International Journal of Information Security (2021) 20:833-847
https://doi.org/10.1007/s10207-020-00534-3

REGULAR CONTRIBUTION l‘)

Check for
updates

Web access monitoring mechanism via Android WebView for threat
analysis

Yuta Imamura’ - Rintaro Orito' - Hiroyuki Uekawa'~? - Kritsana Chaikaew>* . Pattara Leelaprute* - Masaya Sato' -
Toshihiro Yamauchi'

Published online: 19 January 2021
© The Author(s) 2021

Abstract

Many Android apps employ WebView, a component that enables the display of web content in the apps without redirecting
users to web browser apps. However, WebView might also be used for cyberattacks. Moreover, to the best of our knowledge,
although some countermeasures based on access control have been reported for attacks exploiting WebView, no mechanism
for monitoring web access via WebView has been proposed and no analysis results focusing on web access via WebView are
available. In consideration of this limitation, we propose a web access monitoring mechanism for Android WebView to analyze
web access via WebView and clarify attacks exploiting WebView. In this paper, we present the design and implementation of
this mechanism by modifying Chromium WebView without any modifications to the Android framework or Linux kernel. The
evaluation results of the performance achieved on introducing the proposed mechanism are also presented here. Moreover,
the result of threat analysis of displaying a fake virus alert while browsing websites on Android is discussed to demonstrate

the effectiveness of the proposed mechanism.

Keywords Android - WebView - Web access monitoring - Web security - Threat analysis - Fake virus alert

1 Introduction

Mobile devices (e.g., smartphones) have been widely used
around the world for many years now. Android devices
have held the biggest share in the global smartphone market
since 2011 [1]. In addition, as mobile devices have become
more popular, mobile web browsing has surpassed desktop

B Pattara Leelaprute
pattara.l@ku.ac.th

B Toshihiro Yamauchi
yamauchi@cs.okayama-u.ac.jp

Masaya Sato
sato@cs.okayama-u.ac.jp

Graduate School of Natural Science and Technology,
Okayama University, 3-1-1 Tsushima-naka, Kita-ku,
Okayama 700-8530, Japan

NTT Secure Platform Laboratories, Tokyo, Japan

Faculty of Engineering, Okayama University, Okayama,
Japan

Faculty of Engineering, Kasetsart University, 50
Ngamwongwan Rd., Ladyao, Chatuchak, Bangkok 10900,
Thailand

browser use and the number of mobile malware cases has
increased. Although it took 20 years to reach two million mal-
ware samples on the personal computer (PC) environment,
it took only 5 years to reach the same number of samples
on mobile devices [2]. The methods of infiltrating Android
devices with malware include malvertising and scams [3].
Moreover, the Google Play Store can also be under attack,
especially in the form of ad click frauds, which is the most
common scam targeting users [3]. It is assumed that mobile
malware authors have set their sights firmly on monetization.
In addition, the attacks on mobile devices mostly use scam-
ming strategies, whereas the attacks on PCs infect them with
malware directly (i.e., drive-by-download). Thus, it is neces-
sary to take preventive measures on mobile devices against
these attacks.

Web browser apps or embedded browsers (e.g., WebView)
are used for browsing web pages on Android devices. They
are developed by recognized companies that can be trusted.
Additionally, a conventional web browser app can use plugins
and its own security function, indicating that it can protect
web access via the conventional web browser app. On the
other hand, the use of WebView depends on Android app
developers, which differs from use of the web browser app.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-020-00534-3&domain=pdf
http://orcid.org/0000-0001-6226-5715

834

Y.Imamura et al.

Many Android apps use WebView to display webpages
and advertisements inside the apps. In the Android app store
managed by Google, WebView was used by approximately
86% of Android apps as of 2011 [4] and 85% of Android
apps as of June 2014 [5]. The implementation of WebView
depends on Android app developers, and most Android apps
that use WebView are not developed by recognized compa-
nies; their trustworthiness is therefore not guaranteed [4].
Therefore, when Android app developers develop an app
without considering the security, attackers may exploit the
security vulnerabilities of the app to target innocent users.
Therein lies the difference between web browsers and Web-
View.

Although WebView can use only Google Safe Brows-
ing, this measure alone is not enough to protect web access
via WebView, especially from fake virus alerts, which use
malvertising to redirect the users to web pages and scam the
users into installing the suspicious Android app. Moreover,
previous studies have reported attacks exploiting WebView
and presented countermeasures against these attacks [4—
16]. Some studies have presented access control methods to
prevent malicious JavaScript codes from exploiting the vul-
nerabilities of WebView [6-8] and to prevent app-repackage
attacks in Cordova-based hybrid applications [9].

The following are some existing studies: OS-level miti-
gation against a new attack that exploits WebView instances
between each Android app by a malicious JavaScript code
[10] and automatic analysis methods focused on event han-
dlers [11]. Previous studies have also developed mitigation
efforts against an attack exploiting AdSDK [12]. The target
of these countermeasures is the prevention of specific attacks
except for malvertising and scams. Moreover, social media
platforms are increasingly used by attackers to infect mobile
devices through malware [17] and social media threats are
surging [18]. As most social media apps (e.g., Facebook
and Twitter) use WebView, users may experience damage
by websites linked to social media apps.

The studies mentioned so far have proposed access con-
trol mechanisms for attacks exploiting WebView, mitigations
against these attacks, and analysis of Android apps at the
source code level. However, these studies did not focus on
web access via WebView or propose measures against threats
such as malvertising and scams for Android WebView.

To address these threats on WebView, we propose a
web access monitoring mechanism for Android WebView
(hereinafter referred to as “WebView Monitor”’) as a means
of monitoring web access via WebView and describe its
design and implementation. WebView Monitor can monitor
all forms of web access with HTTP. Additionally, Web-
View Monitor can acquire the HTTP request and HTTP
response, which is encrypted by SSL/TLS, as plain text, and

@ Springer

the Android app package name to identify the Android app.
Furthermore, this mechanism does not require any modifica-
tion of the Android Framework or the Linux kernel, so that
there is an advantage that it can be introduced by just replac-
ing the built-in WebView implementation with or installing a
modified version. Although rooting is required in Android 5
and Android 6, we consider that WebView Monitor is easier
to use compared to other monitoring tools (i.e., MITM proxy)
for Android communication. Thus, the target of WebView
Monitor is not only researchers or security analysts but also
ordinary civilians with little to no technical backgrounds who
can understand the contents of communication logs. There-
fore, WebView Monitor is useful in threat analysis of web
access via WebView. Moreover, to show the effectiveness
of proposed mechanism, we describe the results of a threat
analysis for malvertising and scams via WebView using Web-
View Monitor. In particular, we investigated fake virus alerts.
This paper also reports the evaluation results for WebView
Monitor.

In summary, our study makes the following contributions:

— Monitoring method of web access via WebView Web-
View Monitor is a new method of monitoring all forms of
HTTP-based web access via WebView. WebView Moni-
tor does not require any modification of the Android sys-
tem for installation and can therefore be easily installed
on various versions of Android devices.

