposed solution does notmodify the default behavior of
the browser, i.e., a given HTML content looks the same with
a set of extensions enabled and with the same set and the pro-
posed solution.Moreover, JavaScript periodical tasks such as
setInterval(callback, delay) are not covered in detail with our

123

636 P. Picazo-Sanchez et al.

solution. This method automatically enqueues the function
defined in the callback in the task queue. For instance, if the
extension A uses this method to get all password fields from
the page the user is visiting each 2 seconds. This is a com-
pletely different scenario because the execution of this task
cannot be controlled through JavaScript code alone.

6.2 Does our solution indeedmitigate possible
attacks?

According to the definitions given in Sect. 3, the knowl-
edge of an extension executed in position j (1 < j ≤ n)
is the same knowledge as the previous extension (E j−1) in
the pipeline plus the actions that E j−1 performs over the
DOM (DOM j−1 ∪ DOM j). On the contrary, when we mea-
sure the knowledge of an extension with our solution, it is
thus decreased to DOM0 (given that our solution only passes
the original DOM to each extension). Our solution also mit-
igates a strong attacker by limiting what she gets to know
in the same way as for the usual attacker: Our interleaving
guarantees that a strong attacker only gets to know the orig-
inal DOM. The reduction in knowledge is of course more
significant than in the usual attacker (Sect. 3).

6.3 How robust is the approach?

That is, canwe guarantee that a strong attacker cannot bypass
our solution? One may think that a strong attacker could
attack our solution by interleaving extensions between our
monitor extensions (before and after) thus bypassing our pro-
tection in order to get access to the effects of the installed
extensions before being modified by our monitor extensions
and then restoring it after our modification. To do so, the
attacker must create an extension with the management priv-
ileges. That, however, would only be possible if the user
explicitly grants that permission to the attacker. The best we
can do is then to show a warning message to the user as soon
as we detect the presence of such malicious extension and
rely on that the user blocks the attacker. If the user grants
the permission, we are thus vulnerable to the attack. In order
for our proposed solution to be able to detect the presence
of such attacks, our extension would need to have manage-
ment privileges. This could only be granted by the user at
installation time.

Proposition 1 Our extension-based solution is robust against
strong attackers under the assumption that our (initial, mid-
dle and final) monitor extensions are given management
privileges and that the user does not explicitly give man-
agement privileges to the attacker.

In case the user (accidentally or consciously) gives the
needed privileges for a strong attacker to install his exten-
sions, our solution would be able to detect that and commu-

nicate it to the user. Indeed, a strong attacker would need to
install n + 1 extensions interleaved between any two exten-
sions, and our monitor extensions would be able to detect
that. So, we have a way to detect this issue, notify it, and
ask the user to uninstall the extension. Besides, by identify-
ing this we would be able to keep a black list of malicious
extensions.

6.4 Extension-based or part of Chromium’s source
code?

Most of the aforementioned questions would be solved by
modifying theChromium’s source code.Note that an attacker
might insert as many extensions as desired and could even
alter the execution order. By modifying the source code, all
extensions receive a fresh copy of the original HTML and,
thus, no-one will learn about the actions executed by other
extensions. This solution uses a similar approach but requires
modifying (and recompiling) Chromium’s core to achieve
isolated execution. At a logical level, it works exactly the
sameas the general solutiondepicted inFig. 6. The sameorig-
inal DOM is passed on to each browser extension, but we do
not allow automatic synchronization between isolatedworlds
(see Fig. 4). Instead, a final module takes all the changes per-
formed by the official extensions and adds them to the final
HTML. However, this does not mean that page rendering is
necessarily delayed until the last extension is done. In fact,
with our solution directly implemented on the source code,
the rendering time of the initial DOM will remain exactly as
it is right now, i.e., the webpage is rendered to the user as
soon as it is received from the server. However, the DOM the
user is reading is automatically updated whenever an exten-
sion finishes its execution. Note that extensions do not have
the last updated copy of the content but the one provided by
the server.

Nevertheless, with this last approach there is an inherent
problem: The order still matters. Let us use the same example
described before, there are (at least) two browser extensions
that modify the same property of the CSS—the background
color. In this solution, we decided to keep the same order as
if it were executed in the original pipeline so the user will not
find any differences with our proposal and the non-modified
browser. This is just a coding decision and could be easily
modified in our apply method.

Note that the main limitation that our proof-of-concept
based on extensions has is the ability of attackers to mod-
ify the order of the monitor extensions and thus bypass our
solution. This issue is solved by directly deploying our solu-
tion as part of the source code of Chromium, making thus
impossible to bypass.

Finally, we demonstrate that our extension-based solution
does not increase significantly the time needed to render a
web page (see Sect. 5).

