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Abstract
The IEEE Std 802.15.6 is the latest international standard for Wireless Body Area Networks. The security of communication
in this standard is based upon four elliptic-curve-based key agreement protocols. These protocols have been shown to exhibit
serious security vulnerabilities but surprisingly, do not provision any privacy guarantees. To date, no suitable key agreement
protocol has been proposed which fulfills all the requisite objectives for IEEE Std 802.15.6. In this paper, two key agreement
protocols are presented which, in addition to being efficient and provisioning advance security properties, also offer the
essential privacy attributes of anonymity and unlinkability. We develop a formal security and privacy model in an appropriate
complexity-theoretic framework and prove the proposed protocols secure in this model.
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1 Introduction

Wireless Body Area Networks (WBANs) consist of minia-
turized computing devices which can be fitted inside or
around the human body [7]. Through use of short range
communication technologies, these devices talk to a desig-
nated centralized node (Hub) which further communicates
with external networks via a Gateway [23]. The general lay-
out of a typical WBAN is illustrated in Fig. 1. Note that
the Hub and Gateway are functionally two separate entities,
but are usually combined into a single physical node. Mind-
ful of the peculiarities of communicating in and around the
human body, the IEEE published IEEE Std 802.15.6 [3] for
WBAN communications in 2012. As high power transmis-
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sions are harmful to humans andnodes in aWBANare energy
constrained, this standard provisioned an optional two-hop
communication architecture to enable resource-constrained
nodes to minimize transmissions when communicating with
the Hub.

In addition to conventional security guarantees, privacy is
of utmost importance for typical target application areas such
as healthcare and the military [29]. The elliptic-curve-based
session key agreement methods of IEEE Std 802.15.6 have
been shown to have security weaknesses [28], but also do
not provide the privacy features that should be expected of
a WBAN [20]. In this paper, we present two key agreement
protocols which render a comprehensive range of security
and privacy properties, which are regarded as essential [20]
for WBANs. We start by presenting a network and adversary
model for WBAN key agreement and elaborating upon the
desired security, privacy and functional objectives.

1.1 Network and adversary model

We begin by describing a system model suitable for the
deployment scenarios of WBANs. In this model, a System
Administrator (SA) initializes the network. The network is
composed of three types of nodes; a Hub Node (HN ), Inter-
mediary Nodes (I N ) and Normal Nodes (N ). As the HN
is usually a resourceful device with better hardware protec-
tion mechanisms in place, we assume it to be trusted and
its long-term secret Master Key to be protected. As the role
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Fig. 1 Generic architecture of a
typical WBAN

of HN is usually undertaken by a modern smart phone in
a generic WBAN, this argument is supported aptly by the
real world example of the FBI-Apple encryption dispute [2]
where even for resourceful parties like government agencies
it is not easy to crack into a smart phone. Normal nodes
N are resource constrained and their transmission range is
assumed to be limited; in particular, they are not always able
to communicate directly with HN . Intermediary nodes I N
are also located in and around the body but, at a particu-
lar time instance, are in direct communication with both N
and HN , thus acting as intermediary nodes for the purpose
of relaying traffic between HN and N when required. We
assume a Dolev-Yao [12] adversaryA who can listen, mod-
ify and synthesize any message of his choice in this model.

1.2 Desired objectives

The security of traffic in IEEE Std 802.15.6 is protected
using authenticated encryption, which requires the establish-
ment of symmetric session keys. The procedure for agreeing
these keys is thus critical to the overall security and pri-
vacy of a WBAN. Next we list down the requisite properties
(and where required the associated rationale) of a Privacy-
Preserving Key Agreement (PPKA) protocol to be executed
between a node N and HN

1.2.1 Security properties

Mutual entity authentication Entity authentication is the
process by which one entity (the verifier) is assured of the
identity of a second entity (the claimant) [27]. The PPKA
should provisionmutual entity authentication between N and
HN .

Mutual “implicit” key authentication The assurance that
only a particularly identified other party may possibly know
the negotiated key [27].Mutual “implicit” key authentication
is required between N and HN .

Known key security An adversary compromising a session
key in a single session should not impose any threat to the
session key security in any other sessions.

Key randomness The assurance that any successful key
agreement should output a uniformly distributed session key
among the set of all possible session keys [26].

Partial forward secrecy The compromise of the long-term
secret of a node N should not enable an adversary to com-
promise previously established session keys of that node.
Partial Forward Secrecy (PrFS) is crucial as client nodes
(unlike HN ) in typical WBAN deployment scenarios are
not tamper-proof and their internal storage can be accessed
by an adversary easily. Note that as already explained ear-
lier in Sect. 1.1, we do not consider the compromise of the
long-term secret of HN . This enables us to consider a more
pragmatic version of forward secrecy for WBANs. PrFS is a
well documented [6] and discussed [5,8,9,24] security notion
for key exchange protocols which considers the compromise
of the long-term keys of a subset of protocol participants. We
remark that PrFS is distinct from the related notion of Weak
Forward Secrecy (WFS) [17] where the concerned adversary
is a passive one. PrFS considers an active adversary.

Key compromise impersonation (KCI) resilience Suppose
N ’s long-term secret gets disclosed. Clearly an adversary
that knows this value can now impersonate N , since it is
precisely this value that identifies N . However, it is highly
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desirable that this loss should not enable an adversary to
impersonate other entities to N [19]. Consider the scenario
where a cardiac pacemaker is part of aWBANdeployed upon
a chronic patient by a hospital for remote administration and
monitoring purposes. The leakage of the pacemaker’s long-
term secret should not enable the adversary to issue “stop”
commands to the pacemaker by impersonating as the hospital
administrator. Such a case could potentially lead to a life
threatening situation.

Replay prevention An adversary should not be able to
successfully replay previously captured copies of legitimate
messages between the protocol participants.

Desynchronization resistance If the authentication parame-
ters get updated during the protocol execution, then usually
the participants need to have the same updated values at
the end of a protocol run. Otherwise, they will not authenti-
cate each other in later sessions and we say they have been
desynchronized. In a desynchronization attack, the adversary
forces the protocol participants to update their authentication
parameters to different values. A PPKA needs to be resistant
to these types of attacks.

1.2.2 Privacy properties

We focus on two privacy aspects:

Nodeanonymity AnadversaryA, who is observing all com-
munications, should not be able to learn the identity of any
node N who is participating in a PPKA protocol with HN .
The privacy attribute of anonymity is a necessity for typi-
cal application scenarios of WBANs, such as healthcare and
military.

Session unlinkability An adversary A, who is observing
communications, should not be able to link one successfully
executed PPKA session of node N to another successfully
completed session of the same node. Session unlinkability is
imperative in addition to anonymity. Although the PPKA
sessions could be anonymous, if the adversary is able to
link various PPKA sessions and group them together then
Awould be able to attribute a group to a particular node with
high probability, due to his knowledge of the operations of the
WBAN. For example, consider a medical WBAN in which
a pacemaker is supposed to communicate with the remote
healthcare providers every five minutes, while the body tem-
perature sensor communicates only three times per day.

1.2.3 Functional requirements

Support for multi-hop communication As discussed in
Sect. 1.1, depending upon the network topology, nodeswould

either be communicating directly with the Hub Node HN or
via an Intermediary Node I N . Therefore, the PPKA proto-
col should be designed to be suitable for both single-hop and
two-hop communication modes of [3].

Energy consumption As nodes in a WBAN are severely
energy constrained, the PPKA protocol needs to be minimal-
istic in terms of computation, communication and storage
overhead. Energy consumption in WBANs is dominated by
radio communications [10], which mainly depends on the
number of bits to be transmitted within the network. Conse-
quently, the PPKA protocol should be designed such that the
number of bits to be exchanged between the protocol partic-
ipants and the computational overhead for nodes N should
be minimal.

Stateless HN HN is the consistent nucleus of the network
whose lack of accessibility will have devastating effects on
the complete WBAN. As the network topology in WBANs
is dynamic where client nodes join and leave the network
on a frequent basis; it is imperative for HN ’s accessibility
that it be independent of such dynamism. Consequently, an
important requirement is that the PPKA protocol should not
require HN to maintain a state of the WBAN nodes.

1.3 Design principles

1.3.1 Offloading of expensive operations

Asnodes in aWBANare resource constrained, itmakes sense
to offload energy-expensive operations to more resourceful
entities such as SA and HN . An example of this is discussed
in more detail in Sect. 4.2.

1.3.2 Minimizing the implementation footprint

Ideally, the proposed solution should not introduce new
cryptographic primitives as this will adversely affect the
implementation footprint (hardware and memory). Specif-
ically, we aim to use the already specified block cipher
function in [3] for achieving the various security and pri-
vacy objectives. A more detailed discussion is given in Sect.
4.2.

1.3.3 Reducing management costs

A PPKA solution should not place management costs on
the WBAN nodes after the network initialization. Consider
the situation where a third party wants to add its node (for
example a fitness tracker) to an already deployed WBAN.
The third party should be able to contact the SA, who (after
registration of the new node) would dispatch it to theWBAN
owner, who begins using the new device upon receipt. Note
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Table 1 Comparison of security and privacy features

Security/privacy feature Li et al. PPKA-1 PPKA-2

PrFS × × �
KCI resilience × × �
Session unlinkability × � �
Anonymity � � �

that all this was done without interacting with the currently
operational WBAN.