— Acquisition of plaintext contents in encrypted communi-
cation WebView Monitor can acquire the HTTP request
and HTTP response, which is encrypted by SSL/TLS, as
plain text. This is because WebView Monitor acquires the
HTTP request before encryption and the HTTP response
after decryption.

— Analysis of Android apps using WebView based on Web-
View communication logs WebView Monitor saves the
information described in Sect. 3.4 to the internal storage
of Android device for each Android app using WebView.
In addition, WebView Monitor acquires the information
in a unique format to ensure ease of analysis and preser-
vation and saves the information in internal storage. This
makes it possible to analyze the Android app that uses
WebView by focusing on WebView communication logs
for every Android app using WebView.

— Threat analysis of fake virus alerts using WebView Mon-
itor We performed analysis based on the content of web
access via WebView to prevent attacks using fake virus
alerts. In particular, we revealed the mechanism of dis-
playing a fake virus alert and redirection flow while
browsing websites via WebView.

Web access monitoring mechanism via Android WebView for threat analysis

835

2 Background

2.1 WebView

WebView is a component that makes it possible to display
web content on Android apps without redirecting the user to
a web browser. Figure 1 shows a difference in page display
behavior with the use of WebView. The Android app ((A)
in Fig. 1) displays a link to the top page of Okayama Uni-
versity’s website. When the app is not using WebView ((B)
in Fig. 1), the user is redirected to a web browser, whereas
when the app is using WebView ((C) in Fig. 1), the website is
displayed within the Android app. Recently, numerous well-
known and widely used Android apps have been utilizing
WebView. Examples of such apps include social media apps
(e.g., Twitter and Facebook), email apps (e.g., Gmail), and
mapping apps (e.g., Uber). This indicates that WebView is
an essential component of Android apps.

WebView has used different browser engines in each
Android version. WebView implementation from Android
4.1 to Android 4.3 uses WebK:it [19], whereas Android 4.4
onward, Chromium WebView is used [20]. WebView imple-
mentations up to Android 4.4 are contained in the Android
Framework. However, after Android 5.0, it is separated from
the Android Framework and is instead as the Android Sys-
tem WebView app. This allows us to update WebView on
Google Play without having to update the Android version.
Although only a single installation of WebView is allowed
in Android 5 and Android 6, multiple installations of Web-
View are allowed from Android 7 onward. This enables us
to switch WebView implementation in the Android device
settings after an implementation is installed by the user.

WebView comes with a number of Application Program-
ming Interfaces (or “APIs”). Using WebView, Android apps
can easily embed a powerful browser inside. Moreover, this
makes it possible not only to display web content but also
to interact with web servers with a number of APIs. To dis-
play web content and interact with web servers, Android app
developers often use the following APIs:

u
[— o

0 oxmamA UNIVERSITY

0 oxavamA UNIVERSITY

B

lﬂl& mi 7

(1) 1loadurl API
This API loads and displays a webpage within an
Android app when given a URL string.

(2) setJavaScriptEnabled API
This API enables the execution of JavaScript down-
loaded within WebView.

(3) addJavascriptInterface API
WebView provides a mechanism for JavaScript code
loaded within WebView to invoke the Android app’s Java
code. Android apps can register Java objects to Web View
through this API. Moreover, this API makes it possible
to invoke all the public methods in these Java objects
from the JavaScript loaded within WebView.

2.2 Network stack of chromium WebView

Figure 2 (taken from [21]) shows the network stack of a
Chromium-based web browser. The Chromium project pro-
vides a web browser for many platforms. Although web
browsers developed by the Chromium project differ in terms
of front end and presence/absence of functions, etc., factors
related to the implementation such as communication pro-
cessing exhibit almost no differences among platforms. The
implementation is shared and composed of a set of interfaces
as shown in Fig. 2. Moreover, all web access by Chromium-
based web browsers starts with the URLRequest interface.

Additionally, Chromium WebView has been developed by
the Chromium project. Therefore, web access by Chromium
WebView similarly starts with the URLRequest interface.
Chromium WebView is developed using Java and C++, and
it consists of the Java layer and the C++ layer. The C++ layer
of WebView is equivalent to implementation of a network
stack in the Chromium-based web browser.

2.3 Processing flow of web access via WebView

Figure 3 shows the workflow for web access via WebView,
and the following describes each step in the figure.

’ URLRequest H URLRequestJob

s
|URLRequesththob | IURLRequestDalaJcb | ‘URLRequeleileJob ‘

HttpTransactionFactory H HttpTransaction

NEWS & EVENTS

(A) Sample App displaying (B) Without WebView
only a link to Okayama University (redirected to a browser)
Website

() with webview
(displayed in app)

Fig.1 Difference in page display behaviors with the use of WebView

v

ion Hl‘ N KT { |
/

‘: p actory H: o
¥] ;
‘SpdySessionPool Hanspdystream | SSLSocket

Fig.2 Network stack of a Chromium WebView [21]

|>‘ HttpBasicStream H StreamSocket

@ Springer

Y.Imamura et al.

836
‘ [OFE Android app
|| J
WebView e Web access WebView a
\ method implementation | ,
Android .
Framework (2)
4
SNV L bbbt b JNI Jooamoaaaaa L.
URLRequest
Native Web access request Web access response c
library processing processing /
C
) 3) +
+
T
) Linux
Kernel | System call

Fig.3 Process of web access via WebView

(1) Calling APIs for web access
An Android app that uses WebView calls an API
(or Java method) for web access. Here, the methods
loadUrl (), loadbData(),
loadDataWithBaseURL (), and postURL () are
used for web access [8]. In addition, the processing of
these Java methods is delegated to the WebView imple-
mentation from the Android Framework.

(2) Calling C++ method via JNI
The Java method called in step (1) invokes the corre-
sponding C++ method (via JNI), which manipulates the
URLRequest interface. The method called in step (1)
only displays the Web content of the specified URL, and
web access processing is done in the C++ layer of the
WebView implementation.

(3) Issuing system calls
For TCP/UDP communication with a web server, some
system calls are issued during the processing of the C++
layer in the WebView implementation.

2.4 Security issue

The use of WebView depends on the Android app devel-
oper, which is different from that of a web browser app
(e.g., Chrome and Firefox). As mentioned in Sect. 1, most
Android apps using WebView are not developed by rec-
ognized companies, and their trustworthiness is thus not
guaranteed. Therefore, when Android app developers create
an Android app without considering app security, attackers
can exploit the security vulnerabilities.

There are four ways in which attackers have been known
to infiltrate Android devices with malware;
malvertising and scams constitute some of these methods [3].
Malvertising is the practice of inserting malware into legit-
imate online ad networks to target a broad spectrum of end

@ Springer

users. Scams are common tools used by attackers to infect
mobile devices with malware, and they rely on a user being
redirected to a malicious web page, either through a web
redirect or a pop-up screen. Moreover, social media are used
by the attackers to infect mobile devices with malware [17].
WebView is used to display ads on most Android apps. Addi-
tionally, many social media apps (e.g., Facebook and Twitter)
use WebView, which indicates that mobile devices may be
infected with malware via WebView when users click on a
link to the malicious website. Although web browsers can
prevent web access to malicious websites and their mali-
cious ads by security functions and ad blocker extensions
(e.g., Adblock), WebView cannot use these security func-
tions except for Google Safe Browsing, which is not enough
to protect mobile devices from malware infection.