123

After you, please: browser extensions order attacks and countermeasures 637

7 Related work

Security and privacy aspects of browsers have receivedmuch
attention in recent years [24]. Comparatively, the number of
research papers published on browser extensions is negligi-
ble. Thismight be attributed to the lack of clarity of the actual
security model of extensions in most browsers and how they
work in practice. For instance, Bauer et al. in [4] presented a
model of Chrome where each content script runs in the same
process as the web page into which it is injected. However,
this is not sound due to the existence of isolatedworlds where
each content script is executed in dedicated sandboxes and
the modifications of the DOM are automatically synchro-
nized through the C++ shared objects in Blink. To the best
of our knowledge, our work is the first paper that discusses
attacks induced by the lack of isolation among extensions
(in particular, exploiting their relative execution order) and
proposes a countermeasure for it.

As it has been recently demonstrated, users are not aware
of the privacy leakages and the consequences that exten-
sions can generate [14,28]. An experiment was conducted
with 24 people to check whether they were aware of privacy
issues while they were using the browser. To do so, they used
browser extensions to alert users when some privacy issues
were on-going, but they conclude that users do not know the
real implications of those privacy leakages. In our proposal,
we minimize the effect of the order that the browser includes
by default and thus decrease the sensitive information that
other extensions might acquire.

In [17], Jagpal et al. explored the problem of detect-
ing malicious extensions. They show how by performing
a static analysis over a set of 45Gb of extensions within
5 days they are able to catch 70% of the malicious ones.
However, their analysis does not consider the fact that
the execution order may cause privacy leakages. Several
other works have focused on static analysis to classify
extensions as benign or suspicious [2,13,38], while oth-
ers have explored dynamic analysis techniques to mon-
itor their execution [9,20,22,30,36], or a combination of
both [39].

Contrarily to other proposals, this work does not modify
the browser core, while the performance remains at a reason-
able level. To cite a recent example—even though in this case
the authors address a different problem—Arshad et al. pro-
pose in [1] a modification of the Chromium’s core to protect
users from malicious code while browsing. Their proposed
solution generates a 12.2% overhead in browsing time on
average, though they claim that the trade-off between secu-
rity and performance is acceptable for many users. Bauer
et al. [3] proposed a taint analysis model that also mod-
ifies the browser’s source code to track components that
access sensitive information. The work shows some promis-
ing results, though at a performance overhead of 55%. In

addition, they only fired one javascript event (onload) out
of more than 279 existing events. Additionally, their secu-
rity assumptions are at least questionable due to two main
reasons: (1) They use the manifest.json file to assign labels
for both the content scripts and the background files and (2)
Content Security Policies (CSPs) are used to assign the per-
missions the HTML resources have. It is worth remembering
that according to [29] only 1.17% of the Alexa Top 1 Mil-
lion rank use CSP. For those reasons, they had to manually
include CSPs and permissions to test their experiments.

8 Conclusions

In this paper, we have discussed one important security and
privacy implication of Chromium’s extension model: The
effects of one extension are visible to others in the execu-
tion pipeline. This can be exploited by a malicious extension
that can, for example, get access to sensitive information or
manipulate the DOM elements introduced by other exten-
sions. We call this a usual attacker, in contrast to a strong
attacker who has access to the effect of each single extension
in the execution pipeline. A strong attacker may, in partic-
ular, install itself as the last extension in the pipeline and
produce many copies interleaving itself in between all other
extensions. In this way, it could be possible to get to know
what all other extensions are doing and exploit this fact. We
have shown examples on how to perform both a usual and a
strong attack.

We have provided a proof-of-concept to address this prob-
lem which relies on replacing the pipeline execution model
by one in which each extension executes in isolation and then
combine all individual effects to create the final DOM. Our
implementation does this through a set of monitor exten-
sions. As a first approach, we decide to take the effect of
the last extension in the pipeline. We could, however, eas-
ily provide a solution based on user intervention (asking the
user to decide) or to apply a different policy (choose the first
one, or non-deterministically). A more refined way to do
so is left as future work (e.g., one could gather information
on how harmful the effects are, rank them and choose the
less harmful using machine learning algorithms). We have
open sourced the proof-of-concept and we are close to hav-
ing a fully operational version based on the modification of
Chromium’s source code, which will be also open sourced.