1.4 Related work

Toorani [28] discovered various security weaknesses in the
key agreement methods of IEEE Std 802.15.6, all of which
were susceptible to Key Compromise Impersonation attacks
as well as attacks on forward secrecy. Wang and Zhang
[30] proposed a key agreement scheme for WBANs that
claimed to provide anonymity and unlinkability in addition
to the requisite security guarantees. However, Jiang et al.
[14] show that [30] is vulnerable to client impersonation
attack and thus lacks mutual authentication. They proposed
an authenticated key agreement scheme which rectified this
flaw. However, their scheme was based on computing bilin-
ear pairings; which is not suitable for deployment in resource
constrained WBANs. To avoid the overhead of managing
public-key certificates, He et al. proposed a certificateless
authentication scheme [13], which provides anonymity and
unlinkability. However, the computation and communica-
tion overheads associated with their scheme also render it
unsuitable for WBAN deployment. Recently, Li et al. [21]
presented an authenticated key agreement scheme based only
upon symmetric cryptographic primitives. This is an attrac-
tive proposal since there is no requirement of any additional
infrastructure and the associated computation and commu-
nication overheads are negligible. The authors claimed that
this scheme achieved almost all of the security and privacy
objectives defined in Sect. 1.2.

1.5 Contributions and paper organization

1.5.1 Previous version

Thismanuscript is full version of the paper presented at IEEE
TrustCom, 2018 [15]. The main differences from the con-
ference version are as follows: Firstly, the list of required
security objectives is more comprehensive after inclusion of
PrFS and KCI resilience. Moreover, the introduction section
has been further enhanced by addition of the design princi-
ples of the proposed protocols. Furthermore, a new Sect. 4
providing discussion about various aspects of the proposed

protocols is also part of this manuscript. This manuscript
successfully answers the open question put forward in [15]
regarding the feasibility of a privacy-preserving authenti-
cated key agreement protocol for IEEE Std 802.15.6 offering
PrFS and KCI resilience without any dependence on pub-
lic key cryptography. The second key agreement protocol
(termed PPKA2 within this manuscript) is one such protocol
satisfying all the requisite security and privacy requirements.
Further additional contributions of this manuscript are as
below:

• We enhance our previous analysis [15] of [21] which, in
addition to showing that Li et al. scheme does not provide
session unlinkability and forward secrecy, also exhibits
its vulnerability to KCI attacks.

• In addition to the key agreement protocol (PPKA-1) pro-
posed in [15], which provided session unlinkability and
resolved the privacy flaws found in [21], we present
another protocol ( PPKA-2) that additionally provisions
PrFS and KCI resilience. Table 1 lists the security and
privacy features provisioned by each protocol.

• We develop a formal security and privacy model in an
appropriate complexity-theoretic framework and prove
the proposed protocols secure in this model.

The remainder of this paper is organized as follows:

• Section 2 provides an overview and analysis of a WBAN
key agreement scheme proposed in [21].

• The proposed protocols are detailed in Sect. 3.
• Section 4 discusses pertinent aspects of the proposed pro-
tocols.

• Sections 5 and 6 explain the formal security model and
the associated analysis, respectively.

• Finally, Sect. 7 provides future research directions and
concludes the paper.

2 Li et al. scheme

In this section, we present an overview and analysis of Li
et al. scheme [21]. For ease of comparison we use the same
notation (details in Table 2) as in [21].
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Table 2 Notations used in [21]

Symbol Description

h(.) Cryptographic hash function

(a, b) Concatenation of a and b

⊕ Bitwise XOR operation k

SA System Administrator (initializes the WBAN)

N Normal Node

HN Hub Node

I N Intermediary Node

idN Long term secret/identity of node N

id ′
I N Relay identity of node I N

tidN Temporary identity of node N

kHN Long term master secret key of HN

kN , fN Temporary secret parameters chosen by HN/SA

rN Temporary secret parameter chosen by N

aN , bN Authentication parameters stored in N

xN , yN Auxiliary authentication parameters

α, β, η, μ Authentication parameters computed by HN

kS Shared session key

tN Timestamp generated by node N

X → Y : Z Entity X sends message Z to entity Y

2.1 The key agreement protocol

Li et al. PPKA protocol between the Hub node (HN ) and a
node (N ) consists of three phases. For a pictorial overview
of the protocol see Fig. 2.

2.1.1 Initialization phase

The (SA) randomly samples a master secret key kHN and
stores it in HN .

2.1.2 Registration phase

The SA randomly samples a unique secret identity idN
for node N . It then randomly chooses the temporary secret
parameter kN and calculates aN = idN ⊕ h(kHN , kN ) and
bN = kHN ⊕ aN ⊕ kN . A unique relay identity id ′

I N for
the intermediary node (I N ) is chosen and the parameters
〈idN , aN , bN 〉 and 〈id ′

I N 〉 are stored in N and I N , respec-
tively, while id ′

I N is stored by HN as the identity of I N
when communicating in relay mode.

2.1.3 Authentication phase

Wecan think of the authentication phase of Li et al. scheme as
a two-pass protocol. The individual steps are outlined below:
Step 1 N → I N : 〈t idN , yN , aN , bN , tN 〉. N picks a random
rN and creates timestamp tN . Then it computes xN = aN ⊕
idN , yN = xN ⊕ rN and t idN = h(idN ⊕ tN , rN ) and
forwards the tuple 〈t idN , yN , aN , bN , tN 〉 to I N .
Step 2 I N → HN : 〈t idN , yN , aN , bN , tN , id ′

I N 〉. I N adds
its relay identity id ′

I N to the tuple and forwards it to HN .
Note that I N when operating in relay mode uses id ′

I N not
idI N .
Step 3 HN → I N : 〈α, β, η, μ, id ′

I N 〉. After receiving
the parameters from I N , HN verifies the relay identity
id ′

I N from its database and substantiates the validity of the
timestamp tN . Upon success of these checks, it computes
k∗
N = kHN ⊕ aN ⊕ bN , x∗

N = h(kHN , k∗
N ), id∗

N =
x∗
N ⊕aN , r∗

N = x∗
N ⊕yN and t id∗

N = h(id∗
N ⊕tN , r∗

N ). It then

verifies whether t idN
?= t id∗

N . Then, a random fN is chosen
and α = xN ⊕ fN and γ = rN ⊕ fN are computed. Then
a new k+

N is picked and a+
N = idN ⊕ h(kHN , k+

N ), b+
N =

kHN ⊕ a+
N ⊕ k+

N , η = γ ⊕ a+
N , μ = γ ⊕ b+

N , β =
h(xN , rN , fN , η, μ) are computed. The shared session key
is computed as kS = h(idN , rN , fN , xN ) and is stored in

Fig. 2 Li et al. Protocol
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memory. Finally, HN forwards the tuple 〈α, β, η, μ, id ′
I N 〉

to I N .
Step 4 I N → N : 〈α, β, η, μ〉. I N removes the relay identity
id ′

I N from the received tuple and forwards 〈α, β, η, μ〉 to N .
Step 5; Upon receipt of the response from I N , N computes
f ∗
N = xN ⊕ α and β∗ = h(xN , rN , f ∗

N , η, μ) and verifies

that β∗ ?= β. If true, N computes γ = rN ⊕ fN , a
+
N = γ ⊕η

and b+
N = γ ⊕ μ. The shared session key kS is computed as

h(idN , rN , fN , xN ) and the authentication parameters
(aN , bN ) are replaced by (a+

N , b+
N ).

2.2 Analysis of the Li et al. scheme

In this section we discuss vulnerabilities and attacks on the
security of the Li et al. scheme.

2.2.1 Security analysis

In addition to provisioning of mutual “direct” authentication
[11], Li et al. scheme fulfills all the security criteria as defined
in Sect. 1.2 except KCI resilience and PrFS. Moreover, the
scheme also protects the master secret (kHN ) in the event
of compromise of various nodes of the WBAN. For sake of
brevity, wewill restrict our security analysis to highlight only
the vulnerabilities of Li et al. scheme.

Discussion about forward secrecy Li et al. claimed a for-
ward security property of their scheme. Their definition of
forward secrecy varies from the generally accepted one.
According to Li et al., the goal of forward secrecy is to protect
other (past / future) session keys in the event of compro-
mise of the current session key kS . However, the conventional
definition of forward secrecy states that in the event of com-
promise of the long term secrets of the protocol participant(s),
an adversary should not be able to obtain any of the past
session keys [22]. While Li et al. scheme is forward secure
according to their own definition, it is not forward secure in
a conventional sense.

KCI attack We demonstrate a KCI attack on Li et al. scheme.
Aobserves thefirst pass of the protocol andnotes themessage
contents. As the value idN is known to A, he calculates the
following values as follows:

xN = aN ⊕ idN ; rN = yN ⊕ xN .

A chooses a random fN and calculates α = fN ⊕ xN . A
then chooses arbitrary values of η and μ and calculates β as:

β = h(xN , rN , fN , η, μ).