To the best of our knowledge, although some counter-
measures based on access control for the attacks exploiting
WebView have been reported, they cannot mitigate threats
such as malvertising and scams, which are extensively used in
mobile devices by attackers. To address these threats on Web-
View, analyzing web access via WebView and considering
countermeasures based on the analysis results are necessary.
However, no previous studies have reported results on the
threat analysis of WebView focusing on web access via Web-
View itself and no web access monitoring mechanism for
WebView has been reported. Web access on Android can
be monitored using a HTTP proxy or a packet capture tool.
However, these tools cannot gather the communication log
of WebView because they monitor all of the web access on
Android devices, so they cannot distinguish access between
WebView and others. Moreover, these methods cannot ana-
lyze the communication content encrypted by SSL/TLS,
either. Thus, to address the above problems, a web access
monitoring mechanism that can distinguish WebView com-
munication from others and acquire plaintext content in
encrypted communication is necessary.

3 WebView Monitor
3.1 Purpose and concept

This paper proposes a web access monitoring mechanism
for Android WebView as a means of monitoring web access
via WebView. WebView Monitor focuses on web access
via WebView exclusive of other web access mechanisms
available on Android and aims to monitor web access via
WebView.

To realize WebView Monitor, it is necessary to add a func-
tion to monitor web access during the processing of web
access via WebView. The following can be considered as
points at which the function can be added:

Web access monitoring mechanism via Android WebView for threat analysis

837

‘ | ¢

Android app
|| J
WebView 1. Web access WebView a
8 method implementation | ,
Android a
Framework
4
- UNL - { JUNI | =
v
URLRequest
Native Web access request Web access response o)
library rocessin, rocessin, /
I WebView Monitor I WebView Monitor c
I I +
+

Linux
Kernel | System call |

Fig.4 Overview of WebView Monitor

(a) Android Framework
(b) WebView
(c) Linux kernel

The aims of this work were to analyze Android apps
using WebView and detect and prevent the malicious web
access inside WebView with information acquired intrinsi-
cally based on analysis results. To achieve these goals, we
introduce WebView Monitor into numerous Android devices,
and needed to collect extensive data. Therefore, we needed
to consider the ease of introducing WebView Monitor to an
Android device.

Among the above points, when adding the monitoring
function to the Android Framework and the Linux ker-
nel, it is necessary to modify the Android Framework and
the Linux kernel for each Android device. On the other
hand, when adding the monitoring function to WebView,
it is possible to introduce WebView Monitor by simply
substituting a custom WebView implementation for the built-
in one. For Android 6, root access is required to install
our implementation with WebView Monitor. Based on the
above considerations, we implemented the monitoring func-
tion to Chromium WebView which is one of the WebView
implementations.

3.2 Design

Figure 4 shows an overview of WebView Monitor. As
described in Sect. 2.3, web access via WebView is per-
formed by web access request processing and web access
response processing in the C++ layer of the WebView
implementation. Therefore, we add the monitoring function
to web access request and response processing to imple-
ment WebView Monitor. This makes it possible to monitor
web access via WebView without changing the processing
flow.

3.3 Challenges

To implement WebView Monitor, the following challenges
must be considered.

C1 Information to be acquired
The purpose of this work was to analyze Android apps
using WebView based on web accesses via WebView.
Therefore, we consider the information that WebView
Monitor needs to acquire to analyze Android apps
using WebView.

C2 Storage format and location of the acquired informa-
tion
To analyze information acquired using WebView Mon-
itor, we need to consider the storage format and location
of the information considered in C1.

C3 Acquiring communication content communicated by
SSL/TLS as plaintext
To make it possible to analyze web access via WebView
to enable the use of detailed information for analysis,
WebView Monitor needs to acquire plaintext contents
communicated by SSL/TLS. Therefore, it is necessary
to consider how to gain a HTTP message communi-
cated by SSL/TLS as plain text.

C4 Monitoring all forms of web access with HTTP
To monitor all web access via WebView which use
HTTP and SPDY protocols, it is necessary to consider
an interface at which WebView Monitor can monitor
all web access.

3.4 Information to be acquired

WebView Monitor acquires the following information for
analysis of Android apps using WebView.

(i) Information on web access content

e HTTP request and HTTP response

Transfer of the data between the web browser and the
web server uses HTTP. Additionally, the data have
to be acquired as it contains a considerable amount
of information regarding web access. Therefore, it
is possible to acquire the data of the communication
content of web access via WebView in HTTP format.
In view of the above, the HTTP request and HTTP
response should be acquired.

(i1) Information on web access destination

e URL
URLSs are vital in threat analysis and should be
acquired because web accesses are based on URLs.
In addition, the URL information enables us to use
URL-based blacklists for analysis. Practically, the

@ Springer

838

Y.Imamura et al.

URL of the access destination can be reconstructed
from the information included in the HTTP request
header. Therefore, WebView Monitor acquires and
stores the URL of the web access as one item of
request information.

e [P address
The IP address of the communication destination
as request information should be acquired. Some
attack sites vary its IP address or domain name
within a short period of time to bypass blacklists.
Therefore, during analysis, it is difficult to iden-
tify the attack site based only on HTTP request and
response, as there is a high possibility that the DNS
registration information of the domain of the attack
site has already changed. To enable the easy iden-
tification of the true attack site, WebView Monitor
acquires the IP address at the time of communica-
tion.

e Port number of the web server
For TCP and UDP in the network layer, port num-
bers are used as identifiers for designating the end
points of inter-host communication. In web access
using HTTP, usually, port 80 is used, while in
web access using HTTPS, port 443 is used. In this
manner, the port number used for each protocol is
different. Therefore, by acquiring the port number
of the web server, it is possible to determine which
protocol is used for web access.

(iii) Information on Android app

e Android app package name When analyzing an
Android app that uses WebView, it is necessary
to specify the Android apps that accesses the web
content via WebView. Therefore, to identify the
Android app, the package name of the Android app
should be acquired.

(iv) Other information

e Time stamp

An HTTP request and a corresponding response
are acquired independently because the processes of
sending the request and receiving the response are
independent of one another. For this reason, it is
impossible to determine the correspondence between
the two aforementioned processes. In WebView, an
object, which handles a pair of HTTP request and
response, is created for each web access. Therefore,
it is necessary to obtain a time stamp (e.g. at the cre-
ation of the object) as an identifier that can distinguish
each of the objects.