Acknowledgements Open access funding provided by University of
Gothenburg.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

123

638 P. Picazo-Sanchez et al.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Arshad, S., Kharraz, A., Robertson, W.: Include me out: In-
browser detection of malicious third-party content inclusions. In:
J. Grossklags, B. Preneel (eds.) FC, pp. 441–459 (2017)

2. Bandhakavi, S., Tiku, N., Pittman,W., King, S.T., Madhusudan, P.,
Winslett, M.: Vetting browser extensions for security vulnerabili-
ties with vex. Commun. ACM 54(9), 91–99 (2011)

3. Bauer, L., Cai, S., Jia, L., Passaro, T., Stroucken, M., Tian, Y.:
Run-time monitoring and formal analysis of information flows in
chromium. In: NDSS (2015)

4. Bauer, L., Cai, S., Jia, L., Passaro, T., Tian, Y.: Analyzing the dan-
gers posed by chrome extensions. In: CNS„ pp. 184–192 (2014)

5. ons Blog, M.A.: How many firefox users have add-ons
installed? https://blog.mozilla.org/addons/2011/06/21/firefox-4-
add-on-users/ (2018)

6. Chrome: External Extensions. https://developer.chrome.com/
extensions/external_extensions (2018)

7. Committee, W.D.T.: W3C DOM4. https://www.w3.org/TR/
domcore/ (2018)

8. Developer., J.A.G.C.: Tasks, microtasks, queues and schedules.
https://jakearchibald.com/2015/tasks-microtasks-queues-and-
schedules/ (2018)

9. Dhawan, M., Ganapathy, V.: Analyzing information flow in
javascript-based browser extensions. In: ACSAC, pp. 382–391
(2009)

10. difflib: difflib. https://docs.python.org/2/library/difflib.html (2018)
11. Extensity: Extensity. https://chrome.google.com/webstore/detail/

extensity/jjmflmamggggndanpgfnpelongoepncg (2018)
12. Google: Design of V8 bindings. https://chromium.googlesource.

com/chromium/src/third_party/+/master/WebKit/Source/
bindings/core/v8/V8BindingDesign.md#World (2018)

13. Guha,A., Fredrikson,M., Livshits,B., Swamy,N.:Verified security
for browser extensions. In: S&P, pp. 115–130 (2011).

14. Gulyas, G.G., Some, D.F., Bielova, N., Castelluccia, C.: To extend
or not to extend: On the uniqueness of browser extensions and web
logins. In: Proceedings of the 2018 Workshop on Privacy in the
Electronic Society, WPES’18, pp. 14–27 (2018)

15. HMAC: Chromium Secure Preferences. http://www.adlice.com/
google-chrome-secure-preferences/ (2018)

16. Ilya Grigorik: Measuring the Critical Rendering Path. https://
developers.google.com/web/fundamentals/performance/critical-
rendering-path/measure-crp (2018)

17. Jagpal, N., Dingle, E., Gravel, J.P., Mavrommatis, P., Provos, N.,
Rajab, M.A., Thomas, K.: Trends and lessons from three years
fighting malicious extensions. In: USENIX, pp. 579–593 (2015)

18. JavaScript: Bubbling and capturing. https://javascript.info/
bubbling-and-capturing (2018)

19. jsdiff: jsdiff. https://github.com/kpdecker/jsdiff (2018)
20. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Pax-

son, V.: Hulk: Eliciting malicious behavior in browser extensions.
In: USENIX, pp. 641–654. USENIX Association, San Diego, CA
(2014)

21. Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.: Browser finger-
printing: A survey (2019)

22. Onarlioglu, K., Buyukkayhan, A.S., Robertson,W., Kirda, E.: Sen-
tinel: Securing legacyfirefox extensions. Computers&Security 49,
147—161 (2015)

23. Projects, C.: Chromium. https://www.chromium.org (2018)
24. Provos, N.,McNamee,D.,Mavrommatis, P.,Wang,K.,Modadugu,

N.: The ghost in the browser analysis of web-based malware.
In: HotBots, pp. 4–4. USENIX Association, Berkeley, CA, USA
(2007)

25. Rogowski, R., Morton, M., Li, F., Monrose, F., Snow, K.Z., Poly-
chronakis, M.: Revisiting browser security in the modern era: New
data-only attacks and defenses. In: EuroS&P, pp. 366–381 (2017)

26. Saini, A., Gaur, M.S., Laxmi, V., Conti, M.: Colluding browser
extension attack on user privacy and its implication for web
browsers. Computers & Security 63, 14—28 (2016)

27. Saini, A., Gaur, M.S., Laxmi, V., Conti, M.: You click, i steal:
analyzing and detecting click hijacking attacks in web pages. Inter-
national Journal of Information Security (2018)

28. Schaub, F., Marella, A., Kalvani, P., Ur, B., Pan, C., Forney, E.,
Cranor, L.F.: Watching them watching me: Browser extensions’
impact on user privacy awareness and concern. In: NDSS (2016)

29. Scott Helme: Alexa Top 1 Million Analysis. https://scotthelme.co.
uk/alexa-top-1-million-analysis-feb-2017/ (2018)

30. Shahriar,H.,Weldemariam,K., Zulkernine,M., Lutellier, T.: Effec-
tive detection of vulnerable and malicious browser extensions.
Computers & Security 47, 66—84 (2014). Trust in Cyber, Physical
and Social Computing