Fig. 3 The privacy dilemma of Li et al. scheme

Finally, A sends out the tuple 〈α, β, η, μ〉 back to node N .
N cannot detect this KCI attack as N ’s computed value β is
the same as in the received tuple. As a result, node N would
be sharing the session key kS = h(idN , rN , fN , xN ) withA,
incorrectly believing itself to be sharing kS with HN .

2.2.2 Privacy analysis

The anonymity dilemma It is known apriori to the attacker
that all nodes ultimately communicate with HN . As the node
identifier idN is always masked (by taking an XOR of it with
a fresh random value), anonymity in Li et al. protocol is pre-
served from “direct” privacy attacks. However, now consider
the situation depicted in Fig. 3, where an intermediary node
I N is providing the relaying service to various nodes N .

In the second pass of Li et al. scheme, it is not clear how the
intermediary node I N would be able to identify the original
node N out of the “anonymity set” [25] for onward forward-
ing of the tuple 〈α, β, η, μ〉 received from HN . One naive
way to resolve this is to allow I N to broadcast the second
pass of protocol for all nodes. However, this approach is
unsuitable for already energy-constrained WBAN nodes as
they will need to perform additional communication (radio
reception) and computational steps for each transmission.

Session unlinkability While Li et al. claim their scheme
provides session unlinkability, we show this to be untrue.
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Table 3 Overheads associated with Li et al. scheme

Index Node N Hub Node HN

Computation overhead 3h + 7⊕ 5h + 12⊕
Communication overhead 5B bits 4B + 16 bits

Storage overhead 3B bits (B + 16m) bits

We highlight a weakness in Li et al. key agreement protocol,
which allows a passive attacker to easily link two or more
sessions of the same node N . The attack proceeds as follows:

Session # 1 Suppose that a run of Li et al.’s key agreement
protocol is carried out between node N and HN . A pas-
sive attacker A observes the contents of the messages being
exchanged. From Step 1 of Sect. 2.1.3, A records the value
yN = xN ⊕ rN . Then, from Step 3 of Sect. 2.1.3, A records
α = xN ⊕ fN . Now, A obtains the value γ = rN ⊕ fN =
α ⊕ yN . Further, A records the values η and μ from Step 3
of Sect. 2.1.3 and uses γ to compute:

a+
N = γ ⊕ η; b+

N = γ ⊕ μ.

Session # 2 Now,A observes key exchange protocol sessions
between various nodes and HN . A compares the values of
the parameters aN and bN from Step 1 of the protocol with
the saved values of a+

N and b+
N . When A finds a match, A

concludes with almost certainty that another key exchange
session has been initiated by the same node N . This is correct
because node N uses the updated authentication parameters
a+
N and b+

N in its next run of the protocol. In this way, A can
track and link sessions of node N , demonstrating that Li et
al. scheme does not achieve session unlinkability.

2.2.3 Functional requirements

Li et al. scheme can be easily adapted for direct communi-
cation between N and HN without the involvement of I N .
Since this scheme employs only symmetric cryptographic
primitives, it is extremely efficient from a computation, com-
munication and storage overhead perspective and there is
no requirement of any additional network infrastructure.
Assuming a hash function with a digest length of B bits and
16 bit intermediary node IDs (i.e. id ′

I N ), Table 3 highlights
the communication, computation and storage overhead of Li
et al. scheme. In this table, h denotes one hash operation,
⊕ denotes an XOR operation and m denotes the number
of intermediary nodes in the WBAN. Note that, contrary
to the assumption made by Li et al. in Sect. 5.4 of [21]
about the arbitrary length of the timestamp field, it is implic-
itly the same length as the hash function digest because, as
described earlier in Sect. 2.1.3, tidN = h(idN ⊕ tN , rN ).
This is not commensurate with the length of the timestamp

Table 4 Detail of additional symbols

Symbol Description

id ′
N Session identity chosen randomly by N

zN Security parameter stored in memory of N by HN/SA

Enc(k,m) Encryption of message m under symmetric key k

Dec(k, c) Decryption of ciphertext c under symmetric key k

γ Additional authentication parameter computed by HN

field as defined in IEEE Std 802.15.6, which is three octets or
24 bits. Regarding state maintenance by HN , in case of [21],
HN needs to maintain states concerning the relay nodes I N ,
which is an undesirable feature as already explained in Sect.
1.2.3.

3 Our PPKA protocols

In this section, we propose two PPKA protocols which rec-
tify the problems highlighted in Sect. 2.2. While devising
these PPKA protocols, we have tried to preserve the original
elegance, simplicity and efficiency of the scheme in [21]. The
first PPKA protocol addresses the privacy flaws of unlinka-
bility and anonymity dilemma faced by I N (Sect. 2.2.2) in Li
et al.’s scheme. The second protocol, additionally provides
PrFS and KCI resilience (in case of compromise of the long-
term secret of node N ). Note that though in our protocols
the intermediary node I N is not an active participant from a
cryptographic standpoint (this was a conscious design con-
sideration), we have included I N in our protocol description
for verification of the resolution of the anonymity dilemma of
I N . Detail of additional notation used in our PPKAprotocols
is given in Table 4.

3.1 PPKA protocol 1

The phases of PPKA Protocol 1 are separated into three
distinct phases. An Initialization Phase, that generates the
long-term secret values of theHubNode HN . ARegistration
Phase, that generates the long-term values of the end-nodes
N and stores them with HN . Finally, an Authentication
Phasewhere the nodes N and HN generate an authenticated
shared secret key, and update the authentication parameters.

3.1.1 Initialization phase

This is identical to the Initialization Phase as presented in
[21]. Specifically, the (SA) randomly samples amaster secret
key kHN and stores it in HN .
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3.1.2 Registration phase

The intermediary node (I N ) is not provided with a relay
identity id ′

I N . Instead, parameters 〈idN , aN , bN 〉 are stored
in N . Note that the user identity idN is sampled in a fully
random fashion. The identities in case of aWBAN in general
and IEEE 802.15.6 in specific, do not require a structure as
in other communication settings like mobile telephony, etc
[16]. Also note that the proposed scheme does not impose
any limitations on the length of idN and is flexible enough
to accommodate the identity field of any length.

3.1.3 Authentication phase

The various steps of the authentication phase are depicted in
Fig. 4 and are as follows:
Step 1 N → I N : 〈tidN , yN , aN , bN , tN , id ′

N 〉. N picks
a random rN and creates timestamp tN . It then computes
xN = aN ⊕ idN , yN = xN ⊕ rN . It further picks a random
pseudonym id ′

N to be used as a temporary identifier for this
session only, calculates tidN = h(idN , id ′

N , tN , rN ) and sets
the “Relay Field” of the underlying “MAC Header” to value
1, according to sub-clause 6.10 of [3].
Step 2 I N → HN : 〈tidN , yN , aN , bN , tN , id ′

N 〉. I N
checks the value of “Relay Field” and forwards the tuple
to HN .
Step 3 HN → I N : 〈α, β, η, μ, id ′

N 〉. After receipt of
the tuple from I N , HN verifies the validity of the times-
tamp tN . Upon success of this check, it computes k∗

N =
kHN ⊕aN ⊕bN , x∗

N = h(kHN , k∗
N ), id∗

N = x∗
N ⊕aN , r∗

N =
x∗
N ⊕ yN and t id∗

N = h(id∗
N , id ′

N , tN , r∗
N ). It then veri-

fies whether t idN
?= tid∗

N . Then, a random fN is chosen
and α = xN ⊕ fN , γ = rN ⊕ fN ⊕ h(idN , tN ) and
γ ′ = rN ⊕ fN ⊕ h(idN , tN , rN , id ′

N ) are computed. Then,
a new k+

N is picked and a+
N = idN ⊕ h(kHN , k+

N ), b+
N =

kHN ⊕ a+
N ⊕ k+

N , η = γ ⊕ a+
N , μ = γ ′ ⊕ b+

N , β =
h(xN , rN , fN , η, μ, id ′

N ) are computed. Finally, the shared
session key kS = h(idN , rN , fN , xN ) is computed and stored
in memory, and the value of the underlying “Relay Field” is
set to 1.
Step 4 I N → N : 〈α, β, η, μ, id ′

N 〉. I N checks the “Relay
Field” of the message received from the Hub node. If “Relay
Field” value is set to 1, then it notes the identifier id ′

N received
in the tuple for onward forwarding of the tuple to node N .
Step 5; Upon receiving a response from I N , N computes
f ∗
N = xN ⊕ α and β∗ = h(xN , rN , f ∗

N , η, μ, id ′
N ) and ver-

ifies that β∗ ?= β. If so, N computes γ = rN ⊕ fN ⊕
h(idN , tN ),γ ′ = rN⊕ fN⊕h(idN , tN , rN , id ′

N ),a+
N = γ ⊕η

and b+
N = γ ′ ⊕ μ. The shared session key kS is computed

as h(idN , rN , fN , xN ), and the authentication parameters
(aN , bN ) are updated by being replaced with (a+

N , b+
N ).

3.2 PPKA protocol 2

The second PPKA protocol is structurally similar to PPKA
Protocol 1, with three phases and similar goals. We describe
the execution of PPKA Protocol 2 below.

3.2.1 Initialization phase

This phase is unchanged from [21].