@ Springer

3.5 Storage format and location of the acquired
information

As described in Sect. 3.4, HTTP requests and responses are
acquired independently. However, if requests and responses
are stored separately, finding request/response pairs in com-
munication logs will be challenging. Therefore, it is neces-
sary to store requests and responses as pairs for the ease of
analysis. WebView Monitor uses the time stamp described in
Sect. 3.4 as the file name for each of request/response pairs.
In addition, it stores the acquired information in the internal
storage in a simple format considering the lightweightness of
processing. In preparation for analysis, the communication
logs stored in the device storage are collected on the analyst’s
computer and converted to JSON format for the ease of anal-
ysis. Furthermore, WebView Monitor stores communication
logs in a separate data area for each Android app. Conse-
quently, communication logs can be collected separately for
each Android app.

3.6 Acquisition of plaintext content communicated
by SSL/TLS

Web access that uses HTTPS and SPDY is encrypted by
SSL/TLS, which prevents eavesdropping and tampering of
communication content. In the case the acquired information
is encrypted when analyzing, it is necessary to decrypt the
content. For the ease of analysis, WebView Monitor needs
to acquire HTTP messages as plaintext even when SSL/TLS
is used. Thus, WebView Monitor acquires the HTTP request
before encryption and the HTTP response after decryption.
This makes it possible to analyze such access without decryp-
tion.

3.7 Monitoring all forms of web access with HTTP

WebView uses HTTP and SPDY protocols when accessing
websites. To analyze web access via WebView in detail, it
is necessary for WebView Monitor to be able to monitor
access using HTTP and SPDY protocols. The following can
be considered as a way to monitor the access:

(1) Adding the monitoring function to an interface that uses
both HTTP and SPDY protocols

(2) Adding the monitoring function to each interface that
uses HTTP and SPDY protocols

There are some interfaces (e.g., URLRequest and Http-
NetworkTransaction in Fig. 2) to always go through for
WebView web access. Therefore, adding a monitoring func-
tion to one of these interfaces enables all forms of web access
with HTTP to be monitored. However, only the URL can

Web access monitoring mechanism via Android WebView for threat analysis

839

be acquired at the URLRequest interface, and the HTTP
request body cannot be acquired at the HttpNetworkTrans-
action interface. Moreover, although all web access can be
monitored when invoking a system call, the communication
content using HTTPS and SPDY is encrypted by SSL/TLS.

In contrast, by adding the monitoring function to each
interface that uses HTTP and SPDY protocols, all informa-
tion shown in Sect. 3.4 can be acquired and communication
content using HTTPS and SPDY can be acquired as plain
text. Thus, we implemented WebView Monitor functions to
each interface (e.g., HttpStreamParser and SpdyHttpStream)
that uses HTTP and SPDY. This makes it possible to monitor
all forms of web access with HTTP regardless of the protocol
and to analyze web access via WebView in detail.

3.8 Flow of WebView Monitor

Figure 5 shows the processing flow of web access via Web-
View with WebView Monitor. Table 1 shows the processing
of WebView Monitor and the process timing. As shown in
Fig. 5, WebView Monitor monitors web access via WebView
as follows:

(1) When establishing a connection by the connect ()
system call fails, WebView Monitor acquires a connec-
tion error at the socket connection and saves it in the
internal storage of Android device.

(2) Immediately after generating the HTTP request header,
WebView Monitor acquires the time stamp, the package
name of the Android app, the HTTP request header, the
URL, and the IP address and port number of the web
server and saves the information to internal storage.

(3) When using the POST method, WebView Monitor
acquires the HTTP request body before sending the
HTTP request body and saves it in the internal storage
of the Android device.

WebView(C++ layer)

URLRequest

Web access request

Web access response

\
1
@ o !
1

.................

| | _‘ | | _‘ Internal storage
\ / \ Communication
connect() send() read() L log

Linux
Kernel

S
e
===

| System call |

Fig.5 Processing flow of WebView applying WebView Monitor

(4) After receiving the HTTP response header through the
read () system call, WebView Monitor acquires the
HTTP response header and saves it in internal storage.

(5) After receiving the HTTP response body through the
read () system call, WebView Monitor acquires the
HTTP response body and saves it in internal storage.

4 Implementation and evaluation
4.1 Implementation

We implemented the proposed web access monitoring mech-
anism on Chromium WebView 60.0.3094.2. To implement
WebView Monitor, we modified the implementation of the
following two interfaces in the C++ layer of Chromium Web-
View.

(1) HttpStreamParser class
The HttpStreamParser class performs the web access
request and response processing of the HTTP protocol.
The number of steps in the modification portion is 163
lines.

(2) SpdyHttpStream class
The SpdyHttpStream class performs the web access
request and response processing of the SPDY protocol.
The number of steps in the modification portion is 147
lines.

WebView Monitor can acquire HTTP messages encrypted
by SSL/TLS as plain text. In WebView, the HTTP request
is encrypted before sending it and the HTTP response is
decrypted after receiving it. Specifically, in the HttpStream-
Parser class and SpdyHttpStream class, the unencrypted
HTTP message can be acquired regardless of the encryption
of the message.

Thus, we simply added the processing mentioned in
Table 1 to the HttpStreamParser class and the SpdyHttp-
Stream class; in other words, adding the processing to decrypt
the HTTP message is not necessary. Immediately after an
HTTP request is generated, WebView monitor acquires the
following information and stores them in the internal storage:
the time stamp at the time of generating the HTTP request
header, the package name of the Android app, the HTTP
request header, the URL, the IP address, and the port num-
ber of the web server (processing (2) in Fig. 5). Among this
information, the URL, the IP address, and the port number
of the web server are acquired from instances of another
class. Additionally, when sending data to the web server
using the POST method, the HTTP request body is acquired
before sending it and is then saved in the internal storage
of the Android device (processing (3) in Fig. 5). The HTTP
response header is acquired after completing reception of

@ Springer

840

Y.Imamura et al.

Table 1 Processing of WebView Monitor

WebView Monitor Processing Information to be acquired Process timing
Web access request (1) Connection error during socket connection Immediately after the connect () system call
processing processing completion
2) Time stamp Immediately after generation of the HTTP
request header
Android application package name
HTTP request header
URL
IP address
Port number of the web server
3) HTTP request body Before sending the HTTP request body
Web access response 4) HTTP response header After reception of the HTTP response header
processing
(&) HTTP response body After reception of the HTTP response body

the HTTP response header and is then saved in internal stor-
age (processing (4) in Fig. 5). When the size of the HTTP
response body is large, it is transmitted from the Web server
in sections. Therefore, after completing reception of each
HTTP response body, the HTTP response body is acquired
and then saved in internal storage (processing (5) in Fig. 5).

4.2 How to install our WebView implementation
with WebView monitor

A built-in WebView implementation is installed as a system
app. From Android 7 onward, it is done by simply installing
it as a user app and switching WebView implementation in
the Android device setting after installation. However, in
Android 5 and Android 6, it is necessary to uninstall the built-
in one. Here, when uninstalling a system app, it is necessary
to gain root access on Android device. Gaining root access
on Android device provides users with administrative privi-
leges. Moreover, it is necessary to set the package name of
our WebView implementation to the same name of the built-
in one: “com.google.android.webview”. This is because this
name is hard-coded as the name of the only system Web View
app required by the Android Framework.