31. Sjösten, A., VanAcker, S., Picazo-Sanchez, P., Sabelfeld, A.: Latex
gloves: Protecting browser extensions from probing and revelation
attacks. Power p. 57 (2018)

32. Software, T.A.: Chrome Secure Preferences Modification.
https://cs.chromium.org/chromium/src/rlz/lib/machine_id.cc?
sq=package:chromium (2018)

33. Trickel, E., Starov, O., Kapravelos, A., Nikiforakis, N., Doupé,
A.: Everyone is different: Client-side diversification for defend-
ing against extension fingerprinting. In: USENIX, pp. 1679–1696
(2019)

34. W3C: Navigation timing. https://www.w3.org/TR/navigation-
timing/ (2018)

35. w3schools: Browser Statistics. https://www.w3schools.com/
browsers/ (2018)

36. Wang, L.,Xiang, J., Jing, J., Zhang, L.: Towards fine-grained access
control on browser extensions. In: M.D. Ryan, B. Smyth, G. Wang
(eds.) ISPEC, pp. 158–169 (2012)

37. Xing, X.,Meng,W., Lee, B.,Weinsberg, U., Sheth, A., Perdisci, R.,
Lee, W.: Understanding malvertising through ad-injecting browser
extensions. In: WWW, pp. 1286–1295 (2015)

38. Zhao, B., Liu, P.: Behavior decomposition: Aspect-level browser
extension clustering and its security implications. In: S.J. Stolfo,
A. Stavrou, C.V. Wright (eds.) RAID, pp. 244–264 (2013)

39. Zhao, R., Yue, C., Yi, Q.: Automatic detection of information
leakage vulnerabilities in browser extensions. In:WWW,pp. 1384–
1394 (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://blog.mozilla.org/addons/2011/06/21/firefox-4-add-on-users/
https://blog.mozilla.org/addons/2011/06/21/firefox-4-add-on-users/
https://developer.chrome.com/extensions/external_extensions
https://developer.chrome.com/extensions/external_extensions
https://www.w3.org/TR/domcore/
https://www.w3.org/TR/domcore/
https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/
https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/
https://docs.python.org/2/library/difflib.html
https://chrome.google.com/webstore/detail/extensity/jjmflmamggggndanpgfnpelongoepncg
https://chrome.google.com/webstore/detail/extensity/jjmflmamggggndanpgfnpelongoepncg
https://chromium.googlesource.com/chromium/src/third_party/+/master/WebKit/Source/bindings/core/v8/V8BindingDesign.md#World
https://chromium.googlesource.com/chromium/src/third_party/+/master/WebKit/Source/bindings/core/v8/V8BindingDesign.md#World
https://chromium.googlesource.com/chromium/src/third_party/+/master/WebKit/Source/bindings/core/v8/V8BindingDesign.md#World
http://www.adlice.com/google-chrome-secure-preferences/
http://www.adlice.com/google-chrome-secure-preferences/
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/measure-crp
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/measure-crp
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/measure-crp
https://javascript.info/bubbling-and-capturing
https://javascript.info/bubbling-and-capturing
https://github.com/kpdecker/jsdiff
https://www.chromium.org
https://scotthelme.co.uk/alexa-top-1-million-analysis-feb-2017/
https://scotthelme.co.uk/alexa-top-1-million-analysis-feb-2017/
https://cs.chromium.org/chromium/src/rlz/lib/machine_id.cc?sq=package:chromium
https://cs.chromium.org/chromium/src/rlz/lib/machine_id.cc?sq=package:chromium
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3schools.com/browsers/
https://www.w3schools.com/browsers/

	After you, please: browser extensions order attacks and countermeasures
	Abstract
	1 Introduction
	1.1 Extension order attacks
	1.2 Our contributions

	2 Chrome browser extensions
	2.1 Events order in JavaScript
	2.2 Extensions in Chromium's source code

	3 Attacker model
	3.1 Chromium's extension execution model
	3.2 Manipulating the execution pipeline
	3.3 Attack examples
	3.4 Modeling extension effects
	3.5 Attacker model

	4 Our solution
	4.1 Approach
	4.2 Extension-based implementation

	5 Experimental results
	5.1 RAM consumption
	5.2 Impact on user experience

	6 Advantages, properties and limitations of our approach
	6.1 How intrusive is our solution?
	6.2 Does our solution indeed mitigate possible attacks?
	6.3 How robust is the approach?
	6.4 Extension-based or part of Chromium's source code?

	7 Related work
	8 Conclusions
	Acknowledgements
	References