3.2.2 Registration phase

The registration phase is mostly identical to PPKA Proto-
col 1. However, SA additionally computes zN = h(kHN ,

idN , kN ). Parameters 〈idN , aN , bN , zN 〉 are stored in N .

3.2.3 Authentication phase

The authentication phase of PPKA Protocol 2 is depicted
in Fig. 4 and detailed as follows:
Step 1 N → I N : 〈t idN , yN , aN , bN , tN , id ′

N 〉. This is iden-
tical to Step 1 in PPKA 1 except that the value of tidN is
calculated as h(idN , id ′

N , zN , tN , rN ).
Step 2 I N → HN : 〈t idN , yN , aN , bN , tN , id ′

N 〉. This is
identical to Step 2 in PPKA 1
Step 3 HN → I N : 〈α, β, η, μ, δ, id ′

N 〉. After receipt of
the tuple from I N , HN proceeds identically to Step 3 in
PPKA 1. Additionally z∗N is calculated as h(kHN , idN , kN )

and t id∗
N as h(id∗

N , id ′
N , z∗N , tN , r∗

N ). It then verifies whether

t idN
?= t id∗

N . Then, α, η and μ are computed as in PPKA
1. kS is computed as h(idN , zN , rN , fN , xN , 1) while an
additional key kZ is computed as h(zN , idN , rN , fN , xN , 0).
HN then computes z+N = h(kHN , idN , k+

N ) and encrypt
it with kz as δ = Enc(kz, z

+
N ). Lastly, β is calculated as

h(xN , zN , rN , fN , δ, η, μ, id ′
N ).

Step 4 I N → N : 〈α, β, η, μ, δ, id ′
N 〉. This is identical to

Step 4 in PPKA 1
Step 5; This is identical to Step 5 in PPKA 1, except that β∗ is
calculated as h(xN , zN , rN , f ∗

N , δ, η, μ, id ′
N ) and the shared

session key kS is computed as h(idN , zN , rN , fN , xN , 1).
Additionally, node N decrypts z+N = Dec(kz, δ) and replaces
zN with z+N .

4 Discussion

4.1 Why a Bespoke solution?

If we consider the scenario of direct communication between
N and HN (without the involvement of I N ), at first glance,
it seems to be similar to that of RFID; where a tag needs
to be authenticated in a secure and private manner by the
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Fig. 4 PPKA Protocols 1 and 2 (Values/operations defined within curly brackets { } are valid only for PPKA 1, while those defined within square
brackets [ ] are valid only for PPKA 2)

reader. However, there is a fundamental distinction between
the two scenarios. As discussed in Sect. 1.2.3, in our case
the HN does not maintain any state about the network nodes
and is oblivious to the identity management of the network,
while in the RFID setting, the reader has access to the back-
end database server(s) which maintain nodes’ status in the
RFID network. This means that, in the case of RFID, SA
needs to update the status at the back-end servers whenever
it introduces a new node or removes an old one from the
system. As explained in Sect. 1.2.3, this is problematic for
WBANs.

4.2 Random number generation onWBAN nodes

A WBAN Cryptographically Secure Pseudo Random Num-
ber Generator (CSPRNG) needs to be computationally
inexpensive and there should be no requirement for entropy
collection from environmental resources, as this would entail
extra communication. We recommend the approach outlined
in [18]. During the “Registration Phase”, SA can allocate
each node N with a unique (randomly chosen) secret key K .

Thereafter, node N can encrypt the sequence {0, 1, 2, 3, ...}
under key K using AES (already available for message secu-
rity purposes) as the block cipher. This arrangement can
securely generate 260 bytes without the need for re-seeding
the key K .

4.3 Why timestamps?

Timestamps as a replay prevention tool are generally avoided
in key agreement protocols as they present various prac-
tical problems, such as the need for a reliable source of
time. Here, we would like to draw the reader’s attention to
Sect. 1.2.3, which discusses the requirement of the HN being
stateless. Any other technique for replay prevention (nonces,
sequence numbers, etc.) will require the HN to maintain a
state about the clients and consequently will impose design
limitations which we are specifically trying to avoid. Given
the peculiar situation of WBANs and availability of various
time-synchronization avenues within the standard (Clause
6.11 of [3] which provisions for HN to act as the central
time source for the WBAN and regularly broadcasts time-
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synchronization beacons), replay prevention via timestamps
seems to be the way forward. This may not be the most desir-
able solution but it still is a step forward from the current
standard which offers no replay protection at all.

4.4 Security versus usability

It was a conscious design choice to keep HN free of any
client related data (refer Sects. 1.2.3 and 1.3). While security
can be improved manifold via diffusion of secret param-
eters between the client nodes and HN and attacks like
impersonation of some other non-compromised node by
a compromised client node could be avoided; this would
adversely affect the usability features (no management cost,
etc) we are trying to achieve. Hence, the cleanness predicates
(Sect. 5.4) in our securitymodel define the exact combination
of secrets that the adversary can compromise. Our security
model allows the adversary to leak the long-term secret key
of the node (idN ) but not along with the previously estab-
lished per-stage secret state (aN , bN ). What we are trying
to achieve here is the delicate balance between security and
usability via this approach.

5 Security model

We now introduce our security models for the analysis of
privacy-preserving key agreement (PPKA) protocols. Our
first security experiment is based on standard key-exchange
models in the tradition of Bellare-Rogaway [4] key indistin-
guishability games. This allows our model to easily capture
known key secrecy, as well as generically capture key ran-
domness notions, since our adversary is tasked merely with
the goal of distinguishing the targeted session key from a
random session key from the same distribution. Our second
security experiment allows us to capture privacy notions of
sessions, by challenging an adversary to determine which of
two previously selected nodes ran a given protocol execution.
Our cleanness predicates (see Sect. 5.4) allows us to model
KCI attacks by allowing the adversary to reveal the long-term
key of the node running the PPKA protocol, as well as the
notions of partial forward secrecy. We begin by describing
the execution environment for our security frameworks.

5.1 Execution environment

Consider an experiment ExpPPKA-IND
Π,nN ,nS ,A(λ) played between a

challenger C and an adversary A. C maintains a single node
HN , running a number of instances of the PPKA protocol
Π , and a set of (up to) nN nodes N1, . . . , NnN (representing
nodes communicating with the hub node HN ), each poten-
tially running one stage of (up to) nS consecutive stages of
Π . The PPKA protocol Π is represented as a tuple of algo-

rithms Π = (HKeyGen,HF,NKeyGen,NF, StateGen). We
abuse notation and use π stid

id to refer to both the identifier
of the stid-th stage of Π being run by node Nid and the col-
lection of per-session variables maintained for this stage. We
describe the algorithms below:

Π.HKeyGen(λ)
$→ (kHN ) is a probabilistic symmetric key

generation algorithm taking as input a security parameter λ

and outputting a long-term hub node secret key (kHN ).

Π.HF(λ, kHN ,m)
$→ (m′) is a (potentially) probabilistic

algorithm that takes a security parameter λ, the long-term
key of the hub node kHN , and an arbitrary bit string m ∈
{0, 1}∗ ∪ {∅}, and outputs a response m′ ∈ {0, 1}∗ ∪ {∅} and
an updated per-session state π ′.
Π.NKeyGen(λ)

$→ (ltk) is a probabilistic symmetric key
generation algorithm taking as input a security parameter λ

and outputting a long-term hub node secret key (ltk). Note
that in our proposed PPKA protocols, we denote this long-
term secret key with idN .

Π.NF(λ, π,m)
$→ (m′, π ′) is a probabilistic algorithm tak-

ing a security parameter λ, the set of per-session variables π

and an arbitrary bit string m ∈ {0, 1}∗ ∪ {∅}, and outputs a
response m′ ∈ {0, 1}∗ ∪ {∅} and an updated per-session state
π ′.
Π.StateGen(λ, kHN , ltk)

$→ (psstate) is a probabilistic
symmetric keygeneration algorithm taking as input a security
parameter λ and the long-term secret keys of the hub node
and the “normal” node, outputting secret state information for
node N (psstate). In PPKA Protocol 1, this per-stage secret
state is 〈aN , bN 〉. In PPKA Protocol 2, this is 〈aN , bN , zN 〉.
Π.StateUpdate(λ, π)

$→ (psstate) is a probabilistic sym-
metric key generation algorithm taking as input a security
parameter λ and a set of per-session variables, outputting the
next stage’s per-stage secret state (psstate) for node N .

The experiment begins with C running Π.HKeyGen once
to generate a long-term secret key for the hub node (kHN ),
and randomly sampling a bit b ∈ {0, 1}.A then interacts with
C via the queries listed in Sect. 5.2, eventually terminating
and outputting a guess bit b′ of C’s bit b. A wins the key-
indistinguishability game ifb′ = b and the sessionπ stid

id such
thatA issued Test(id, stid) satisfies the cleanness predicate
clean, which we discuss in Sect. 5.4. Each session maintains
the following set of per-session variables:

• ltk ∈ {0, 1}λ - the long-term symmetric-secret of Nid .
• id ∈ {1, . . . , nN } - the index of the node Nid .
• ms ∈ {0, 1}∗ ∪ {⊥} - the concatenation of messages sent
by the node, initialised by ⊥.