4.3 Evaluation

To clarify the effectiveness and overhead of WebView Mon-
itor, we evaluated the following items.

(1) Experiment to test the operation of WebView Monitor
Using Android Emulator, we compare the information
acquired by WebView Monitor and tcpdump. Then,
based on the comparison results, we verified whether
WebView Monitor can acquire the information neces-
sary for analysis. Additionally, we show the effectiveness

@ Springer

Table 2 Host environment for Android Emulator

oS Ubuntu 16.04 LTS

CPU Intel(R) Xeon E5-2609V4 (8 cores)
Memory 64 GB

Kernel Linux 4.4.0-92-generic (64 bit)

Android Emulator Android 6.0

Table 3 Evaluation environment of an Android device

Model Nexus 6P

oS Android 6.0.1

CPU Snapdragon 810 2.0 GHz (octa core)
Memory 3GB

of WebView Monitor based on the comparison results.
Although we use the Android Emulator in this function-
ality evaluation to simplify the procedure, the results
of the evaluation are meaningful because they are not
dependent on the devices’ characteristics.
(2) Performance measurement of WebView Monitor
We install our WebView app that includes the WebView
Monitor to Android device and measured the overhead.
(3) Evaluation of communication log size
We measured the data size of the communication logs
stored in the device storage, the number of created HTTP
request/response, along with the content type and content
length (included in HTTP response header).

The evaluation environment is shown in Tables 2 and 3.
The evaluation used a sample app developed by us. This
app uses WebView and displays the top page of Okayama
University’s website.

Web access monitoring mechanism via Android WebView for threat analysis 841
Table4 Comparison of results of communication logs

Number WebView Monitor tcpdump

1 Number of times web access was monitored 101 101

2 Communication content using HTTP Acquired Acquired

3 Communication content using HTTPS Acquired (plaintext) Acquired (encrypted)
4 Communication content using SPDY Acquired (plaintext) Acquired (encrypted)
5 Time stamp Acquired Acquired

6 Package name of the Android app Acquired Not acquired

7 URL Acquired Acquired

8 IP address Acquired Acquired

9 Port number Acquired Acquired

4.3.1 Experiment to test the operation of WebView monitor

We evaluated whether WebView Monitor can monitor web
access via WebView by comparing the information acquired
by WebView Monitor and tcpdump. Additionally, based on
the comparison results, we validated WebView Monitor.

In this evaluation of tcpdump, we started only the test
app and extracted its communication logs using tcpdump. To
extract communication logs of the test app, we retrieved the
“X-Requested-With” header included in the HTTP request
header of the test app using Wireshark’s search function.

Table 4 shows a comparison of the communication logs
acquired (or not acquired) by WebView Monitor, and tcp-
dump.

“Acquired” in Table 4 means that the information has been
acquired, and “Not acquired” means that the information
could not be acquired.

Additionally, although tcpdump can acquire communica-
tion content using HTTPS and SPDY, the acquired informa-
tion is encrypted [Acquired (encrypted) in Table 4]. From
Table 4, the evaluation results show that WebView Monitor
operates as designed and can acquire communication logs
via WebView.

Based on the results of the above-mentioned experimental
test, WebView Monitor has the following advantages.

(1) WebView Monitor can acquire the HTTP request and
HTTP response encrypted by SSL/TLS as plain text;
this is because it acquires the HTTP request before
encryption and the HTTP response after decryption by
WebView itself. This makes it possible to analyze the
content of web access via WebView without decryption.

(2) WebView Monitor can monitor web access via Web-
View, whereas HTTP proxies or packet capture tools
cannot gather only the communication logs of WebView
because these tools monitor all of the web access on
Android devices. In addition, it is difficult to distinguish
whether web accesses are via WebView or not.

(3) WebView Monitor can acquire the Android application
package names. This makes it possible for the monitor
to specify and analyze the application that accesses web
content via WebView. This in turn enables the monitor-
ing of web access via WebView.

4.3.2 Performance measurement of WebView monitor

To evaluate the performance of WebView Monitor, we
launched the test app described in Sect. 4.3 and mea-
sured the processing overheads and acquired data size per
request/response for each of processing (2), (4), and (5)
shown in Table 1.

Processing (2): Processing is executed immediately after
generation of the HTTP request header.

Processing (4): Processing is executed after reception of
the HTTP response header.

Processing (5): Processing is executed after reception of
the HTTP response body.

We repeated this process five times and calculated the
average overhead results. We did not measure processing (1)
and (3) in Table 1 because they are not executed in the test
app. The evaluation environment was the same as the contents
that described in Sect. 4.3.

Tables 5 and 6 show the measurement results. The pro-
cessing time of (5) is larger than the processing times of (2)
and (4), and the data size of the information acquired by pro-
cessing (5) is larger than the data sizes for processing (2)
and (4). Thus, it can be inferred that each processing time
depends on the data size of the information acquired in each
processing operation.

It seems reasonable to suppose that the overhead of pro-
cessing (5) is larger than that of the others. The HTTP
response body may be divided and transmitted multiple times
when the data size is large. When the HTTP response body is
transmitted multiple times, on every reception of this infor-

@ Springer

842

Y.Imamura et al.

Table 5 Average overheads and

acquired data sizes for WebView Processing @ 4 ®)
Monitor per request/response Processing overheads (unit: ms) 0.238 0.119 0.434
(Communication using HTTP) Data size of information acquired by each processing (unit: KB) 0.66 0.37 4.44
Table 6 Average overheads and]

acquired data sizes for WebView Processing)) ®)
Monitor per request/response Processing overheads (unit: ms) 0.342 0.222 1.187
(Communication using SPDY) Data size of information acquired by each processing (unit: KB) 0.71 0.60 42.48

Table 7 Example of the data size from the communication logs

Content type Number of HTTP Content length (unit: bytes) The data size stored in the
request/response device storage (unit: bytes)

text/html 3 41,198

text/css 18 120,884

text/javascript 6 543,468

text/plain 2

application/javascript 193,262

application/json 168

image/svg+xml 22 48,157

image/jpeg 33 1,723,119

image/png 9 69,810

image/gif 1 66

font/woff2 1 9,132

font/ttf 1 14,353

Total 104 2,763,619 2,850,863

mation, WebView Monitor executes processing (5). Thus, the
number of executions of processing (5) may be greater than
the number of executions of processing operations (2) and
(4), and the processing time becomes longer.

The result that the overhead of processing (2) is larger than
that of processing (4) is reasonable. Processing (2) acquires
the time stamp, the Android app package name, URL, IP
address, and port number besides the HTTP request header
and saves this information in the internal storage. Processing
(4) simply acquires and saves the HTTP response header.
Therefore, as the results in Tables 5 and 6 show, it is evident
that the data size of the information acquired by processing
(2) is larger than that of processing (4).

In addition, the total overhead of processing (2), (4), and
(5) is 0.697 ms (Communication using HTTP) and 1.751 ms
(Communication using SPDY), which are very short.

4.3.3 Evaluation of communication log size

Table 7 shows the data size of the communication logs
stored by WebView Monitor in the device storage when
accessing the top page of Okayama University’s website, to
confirm the data size increase in relation to the communica-

@ Springer

tion data. Table 7 also shows the number of created HTTP
request/response when accessing the website, content type,
and content length. WebView Monitor saves HTTP response
header and HTTP response header information in text format
in addition to HTTP response body. Therefore, compared
to the communication data, the data size does not increase
much.

5 Threat analysis of fake virus alert
5.1 Purpose

The purpose of threat analysis fake virus alert is to evaluate
the threat of web access via WebView in order to show the
effectiveness of WebView Monitor against the threat of web
access.

As mentioned in Sect. 2.4, malvertising and scams consti-
tute some ways in which attackers infiltrate Android devices
with malware, and a representative attack by these methods
includes a fake virus alert.

WebView is used to display ads on most Android apps
and some websites on many social media apps. Therefore,

Web access monitoring mechanism via Android WebView for threat analysis

843

&

GO 8[@ Wednesday 13, 2018

(2) virus have been detected
on your Generic .
WARNING! We have detected that your Generic has been
infected with viruses. It will soon corrupt your
Generic is infected with virus and sim card, data, photos, and contacts if no action
immediate action is required! is taken.
st " 4 minutes and 07 seconds
Continue with instructions to
fix Generic . Do not close this
window!

How to remove virus:

Exit at your own risk

app for free

Remove Virus Now

Fig.6 Examples of fake virus alerts

mobile devices may be infected with malware via WebView
when users click on a link to a malicious website. WebView
cannot use security functions and Adblock in the same way
of web browser; it can only use Google Safe Browsing. Thus,
it is necessary to analyze the web access via WebView and
consider countermeasures for malicious attacks.

5.2 Threat analysis method of fake virus alert

Ad click fraud is the most common scam targeting users of
the Google Play Store [2]. In this study, we analyzed the
following threats:

e Fake virus alert:

Several redirections may occur with a fake virus alert,
which attempts to make the user install a suspicious app,
which suddenly appears while the user visits a website.
Attackers use malvertising to redirect users to websites
that display the fake virus alert and scam the users into
installing the suspicious Android app. Figure 6 shows
examples of fake virus alerts, including the Google logo
and claims that the Android device has a virus that must
be removed immediately. Some fake virus alerts cause
Android devices to vibrate and make sounds. Once this
fake virus alert is displayed, the user cannot go to any
other web page even if they click on the back button or
any place on the screen. This makes the user believe that
the Android device is infected with malware, and the user
may click on the suggested button to remove the virus and
install the suspicious Android app. To better understand
the threat, we analyzed several websites that display these
fake virus alerts. There are three ways to display a fake
virus alert (malicious ads, fake app install screen, and
posting messages on social media). In Sect. 5.3, we report
on the analysis on fake virus alerts that use malicious ads;
specifically,

Web ©)
site 2;

Dating
site

v (5) Fake
R ot o L e L i

site 1

| site ! Alert
1
User alnininieinte I
(5) Free
L, Web | " Chat
site 2, .
site

Fig.7 Redirection flow of a fake virus alert

(i) redirection to a fake virus alert,
(i1) redirected website,
(iii) displaying a fake virus alert.

The results are the same for each method of displaying
the fake virus alert.

Here, we analyzed communication logs of web accesses
with WebView Monitor. The targets of the threat analysis
were 10 websites found either by web search or from Face-
book and Twitter posts. These websites comprise media sites,
free video sites, and free cartoon sites. When the user taps
anywhere on the screen displaying these websites, a redi-
rection occurs to the website displaying the fake virus alert.
Additionally, we used Facebook and Twitter apps to gather
communication logs via WebView because these apps are
used extensively and may be used for attacks. The analy-
sis environment is the Android emulator (Android 6.0) and
WebView (60.0.3094.2).

5.3 Threat analysis result of fake virus alert
5.3.1 Redirection to the fake virus alert

Figure 7 shows the flow of redirection to a fake virus alert;
the steps are described below.

(1) Visiting the original website of redirection

(2) Tapping anywhere on the screen
The user taps anywhere on the original website of redi-
rection.

(3) Redirecting to website 1
The original website of redirection detects the user’s tap-
ping and redirects the user to website 1. Additionally, the
user is forced to move to website 1 regardless of where
they tap on the original website of redirection.

(4) Redirecting to website 2
Website 1 redirects the user to website 2. This redi-
rection uses JavaScript code “window.location.replace.”
This JavaScript code can redirect the user to the speci-

@ Springer

844

Y.Imamura et al.

fied URL without leaving a trace in the browser’s history.
This makes it impossible for the user to move to the pre-
vious website even if they click the back button.

(5) Redirecting to the website that displays the fake virus
alert
Website 2 redirects the user to the website that displays
the fake virus alert.

The redirects used in (3) and (5) are caused by various redirect
codes of HTML, PHP, and JavaScript. In addition, the redi-
rection code used here is decided by the original site shown
in Fig. 7.

5.3.2 Redirected website

The redirection occurs multiple times while landing on the
fake virus alert. Furthermore, we found that some redirected
websites use SPDY protocols. Therefore, WebView Monitor
can completely acquire all communication logs of redirec-
tions to fake virus alerts.

The URL of website 2 is generated by executing the
JavaScript code of website 1 by either of the following two
operations.

(1) The JavaScript code of website 1 creates 10 URLSs that
are a combination of a specified URL with Base 36
strings created at random. Moreover, the redirecting des-
tination from website 1 creates a random number and
uses it to select the redirecting website from 10 URLs.

(2) The JavaScript code of website 1 creates one URL, and
the number that are part of this generated URL increase
by one each time the user accesses website 1.

Therefore, redirecting to different websites on each access
occurs with high probability. We suppose that this is a coun-
termeasure against URL blacklists of security tools.

As shown in Fig. 7, website 2 redirects the user to various
websites, such as dating websites and free live-chat websites.
Moreover, the redirection destination and number of redirec-
tions on such a redirection are not the same every time. In
fact, we observed that in some cases, the redirection to the
fake virus alert does not occur.

On the original site, attackers set one of the following
three conditions to make redirection occur when the user
taps anywhere on the original website.

(1) Web browsers and WebView do not store the cookie of
the original site.

(2) The stated time set by attackers for each original site has
passed since the original site was displayed.

(3) The user has not tapped on the original site since this site
was displayed.

@ Springer

geo="JP'
geocode="Japan’
isp="Research Organization of Information and Systems'

states='Okayama’
city='Okayama'
brand="'Generic'
browser='Chrome Mobile+'
os='Android+6.0"

Fig.8 Information used for displaying a fake virus alert

5.3.3 Displaying the fake virus alert

The analysis of the communication logs gathered using Web-
View Monitor revealed a JavaScript code that acquires the
user information, such as the OS information, browser ver-
sion, Java version, and Flash version. This JavaScript code
acquires the user information shown in Fig. 8 (e.g., geocode,
states, city, and OS information) from the user—agent con-
tained in the HTTP request header.