• mr ∈ {0, 1}∗ ∪ {⊥} - the concatenation of messages
received by the node, initialised by ⊥.

• psstate ∈ {0, 1}∗ ∪{⊥} - the per-stage secret state of the
node, initialised by ⊥.
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• sk ∈ {0, 1}∗ ∪ {⊥} - the session key, initialised by ⊥.
• stid ∈ {1, . . . , nS} - the index of the most recently com-
pleted stage, initialised by1 and increasedmonotonically.

• α ∈ {active,accept,⊥} - the current status of the
node, initialised by ⊥.

Finally, the challenger manages the following set of reg-
isters, which indicate A’s compromise of secrets:

• Long-term symmetric keys {LSKflag1, . . . , LSKflagnN },
where LSKflagi ∈ {corrupt,clean,⊥} ∀ i ∈ [nN ].

• Per-stage secret state {PSSflag11, PSSflag12, . . . ,
PSSflag1nS , . . . PSSflagnN1 , PSSflagnN2 , . . . , PSSflagnNnS }
where ∀i ∈ nN , j ∈ nS , PSSflag

i
j ∈ {corrupt,

clean,⊥}.
• Session keys {SKflag11, SKflag12, . . . , SKflag1nS , . . .

SKflagnN1 , SKflagnN2 , . . . , SKflagnNnS } where ∀i ∈ nN , j ∈
nS , SKflag

i
j ∈ {corrupt,clean,⊥}.

5.2 Adversarial interaction

In the game, the adversary A is able to communicate with
the challenger and thus interact with the parties/sessions via
the following set of queries:
Register(λ) → id: Allows A to register a new node with
security parameters λ and gives A an identifier for the node
id (which we denote Nid ). For protocols where nodes do not
have a public identifier, the index of the node is given to A.
NextKey(λ, id) → m: Allows A to indicate that the node
with public identifier id should attempt a new key agreement
using (potentially) the new/updated security parameters λ.
The challenger then returns any protocol messages m.
Corrupt(id) → ltk: Allows A to compromise the long-
term key of the node πid .ltk with public identifier id.
Reveal(id, stid) → sk: Allows A to compromise the ses-
sion key established between the hub node and the node Nid

in stage stid. Note that stid indicates the index of the session
key established between the node id and the hub node. The
challenger responds with the session key π stid

id .sk.
StateReveal(id, stid) → psstate: Allows A to compro-
mise the per-stage secret state psstate of the node with
public identifier id. Note that stid indicates the index of
the stage-specific state, and the challenger responds with
π stid
id .psstate.

Send(id,m) → m′: Allows A to send a message m to the
node with identifier id currently running a protocol execu-
tion. Note that the node will update its per-session variables
and potentially output a new message m′.
T est(id, stid) → sk: If the node Nid has completed
its stid-stage key agreement, then the challenger uses the
randomly-sampled bit b ∈ {0, 1}. If b = 0 the challenger

responds with π stid
id .sk, otherwise the challenger responds

with a random key from the same distribution.
We now formalise the advantage of a PPT algorithmA in

winning the PPKA key-indistinguishability game:

Definition 1 (Key Indistinguishability) Let Π be a PPKA
protocol and nN , nS ∈ N. For a given cleanness predicate
clean, and a PPT algorithmA, we define the advantage ofA
in the key-indistinguishability game to be:

AdvPPKA - SU,clean
Π,nN ,nS ,A (λ)

=
∣
∣
∣
∣
2 ·

(

Pr
[

EXPPPKA - SU,clean
Π,nN ,nS ,A (λ) = 1

]

− 1

2

)∣
∣
∣
∣

We say that Π is PPKA-IND-secure if, for all A,
AdvPPKA-IND,clean

Π,nN ,nS ,A (λ) is negligible in security parameter λ.

5.3 Session unlinkability

The experiments for PPKA key-indistinguishability and ses-
sion unlinkability are mostly identical. However, instead of
using the Test(id, stid) query, at some point A will stop
and output (id0, id1). When A outputs (id0, id1), C runs
NextKey(λ, id0) and responds to queries as before. We
will refer to this as the “challenge” node. However, when
π stid
id0

.α ← accept, C then refers to the random bit b sam-
pled at the beginning of the experiment and:

• if b = 0, then C runs NextKey(λ, id0)
• if b = 1, then C runs NextKey(λ, id1) instead.

A now uses the SendTest(m) query to send messages to the
node Nidb in order to avoid trivial identification.Wewill refer
to this as the “unnamed node”. A at some point terminates
and outputs a guess bit b′. If b′ = 0, thenA is indicating that
the unnamed node Nidb was linked to the challenge node
Nid0 . If b

′ = 1, then A is indicating that the unnamed node
Nidb was not linked to the challenge node Nid0 .

We now formalise the advantage of a PPT algorithmA in
winning the PPKA session-unlinkability game:

Definition 2 (Session Unlinkability) Let Π be a PPKA pro-
tocol, and nN , nS ∈ N. For a given cleanness predicate clean,
and a PPT algorithmA, we define the advantage ofA in the
session-unlinkability game to be:

AdvPPKA - SU,clean
Π,nN ,nS ,A (λ)

=
∣
∣
∣
∣
2 ·

(

Pr
[

EXPPPKA - SU,clean
Π,nN ,nS ,A (λ) = 1

]

− 1

2

)∣
∣
∣
∣

We say that Π is PPKA-SU-secure if, for all A,
AdvPPKA-SU,clean

Π,nN ,nS ,A (λ) is negligible in the security parameter
λ.
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5.4 Cleanness predicates

The cleanness predicates are used in the security experiments
to define the exact combination of secrets that A is able to
compromise without trivially breaking the PPKA protocol.
In order to capture key-compromise-impersonation (KCI)
attacks and PrFS notions, we allow A to leak the long-term
secret key of the “normal” nodes ifA has not also leaked any
previously established per-stage secret state. Our analysis is
focused primarily on the normal nodes, and we do not allow
the compromise of the hub node secrets, as all security in
all stages is lost in this scenario. We additionally describe a
cleanness predicate for PPKA protocols that do not achieve
PrFS or KCI resilience.

Definition 3 (PrFS-KCI-clean) A session π stid
id such that

π stid
id .α = accept in the PPKA-IND experiment defined

in Fig. 5 is PrFS-KCI-clean if SKflagstidid �= corrupt and
if LSKflagid = corrupt then ∀ s ≤ stid PSSflagsid �=
corrupt.

Definition 4 (nPrFS-clean) A session π stid
id such that π stid

id .

α = accept in the PPKA-IND experiment defined in Fig. 5
is nPrFS-clean if SKflagstidid �= corrupt.

Finally, we describe a cleanness predicate for our session-
unlinkability game. It is straightforward to realise that if
Corrupt(id0) or Corrupt(id1) were to be issued, it would
trivially allow A to win in either of our PPKA protocols by
simply reconstructing the tidN field sent by the unnamed
node. Similarly, we cannot allow the adversary to reveal
the per-stage secret state for the current stage stid of the
unnamed node Nidb .

Definition 5 (SU-clean) A session π stid
id in the PPKA-SU

experiment defined in Fig. 5 is SU-clean if LSKflagid �=
corrupt and PSSflagstidid �= corrupt.

6 Analysis of our proposed PPKA Protocols

6.1 Security and privacy analysis

Before we begin, we show that an adversary A is unable to
recover the hub node secret kHN (with non-negligible proba-
bility) even ifA reveals all long-term secrets idN of all nodes
and all per-stage secret states psstate. In our proofs wework
within the randomoraclemodel, andA cannot learn anything
about kHN from hash outputs h(kHN , X) (where X is any
concatenation of arbitrary values). We turn to A attempting
to learn kHN that has been “blinded” through exclusive-or
(XOR) operations. We give below the generic construction
of messages that include kHN :

• bN = kHN ⊕ kN ⊕ idN ⊕ h(kHN , kN )

• μ = kHN ⊕ k+
N ⊕ idN ⊕ h(kHN , k+

N ) ⊕h(idN , tN , rN ,

id ′
N )⊕ fN ⊕ rN

Taking μ first, we note that k+
N (independently sampled by

the hub node, uniformly-at-random, in each stage) acts as the
key in a one-time-pad, perfectly hiding the long-term secret
key kHN of the hub node, the long-term secret key idN of
the normal node and the value h(kHN , kN ). k+

N is an internal
value that is known only to the challenger implementing the
Hub Node, as it cannot be compromised by A via Reveal,
Corrupt or StateReveal queries. For bN , we note that kN
(randomly sampled by the hub node in a previous stage) is
still acting as the same key k+

N in a one-time-pad, and thus still
perfectly hiding the same message, i.e. the long-term secret
key kHN of the hub node, the long-term secret key idN of
the normal node and the value h(kHN , kN ). We argue then
that A cannot recover the hub node secret key kHN . We can
further conclude that an adversary that compromises fewer
internal states and long-term secret keys will also be unable
to recompute kHN . We can continue our proof knowing that
the best strategy forA to recover the long-term secret key of
the hub node kHN is to attempt to brute-force the value.