We also detected the JavaScript file that displays the fake
virus alert. This JavaScript file creates the fake virus alert
based on acquired information. Moreover, this JavaScript file
contains the code to make the user device vibrate and uses the
countdown timer. This information and the method described
in Sect. 5.3.1 are used to display the fake virus alert specific
to that user. This can make the user believe that the displayed
virus alert is legitimate. Furthermore, there is a button on
the displayed virus alert that prompts the user to install the
malicious Android app. We also confirmed that the language
on the fake virus alert is based on the language set by the
user on the Android device. In this experiment, we confirmed
that the fake virus alert is displayed in English, Japanese, or
Chinese.

5.4 Effectiveness of WebView monitor

We clarified the characteristics of the fake virus alert imple-
menting threat analysis using WebView Monitor. From this
analysis, we show the following effectiveness of WebView
Monitor.

(1) WebView Monitor can acquire the HTTP request and
HTTP response communicated by SSL/TLS as a plain
text. Thus, we can analyze communication content com-
municated by SSL/TLS.

(2) We can analyze the Android app using WebView based
on WebView communication logs. Thus, we can analyze
whether WebView accesses malicious contents, and ver-
ify the threat due to accessing the contents.

(3) We can analyze characteristics of malicious communi-
cation and attacks by using the gathered data. Moreover,
WebView Monitor is designed inside WebView. Thus,

Web access monitoring mechanism via Android WebView for threat analysis

845

we can detect the malicious communication and attacks
based on the analysis results.

(4) WebView Monitor acquires the information in a unique
format considering ease of analysis and lightweight
preservation and saves the information in internal stor-
age. Thus, we can identify the communication content
for each Android application. In addition, analysis is easy
because the information is stored in a unique format.

6 Related work

Exploiting Vulnerability of WebView WebView provides
a mechanism for JavaScript code loaded within WebView to
invoke the Android app’s Java code. The API used for this
mechanism is called addJavascriptInterface APL
Android apps can register Java objects to WebView through
this API. Moreover, this API makes it possible to invoke all
the public methods in these Java objects from the JavaScript
loaded within WebView. However, some attacks exploiting
this API have been reported [4,6-8,13,14]. To address these
attacks and improve the security of WebView, some previous
studies have proposed some access control mechanisms.

Jin et al. [6] have proposed a fine-grained access control
for hybrid apps so as to control access to the device resource
from the JavaScript code. Moreover, Android app developers
can set access permissions by specifying a resource’s URL.
Yu et al. [7] have proposed an access control mechanism that
can control the access to security-sensitive APIs in Android
from the JavaScript code by controlling the registration of
Java objects through addJavascriptInterface APL
Draco [8] can control access to device resources from web
content, which are of different web origins, so as to prevent
the attack that exploits the addJavascriptInterface
API. Moreover, Android developers can define policies to
specify the desired access characteristics of web origins in a
fine-grained fashion.

App-repackage attack Kudo et al. [9] have presented a
novel app-repackaging attack that repackages Cordova apps
with malicious code and have proposed a novel runtime
access control mechanism that restricts access based on the
mobile user’s judgment, to present a novel app-repackaging
attack that repackages hybrid apps with malicious code.

Malicious JavaScript Attacks due to malicious JavaScript
code loaded within WebView have been reported [10,11]. Li
et al. [10] have reported a new attack exploiting WebView
instances by malicious JavaScript code and proposed an OS-
level mitigation as a countermeasure for this attack. Yang et
al. [11] have proposed EOEDroid, which automatically vets
event handlers in a given hybrid app using selective symbolic
execution and static analysis.

Cross Site Scripting Attack on WebView WebView can
execute JavaScript as well as web browser apps. Therefore,

a cross-site scripting attack, which is an attack exploiting
vulnerabilities in a web application, is also effective for Web-
View, and this attack on a Hybrid app is more powerful than
on a web application [14-16]. However, these previous stud-
ies have not presented countermeasures to attacks.

Exploiting AASDK Son et al. [12] analyzed mobile ad
libraries, which use WebView, and reported an attack exploit-
ing them. They also proposed methods of mitigation to
employ against this attack.

Difference from Our Study Related works do not focus
on the communication content of web access via WebView.
This current study is focusing on communication via Web-
View, and the purpose of this study is to analyze Android
apps using WebView based on web accesses via WebView
and clarify characteristics of malicious communication from
the analysis result. Based on the analysis result, it may be
possible to detect and prevent malicious communication at
the endpoint with acquired information.

7 Conclusion

To monitor web access via WebView, we proposed a web
access monitoring mechanism for Android WebView. The
proposed mechanism can monitor all forms of web access
with HTTP and makes it possible to analyze web access via
WebView in detail. We implemented WebView Monitor on
Chromium WebView version 60.0.3094.2 and evaluated this
mechanism. WebView Monitor makes it possible to analyze
the behavior of malware and malicious Android apps. Addi-
tionally, WebView Monitor can acquire the communication
content encrypted by SSL/TLS as plain text and Android app
package name as information to identify the Android app.
Furthermore, WebView Monitor can detect and prevent sus-
picious web access via WebView with information acquired
intrinsically.

This paper reported the evaluation results of WebView
Monitor. Experimental operation of WebView Monitor shows
that WebView Monitor can acquire the information necessary
for analysis. Moreover, there is the advantage that WebView
Monitor can acquire unencrypted HTTP message even with
the communication using HTTPS and the package name of
the Android app. In the performance evaluation, the evalua-
tion results suggested that each processing time of WebView
Monitor depends on the data size of the information acquired
by each processing operation. Moreover, the total overhead
of each processing is very short.

Furthermore, this paper reports the results of threat anal-
ysis of displaying a fake virus alert while browsing websites
on Android to show the effectiveness of the proposed mech-
anism. The results of the threat analysis of fake virus alerts
using WebView Monitor reveal the mechanism of redirecting
to malicious websites. We found that three redirections occur

@ Springer

846

Y.Imamura et al.

before landing on a fake virus alert website. In addition, we
analyzed how to redirect to such websites and the malicious
activities. Finally, we showed a mechanism of displaying
fake virus alerts in web access via WebView. From the results
of threat analysis of fake virus alerts, we showed the effec-
tiveness of WebView Monitor in analyzing web access via
WebView in detail.

In our future work, we will support the latest version of
Android and confirm that our WebView implementation can
be installed as a user app on devices running Android 7
onward.

Acknowledgements The research results have been achieved by
“WarpDrive: Web-based Attack Response with Practical and Deploy-
able Research InitiatiVE,” the Commissioned Research of National
Institute of Information and Communications Technology (NICT),
Japan.