We now show that an adversary A that does not issue a
Corrupt(id) query cannot recover the long-term secret key
idN of node Nid . As before, we note that since we instantiate
the hash function as a random oracle, that the adversary can-
not invert hash outputs of the form h(idN , X) (where X is
some arbitrary concatenation of values) in order to learn idN .
We can now focus on the adversary attempting to learn idN
from “blinded” values by XORing them with other values.
In each stage of the protocol execution, this is available toA
in the following generic ways:

• aN = idN ⊕ h(kHN , kN )

• bN = kHN ⊕ kN ⊕ idN ⊕ h(kHN , kN )

• η = rN ⊕ fN ⊕ idN ⊕ kHN ⊕ kN ⊕ h(idN , fN ) ⊕
h(kHN , k+

N )

• μ = rN ⊕ fN ⊕idN ⊕kHN ⊕k+
N ⊕h(idN , tN , rN , id ′

N )⊕
h(kHN , k+

N )

If this is the first stage of the protocol execution for node
Nid , then aN and bN are established in some out-of-band
way. Thus h(kHN , kN ) and kN act as uniformly random and
independent keys in a one-time pad, perfectly hiding idN and
kHN⊕idN⊕h(kHN , kN ) (foraN andbN respectively). Since,
by the previous argument, the best strategy for A to recover
kHN is simply to guess, (and we instantiate the hash function
with a random oracle), in order to recompute h(kHN , kN ) A
must either guess kHN or to guess h(kHN , kN ). Since they
are the same bit-length, the probability of A doing either is
the same: 2−λ.

123



Pragmatic authenticated key agreement for IEEE Std 802.15.6 589

Fig. 5 An algorithmic description of the PPKA-IND and PPKA-SU security experiments

If this is not the first stage of the protocol execution, then
aN and bN they were sent as “sub-XOR” of a previous stage
η and μ. We argue that h(kHN , k+

N ) and k+
N act as keys to

one-time-pads for η andμ, respectively, and remain the keys
to the one-time-pad perfectly hiding idN and kHN ⊕ idN ⊕
h(kHN , kN ) (for aN and bN respectively) in the following

stage. It follows then that the best strategyA has in recovering
idN is to merely guess idN : 2−λ.

We now prove the key-indistinguishability of our PPKA
protocols given in Fig. 4. We begin with PPKA-2, as it
captures the strongest notions of security, capturing PrFS,
KCI resilience, key randomness, known key security and
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hub-node authentication. Afterwards, we turn to proving
the session unlinkability of PPKA-2. We then prove key
indistinguishability and session unlinkability of PPKA-1. As
PPKA-1 is essentially a truncated version of PPKA-2, this
allows us to omit the most repetitive details of the proofs.

Theorem 1 (Key Indistinguishability of PPKA-2) The pri-
vacy preserving key agreement protocol PPKA-2 given
in Fig. 4 is PPKA-IND-secure with cleanness predicate
PrFS-KCI-clean (capturing PrFS and KCI resilience) and
assuming all hash functions are random oracles. For any
PPT algorithm A against the PPKA-IND key indistinguisha-
bility game, AdvPPKA-IND,PrFS-KCI-clean

PPKA-2,nN ,nS ,A (λ) is negligible in the
security parameter λ.

Proof For our proof, we assume that a test query Test(id,

stid) has been issued, and separate into the following three
cases:

• π stid
id has accepted such that π st id

id .mr �= PPKA - 2.HF
(λ, kHN , π st id

id .mr ).
• π stid

id has accepted such that π st id
id .mr �= PPKA - 2.HF

(λ, kHN , π st id
id .mr ) and Corrupt(id) has not been

issued.
• π stid

id has accepted such that π st id
id .mr �= PPKA - 2.HF

(λ, kHN , π st id
id .mr ) and Corrupt(id) has been issued.

By the definition of the cleanness predicate
PrFS-KCI-clean, we assume that the per-stage secret state
has not been revealed for any stage s ≤ stid.

Case 1 In this case, we show that the probability the ses-
sion π stid

id such that Test(id, stid) was issued set π stid
id .α ←

accept such that π stid
id .mr �= PPKA-2.HF(λ, kHN , π stid

id
.ms) is negligible.
Game 0 This is a normal PPKA key-indistinguishability
game. Thus we have: AdvPPKA-IND,C1

PPKA-2,nN ,nS ,A(λ) = Pr(break0).
Game 1 In this game, we guess the index (id, stid) of
the session π stid

id , and abort if during the execution of the
experiment, a query Test(i∗, s∗) is received and (i∗, s∗) �=
(id, stid). Thus we have: Pr(break0) ≤ nNnS ·Pr(break1).
Game 2 In this game, we replace the h(kHN , kN ) value com-
puted within π stid

id (and, potentially, in the hub node process-

ing π stid
id .ms) with a uniformly-random value ˜h(kHN , kN ).

We note that sincewe instantiate the hash functionwith a ran-
dom oracle that the distribution is identical to h(kHN , kN ).
Thus, the only way that A can detect this change is to query
(kHN , kN ) to the random oracle. Since the only way for A
to do this is to recover kHN fully, and we argued previously
that A’s probability of success in this endeavour is 2−λ, we
have: Pr(break1) ≤ 2−λ + Pr(break2).
Game3 In this gamewe argue that the adversaryA has a neg-

ligible probability of producing a value β̂ = h( ˜h(kHN , kN ),

ˆzN , ˆrN , f̂N , δ̂, η̂, μ̂, ˆid ′
N ). Note that for π stid

id .α to reach

accept, A must produce such a value β̂. We know by the
definition of Case 1 that the following must be true:

• π stid
id .mr = 〈α̂, β̂, η̂, μ̂, δ̂, ˆid ′

N 〉 �= PPKA-2.HF(λ, kHN ,

π stid
id .ms)

Since all message fields are included in the computation of
β̂, and the message received by the test session does not
match any output from an honest hub node, we know that
the only way that A can cause π stid

id to reach accept is

to query ˜h(kHN , kN ), ˆzN , ˆrN , f̂N , δ̂, η̂, μ̂, ˆid ′
N to the ran-

dom oracle. However, since by Game 2, ˜h(kHN , kN ) is a
uniformly-random value sampled independently from the
protocol flow, the only way for A to produce such an input

is to guess ˜h(kHN , kN ). Thus, we have: Pr(break2) ≤
2−λ + Pr(break3).

It is clear that if the session π stid
id such that Test(id, stid)

must be issued (by Game 1) cannot reach π stid
id .α ←

accept, then in Game 3 the experiment proceeds identi-
cally regardless of the bit b sampled by the challenger. Thus:
Pr(break3) = 0. We can now begin treating Case 2: that
Corrupt(id) has not been issued for the appropriate node.
Case 2 In this case, we show that an adversary who issues a
Test(stid, id) query (and does not also issue aCorrupt(id)

query) cannot win the key-indistinguishability game with
non-negligible probability.
Game 0 This is a normal PPKA key-indistinguishability
game. Thus we have: AdvPPKA-IND,C2

PPKA-2,nN ,nS ,A(λ) = Pr(break0).
Game 1 In this game, we guess the index (id, stid) of
the session π stid

id , and abort if during the execution of the
experiment, a query Test(i∗, s∗) is received and (i∗, s∗) �=
(id, stid). Thus, we have: Pr(break0) ≤ nNnS ·Pr(break1).
Game2 In this game,we replace the session key kS computed
by the node Nid in stage stid with a uniformly-random and
independent value k̃S . First we note that kS is computed as
kS = h(idN , zN , rN , fN , xN ). Since we instantiate the hash
function as a random oracle, the distribution of k̃S and kS is
identical. In order to distinguish this change,Amust be able
to query the random oracle with the input (idN , rN , fN , xN ).
Since we argued previously that in order to recover idN (the
long-term secret key of the node Nid ), A’s only strategy to
distinguish this changewould be to guess the long-term secret
idN . The probability ofA distinguishing this replacement is
2−λ where λ is the bit-length of idN .

After this change, the session key returned to A as the
response to the Test(stid, id) query is a uniformly-random
value independent of the protocol execution regardless of the
bitb sampledby the challenger. Thus,wehave: Pr(break1) ≤
2−λ.
Case 3

In this case, we show that an adversary who issues a
Test(stid, id) query (and does not issueStateReveal queries
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for all per-stage secret states established before stage stid)
cannot win the key-indistinguishability game.
Game 0 This is a normal PPKA key-indistinguishability
game. Thus we have: AdvPPKA-IND,C3

PPKA-2,nN ,nS ,A(λ) = Pr(break0).
Game 1 In this game, we guess the index (id, stid) of
the session π stid

id , and abort if during the execution of the
experiment, a query Test(i∗, s∗) is received and (i∗, s∗) �=
(id, stid). Thus we have: Pr(break0) ≤ nNnS ·Pr(break1).
Game 2 In this game, we replace the zN = h(kHN , idN , kN )

value held in secret stage by the node Nid with a uniformly
random value z̃N independent from the protocol execution.
Since we instantiate the hash function with a random oracle,
the distributions of zN and z̃N are identical. Thus, in order
to detect this change, A must query the random oracle with
the input kHN , idN , kN . Since, by earlier arguments, the best
strategy A has to recover kHN is simply to guess kHN , the
probability thatA is able to do this is 2−λ. ThusPr(break1) =
2−λ + Pr(break2).
Game 3 In this game, we replace the computation of the
z+N encryption key kz = h(z̃N , idN , rN , fN , 0) with a
uniformly-random and independent value k̃z . We note that
z̃N (by Game 2) is already a uniformly random value, and
the hash function is instantiated with a random oracle, this
replacement is sound and indistinguishable from the perspec-
tive of A. Thus Pr(break2) = Pr(break3).
Game 4 In this game, we replace the contents of ciphertext
δ with a random string of the same length, and abort if the
ciphertext δ sent by the hub node HN is not the ciphertext
received by Nid , but the output of decrypting δ is not ⊥. We
do so by constructing an algorithm B that interacts with an
IND-CCA challenger in the following way: B acts identically
as in Game 3, except for the hub node protocol execution
that computes k̃z . Instead, when B computes δ, B selects a
uniformly-random string ˜z+N (of the same length as z+N ) and
submits (z+N , ˜z+N ) to the IND-CCA encryption oracle Enc.

When the random bit b sampled by the IND-CCA chal-
lenger is 0, then δ contains the encryption of z+N , so B is
a perfect simulation of Game 3. However, when the bit b
sampled by the IND-CCA challenger is 1, then δ contains
a random string ˜z+N and thus B is a perfect simulator of
Game 4. Since in Game 3, the z+N encryption key k̃z is
uniformly-random and independent of the protocol execu-
tion, this replacement is sound. Any adversary capable of
distinguishing this change can break the confidentiality of
the IND-CCA encryption scheme and guess b with perfect
success. Thus Pr(break3) ≤ AdvIND-CCAEnc + Pr(break4).
Game 5 We now note that by Game 4, z+N has been estab-
lished in an out-of-band way, reminiscent of the first stage
run by node Nid . We now repeat the process of Games 2,
3, and 4 (stid − 2) times to establish a zN value for stage
stid run by node Nid that is indistinguishable from estab-

lishing zN in some out-of-band way. Thus Pr(break4) ≤
(stid − 2) · (2−λ + AdvIND-CCAEnc ) + Pr(break5).
Game 6 We replace zN with a uniformly-random and inde-
pendent value z̃N in stage stid of node Nid by the same
argument as Game 2. Thus Pr(break5) = 2−λ+Pr(break6).
Game 7 In this game, we replace the computation of the
session key ks = h(idN , z̃N , rN , fN , 1) with a uniformly-
random and independent value k̃s . We note that z̃N (by
Game 6) is already a uniformly random value, and the hash
function is instantiated with a random oracle, this replace-
ment is sound and indistinguishable from the perspective of
A. Thus Pr(break6) = Pr(break7). We finally note that the
session key established by π stid

id is now uniformly random
and independent of the protocol flow, and of the bit b sampled
by the PPKA-IND challenger. Thus Pr(break7) = 0. ��

We follow our proof of the key-indistinguishability of
PPKA-2 by proving the session-unlinkability of PPKA-2.

Theorem 2 (Session Unlinkability of PPKA-2) The PPKA
PPKA-2 given in Fig. 4 is PPKA-SU-secure with cleanness
predicate SU-clean and assuming all hash functions are
random oracles. For any PPT algorithm A against the
PPKA-SU session-unlinkability game described in Fig. 5,
AdvPPKA-SU,SU-clean

PPKA-2,nN ,nS ,A (λ) is negligible in the security parameter
λ.

Proof We begin by restating the SU-clean cleanness pred-
icate, and reiterating the impact upon our proof. For both
nodes Nid0 and Nid1 , we know that the queriesCorrupt(id0)
and Corrupt(id1) have not been issued. In addition, for the
stage stidb run by the unnamed node Nidb , we know that a
StateReveal(idb)(stidb) query has not been issued.
Game 0 This is a normal PPKA session-unlinkability game.
Thus we have: AdvPPKA-SUPPKA-2,nN ,nS ,A(λ) = Pr(break0).

Game 1 In this game, in the unnamed session π
stidb
idb

, we
replace the hash outputs of the form h(idN , X) (where X is
a concatenation of arbitrary stings) with a uniformly random

values ˜h(idN , X) chosen independently of the protocol flow.
As before, since we instantiate (in our proof) the hash func-
tion with a random oracle, the distribution of this change is
indistinguishable. In order to detect this change then,Amust
query the random oracle with the input (idN , X). As per our
previous arguments, in order to query idN to the random
oracle, A must first recover idN . Since the best strategy to
recover idN is to simply guess the value of idN , the proba-
bility of A distinguishing this change is 2−λ. Thus we have:
Pr(break0) = 2−λ + Pr(break1).
Game 2 In this game, in the unnamed session π

stidb
idb

, we
replace the hash outputs of the form h(kHN , X) (where X is

either kN or k+
N ) with a uniformly random values ˜h(kHN , X)

chosen independently of the protocol flow. As before, since
we instantiate (in our proof) the hash function with a random
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oracle, the distributions of Game 1 and Game 2 are indis-
tinguishable. In order to detect this change then, A must
query the random oracle with the input (kHN , X). As per our
previous arguments, in order to query kHN to the random
oracle, A must first recover kHN . Since the best strategy to
recover kHN is, to simply guess the value of kHN , the proba-
bility of A distinguishing this change is 2−λ. Thus we have:
Pr(break1) = 2−λ + Pr(break2).
Game 3 In this game, in the message output by the hub
node for the unnamed session π

stidb
idb

, we replace the hash

outputs β = h( ˜h(kHN , k+
N ), zN , rN , fN , δ, η, μ, id ′

N ) with
a uniformly randomvalue β̃ chosen independently of the pro-
tocol flow. As previous arguments, the distributions of Game
2 and Game 3 are indistinguishable. In order to detect this
change then,Amust query the random oracle with the input

( ˜h(kHN , k+
N ), zN , rN , fN , δ, η, μ, id ′

N ). Since ˜h(kHN , k+
N )

is already a uniformly random value independent of the pro-
tocol flow (by Game 2), the best strategy to distinguish this

change is to simply guess the value of ˜h(kHN , k+
N ). Thus we

have: Pr(break2) = 2−λ + Pr(break3).
Game 4 In this game, in the unnamed session π

stidb
idb

we

replace the computation of the z+N key kz = h(zN , idN , rN ,

fN , 0) with a uniformly-random and independent value k̃z .
We note that since we instantiate the hash function with a
random oracle, that the distribution of k̃z and kz is indis-
tinguishable. Thus, in order to detect this change, A must
query the random oracle with the input zN , idN , rN , fN , 0.
By earlier arguments, the best strategyA has to recover idN is
simply to guess idN . Thus Pr(break3) = 2−λ +Pr(break4).
Game 5 In this game we replace the value δ send by the
hub node to the unnamed session π

stidb
idb

with a uniformly

random and independent values δ̃
$← {0, 1}λ. We do so by

constructing an algorithm B that interacts with a PRF chal-
lenger in the following way: B acts identically as in Game
4, expect for the hub node protocol execution that computes
k̃z . Instead, B initialise a PRF challenger and queries (z+n ),
and uses the output δ̃ from the PRF challenger to replace
the computation of δ. Since by Game 4, k̃z is a uniformly
random and independent value, this replacement is sound.
If the test bit sampled by the PRF challenger is 0, then
δ̃ ← Enc(k̃z, z

+
N ) and we are in Game 4. If the test bit sam-

pled by the PRF challenger is 1, then δ̃
$← {0, 1}λ and we are

in Game 5. Thus any adversary A capable of distinguishing
this change can be turned into a successful adversary against
the PRF security of the encryption scheme Enc, and we find:
Pr(break4) ≤ AdvPRFEnc,A(λ) + Pr(break5)

We pause here to reflect on the consequences of these
changes. The first message sent by the unnamed node is
〈t̃ idN , yN , aN , bN , tN , id ′

N 〉. Since tN is a timestamp and
id ′

N is sampled identically regardless of the identity of the

unnamed node, the distributions of these fields is similarly
identical independent of the choice of the randomly sampled
bit b. t̃ idN is a uniformly-random valued and independent
of the protocol flow (by Game 1), as it is the output of a
random oracle query that is of the form (idNb , id

′
N , tn, rn).

This is true regardless of the choice of the randomly sam-
pled bit b of the challenger. For yN we remark that rN is a
uniformly-random value sampled identically from the same
distribution regardless of the node identity. This value acts as

the key in a one-time-pad, perfectly hiding ˜h(kHN , kN ). rN
is not reused (as a key) in any message in any stage, and thus
yN is a uniformly-random value, regardless of node identity.

aN is also a uniformly random value. Here, ˜h(kHN , kN ) acts
as the key in a one-time-pad, perfectly hiding the long-term

secret key idN of the node by Game 2. Since ˜h(kHN , kN ) is
not reused (as a key) in any message in any stage, aN is a
uniformly random value, regardless of the node identity, or
the bit b randomly sampled by the challenger. Finally, we
turn to bN . We note that this time, kN (randomly sampled
by the hub node in a previous stage, uniformly-at-random)
acts as the key in a one-time-pad, perfectly hiding the long-
term secret key kHN of the hub node, the long-term secret

key idN of the node and the value ˜h(kHN , kN ). kN is not
reused (as a key) in any message in any stage, and thus bN is
a uniformly-random value, regardless of node identity.