Funding Toshihiro Yamauchi hasreceived research grants from National
Institute of Information and Communications Technology (NICT),
Japan, Japan Science and Technology Agency, and SECOM CO.,
LTD., Japan. He is a visiting scholar of Advanced Telecommunications
Research Institute International (ATR), Japan.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A communication log

Figure 9 shows a communication log when accessing the top
page of Okayama University’s website. WebView Monitor
stores the acquired information in the internal storage in a
simple format. After that, the stored communication logs are
converted to JSON format, as shown in Fig. 9, for the ease
of analysis.

@ Springer

[
{
"timestamp":"2020_9_23_5_56_56_261118",
"app": "com.example.webview",
"request": {
"url": "https://www.okayama-u.ac.jp/",
"ip":"150.46.242.229",
"port": "443",
"method": "GET",
"headers": {
"Host": "www.okayama-u.ac.jp",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1",

}
b
"response": {

"version": "HTTP/1.1",

"status_code": 200",

"headers": {

"Date": "Wed, 23 Sep 2020 05:56:57 GMT",
"Server": "Apache",
"X-Frame-Options": "SAMEORIGIN",

}
}
}
1

Fig. 9 Example of a communication log of JSON format stored by
WebView Monitor

References

1. Wikipedia: Android (operating system). https://en.wikipedia.
org/wiki/Android_$operating_system)#Market_share$ (2019).
Accessed 24 Dec 2019

2. Mobile Threat Report: McAfee Mobile Threat Report Q1, 2018.
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-
mobile-threat-report-2018.pdf (2018). Accessed 4 June 2019

3. Wandera: Android Malware: 4 Ways Hackers are Infect-
ing Phones with Viruses. https://www.wandera.com/malware-on-
android/ (2018). Accessed 4 June 2019

4. Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on WebView
in the Android system. In: Proceedings of the 27th Annual Com-
puter Security Applications Conference (ACSAC’11), pp. 343-352
(2011)

5. Mutchler, P., Doupé, A., Mitchell, J., Kruegel, C., Vigna, G.: A
large-scale study of mobile Web App security. In: Proceedings of
the Mobile Security Technologies Workshop (MoST’15) (2015)

6. Jin, X., Wang, L., Luo, T., Du, W.: Fine-grained access control for
HTMLS5-based mobile applications in Android. In: Proceedings of
the 16th Information Security Conference (ISC’13), pp. 309-318
(2013)

7. Yu,J., Yamauchi, T.: Access control to prevent malicious JavaScript
code exploiting vulnerabilities of WebView in Android OS. IEICE
Trans. Inf. Syst. E98-D(4), 807-811 (2015)

8. Tuncay, G.S., Demetriou, S., Gunter, C.A.: Draco: a system for uni-
form and fine-grained access control for web code on Android. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS’16), pp. 104-115 (2016)

9. Kudo, N., Yamauchi, T., Austin, T.H.: Access control mechanism
to mitigate cordova plugin attacks in hybrid applications. J. Inf.
Process. 26, 396405 (2018)

10. Li, T., Wang, X., Zha, M. et al.: Unleashing the walking dead:
understanding cross-app remote infections on mobile WebViews.
In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS’17), pp. 829-844 (2017)

11. Yang, G., Huang, J., Gu, G.: Automated generation of event-
oriented exploits in Android Hybrid Apps. In: Proceedings of the

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.wandera.com/malware-on-android/
https://www.wandera.com/malware-on-android/

Web access monitoring mechanism via Android WebView for threat analysis

847

13.

14.

17.

18.

19.

Network and Distributed System Security Symposium (NDSS’18),
pp. 1-15 (2018)

Son, S., Kim, D., Shmatikov, V.: What mobile ads know about
mobile users. In: Proceedings of the Network and Distributed Sys-
tem Security Symposium (NDSS’16), pp. 1-15 (2016)
Neugschwandtner, M., Lindorfer, M., Platzer, C.: A View to a Kill:
WebView Exploitation. In: Proceeding of the 6th USENIX Work-
shop on Large-Scale Exploits and Emergent Threats (LEET’13)
(2013)

Luo, T., Du, W., Wang, Y.: Attacks and countermeasures for web-
view on mobile systems. Ph.D. Dissertation. Syracuse University
(2014)

. Bhavani, A.B.: Cross-site scripting attacks on android WebView.

Int. J. Comput. Sci. Netw. 2(2), 1-5 (2013)

Bao, W., Yao, W., Zong, M., Wang, D.: Cross-site scripting
attacks on android hybrid applications. In: Proceedings of the 2017
International Conference on Cryptography, Security and Privacy
(ICCSP’17), pp. 56-61 (2017)

Trend Micro: Social media malware on the rise. https:/
blog.trendmicro.com/social-media-malware-on-the-rise/ (2015).
Accessed 4 June 2019

CalyptixSecurity: Social Media Threats: Facebook Malware, Twit-
ter Phishing, and More. https://www.calyptix.com/top-threats/
social-media- threats-facebook-malware- twitter-phishing/ (2017).
Accessed 4 June 2019

WebKit: Open Source Browser Engine. https://webkit.org/ (2019).
Accessed 6 Feb 2019

20.

21.

Google: The Chromium project. https://www.chromium.org/.
Accessed 6 Feb 2019

Google: The Chromium project, NetworkStack. https:/www.
chromium.org/developers/design-documents/network-stack/.
Accessed 6 Feb (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://blog.trendmicro.com/social-media-malware-on-the-rise/
https://blog.trendmicro.com/social-media-malware-on-the-rise/
https://www.calyptix.com/top-threats/social-media-threats-facebook-malware-twitter-phishing/
https://www.calyptix.com/top-threats/social-media-threats-facebook-malware-twitter-phishing/
https://webkit.org/
https://www.chromium.org/
https://www.chromium.org/developers/design-documents/network-stack/
https://www.chromium.org/developers/design-documents/network-stack/

	Web access monitoring mechanism via Android WebView for threat analysis
	Abstract
	1 Introduction
	2 Background
	2.1 WebView
	2.2 Network stack of chromium WebView
	2.3 Processing flow of web access via WebView
	2.4 Security issue

	3 WebView Monitor
	3.1 Purpose and concept
	3.2 Design
	3.3 Challenges
	3.4 Information to be acquired
	3.5 Storage format and location of the acquired information
	3.6 Acquisition of plaintext content communicated by SSL/TLS
	3.7 Monitoring all forms of web access with HTTP
	3.8 Flow of WebView Monitor

	4 Implementation and evaluation
	4.1 Implementation
	4.2 How to install our WebView implementation with WebView monitor
	4.3 Evaluation
	4.3.1 Experiment to test the operation of WebView monitor
	4.3.2 Performance measurement of WebView monitor
	4.3.3 Evaluation of communication log size

	5 Threat analysis of fake virus alert
	5.1 Purpose
	5.2 Threat analysis method of fake virus alert
	5.3 Threat analysis result of fake virus alert
	5.3.1 Redirection to the fake virus alert
	5.3.2 Redirected website
	5.3.3 Displaying the fake virus alert

	5.4 Effectiveness of WebView monitor

	6 Related work
	7 Conclusion
	Acknowledgements
	A communication log
	References