We examine the first message received by the unnamed
node, 〈α, β, η, μ, δ, id ′

N 〉. Again, id ′
N is sampled identi-

cally regardless of the identity of the unnamed node; the
distributions of the fields are similarly identical indepen-
dent of the choice of the randomly sampled bit b. For α

we remark that fN is a uniformly-random value sampled
identically from the same distribution regardless of the node
identity. This value acts as the key in a one-time-pad, per-

fectly hiding ˜h(kHN , k+
N ). fN is not reused (as a key) in

any message in any stage, and thus α is a uniformly-random
value, regardless of node identity. η is also a uniformly

random value. Here, ˜h(idN , tN ) acts as the key in a one-time-
pad, perfectly hiding the values rN , fN and a+

N by Game 1.

Since ˜h(idN , tN ) is not reused (as a key) in any message
in any stage, η is a uniformly random value, independent
of the node identity, or the bit b randomly sampled by the
challenger. A similar argument apples for μ, substituting

˜h(idN , tN , rN , id ′
N ) for ˜h(idN , tN ). β̃ is a uniformly-random

valued and independent of the protocol flow (by Game 3),
as it is the output of a random oracle query that is of the

form ( ˜h(kHN , k+
N ), zN , rN , fN , δ, η, μ, id ′

N ). This is true
regardless of the choice of the randomly sampled bit b of
the challenger. Finally, we rely on the PRF security of the
encryption scheme Enc to replace the δ field returned by
the hub node. By Game 5, the value δ̃ is uniformly-random
and independent of the protocol regardless of the node iden-
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tity idb. We note then that all message fields have the same
distribution regardless of the challenger’s randomly-sampled
bit b; thus we have: Pr(break5) = 0. ��

We now prove key-indistinguishability of our proposed
PPKA-1, capturing known key security, and key randomness,
but not forward-secrecy. It follows identically from Case 2
of the proof of PPKA-2 key-indistinguishability, as it does
not capture PrFS or KCI resilience. However, it still captures
known key security, and key randomness and (obviously)
key-indistinguishability.

Theorem 3 (Key Indistinguishability of PPKA-1) The PPKA
Protocol 1 PPKA-1 given in Fig. 4 is PPKA-IND-secure with
cleanness predicate nPrFS-clean (capturing neither PrFS
nor KCI resilience) and assuming all hash functions are ran-
domoracles. For anyPPTalgorithmA against thePPKA-IND
key-indistinguishability game, AdvPPKA-IND,nPrFS-clean

PPKA-1,nN ,nS ,A (λ) is
negligible in the security parameter λ.

Proof For our proof, we note that we cannot prove partial-
forward-secrecy or key-compromise-impersonation
resilience for the proposed PPKA Protocol 1. Thus, unlike
PPKA-2, the cleanness predicate nPrFS-clean ensures that
Corrupt(id) has not been issued. In this case, we assume
that the per-stage secret state has been compromised at any
(or perhaps, at all) previous stages. Since PPKA-1 sends the
per-stage secret state 〈aN , bN 〉 in the clear, this has no bearing
on our security proof of PPKA-1.

Similarly to the proof for PPKA-2, we begin by showing
that the adversary is unable to recover the Hub Node secret
key kHN (with non-negligible probability) even if A com-
pletely reveals the long-term secret keys of every normal
node and the per-stage secret states of the nodes. This argu-
ment follows identically to the argument for the secrecy of
kHN in the proof of PPKA-2, and we can continue our proof
knowing that the best strategyA has in recovering kHN is to
merely guess kHN .

In this proof, we show that an adversary that issues a
Test(stid, id) query (and does not also issue aCorrupt(id)

query) cannot win the key-indistinguishability game with
negligible probability. Before we begin in earnest, we wish
to show that an adversary that does not issue a Corrupt(id)

query cannot recover the long-term secret key idN of node
Nid . This argument follows identically to the argument for
the secrecy of idN in the proof of PPKA-2, and we can
continue our proof knowing that the best strategy A has in
recovering idN is to merely guess idN .

Game 0 This is a normal PPKA key-indistinguishability
game. Thus we have: AdvPPKA-IND,C1

PPKA-1,nN ,nS ,A(λ) = Pr(break0).
Game 1 In this game, we guess the index (id, stid) of
the session π stid

id , and abort if during the execution of the
experiment, a query Test(i∗, s∗) is received and (i∗, s∗) �=
(id, stid). Thus we have: Pr(break0) ≤ nNnS ·Pr(break1).

Game 2 In this game, we replace the session key kS com-
puted by the node Nid in stage stid with a uniformly-random
and independent value k̃S . First we note that kS is com-
puted as kS = h(idN , rN , fN , xN ). Since we instantiate
the hash function as a random oracle, the distribution of k̃S
and kS is identical, thus in order to distinguish this change,
A must be able to query the random oracle with the input
(idN , rN , fN , xN ). Since we argued previously that in order
to recover idN (the long-term secret key of the node Nid ),
A’s only strategy in distinguishing this change would be to
guess the long-term secret key idN . Thus the probability of
A in distinguishing this replacement is 2−λ where λ is the
bit-length of idN .

After this change, the session key returned to A as the
response to the Test(stid, id) query is a uniformly-random
value independent of the protocol execution regardless of the
bit b sampled by the challenger. Thuswe have: Pr(break1) ≤
2−λ + 0. ��
Finally, we finish our security analysis by proving the
session-unlinkability of PPKA-1.

Theorem 4 (Session Unlinkability of PPKA-1) The PPKA
PPKA-1 given in Fig. 4 is PPKA-SU-secure with cleanness
predicate SU-clean and assuming all hash functions are
random oracles. For any PPT algorithm A against the
PPKA-SU session-unlinkability game described in Fig. 5,
AdvPPKA-SU,SU-clean

PPKA-1,nN ,nS ,A (λ) is negligible in the security
parameter λ.

Proof The proof of the session-unlinkability of PPKA-1 fol-
lows near-identically to the proof of session-unlinkability for
PPKA-2, (with the exception of Game 4 and Game 5, since
PPKA-1 does not have zN state, nor a δ field in the hub node’s
response) and so we omit repeating it here. ��

6.2 Functional Analysis

The proposed PPKA protocols can easily be adapted for
direct communication between N and HN by removal of
Steps 2 and 4 out of their respective Authentication Phases.
As our PPKA protocols are also based on symmetric crypto-
graphic primitives, they preserve the efficiency of the original
scheme from a computation, communication and storage
perspective without the aid of any additional network infras-
tructure. Note that the length of the identity field idN is
something not under the control of the authors. The current
IEEE 802.15.6 standard utilizes 24-bits to represent idN as
specified under Clause 9 of IEEE Std 802-2001. The pro-
posed scheme doesn’t impose any limitations on the length
of idN and is flexible enough to accommodate the identity
field of any length. Moreover, in our protocols the timestamp
field can also be of any arbitrary length to suit the underlying
protocol layers, unlike [21].Assuming a B bit hash digest and
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Table 5 Overheads associated with PPKA Protocol 1

Index Node N Hub node HN

Computation overhead 5h + 9⊕ 7h + 14⊕
Communication overhead 5B + 16 bits 4B + 16 bits

Storage overhead 3B bits B bits

Table 6 Overheads associated with PPKA Protocol 2

Index Node N Hub node HN

Computation overhead 6h + 9⊕ 10h + 14⊕
Communication overhead 5B + 16 bits 5B + 16 bits

Storage overhead 4B bits B bits

16 bit pseudo identity id ′
N for node N , Tables 5 and 6 depict

the various overheads associated with PPKA Protocols 1 and
2, respectively. In these tables, h denotes an instance of a hash
operation and ⊕ denotes an XOR operation. From a compu-
tational perspective, single instances of hash operation and
encryption operation have been considered equal [1].

7 Conclusion and future research directions

We have proposed two authenticated key agreement pro-
tocols suitable for WBANs. The protocols are based upon
symmetric cryptographic components only and are thus
highly efficient and avoid the additional burden of deploying
and managing an associated public key infrastructure. Our
protocols are suitable for any application scenario where
efficiency is of essence and the network can be initialized
by a System Administrator. In addition to the requisite secu-
rity guarantees, the proposed protocols also offer appropriate
privacy attributes suitable for a wide variety of application
scenarios. In order to ensure confidence in our proposals,
we introduce formal security frameworks for the analysis of
privacy-preserving key agreement protocols, and analyze our
constructions. The proposed protocols emerge as attractive
alternatives to the current key exchange methods described
in the IEEE 802.15.6 standard, which are based upon legacy
public key-based primitives and do not offer any privacy
features. One of the protocols offers the advance security
properties of partial forward secrecy and KCI resilience
in case of compromise of the long-term secret of the sen-
sor/client node. It would be interesting to investigate whether
future research can yield a scheme which is based on sym-
metric primitives and still offers (full) forward secrecy in the
(additional) event of compromise of the long-term secret of

the Hub node or KCI resilience in the (additional) event of
the compromise of node’s ephemeral parameters.
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